
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Quadratic Programming Methods for
Tailored Reduced Hessian SQP

C. Schmid, L. Biegler

EDRC 06-159-93

Quadratic Programming Methods for
Tailored Reduced Hessian SQP

Claudia Schmld and Lorenz T. Biegler *
Chemical Engineering Department

Carnegie Mellon University
Pittsburgh, PA 15213

March, 1993
Submitted to Computers and Chemical Engineering

• Author to whom correspondence should be addressed

Abstract

Reduced Hessian Successive Quadratic Programming (SQP) has been shown
to be well suited for the solution of large-scale process optimization problems
with many variables and constraints but only few degrees of freedom. The
reduced space method Involves four major steps: an Initial preprocessing
phase followed by an iterative procedure which requires the solution of a set
of linear equalities, the QP subproblem and a line search. Clearly, the overall
performance of the algorithm will depend directly on the robustness and
computational efficiency of the techniques used to handle each of these sub-
tasks.

The preprocessing phase solves a linear feasibility problem corresponding to
the original nonlinear programming formulation. This step serves to
determine an initial consistent point, to select a nonsingular set of basis
variables (required for the definition of the search subspaces) and to identify
linear dependency among the equality constraints. We demonstrate how
Fourer's piecewise-llnear simplex techniques allow us to solve a smaller
initialization problem more efficiently than is possible with standard simplex
techniques.

Also, while the relative number of degrees of freedom is generally small, the
actual number may become large. In this context, we present a new QP
solver, QPKWIK, based on the dual algorithm of Goldfarb and Idnani. A
unique feature of this algorithm is that it only requires the inverse Cholesky
factor of the Hessian matrix to be supplied. At each iteration, this inverse
Cholesky factor is obtained directly using a factorized inverse BFGS formula.
The resulting solution technique for the QP subproblem is O(n2) with respect
to the degrees of freedom of the problem, as opposed to most existing
software which involves O(n3) operations. Further, the unconstrained
optimum is dual feasible, which precludes the need for phase I calculations,
and makes this method superior even for problems with few degrees of
freedom. QPKWIK has been implemented so as to enhance the efficiency of
the active set identification and is also able to determine a search direction
when infeasible QP subproblems are encountered by relaxing the equality
constraints without violating the simple bounds on the variables.

Finally, numerical results are included, both to illustrate the advantages of
the proposed techniques and to assess the overall performance of the
reduced Hessian method. We note that this approach is especially well-
suited for process and real-time optimization and demonstrate this on
several distillation problems as well as the Sunoco Hydrocracker
Fractionation problem.

1. Introduction to Reduced Hessian SQP methods

Reduced Hessian Successive Quadratic Programming (SQP) has been shown to be well

suited for the solution of large-scale process optimization problems with relatively few

degrees of freedom. Here, we first briefly describe this method and motivate the

improvements described in this study. We consider the nonlinear programming

problem:

Min f(z)
26*"

s.t. h(z) = 0 (PI)

zL < z < zu

where f : SRn -» 9? and h : 9?n -> SRm. This formulation is not restrictive since any

inequalities can be converted to equality constraints through the addition of slack

variables. At the kth iteration, the successive quadratic programming method generates

a search direction dk by solving the quadratic programming subproblem (P2).

Min Vf lzJ 1 ^ + | d k
T B k d k

s.t. hfzj + Vh^zJ dk = 0 (P2)

zL < z^ + dk < zu

Bk denotes the Hessian of the Lagrange function or its approximation at iteration k.

The reduced space SQP method results from a suitable change of basis representation

applied to (P2). The new basis vectors are obtained by partitioning the search space

into two subspaces;

= 0 (1.1)

Y€ ĉ nxm s.t. [Y Z] is nonslngular (1.2)

Thus, Y and Z together span the entire search space and the search direction dk can be

expressed as the sum of its components in the two subspaces.

\ = YpY + Z p z (1.3)

As long as conditions (1.1) and (1.2) are satisfied, the choice of Y and Z is essentially

arbitrary. Two methods in particular have received considerable attention in recent

years. Let us partition the variables, z, into dependent variables y e SRm , with V hT

nonsingular, and independent variables x € 9tn"m. The coordinate basis method (Gabay,

1982; Locke et al 1983) uses

(1.4)

while the orthogonal basis method (Vasantharajan and Biegler, 1988) is based on the

following decomposition:

Y= x y (1.5)

For a detailed comparison of these two methods, see Schmid and Biegler (1993).

As derived in Schmid and Biegler (1993), it is easily seen from (1.1) and (1.3) that the

linearized equality constraints in (P2) are reduced and py is fully determined through

the solution of a set of linear equations

Py = "

Once the Y space move has been calculated, terms involving py can be treated as

constant and the QP subproblem (P2) reduces to

Min [zTVfIzk) + ZTBYpy]Tpz + 3Pz
TZTBkZpz

L u (P 3)

s . t . z - Zk - Y p y £ Z p z < z - Z j ^ - Y p y

This reduced QP is solved in the space of the independent variables and, for most

process optimization applications, (P3) will be considerably smaller that (P2). Since the

second order information required for the objective function of (P3) is often not available

analytically, it must be obtained through other means. The reduced Hessian, ZTBZ. is

expected to be positive definite at the solution of the NLP. Consequently, this matrix

can be approximated by positive definite quasi-Newton update formulae such as BFGS.

The other second order term, ZTBYpy, is ignored in most reduced space SQP

applications because it is assumed that py (the "Newton step") converges to zero faster

than pz. For cases in which ZTBYpy is not negligible, Biegler et al (1993) proposed the

inclusion of a second order correction term calculated via finite differences or a Broyden

update formula.

The first order Kuhn-Tucker conditions which yield the multiplier values are given by

YTBYpy + YTBZpz + YTVhX = -YTVf (1.7)

Since exact values of the multipliers are only required at the solution of the NLP, once

the method has converged and pY = pz = 0, these multipliers can be estimated using

X = -f^Vh)"1 YTVf (1.8)

We now outline the reduced SQP algorithm which forms the basis for this paper.

A. Preprocessing Phase

Set iteration counter ktoO

A.1 Evaluate theJunctionsJand has well as the gradients Vf and Vh at zk.

A.2 Introduce slack variables and solve the linear feasibility problem (see P8) at zk.

A.3 If all slack variables are zero go to AA. Else, perform an Armifo line search along

the direction dk generated by a Phase I linear program (P8) to minimize the

Lrl penalty function (4.1). This gives a step size a>k.

Set zk¥l = zJc + 6)kdk, Jc;=fc+j and go to A. 1.

AA Identify the basic variables as well as any redundant equality constraints which

will be handled by the QP.

B. Optimization Phase

Set iteration counter ktoO

Initialize the reduced Hessian (usually to the identity matrix).

B. 1 Determine the LUfactors for the system of basic variables and linearized equality

constraints; calculate the Y space move from (1.6).

B.2 If applicable, determine the second order correction term 2^BYpr

B.3 Solve the reduced QP subproblem (P3) to yield pr

BA Reconstruct the search direction dk using (1.3) and estimate the Lagrange

multipliers using (1.8).

B.5 If the convergence tolerance is satisfied, STOP. Else, go to C.I

C. Une Search Phase

C. 1 Perform an Armijo line search along the search direction dk obtained in BA to

yield the search step ak. The merit function we use is based on an augmented

Lagrangian approach due to Biegler and Cuthrell (1985).

C.2 Evaluate J and h as well as Vfand Vh at zk. If the basis becomes singular return

toA.2.

C.3 Update the reduced Hessian using the BFGS formula with Powell damping

(Powell 1977). Go to B.I.

In this paper we focus on steps B.3 and A of the above algorithm. They are discussed in

Sections 3 and 4 respectively. Step B. 1 is briefly addressed in Section 2. Details on the

decomposition strategy that is used, are included as part of the numerical results where

appropriate.

In addition, each section contains numerical results for a variety of general test

problems which illustrate the performance of the improvement discussed in that

section. Finally, results for a number of process optimization examples are presented in

Section 5. These will be used to assess the overall behavior of the algorithm and

demonstrate its advantages for both process and real-time optimization. In particular,

we include a case study of the Sunoco Hydrocracker Fractionation problem and

compare our reduced Hessian algorithm with MINOS (Murtagh and Saunders, 1982,

1987).

2. Determination of the T space move; tailoring the algorithm

As discussed above, the Y space move, pY, is obtained from the solution of a set of linear

equations

Pr = -

Using coordinate bases (1.4), this reduces to

Py = -Vhk-Thk (2.1)

Model sparsity is maintained and determination of the Y space move is equivalent to

determining a Newton step for solving h(z) = 0. The matrix to be factored is of

dimension mxm; for most process engineering applications it will be very large but

considerably sparse. It follows that integration of a sparse equation solver within the

SQP algorithm is essential for efficient calculation of the Y space move. While a number

of sparse linear equation solvers are available, the set of MA28 subroutines from the

Harwell library seems adequate for our purpose. The variables and equations are first

scaled using MC19 so as to reduce the chance of ill-conditioning. At the first iteration,

the equations are solved using MA28AD which determines an initial pivot sequence.

MA28BD is used at subsequent iterations; it uses the same pivot sequence to solve

systems with different coefficients but the same sparsity pattern. This is important

since determination of the pivot sequence is computationally intensive. If the matrix

becomes ill-conditioned, the algorithm returns to MA28AD and determines a new set of

pivots. The advantages of sparse equation solvers, as compared to dense methods has

been widely accepted in the literature.

To illustrate the performance of our reduced Hessian algorithm with respect to

increasing problem size, consider Example 1, below.

Example 1.

Min o 2
(=1

s.L x (x - 1) - 10 x = 0 J = 1 , n-100
* j j

where k is equal toJ/100 rounded up to the nearest integer.

We can arbitrarily increase the size of the problem to be solved by increasing the

40-

i
| 3 0 -

I
2 0 "

1 0 -

0
0 5000 10000 15000

Number of variables

20000

Figure 1. CPU seconds per iteration on a DEC5000/200 as a function
of Increasing number of variables for Example 1.

number of variables, n. Here, the number of degrees of freedom, (n-m), remains

constant at 100. Hence the increase in effort as the number of variables increases will

be due, primarily, to the extra computations required to factorize the matrix Vyh
T, as

required for the calculation of the Y space move according to (2.1). Since the number of

nonzero elements in the Jacobian increases linearly as a function of n without

complicating its structure, we expect our algorithm, using the sparse equations solver

MA28 to yield the matrix factorizations, to scale linearly with the size of Example 1.

Example 1 is solved on a DEC 5000/200; 6 to 8 iterations are requires for convergence

within a tolerance of 10"10, depending on problem size. CPU time per iteration as a

function of n is shown in Figure 1. As expected, our algorithm scales linearly with the

size of Example 1.

For specific classes of problems we can still do better, however, than is possible with a

generic equation solver such as MA28. To illustrate this, we consider the example of

optimizing the operating conditions of a distillation column using an equation based

approach. Using constant molal overflow to simplify the state equations, the mass

balance for component j on tray i of the column is given by

SL S v

' <« + L n = 0 (2.2)

where f, v and 1 denote the component feed, vapor and liquid flowrates. V and L are the

overall flowrates and S refers to the contribution of sidestreams. It is easy to see that

the equation for tray 1 depends exclusively on the variables for trays i-1, i and i+1. In

effect, the Jacobian matrix for the model equations has a block tridiagonal structure.

This structure is exploited by the Naphthali-Sandholm model, UNIDIST, which is part of

the SEPSIM process simulator (Anderson et aL, 1991) and employs an efficient Thomas

algorithm to obtain the Newton step for the distillation model. As discussed in Schmid

and Biegler (1993), this existing solution and decomposition strategy can be integrated

within the reduced SQP algorithm and used to obtain the Y space move. Thus, a

tailored optimization algorithm is obtained which exploits the structure of the Jacobian

as well as any economized procedure to calculate the Newton step. Numerical results

for several distillation examples illustrating the benefits of using specialized solution

techniques are included in Section 5.

Developing a special solution procedure for every problem is clearly an impossible

endeavor. However, we find that a number of suitable and efficient Newton-based

methods are readily available and have been implemented in a very robust manner.

Thus, the ease with which the reduced Hessian SQP algorithm can be tailored to take

advantage of the sparsity pattern of various classes of problems provides a strong

motivation for using this optimization technique.

3. Solution of the QP subproblem

Decomposition strategies for SQP are best suited for problems with few degrees of

freedom, since the QP subproblem then only needs to be solved in a small subspace of

the process variables. While this formulation encompasses many process engineering

problems, in particular, most applications involving process flowsheets, there are

situations for which the number of degrees of freedom can grow significantly. This is

the case, for example, in optimal control, multiperiod design and data reconciliation.

While the number of independent variables is still relatively small compared to the total

number of variables, the QP could become quite large. In addition, even if the number

of variables involved in the QP subproblem is small, the number of inequality

constraints, arising from bounds on the variables in (PI), that need to be considered can

be substantial. To successfully handle a broader range of applications it is therefore

essential to consider the efficiency of the QP subproblem solution procedure.

Currently, most implementations of the reduced SQP algorithm employ QP routines

such as QPSOL (Gill et aL, 1983), which are based on active set strategies applied to a

primal algorithm for the solution of the quadratic programming problem. Considerable

effort is expended in determining an initial feasible point for the QP, usually via a phase

I LP solution, and in factorization of the Hessian matrix. The work discussed in this

section was motivated by the algorithm proposed by Goldfarb and Idnani (1983) and the

accompanying Harwell code, VE17AD, by Powell (1985). The most obvious advantage of

this dual algorithm is that the unconstrained minimum of the QP objective function

provides an initial dual feasible solution, and the initialization phase is thus eliminated.

However, for a large number of independent variables, the effort involved in the LLT

factorization of the Hessian at each SQP iteration is still significant.

We propose a new QP solution technique, QPKWIK, based on the original algorithm by

Goldfarb and Idnani but modified substantially to account for the fact that the QP is

only a subproblem of the SQP algorithm and will have to be solved repeatedly. First we

describe this dual method and outline the QP algorithm. We then highlight the major

8

advantages of QPKWIK over QPSOL and VE17AD. Finally, numerical results are

Included to illustrate these differences.

3.1 A dual method for the solution of QPs

The QP subproblem (P3) can be written as follows:

Min gTx + | x T Gx

s.t. ATx Z b

xt < x ^ Xu

(P4)

Considering only the active inequalities and bounds, this can be rewritten as

Min gTx + \ x T Gx (P5)

s.t. ATx = b

The Karush-Kuhn-Tucker conditions for this QP are given by

PC -AH
L-AT o J (3.1.1)

\i* £ 0 for the active inequalities or bounds

As noted by Fletcher (1987), the solution to this system of linear equations has the

general form

Lji'J

H D i r g
(3.1.2)

The difference between the various methods that have been developed for the solution of

quadratic programming problems then lies in the definitions of H, D and U. If the

Hessian matrix, G, of (P5) is positive definite, explicit expressions for H, D and U are

given by

H = G1 - G*A

D = G-JAIAJG1

U = -{ATG'lAYl

(3.1.3)

Moreover, if G is positive definite, we can express it in terms of its Cholesky factors, G =

LLT. Then, using a QR factorization of I/1 A

9

G*A = L'TL^A =

Also, define a matrix T such that

= L-MQ! I Q2]l nI = p* I T«I| "n"I = T I •" I (3.1.5)

Using the above definitions, (3.1.3) becomes

H = f

D = T°R-T (3.1.6)

U = -

These expressions can be used, together with (3.1.2), to calculate x* and \i*, the optimal

solution of the QP (P4). once the correct active set has been identified.

During the course of the QP solution, however, the active set will change from one

iteration to the next. Let SL. L =1, 2, 3, ... be this series of active sets. Let AL be the

matrix containing the currently active constraint normals, and define the corresponding

TL and RL from (3.1.5). S! is chosen to be empty such that xx is the unconstrained

minimum of the objective function in (P5), and Tj is defined as Tj = L~T. For nonempty

SL, TL is updated so that it satisfies TLTL
T = LmTLrl and an upper triangular RL, where RL

L, is maintained.

Let xL be the optimum point of the QP with the current active set, SL Then,

XL = - TL
u(TL

u)Tg +

Let XL+I be the optimum point of the QP with the active set SL u constraintKNEXT-

point is also a feasible point of the active set SL. We thus have

g = -GX L + 1 + AI>lL+1 + aKNEX!^KNEXT (3.1 .8)

+ AL|iL+1

where t is chosen so as to ensure feasibility and will equal the multiplier, MKNEXT- Using

these expressions for g and t>L, we obtain

10

LK (3.1.9)

[-

(3.1.10)

Therefore, as constraints are added to the active set, the recursion formulas used within

the dual algorithm to update the search direction and the multipliers are given by

(3.1.11)^ 1 1 = HL + f

3.2 QPKWIK Algorithm

Define NACT = number of active constraints (dimension of SJ

KNEXT = index of constraint to be added to SL

KDROP = index of constraint to be removed from SL

0. Find the unconstrained minimum x = - G'lg = - L^L

1. Check for violation of any of the inactive inequality constraints

• If all are satisfied, the current solution x is bothfeasible and optimal STOP

• Otherwise, set KNEXT to the index of the most violated constraint M* = I

2. (a) Determine the search direction in the primal space

z = TjCTtfTaKNExr

and, ifNACT>0. the search direction in the dual space

r = RLWIPF OKNEXT

(b) Compute step length

(i) Compute tlt maximum step in dual space without violating dual feasibility

IfNACT=0orr<0 tx = ~

Else ti = mini ^ : i) > 0 \ KDROP =J

11

(ii) Compute t2, mintmum step in primal space such that constraint KNEXT

becomes feasible

If\z\ = O t2 =

Else t2 =

Step length, t = min (UXQ)

(c) Take step

(i) No step in primal or dual space

t = «> QPis infeasible, STOP

(ii) Step in dual space

ta-oo but U is finite i? = /x* + t | 1

Drop constraint KDROP. updateTLandRL, setNACT= NACT-1, GOTO2(a)

(iti) Step in primal and dual space

X = X + tZ

1? = It +

Ift=t2 Add constraint KNEXT to S^ update TL and Rb, set

NACT=NACr+l, GOTO1

If t=ti Drop constraint KDROP. update TL and Rt, set NACT = NACT-1,

GOTO2(a)

3.3 Reduced Hessian Approximation

Both QPSOL and VE17AD require the Hessian of the QP objective function to be

supplied as an input parameter. In QPSOL, this matrix is projected into the space of

the active constraint set and factorized via a modified Cholesky factorization. Goldfarb

and Idnani, on the other hand, apply a Cholesky factorization to the original Hessian

and then find the Inverse of the Cholesky factor. In both cases, the matrix factors are

updated to account for the addition and removal of constraints from the active set

within one QP iteration so as to avoid complete refactorization. However, Otn3) steps are

required at every SQP iteration for the initial factorization of the Hessian of the QP

subproblem.

The reduced SQP algorithm uses an approximation to the dense reduced Hessian, Gk,

calculated via the BFGS formula. We can eliminate the factorization required by the

Goldfarb and Idnani algorithm by updating the Cholesky factor Lk, where G =

instead. The update formula to use in this case is given by

Nk+i = I* +

Ts y/2
J

12

(y - cULiJs) cs1!^
^ ^

w h e r e c =

y =

s = a p z

Nk+1 is not lower triangular but can easily be transformed to Lk+1 using Givens rotations

(Dennis and Schnabel, 1986). This procedure requires Ofn2) operations. We can still do

better, however. First, the term 1+W* = Gks = - (2?V* + ZA
T \i) and Gk never need to

be calculated. (ZA are the rows of Z that represent active bounds.) Also, the QP

algorithm works directly with the inverse of the Cholesky factor. The inverse of the

above rank one update formula (3.3.1) gives the following expression through a

Householder relation:

4 A * s)s'y

Again, Nk+1-
J is transformed to the lower triangular matrix I * ^ 1 via Givens rotations.

We have implemented this inverse update for QPKWIK. The update can be done

efficiently using Givens rotations and requires Obi2) operations. Also, the criterion for

Powell damping remains unchanged from that generally used in the context of the BFGS

formula and positive definiteness of the reduced Hessian is always maintained.

3.4 Bounds and sparsity of the reduced Jacobian

In VE17AD, all constraints, whether bounds or inequality constraints, are treated alike

and must be checked for violation at each QP iteration. When we examine the structure

of the QP subproblem of our reduced SQP algorithm, we find upper and lower bounds

on the variables but also a large number of inequality constraints of the form

LB <> aTx < UB

resulting from the original upper and lower bounds on the dependent variables. We

account for this special structure within QPKWIK. If either the upper or lower bound is

active, the constraint is labeled active and not checked, since both bounds cannot be

active simultaneously. If both are inactive, then aTx is calculated only once and both

bounds are checked for violation. This saves considerable time since the number of

constraints to be checked is essentially halved.

13

Another option within QPKWIK, which is not Included In QPSOL or VE17AD, considers

only the nonzero elements of the reduced Jacobian A in (P4). While the reduced

Jacobian will be considerably less sparse than the full Jacobian, the number of nonzero

elements may still be relatively small, especially for problems with more degrees of

freedom. Therefore sparsity is checked at the first iteration and if the reduced Jacobian

is found to be less than 50% dense, the calculation of aTx is restricted to the nonzero

elements of A.

3.5 Warm starts

The first few times the quadratic subproblem is solved, the active set is likely to change

considerably from one SQP iteration to the next. However, once the correct active set of

the NLP (PI) has been identified, the work per iteration can be reduced by using the

constraints active at the previous iteration as an initial guess for the current iteration.

While QPSOL has a warm start option, there is no such provision within VE17AD.

Our new algorithm, QPKWIK, can take advantage of warm starts. However, there is a

trade-off between reducing the size of the set from which potentially active constraints

are selected and adding the wrong constraints which must subsequently be dropped.

Apart from the effort Involved in choosing a violated constraint to add to the active set,

most of the work at each QP iteration is dedicated to updating T using Givens rotations

in order to maintain an upper triangular matrix R. N-nact-1 Givens rotations are

associated with adding a constraint while dropping a constraint requires nact-kdrop-1

rotations, where n is the number of variables, nact the number of active constraints and

kdrop the index of the constraint to be dropped. Kdrop and nact are bounded between 1

and n. Clearly, the penalty for dropping constraints may be considerable, and care

must be taken to minimize the number of incorrect constraints that are added. With

this in mind, we only use a warm start if a full search step was taken at the previous

SQP iteration. To select which constraints to make active for the warm start, we order

the constraints according to decreasing multiplier value scaled by the norm of the

constraint gradient. The algorithm then checks down the list, adding those constraints

that are violated. In this way we hope to add those constraints that will result in the

greatest increase in the objective function and prevent the addition of unnecessary

constraints.

14

3*6 Handling infeasible QPs

At the initial point, the preprocessing step discussed in Section 4 of this paper serves to

guarantee the existence of a feasible region and consequently the initial QP subproblem

will be feasible. At subsequent iterations, however, the algorithm may move to a point

where the QP becomes infeasible. Rather than return to the preprocessing phase, it is

usually sufficient to relax the feasible region and allow the algorithm to take the

resulting step, in the hope that it will eventually move to a point where the QP again has

a solution. Such a relaxation is possible with QPSOL which, when failing to satisfy the

desired tolerance, determines a point that minimizes the total Infeasibility. While this

approach may often be adequate, it cannot account for constraints which must never be

violated. For process optimization problems, in particular, bounds on the variables

usually reflect actual physical bounds which, if violated, may cause numerical

difficulties. Within QPKWIK we therefore allow the feasible region to be relaxed such

that the equality constraints can be violated but upper and lower bounds on the

variables are always enforced. At the level of the undecomposed QP, (P2), this is

achieved through the addition of an additional variable, £, and (P2) becomes

Min VfTd + 2<iTBd + Mft + f)

s.t. h (1 - §) + VhTd = 0 (P6)

zL < z < zu

% > 0

where M is a large number. After decomposition, the Y and Z space moves are

calculated from

PY = -[VhkTYk]" l hk (3.6.1)
and

Min [zTVflzk) + (l^)ZTBYpy]Tpz + |pz
TZTBkZpz + M

s.t. z1- - 7^ < Z p z + (1 -£) Y p y < zu - z^ (P7)

\ * 0

d = Zpz+(l -y Ypy

Because of the laige penalty on the extra variable, \ is driven to zero whenever possible,

and has a natural upper bound of 1. If £ = 0 the original quadratic programming

subproblem (P3) is feasible and the additional variable does not affect the search

15

direction. For 0 < £ < lf the Y space move is damped, causing the linearized equality

constraints to be violated. A solution to (P7) exists, though, and the SQP algorithm is

able to move to a new point. At this stage, we perform a line search which minimizes

the LI norm of h(x). Finally, one particular solution which may be encountered is £ = 1

and pz = 0. This results in a zero search direction and requires the algorithm to return

to the preprocessing phase before further progress can be made.

3.7 Numerical results

The differences between QPSOL and QPKWIK are illustrated with two examples. First

we consider a variation of Example 1; it has a quadratic objective function and

nonlinear equality constraints, with no bounds on the variables.

Example 2.

Mtn n
i=J

s.t
• 1 0 xio+j J'1.10

(3.7.1)

r 1 5Variables 1 to 10 are chosen to be independent and a tolerance of 10 is used. We

apply the coordinate method with no correction since it requires the least operations

outside of the solution of the QP subproblem and thus allows us to best isolate the work

QPSOL
QPKWIK

0
0 20 40 60 80 100

Degrees of Freedom

Figure 2. Comparison of CPU seconds per iteration for Example 2 using
QPSOL and QPKWIK.

16

required to determine the Z space move. The results in Figure 2 show CPU seconds per

iteration required by the QP routine on a SUN3 workstation. For this problem, there are

no bounds on the variables, hence the difference in times between QPSOL and QPKWIK

reflects the additional time required by QPSOL to factorize the Hessian. As expected,

QPSOL requires Oln3) operations while QPKWIK requires O(n2). When the ratio of times

per iteration of QPSOL over QPKWIK is plotted, the resulting graph is essentially linear.

The next example is a multiperiod problem, where the size of the problem can be

adjusted by changing the number of periods, NP. The total number of variables is given

by 5+3NP and the formulation includes 2NP equality constraints. In addition, this

problem also has lower bounds on 2NP variables, approximately half of which become

active at the optimum solution. Example 3 is therefore well-suited for studying the

effect of a warm start strategy.

Example 3.

Min

s.L

NP

x4 x5

xt 2 0
a^e 12,61
bke [-25.-10]
ck e [10.27]

JVP+6,5+3JVP

(3.7.2)

The number of iterations and CPU seconds on a SUN4 required to solve Example 3

within a tolerance of 10~6 using coordinate bases are reported in Table 1.

XTT>

NP

20

45

70

95

120

145

170

QPKWIK

Cold start

22 (1.6)

29 (12.2)

25 (36.0)

29 (109.3)

30 (210.7)

26(356.1)

26 (553.9)

Warm start

22 (1.3)

29 (9.4)

25 (25.2)

29 (95.3)

30 (177.3)
26 (266.7)

26 (431.1)

Cold start

23 (3.2)

28 (29.0)

35 (126.9)

29 (260.7)

27 (443.4)

31 (961.6)

29 (1353.6

QPSOL

Warm start

23 (2.8)

28 (25.7)

35 (140.4)

29 (252.0)

27 (407.3)

31 (800.1)
I 29 (1310.2)

Table 1. Number of iterations and CPU seconds on a SUN4 (in brackets)
for Example 3, using QPKWIK or QPSOL.

17

From the CPU seconds reported in Table 1 it is clear that QPKWIK is able to solve the

QP subproblem significantly faster than QPSOL. Even though the active set changes a

lot during the first few iterations, it appears that the warm start strategy outlined above

is able to minimize the number of incorrect constraints added. By using activity

information from the previous iteration once the algorithm gets close to the solution, the

amount of work involved in identifying the active set is reduced considerably and a

further reduction of 10% to 30% in CPU seconds is achieved.

A criterion which may be even more important than efElciency in assessing the quality of

the QP algorithm is that of robustness. The dual algorithm initially finds the

unconstrained optimum and then adds constraints to the active set until primal

feasibility is achieved. In exact arithmetic, a positive definite Hessian will cause the QP

objective function to increase strictly monotonically as new constraints are added and

thus cycling of active sets is prevented, even with constraint degeneracies. Moreover,

since the number of constraints that can be active is bounded by the number of

variables in the QP, the dual algorithm converges in a finite number of steps. In

practice though, the above result is not guaranteed because of round-off error. Care

has been taken within QPKWIK to minimize round-off error and tests similar to those

used by Powell in VE17AD are included to identify constraint degeneracies and check

for increases in the objective function. Problems with cycling have never been

encountered. QPSOL, on the other hand, is a primal method and constraint

degeneracies can cause cycling, even with exact arithmetic. In addition, QPSOL's

performance was found to be very sensitive to the adjustable parameter FEATOU which

controls constraint infeasibility. If set too tightly, QPSOL incorrectly reports that the QP

is infeasible or terminates after an excessive number of QP iterations that indicate

cycling. In addition, the value of FEATOL can affect the number of iterations required

by the SQP algorithm because it may cause different active sets to be selected. It

seems, therefore, that QPKWIK is superior to QPSOL as an algorithm for the solution of

the quadratic programming subproblems within a reduced Hessian SQP method, both

in terms of robustness and efficiency.

4. Preprocessing

The constraints of the quadratic programming problem at each SQP iteration are

obtained by a linearization of the nonlinear constraints of the original NLP about the

current point. A problem which frequently arises in successive quadratic programming,

especially as the problems become larger and a "good" initial point is not available, is

18

that of inconsistent linearizations which, in turn, gives rise to infeasible QP

subproblems. A simple way to handle this situation is to relax the feasible region and

solve an altered QP subproblem. Such an approach is discussed, for example, in

Biegler and Cuthrell (1985). They employ the QP routine developed by Gill and Murray

(1978) which first solves a Phase I LP feasibility problem. If no solution to the LP is

found, the method terminates and reports the minimum infeasibility (Afl). This allows

the constraint violation tolerance to be temporarily increased and the relaxed QP to be

solved to optimality. It is expected that the algorithm will eventually move to a point

where the constraint linearizations will no longer be inconsistent. While this strategy

should be adequate as long as the constraint Infeasibility remains small, a laxge value of

MI could lead to a very poor search direction which may be detrimental to the

robustness of the method.

In addition, we also require an automatic procedure to determine a nonsingular set of

basis variables such that the Y space move and the Lagrange multipliers will be

uniquely determined by (1.6) and (1.8) respectively. We find it useful, therefore, to

resolve both of these issues via a preprocessing phase which is executed prior to

decomposition. Such an approach is presented by Vasantharajan et aL (1990). The

authors discuss the solution of the linear feasibility problem corresponding to (P2)

obtained by augmenting the linearized equality constraints with two nonnegative

artificial variables pt and nr This yields the following LP, where the objective function is

the total infeasibility, given by the sum of these artificial variables.

Mln

s.t h,^) + Vh^bg (X - xk) = p, - nt i = 1 , m (P8)

xL £ x, < xu

p,, n, > 0 V i

Now if any p4 or nj is basic at a nonzero value, an Armijo line search is performed along

the search direction dk generated by the LP. The merit function used to obtain the

search step o^ is the L-l penalty function

m

6(x) = ^ I h J (4.1)
1=1

19

Once the LP has produced a consistent point, we check for dependent equality

constraints. This is indicated by artificial variables pt or r^ that are basic at zero. Any

constraints that are identified as dependent are not used in the determination of Py as

this would cause the matrix Vhk
TYk to become singular. Instead, these constraints are

passed directly to the QP. Thus, the method handles constraints that are degenerate

initially but may become independent at later iterations.

The numerical results obtained by Vasantharajan et aL (1990), using MINOS 5.1 as the

sparse LP solver, show the above procedure to be robust. However, the authors note

that considerable effort is expended in the preprocessing phase, thus motivating the

investigation of alternate linear programming algorithms. To overcome this problem, we

consider the work by Fourer (1985, 1988, 1989) on piecewise-linear programming.

With Fourerfs approach, we can reformulate the linear feasibility problem in a more

compact manner.

m

Min £ l si
J

s.t. h^ + Vh^tx^ (x - xk) = st i = 1 , m (P9)
^ £ Xfc < X U

This relaxation Introduces only half as many additional variables, and nonnegativity

constraints on these variables are no longer required; it seems natural that this

formulation would solve more efficiently than (P8). Note that traditional linear simplex

algorithms are unable to handle the piecewise linear form of the objective function in

(P9) directly. On the other hand, the piecewise-linear (P-L) programming algorithm

permits the minimization of any convex separable piecewise-linear objective, subject to

linear constraints. The convex separable piecewise-linear objective is characterized as

the sum of piecewise-linear functions,

[c/7lx = X

each of which is defined by an increasing sequence of breakpoints yk

- V'21 < V " < V0' < \m < \<2) -
and an increasing sequence of slopes c^

(h)

20

... c^* < ck
{'l) < ck

(0) < ck
(1) < c* ... (4.4)

Comparing P-L programming to linear approaches based on transformations, Fourer

notes that each iteration of the P-L simplex algorithm represents several iterations of a

linear algorithm restricted to certain bases of an equivalent linear program, while

requiring substantially the same work. In addition, the criteria for selecting variables to

enter and leave the basis are more flexible in P-L programming. Hence, the P-L simplex

algorithm is inherently more efficient than traditional linear simplex algorithms when

faced with this class of problems.

Clearly, the semi-linear objective of (P9) is a special case of the more general situation

considered by Fourer. There is only one breakpoint Yk
(1)=O with one finite slope c^s -1

to its left and one finite slope c j ^ l to its right. While we do not provide any direct

numerical comparison between P-L programming and the more traditional approach

employed by Vasantharajan et aL, results obtained by Fourer indicate the potential

benefits in applying the P-L simplex algorithm to the problem at hand. For a multi-

stage structural design problem of the form Ax=b, x£0 where A is (397x1375) and only

0.8% dense with a semi-linear cost objective, Fourer reports that his P-L simplex

algorithm, CPLP, is consistently 2-3 times faster than the XMP LP package (Marsten,

1981).

Moreover, Fourer's implementation of piecewise-linear programming takes advantage of

problem sparsity, allowing us to supply only the non-zero elements of the constraint

Jacobian. In addition, specification of lower and upper bounds on the variables is

straightforward. On output, the code provides information on which variables are basic

and nonbasic, allowing us to identify a linearly independent set of linearized equality

constraints and the corresponding nonsingular set of basis variables. In the event that

the initial point is infeasible, Fourer's code generates a search direction which will

minimize the sum of the infeasibilities, enabling us to move to a new point. In selecting

an appropriate search step, we use the same procedure adopted by Vasantharajan et

aL.

The first issue we address is that of using the preprocessing phase to select a consistent

initial point. We consider two example problems, taken from Himmelblau (1972) and

Biegler and Cuthrell (1985) respectively.

21

Example 4. (Himmelblau #5j
Min 1000-x* -2x2'

s.L xt
2+x2

2 + x3
2-

8xx + 14x2 + 2xt

Inconsistent starting points

Example 5.

(a) xlo) = 2,i=l,2,3

(b) xl0) = 10, i= 1,2,3

(Biegler and CuthreW
Min x2

^ I O A.

x3. x Z 0

2 2
' x

3 -XjX2

25 = 0

r56 = 0

= 0

= 0

Inconsistent starting point
xf0) = 0,1=1.2,3,4

Table 2 compares the number of iterations required for convergence using the

preprocessor to ensure a consistent Initial point, or relaxing the feasible region at the

level of the QP (as in P6) without first using a preprocessor. For all three cases, the

preprocessor found initial consistent points and no further infeasibilities were

encountered at later iterations. For relaxing the feasible region at the level of the QP,

both QPKWIK and QPSOL were considered. Handling infeasibilities within QPKWIK was

discussed in Section 3.6. For QPSOL, the infeasibility tolerance, FEATOL, was

increased when an infeasible QP was encountered and the relaxed QP was then

resolved.

The results in Table 2, as well as results for another set of problems which will be

presented in Section 5 show that, in general, using the preprocessing step to prevent an

initial inconsistent point results in the fewest number of iterations. This may not

always be true because minimizing the infeasibilities may move the algorithm

considerably further away from the optimum than the initial inconsistent point was.

However, a preprocessing step is undoubtedly the most robust approach for handling

constraint inconsistencies and should be used to guarantee an initial feasible QP

subproblem. On the other hand, relaxing the problem at the level of the QP provides an

inexpensive means to handle infeasibilities encountered at later iterations. With

22

QPKWIK, the algorithm only returns to the preprocessing phase if an infeasible QP

causes the search direction to become zero.

Problem QPSOL QPKWIK

l(a) 10 11 11

l(b) 14 13 11

2 18 6 6

Table 2. Number of iterations for convergence for Examples 4 and 5.

As mentioned above, the preprocessing phase also serves to select a nonsingular set of

basis variables. As the systems become larger, the identification of such a set by hand

is increasingly difficult if not impossible, and an automatic procedure for making the

assignment becomes invaluable. For all the problems considered, Fourer's piecewise-

linear programming approach applied to (P9) was successful in selecting a suitable set

of dependent variables. In addition, tests were performed on problems that included

linearly dependent constraints and, in all cases, the redundant constraints were

correctly identified. One issue which does arise, though, is how to incorporate user

knowledge in the selection of the basis. Consider, for example, a system of equality

constraints which Incorporates a square block for which the assignment of appropriate

dependent variables is straightforward. Clearly, this information would contribute to a

reduction in the effort associated with the solution of (P9). With this in mind, we have

included an additional step in the preprocessing phase which allows for the

specification of some or all of the dependent variables. Fourer's code then serves to

verify the selection and, if necessary, to complete it. The piecewise-linear programming

algorithm requires an initial basis and an initial feasible point to be supplied. By

default, the slack variables provide such a basis and a feasible point is obtained by

equating these variables to the right hand side and all others to zero. If a subset of the

dependent variables are prespecified, the system of equations is partially solved to yield

a feasible point consistent with the modified basis. The potential benefits of such a

partial preselection are illustrated using a problem taken from Lalee (1992).

The results in Table 3 give the CPU seconds on a SUN3 for the preprocessing phase as a

function of the number of preassigned basic variables. In all cases, variables 3 to 300

constitute the final set.

23

Example 6. (Lalee)

299
Min

s . t X j + 2Xj^ + 3 x J + 2 1 = 0 J = 1 9 ... 2 9 8

x® = -4 x£
w = 1, OI

Number of preassigned
basic variables

CPU time (s)

0

75.1

100

49.2

200

24.6

298

1.6

Table 3. CPU seconds on a SUN3 as a function of the number of
preassigned basic variables for Example 6.

The above results indicate that even a partial identification of the dependent variables

yields considerable savings in the time required to solve (P9). Hence, the user should

include any information that may be available.

5. Numerical results for Process Optimization

In this section we present results for three sets of process optimization problems.

Firstly, we consider a series of distillation column examples. These serve to illustrate

the concept of tailoring the algorithm to take advantage of problem structure, as

described in Section 2. In addition, the distillation model is such that the constraint

linearizations tend to be inconsistent unless a very good initial point is available. Next,

we provide a comparison of our algorithm with MINOS (Murtagh and Saunders, 1982,

1987) for the optimization of the Sunoco Hydrocracker Fractionation Plant as presented

in Bailey et aL (1992). Finally, we study the effect of optimizing the DIB distillation

column which constitutes a subproblem of the fractionation example.

The first set of problems we present constitutes four distillation examples described in

more detail in Schmid and Biegler (1993). We consider the separation of a binary

benzene-toluene mixture and a ternary benzene-toluene-xylene mixture. Operating

conditions of both 12 and 36 trays have been studied for both cases. This gives rise to

models with (nstxnk+2) variables and nstxnk equality constraints where nst is the

number of trays and nfc is the number of components. The pressure and reflux ratio

are selected as the independent variables. The objective function (to be minimized)

consists of the weighted utility requirements minus the product rate, and also includes

24

a penalty term to ensure that the pressure does not deviate excessively from 1 atm.

Additional constraints are included to ensure that at least 98% pure benzene is

retrieved and less than 2% is lost at the bottom of the column. Lower bounds maintain

all variables at positive values.

The first set of results, presented in Table 4 were obtained by initializing the problem

using the Naphthali-Sandholm strategy given within the UNIDIST package (Anderson et

aL, 1991); the initial point is infeasible but consistent. We use these results to

illustrate the effect of tailoring the algorithm to exploit problem structure as mentioned

in Section 2. We compare the CPU seconds using the sparse Gauss elimination package

MA28 to the tailored method using a Thomas algorithm. Results for dense Gauss

elimination are also included.

Problem

2 components
12 trays

3 components
12 trays

2 components
36 trays

3 components
36 trays

Iterations

16

10

11

12

Dense Gauss
Elimination

43.9

50.2

184.7

507.8

CPU Time (s)

Sparse Gauss
Elimination

38.2

38.6

76.7

131.7

Tailored
Method

35.2

34.7

70.8

119.0

Table 4. Number of iterations and CPU seconds on a SUN3 for
convergence of various distillation problems

Passing from dense to sparse Gauss elimination we observe a reduction of 13% to 74%

in CPU seconds. When we replace the sparse solver by a tailored algorithm we gain a

further 8% to 10%. This is noteworthy since the tailored approach required very little

modification of the existing distillation package. These results illustrate the potential

benefit of tailoring the algorithm to take advantage of the special mathematical

structure of various classes of problems.

The four distillation examples were also initialized at a point further from the optimum,

which is not only infeasible but also inconsistent. Table 5 has the same format as Table

2 in Section 4. It compares the number of SQP iterations required for convergence

25

using the preprocessor to generate an initial consistent point as opposed to relaxing the

problem at the level of the QP.

Problem

2 components
12 trays

3 components
12 trays

2 components
36 trays

3 components
36 trays

QPSOL

21

24

15

92

QPKWIK

21

18

17

28

Preprocessor
+ QPKWIK

16

13

17

16

Table B. Number of iterations for convergence for various
distillation examples.

The results in Table 5 show that, for this set of example problems, a preprocessor is not

essential for convergence of the algorithm. However, in general, using a Phase I

preprocessor does result in the fewest SQP iterations.

We now compare our reduced Hessian algorithm to MINOS, a nonlinear programming

software package developed by Murtagh and Saunders (1982). The problem we consider

is that of determining the optimal operating conditions of the Sunoco Hydrocracker

Fractionation Plant; we use the model presented by Bailey et aL (1992). This case study

is based on an existing process and is typical of real-time optimization problems. The

fractionation plant, shown in Figure 3 is used to separate the effluent stream from a

hydrocracking unit. The portion of the fractionation plant which is represented by the

model is highlighted in Figure 3; it includes the absorber, stripper, debutanizer, C3/C4

splitter and deisobutanizer. Details on the individual units may be found in Bailey et

aL.

In addition to solving the optimization problem from the given initial point, a two-step

procedure was also considered. As in Bailey et aL., we first solve a single square

parameter case in order to fit the model to an operating point. The optimization is then

performed starting from the good initial point thus obtained. In an on-line system, the

solution to the parameter case would be readily available, since it constitutes the

current operating conditions. Besides the equality constraints used to represent the

26

individual units, a number of simple bounds are also included in the model. These

bounds fall into three main categories:

(a) Bounds representing actual physical limits (e.g.. nonnegativity constraints on

temperatures) are included to prevent numerical problems.

(b) For the optimization cases, bounds placed on key variables prevent the solution

from moving too far from the starting point. These bounds are specified so that

the control system would be able to take the maximum step and bring the plant

back to steady-state over a one to three hour span.

(c) Upper and lower bounds which are used to fix certain variables:

(i) Variables fixed in both the parameter and optimization cases constitute

variables that are not part of the optimization but are included for consistency.

They include the composition and thermal conditions of the feed streams

entering the absorber/stripper,

(ii) Certain variables are fixed only for the parameter case. In effect, enough

variables must be fixed for each piece of equipment such that a square system

results,

(ill) Finally, a number of variables are calculated during the parameter case and

then fixed for the optimization. Typically, these Include heat exchange

coefficients, heat loss correction factors and catalyst activities.

The problem statistics are summarized in Table 6.

Number of variables

Number of equality constraints

Number of Jacoblan elements

Number of fixed variables: Type (1)

Type(ii)

Type (ill)

Number of independent variables

Parameter Case

2891

2836

24123

42

13

0

0

Optimization Case

2891

2836

24123

42

0

3

10

Table 6. Problem statistics for the hydrocracker fractionation plant problem.

The objective function which drives the operating conditions of the plant must account

for the costs of energy and provide a measure of the value added to the raw materials

27

through processing. The form of the objective function used for this study is given by

(5.1). Details on each of the four terms may be found in Bailey et aL .

N Pp = Xz*c,G + X z , c , E +1 Z z , c P m - u ^
i€G i€E m = 1 i€Pm

where P = profit,

CG = value of the feed and product s treams valued as gasol ine,

C^ = value of the feed and product s treams valued as fuel,

Cfm = value of pure component feed and products , and

U = utility costs.

In addition to the base optimization case (Case 1), the effect of heat exchanger fouling

on the optimal solution was considered (Cases 2 and 3) as was the effect of changing

market conditions (Cases 4 and 5). The effect of fouling is simulated by reducing the

heat exchange coefficients for the debutanizer and splitter feed/bottoms exchangers.

Changing market conditions are reflected by an increase in the price for propane (Case

4) or an increase in the base price for gasoline together with an increase in the octane

credit (Case 5). The numerical values for the above parameters are included in Table 7.

All cases were solved on a DEC 5000/200 using a convergence tolerance of 10"8. The

results are reported in Table 7, where Unfeasible Initialization" indicates initialization at

the original initial point while the "Parameter Initialization" results were obtained using

the solution to the parameter case as the initial point. Coordinate bases were used and

10 of the 13 variables which are fixed only during the parameter case were used as the

independent variables for the optimization cases. We also report the results obtained by

Bailey et aL. using MINOS. In Table 7 their results are converted to equivalent CPU

seconds for a DEC 5000/200. In all cases, both our method and their MINOS cases

terminated at the same optimal solution. For an interpretation of the objective function

values, see Bailey et aL (1992).

From Table 7 it is apparent that, for this problem, our algorithm is at least as robust

and considerably more efficient than MINOS. Let us now consider each of the sets of

results in turn. Reduced Hessian SQP was 8 times faster than MINOS as far as the

parameter case is concerned. This is to be expected since, for a square system, SQP

simply reduces to Newton's method for solving sets of nonlinear equations while MINOS

is unable to take advantage of the fact that the problem solution is completely

28

Heat Exchange
Coefficient (TJ/d°C)

Debutanizer Feed/Bottoms

Splitter Feed/Bottoms

Pricing

Propane ($/m3)

Gasoline Base Price ($/m3)

Octane Credit ($/(RON m3))

Profit

Change from base case
($/d. %)

Infeuible Initialization

MINOS

Iterations (Major/Minor)

CPU Time (s)

SQP

Iterations

CPU Time (s)

Parameter Inf tisiizntion

MINOS

Iterations (Major/Minor)

CPU Time (s)

SQP

Iterations

CPU Time (s)

Time SQP %)

Time MINOS

CaseO

Base
Parameter

6.565x10"4

1.030xl0'3

180

300

2.5

230968.96

-

5/275

182

5

23.3

n/a

n/a

n/a

n/a

12 8%

Case 1

Base
Optimization

6.565xlO"4

1.030xl0"3

180

300

2.5

239277.37

8308.41
(3.6%)

9/788

5768

20

80.1

12 / 132

462

13

58.8

12.7%

Case 2

Fouling 1

5.000x10"4

5.000x10"4

180

300

2.5

239267.57

8298.61
(3.6%)

-

-

12

54.0

14 / 120

408

8

43.8

10.7%

CaseS

Fouling 2

2.000xl0"4

2.000xl0"4

180

300

2.5

236706.82

5737.86
(2.5%)

-

-

24

93.9

16 / 156

1022

18

74.4

7.3%

Case 4

Changing
Market 1

6.565x10"4

1.030x10"3

300

300

2.5

258913.28

27944.32
(12.1%)

-

-

17

69.8

11 / 166

916

11

52.5

5.7%

Case 5

Changing
Market 2

6.565xlO"4

1-030X10"3

180

350

10

370053.98

139085.02
(60.2%)

-

-

12

54.2

11/76

309

10

49.7

16.1%

Table 7. Numerical results for the Sunoco Hydrocracker Fractionation
Plant problem.

29

determined by the constraints. Bailey et oL (1992) only report one result for an

optimization case which was initialized at the original "infeasible initialization". When

this MINOS result is compared to the SQP result, there is a difference of almost two

orders of magnitude. It seems that, for this problem, SQP is less sensitive to a poor

initial point than MINOS. However, as mentioned earlier, the solution to the parameter

case would be available in an on-line system, so it is more important to compare the

"parameter initialization11 results. Here, the results in Table 7 indicate an order of

magnitude improvement in CPU times when comparing our algorithm to MINOS.

The last set of numerical results deals with optimization of the deisobutanizer (DIB)

column, a sub-unit of the Sunoco Hydrocracker Fractionation Plant. A mixture of

butane and iso-butane containing small amounts of propane and iso-pentane enters

the column. Iso-butane is retrieved at the top of the column while the bottoms

product is rich in butane. The model developed by Bailey et aL Includes 361 variables

and 351 equality constraints, with 2211 nonzero elements in the constraint Jacobian.

As for the optimization of the full plant, we solve both the parameter and optimization

cases. 10 variables are fixed for the parameters to give a square system. Two of these

are freed for the optimization case; these provide a natural choice of independent

variables. For the optimization case, bounds on the variables of types (a) and (b)f as

discussed above, are also included. Bounds such as nonnegativity of the exit

flowrates are not expected to be active at the solution but are required to prevent

numerical difficulties during the course of the optimization. The second class of

bounds defines the operating limits of the system; these constraints are frequently

active at the solution. Here, upper bounds on the amount of butane and iso-butane

in the top and bottom streams respectively are included so as to ensure a minimum

purity of the exit streams. In addition, bounds are placed on the reflux ratio as well

as the heat duties of the reboiler and condenser. These bounds reflect the range of

normal operating conditions of the DIB column and characterize the boundaries of the

region for which we are confident of the validity of the model.

We first solve the parameter case (Case 0), and the base optimization case (Case 1).

We then resolve the problem with a different objective function. Instead of maximizing

profit, we wish to determine the maximum purity of iso-butane in the overhead

product (Case 2) or of butane in the bottoms product (Case 3), given the above

operating bounds. Finally, we remove the bounds on the reflux ratio and on the heat

duties (Case 4). The results are given in Table 8 below. We indicate the profit at the

30

solution, as well as the mole fraction of iso-butane in the overhead stream and of

butane in the bottom stream. In addition, we also report the value of the variables

which are constrained by operating bounds and indicate which bounds become active

at the solution.

Reflux Ratio

Top Heat Duty

Bottom Heat Duty

Overhead Butane

Bottom lso-Butane

Overhead lso-Butane

Bottom Butane

Profit ($/d)

Change In profit from
base case ($/d. %)

SQP Iterations

CPU seconds on a
DEC 5000/200

CaseO

9.05

0.716

0.734

0.019

0.053

0.924

0.820

443.336

n/a

5

3.3

Case 1

8.00 (LB)

0.670

0.692

0.05 (UB)

0.012

0.896

0.844

663.373

220.037
(49.63%)

8

4.1

Case 2

10.00 (UB)

0.790

0.808

0.016

0.05 (UB)

0.927

0.823

264.476

-178.860
(-40.34%)

5

3.6

Case 3

9.56

0.79 (UB)

0.812

0.039

0.012

0.906

0.849

350.725

-92.611
(-20.89)

12

4.7

Case 4

5.40

0.444

0.465

0.05 (UB)

0.05 (LB)

0.895

0.812

1167.011

723.675
(163.23%)

9

4.3

Table 8. Numerical results for the DIB column.

Comparing the results for Case 0 and Case lf we observe an increase of almost 50%

in the profit as a result of optimizing the operating conditions of the DIB column. The

solution is constrained by the lower bound on the reflux ratio and the upper bound on

the mole fraction of butane in the overhead stream. The results for Case 2 and Case 3

give us an upper bound on the maximum purity we can achieve, given the operating

bounds on the variables. The maximum mole fraction of iso-butane in the overhead

stream is 0.927, as opposed to 0.896 for Case 1. The maximum purity of butane is

0.849, only slightly higher than 0.844, the mole fraction obtained for Case 1. In both

cases, the profit is reduced. However, we have not accounted for the possibility that

the increase in purity may increase the sales price of the product. The point here was

simply to determine the achievable limits on purity. Finally, the results for Case 4

indicate that by removing the bounds on the reflux ratio and the heat duties we are

able to almost double the profit as compared to Case 1. This suggests that it may be

worthwhile to investigate the physical effect of relaxing these bounds. In particular.

31

the validity of the model at these new operating conditions must be verified and

certain parameters may have to be readjusted.

6. Conclusions

In this study we consider key steps of reduced Hessian SQP for the implementation of a

robust and efficient algorithm for large-scale process optimization. The main focus is on

the solution of the quadratic programming subproblem which arises at each SQP

iteration. The algorithm we present, QPKWIK, allows for direct updating of the inverse

Cholesky factor of the reduced Hessian matrix and is based on a dual algorithm which

does not require an initial feasible point to be determined for the QP. Thus, the

method is superior to standard primal methods, even when the QP subproblem is small.

Various other features are also included within QPKWIK which allow the reduced

Hessian method to perform better as the number of degrees of freedom of the problem

becomes larger. In particular, we take advantage of the doubly-bounded nature of the

QP constraints, account for the fact that these constraints may be sparse and also

include a warm start option. A numerical comparison of QPKWIK and QPSOL, a

commercial algorithm commonly used to solve QP subproblems is very encouraging. In

addition, QPKWIK is able to handle infeasible QPs which may occur during the course

of the algorithm. Unlike QPSOL, QPKWIK only allows the equality constraints but never

the bounds to be violated as this could cause the SQP algorithm to experience

numerical difficulties.

The second issue we address is that of a preprocessing phase which generates an initial

feasible point as well as a nonsingular set of basis variables. Here we incorporate

Fourers piecewise-linear simplex algorithm, allowing for more efficient solution of the

linear feasibility problem than is possible with standard simplex methods.

The numerical results in Section 5 indicate that our reduced Hessian SQP algorithm is

able to solve problems which are both large and present the numerical characteristics

typical of process optimization models. By considering different initial points, we

demonstrate the ability of our algorithm to determine the optimal solution, even when it

is initialized relatively far from the solution at a point where the constraint

linearizations may be inconsistent. Moreover, the comparison with MINOS for the

optimization of the Sunoco Hydrocracker Fractionation Plant is very encouraging. The

results indicate that our reduced Hessian algorithm is at least as robust and an order of

magnitude faster than MINOS for this set of problems. Finally, results for a series of

32

distillation examples illustrate the benefit of tailoring the solution algorithm to take

advantage of the mathematical structure of the process model.

Acknowledgements

Financial support from the Engineering Design Research Center, an NSF sponsored

Engineering Center at Carnegie Mellon University, is gratefully acknowledged. The

authors are also grateful to Kirk Bailey and Prof. Andy Hrymak for use and assistance

with the Sunoco Hydracracker Fractionator problem.

References

Bailey, J. K., A. N. Hrymak, S. S. Treiber and R B. Hawkins, "Nonlinear Optimization
of a Hydrocracker Fractionation Plant/1 to appear, Comput chem. Engng, (1993).

Berna, T., M. H. Locke and A. W. Westerberg, "A New Approach to Optimization of
Chemical Processes," AIChE J.. 26, p. 37 (1980).

Biegler, L. T. and J. E. Cuthrell, "Improved infeasible path optimization for sequential
modular simulators - II. The optimization algorithm," Comput chem. Engng 9, 257
(1985).

Biegler, L. T.v J. Nocedal and C. Schmid, "Reduced Hessian Strategies for Large-Scale
Nonlinear Programming," Working paper (1993).

Dennis, J. E. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations. Prentice Hall, New Jersey (1983).

Fourer, R, A simplex algorithm for piecewise-linear programming I: Derivation and
proof. Math. Prog. 33, 204 (1985).

Fourer, R, A simplex algorithm for piecewise-linear programming II: Finiteness,
feasibility and degeneracy. Math. Prog. 33, 204 (1985).

Fourer, R, A simplex algorithm for piecewise-linear programming III: Computational
analysis and applications. Technical report 86-03, Northwestern University (1989).

Gabay, D., "Reduced Quasi-Newton Methods with Feasibility Improvement for
Nonlinearly Constrained Optimization," Math Programming Study, 16, p. 18 (1982).

Gill, P. E. and W. Murray, Numerically stable methods for QP. Math. Prog. 14, 349
(1978).

Gill, P. E., W. Murray, M. A. Saunders and M. H. Wright, User's Guide for
SOL/QPSOL: A Fortran Package for Quadratic Programming. Technical Report SOL 83-
7 (1983).

Goldfarb, D. and A. Idnani, "A Numerically Stable Dual Method for Solving Strictly
Convex Quadratic Programs," Mathematical Programming, 27 (1983) 1-33.

Himmelblau, D. M., Applied Nonlinear Programming. McGraw-Hill, New York (1972).

33

Lalee, M., "Algorithms for Nonlinear Optimization/1 PhD Dissertation, Northwestern
University, 1992.

Locke, M. H. , R Edahl and A. W. Westerberg, "An Improved Successive Quadratic
Programming Optimization Algorithm for Engineering Design Problems," AIChEJ., 29,
5, (1983).

Marsten, R E. The design of the XMP linear programming library. ACM Transactions
on Mathematical Software 7, 481 (1981).

Murtagh, B. A. and M. A. Saunders, "A Projected Lagrangian Algorithm and Its
Implementation for Sparse Nonlinear Constraints11, Math Prog Study, 16, 84-117,
1982.

Murtagh, B. A. and M. A. Saunders, "MINOS 5.1 User's Guide", Technical Report SOL
83-2OR, Stanford University, 1987.

Powell, M. J. D., "A Fast Algorithm for Nonlinear Constrained Optimization
Calculations," 1977 Dundee Conference on Numerical Analysis, (1977).

Powell, M. J. D., "ZQPCVX: a Fortran subroutine for convex quadratic programming,11

Report DAMTP/1983/NA17, Department of Applied Mathematics and Theoretical
Physics, University of Cambridge (1983).

Schmid, C. and L. T. Biegler, "Acceleration of Reduced Hessian Methods for Large-
Scale Nonlinear Programming," to appear. Computers and Chemical Engineering
(1993).

Vasantharajan, S. and L. T. Biegler, "Large-Scale Decomposition for Successive
Quadratic Programming," Computers and Chemical Engineering, 12, p. 1089 (1988).

Vasantharajan, S., J. Viswanathan and L. T. Biegler, tfReduced Successive Quadratic
Programming implementation for large-scale optimization problems with smaller
degrees of freedom," Comput chem. Engng 14,907(1990).

