
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



An Overview of the n-dim Environment

Sean Levy, Eswaran Subrahmanian, Suresh Konda,
Robert Coyne, Arthur Westerberg, Yoram Reich

EDRC 05-65-93



An Overview of the n-dim Environment
EDRC-05-65-93

Sean Levy1, Eswaran Subrahmanian2, Suresh Konda3,
Robert Coyne4, Arthur Westerberg5, Yoram Reich6

Email Addresses:

snl@cmu.edu1, sub@cmu.edu2, slk@cmu.edu3,

coyne@cmu.edu4, awOa@cmu.edu5, yoram@cmu.edu6

Fax: +1 412 268 5229

Voice: +1412 268 5221

February 22,1993



Abstract

The premise of our work is that designers, in the process of doing their work, create models
of various kinds, for various purposes, and that it is the negotiation of the structure and
content of these models that comprises the bulk of the task of doing design. We give here
an overview of a framework for enabling designers to capture and structure as much of
the information they use and generate as is possible. We have designed and implemented
such a system for creating models in a computer that can be

• shared with other designers in the course of an ongoing design,

• made persistent for future recall,

• classified and categorized so as to facilitate both the study of how design is done in
a given organization and the study of design in general.

Our system is generic enough to be useful in domains outside of design, and we posit
it to be useful in general for anyone who needs to manipulate information in a structured
way, an activity called Information Modeling. The acronym chosen for the system, n-dim,
stands for n-dimensional information modeling, to indicate the authors' view that the total
space of information under consideration is multi-dimensional in nature.
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1 Introduction

This report is a compendium of the work of the n-dim research group in that it is the
central repository of all previous and ongoing work conducted by the members of the
group collectively and individually around the project. As such, it is a "living" document
and is expected to be highly dynamic.

Ai-dim stands for n-dimensional modeling and represents both a research program and
a computer software artifact. As a research program, it is a series of on-going research
projects on the theoretical and empirical aspects of design practice. As an artifact, it is both



an embodiment of the lessons learned, and a test bed for testing some of the hypotheses
generated from, the former.

In the second section we indicate the motivation and background upon which n-
dim is based. The third section contains a conceptual description of the n-dim design
environment with the fourth section containing details of the current implementation. The
fourth section gives details of applications and extensions and the final section concludes
the report.

2 Motivation and Background

In this section, we seek to motivate /z-dim from its origins in the study of design and the
way designers work. It should be noted that n-dim as it is developed in this document
is not meant to be the final solution to the problems raised here; rather, it serves on two
fronts: first, as a tool to gather empirical data on a rather broad domain of which little is
really known (design), and second as a test bed for trying out solutions to some problems
already well established in this domain (for instance, the creation and maintenance of
shared concept networks within groups of designers).

There is a chicken-and-egg problem here, which is common in enterprises such as
/z-dim. On the one hand, there is not really enough data available to propose, a priori, a
workable solution to the total problem with any confidence. On the other hand, in order
to gather the necessary data, one needs a working system that will exhibit (we posit) at
least some characteristics of such a solution to even get started.

We will first present an overview of the underlying observations and principles behind
our approach, and then proceed to give more a more detailed description of background
studies and information that have informed the evolution of this approach.

2.1 Modeling and Design: Overview

In the course of designing things, designers make models of various kinds, depending
on what kind of designers they are and what they are designing. By "designer", we
intend to take in the full range of possible assignations: engineers, architects, writers (of
documentation as well as of other sorts), managers, marketing people all are involved, in
some sense, in some sort of design.

The models that people make vary, both according to the domain in which they are
working, which may include standard formulas for accomplishing certain things,1 as well
as according to personal preference and judgment (presumably based on experience with
past designs).

From studies of design, several interesting features of how designers work in various
organizations have been uncovered vis a vis modeling:

1 Standards either being taken from the work of standards-setting bodies like ISO and ANSI, or from the
policies and procedures of the particular organization or discipline in which the individual works.



• Different designers (and groups of designers) use different vocabularies to describe
the same or very closely related sets of things.

• Engineers typically spend at most 15% of their time doing standard analytical tasks
[10], the rest of their time being spent negotiating various aspects of the design,
including the structure of the task of doing the design itself.

• Individuals tend to organize information in ways understandable to them, generally
in the form of sketches and notes. There is usually substantial overhead incurred in
the process of merging all of the individual representations in a design team into a
single, coherent view.

From these and other observations, we have developed a notion of an Information
Modeling environment which differs substantially from similar concepts developed else-
where (e.g. in the database and AI literature [12]).

One of the key elements of /z-dim is the focus on the human user instead of on
computational entities. This is partly due to the emphasis on the gathering of empirical
data using /i-dim, and partly due to the conviction that the real difficulty lies in an area
not easily susceptible to automation, namely, negotiation.

2.2 Modeling and Design: Background

Through the course of several empirical studies (our own and those of others), it became
clear the a large emphasis must be placed on supporting and capturing information used
for negotiating and creating a shared understanding of the design task, as well as capturing,
as much as possible, the negotiations themselves [6]. Our focus thus became more and
more one of providing an environment in which designers can collaborate, in the broadest
possible sense. The next two sections will provide a summary of both the empirical studies
themselves, as well as some problems involved in collaborative (design) work.

2.2.1 Empirical Studies done by EDRC

EDRC has been involved in a number of empirical studies of design in the area of electrical
connector design [27], power system control design at Westinghouse Electric Corporation
[23] and transformer design at Asea-Brown-Boveri [11]. We also studied the problems of
gathering and making accessible materials information in Alcoa Technical Center across
divisions that generate data on properties and performance of materials [24].

In these studies, we identified functional requirements for a design environment to
manage and organize dispersed documents, drawings, and other forms of information.
One of the most fundamental of these requirements was the ability to foster both individual
and group efforts.

In the study of transformer design, we identified functional requirements to facilitate
the accretion of, and access to, institutional memory (viz. "shared memory" in [16]), both
as it relates to design and to the activities surrounding design (marketing, testing, quality
assurance, delivery, etc.) in a large, multi-national organization.
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Figure 1: Design Efficiency vs Level of Computer Support

The results of the study show that intra-project and inter-project information flows are
not integrated in the current practice of design. Some key deficiencies observed include:

• stand-alone tools are insufficient in producing high quality designs if they are not
integrated and maintained in the context of design practice.

• many errors are due to miscommunications and incomplete information integration.

• a partial integration of analysis tools is insufficient to achieve design efficiency.

In Figure 1, we illustrate the relationship over time between design efficiency and the
level of computer support. Efficiency must be achieved through the integration of the
information technology in the context of the overall process. Our observations about the
design process and the need for integration of information is supported by other studies
such as the comparative cross-national automobile industry study by Clark and Fujimoto
[5]. They have established a clear inter-relationship between integration of problem
solving and design efficiency.

In Figure 2 we illustrate the critical functionalities that an design support system must
provide based on the experience and the role of the design engineer. The nature of design
practice appears to vary systematically between designers of varying skill and experience
levels [ 11]; as a consequence, the nature of the information available to and the assistance
required by designers various along the same dimensions. Nevertheless, the synergistic
and returns-to-scale from a common system across all levels of designers implies that the
design system should support a range of requirements.

The novice requires the maximum level of support including being alerted about
problems and guidance in what to change in a design. Experts, on the other hand, need
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suppon more in the area of managing personal and organizational product knowledge and
access to a corporate-wide memory bank of design experiences.

Without the ability to suppon a variety of functionalities, design consistency and
quality cannot be achieved easily. Therefore, the design system should not just integrate
information, but must also meet the functional requirements of the range of participants,
from novice to expen, in the design team. The need for management of cross-functional
information content and complexity, and the facility to maintain individual and shared
(i.e. product) information were both apparent in our studies of design [11] [23], and lead
to the central importance of the ability to view the same information in multiple ways and
to index that information in idiosyncratic ways in order that individual access and recall
be made more easy and meaningful.

Another critical issue discovered in the study was the need to provide for terminology
differences that had to be taken into account based on the requirements of the customer in
various pans of the world, along with cross country variations in the standards information.

The same conclusions could be drawn in the Alcoa project, where the divisions were
located in the same location but the terminology differences in the existing materials
data and information had to be reconciled for use across multiple projects, divisions, and
products. Here again the necessity for maintaining multiply cross indexed terminology
was identified as a fundamental requirement, and as a solution, a preliminary material
information system embedding these functionalities system developed.

2,2.2 Problems in Collaborative Work

To be effective in practice, concurrent engineering requires access to and organization,
communication and negotiation of knowledge accumulated over time and across product
versions and customers. Studies conducted by us and others indicate that design is



a continual negotiation of constraints, terminology and trade-offs for the creation of a
shared understanding and meaning of the design process and product.

For effective communication between members of the design group there must be
consensus on the

• naming (i.e., a shared semantic understanding of relevant terms and concepts)

• constraints (on manufacturing, performance, disposal etc.)

• problem decomposition

• design trade-offs.

Without such agreements, effective communication and coordination of work cannot
occur. However, such agreements cannot, in general, be imposed from the outside but must
be generated by the design group consensually. In order to facilitate reaching consensus,
the design environment must be conducive to conducting and capturing a dialog among the
engineers. This become especially critical when, for a various reasons, there is an absence
of face-to-face contacts. This situation can arise when, for instance, design teams members
are separated by significant time and distance or when designers belong to multiple teams
making their physical presence at each team meeting prohibitively expensive in terms of
both money and designer burnout. Hence, individual engineers must be able to participate
in this dialog in an asynchronous manner - different time and different place. However,
in order that the dialog not "drift" over time, it is critical that the context of the dialog be
maintained with maximal fidelity and in particular without loss of the time sequence and
identity of the exchanges (i.e., "who said what to whom when").

In order to facilitate dialog to effect asynchronous collaboration we need to distinguish
between three important aspects of information used in design:

• Information comes in a variety of representational forms including sketch, picture,
gesture, text (oral and verbal), table, geometry, layout.

• The information is exchanged in a number of media including, paper, face-to-face,
computer, video, film.

• The representational forms exchanged in these media come in formal to informal
modes of communication: reports, memos, e-mail, equational, functional and geo-
metric configurations and descriptions.

Just as important as the form, media, and mode of information in design is its hetero-
geneity. Large scale design projects usually must coordinate expertise from many different
disciplines representing the functional decomposition of the artifact being produced. The
management of this diversity is the management of cross-functional information in both
its content and its complexity. Moreover, the companies involved in large-scale design
are themselves many-faceted involving a number of different departments devoted to
design engineering, engineering analysis, manufacturing, quality assurance, suppliers,



subcontractors, procurement, legal matters, fiscal matters, marketing, customer service
and management. All of these departments plus the sub-departments in charge of vari-
ous pans of design must manage their own information gathering and production. More
important, these separate information and knowledge resources have to be shared and co-
ordinated if successful design is to be accomplished. Our studies of information exchange
in design tasks have been crucial in guiding the development of /i-dim for the management
of work and information in design.

Coordination and management of group activities and work-flow requires that infor-
mation be made available in a meaningful form at the appropriate time. It is the creation
of and access to meaningful information with the seamless integration of these varieties
of information used in and created during the design of the product, is what we term
information management.

Information capture and structuring depends on which representational forms, media,
and modes of communication are used. For example, information techniques useful for
text management are not useful for graphical information. In fact, if such forms are not
appropriately distinguished in the flow of information, they can interfere with and distort
one another. On the other hand, organizational units or concepts extracted from textual
information can be useful in classifying graphical information such as sketches, drawings,
etc.

While the computer is the target medium for information management, care must be
taken to transfer information from other media to it. Insisting that engineers use only
the computer would be counter productive. Hence, the results produced on these other
media must be transferred to or interlinked with the computer. However, tasks performed
in other media like writing and sketching with paper and pencil can be simulated in the
computer using such technologies as electronic tablets as input devices.

Finally, information must be evaluated differently according to the communication
mode in which it is exchanged. For example, most often information coming via e-mail
has to be treated differently from information provided in a report or technical article.

In summary, extensive studies across multiple design domains, cultures, and organi-
zational context lead us to put forward the following "shalls" as a starting point for the
design of n-dim:

The support environment should enable design and design management to be carried
out within the same uniform information modeling environment. Facilities should be built
into the environment that will enable designers to create shared structures of information
(text, geometry, layout, sketch, pictures). The environment should also permit asyn-
chronous group activity. Finally, facilities are required to enable retrieval of information
by designers with diverse views of that information.

3 Conceptual Description

In this section, we attempt to give first a brief overview of the way in which n-dim
allows one to model information, and then elaborate on certain key elements of this
representation, as well as operational issues associated with using it. Detailed discussion



of the implementation of the system is deferred to Section 4.
The space of objects in n-dim is conceptually flat; that is, objects do not, in any physical

sense, contain other objects. Instead, multiple structures can be imposed on this flat space
by means of special objects called models, which are comprised of links, or relationships
between objects. In this way, the same object may participate in many models.

n-dim is implemented in a prototype-based object system calledBOS, the Basic Object
System (see Section 4, below). Since it is prototype-based, there are no classes, per se;
rather, any object is a potential prototype for another object. For more information on
prototype-based object systems, see[26].

There is a basic cleavage in the space of n-dim objects between atomic and structured
objects. As the name indicates, atomic objects cannot be broken down any further, e.g.
an integer, a link, a piece of text, an image, an audio bitstream, etc. One could think of
atomic objects as things that have values of some sort.2

The primary form of structured object is the model. A model is a set of links, which
are, themselves, atomic objects. The value of a link object is a 3-tuple, source,target,type,
where type is merely a label for the link; link types are given their meaning(s) by the
modeling language(s) in which they occur.3 There is one special link type which is known
to the system: the p a r t 4 link. By convention, p a r t links are displayed as boxes inside
of boxes, whereas all other kinds of links are displayed as directed arrows (but, of course,
presentation is highly malleable). For instance, in Figure 3, the model M contains three
links; textually, it could be stated as:

M :
[M,A,part]
[M,B,part]
[A,B,relatedTo]

The two part links state that A is a pan of M and B is a part of M. Both A and B could also
be the targets of thousands of other part links, and thus appear/participate in thousands
of other models.

Models play (at least) two roles in H-dim: instance/prototype and language.5 All
objects, whether structured or not, are constructed using another model as their modeling
language. A model is a language in n-dim in so far as one asks n-dim to create an object
with it as its language. Typically, modeling languages specify what objects can be in the
model and what relations they can have to one another. Such specifications can be thought
of as grammars. More formally, the grammar defines:

2The creation of new atomic object types generally requires some programming, since new types of
values often indicate new types of fundamental operations.

3 It is quite possible to have the same link type mean totally different things in different contexts; we
view the meaning of links as something to be negotiated by users of the system over time. Operationalizing
the semantics of particular interpretations of links is considered an open-ended process; n-dim provides
mechanisms for doing so, but does not require it to be done in order to use a link type.

4This is a link internal to n-dim. Consequently, user-level part links are quite legal.
5 We will use the terms "instance" and "prototype" somewhat interchangeably in what follows, since, in

a prototype-based system, the two concepts coincide; the different connotations are useful in distinguishing
various uses of a model, however.
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Figure 3: A simple n-dim model

• the set of legal parts which models in that language may contain;

• the set of legal link types or labels between parts of models in that language;

• rules for composing legal links from the set of legal parts and the set of legal links.

Normally, one would expect an Ai-dim model intended for use as a modeling language to
have as pans only other modeling languages; that is, in some form of a "meta" language.
However, there is no such constraint in n-dim; any object can be used as a modeling
language. If, for example, one were to ask n-dim to use an I n t e g e r object6 with the
value 1 as a modeling language, one would get an object in the language 1, which could
only have as its value the number 1. The grammar has one sentence. Consequently, n-dim
models can operate as both instances and prototypes.

As an example, Figure 4 shows a model called TASK which, when interpreted as
a modeling language, would allow creation of models containing BASICTASK objects,
TASK objects, and, funher, allows a p r e c e d e s link to be created between two TASK (or
BASICTASK) objects.7 In BNF, the grammar would be:

TASK := BASICTASK I TASK p TASK;

6Note that I n t e g e r objects are atomic!
7That is, the grammar is recursive. Also, we have not defined what BASICTASK is, but it would

presumably be some form of textual object.



Doncedidng(TASK ^> BASIC TASK)

Figure 4: An n-dim modeling language

Any object in /i-dim can also have operations (methods; sec Section 3.1.4, below)
defined on it, which are currently implemented as pieces of code (C or T e l 8 ) . When a
model is used as a language, any operations defined for it are inherited by models that use
it as a language. In this way, the notion of a modeling language is similar to, but not the
same as, that of a class or type in the tradition of object-oriented programming. One of
the many ways in which we have taken advantage of the prototype-based object system
is in connection with operations; since any object can be modified on the fly (assuming
it is not published, see below), individual instances can have methods (and other slots)
defined for them.

Finally, there are several built-in modeling languages in n-dim. The first two models
given as examples above are in the U n i v e r s a l modeling language, which allows any
kind of object, and kind of link, and any composition to be created in it. In addition, all basic
atomic objects have an associated language, which packages up the exported operations
on things in that language as far as other n-dim objects are concerned.9 There is also
a Rule modeling language, which allows for the construction of predicate-consequent
structures in terms of basic events defined in the system (such as object and link creation,
deletion, etc. See Section 3.1.4, below). Such rule models can be attached to a model (and
thus to a modeling language) to implement semantics; for instance, the above statement of
the TASK modeling language will allow for the structuring of tasks in terms of precedence

8 Tcl is a light-weight interpreted language which can be easily embedded into C programs and is used
extensively in n-dim [19].

9This is yet another way of looking at modeling languages
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and, via recursion, by subtasks. It does not, however, place any restrictions on the number
of tasks allowed in a model of that type, nor does it disallow circular task precedence
linkages, both of which might be desirable. To do so would require the creation of rule
models which, when links are created, check that the attempted construction is not only
grammatically correct, but semantically correct as well.

Given this overview, we will now delve further into the way in which n-dim objects
are represented.

3.1 Representation

rt-dim objects all have certain attributes, regardless of whether they are atomic or struc-
tured. In addition, structured objects can have their structure projected in a multiplicity
of ways, which is important vis a vis their interpretation as languages. All objects can
be presented in different ways which can be extended by users of n-dim. Finally, rules,
events and operations are related in a number of ways.

3.1.1 Attributes

Preliminary to any attribute is the issue of naming. All n-dim objects have names unique
within the universe of all n-dim objects. This name is system-generated, and utilizes
various pieces of information to be found in any modern, networked environment10 to
generate the name. Thus, the real name (or just name for the remainder of this document)
is generally not known to ordinary users of /i-dim; this name is not to be confused with
any title (or, interchangeably, label) given to the object.

Attributes come in two flavors: intrinsic and contextual. The intrinsic attributes of an
object cannot be separated from it, and, properly speaking, define the object. They do not
change with the context an object is in (e.g. a model it may be part of), and are stored as
physical slots on the (underlying) object.

By contrast, contextual attributes are attributes associated with an object in a particular
context or model. An object can have many values for the same contextual attribute, and
rt-dim decides which one is appropriate by context. One associates contextual attributes
with an object by creating an ATTRIBUTE model containing the object, the name of the
attribute, the model(s) in which the object has this attribute and, optionally, a value or
set of values for the attribute in those models. Certain attribute names, such as t i t l e
are known to n-dim to mean specific things; one can impose such semantics by writing
code to perform arbitrary actions when an object is viewed in a context. For example, one
could associate a s h a p e attribute with an object in certain models and then write code
to be invoked to interpret the value of the s h a p e attribute in order to render the object
specially when viewed in those models.

The set of intrinsic attributes in n-dim has been kept to an absolute minimum.

Owner/Creator. The person who created the object. People are also objects in the system,
so this is the name of an object.

10Network address, system time and time zone, numeric user ID, etc.

11



Time created. The time the object was created. An integer.

Time last modified. The time the object was last modified. An integer.

Title. The label given by the owner upon creating it. While the title can be changed by the
owner - if the object is not published (see section 3.1.2) - it is essentially inherent
- in that it is not contextually variant.

Published. Whether or not the object has been published. See 3.1.2, below, for a fuller
description. This is a boolean flag.11

Language. The name of the model which is this objects language.

Access. The name of the model which describes who has access to this object.

All of the object-valued attributes (creator, language and access) must be published.
While the title (or label) of an object is an intrinsic attribute, a very important feature

of n-dim objects is that they can have different titles in different contexts. This is achieved
by providing a contextual "alias" attribute which allows a user to refer to the same thing
with different names in different contexts and still have it be intrinsically the same thing.12

The access attribute deserves some special mention. Every object has an access-
control model,13 which describes who has what kind of access to the object. It is possible
to hide even one's published objects from outside view, if so desired. Access models are
simply the n-dim form of an access control list, with some embellishments. In order to be
activated, an access model must be published; to change the access model for an object,
the old one must be copied and the copy published. It is thus also possible to ask H-dim
questions such as uwho had access to this object on this date?", since the whole chain of
access models for that object is available. This is a very important point, since anyone
who had access to an object could' ve copied it, even if their access had been rescinded at
a later date.

3.1.2 Persistence

All objects have one and only one owner and reside, conceptually, in only one place. An
object's ownership can never be changed, and is set at the time it is created. If an object
is copied, then the copy will be owned by the person making the copy; however, pedigree
information will be retained, so that the owner of the object so copied can inquire as to
what use (i.e. what copies) has been made of his object. This pedigree information is in

1l We are experimenting with the notion of "sticky" models, which are write-only. Such a loosening of the
notion of publication would permit certain forms of synchronous collaboration within n-dim without intro-
ducing the entire range of difficulties (consistency management, locking, etc.) associated with synchronous
collaboration systems.

12In version 0.91, this is not actually implemented and was found to be one of the major limitations of the
0.91 prototype. Version 1.0 remedies this by means of the more general answer to the question of attributes
given here.

13In a built-in language called ACCESS.

12



the form of a system-generated (and system-maintained) model, which links the copied
object to its copies; of course, this model is available to the user like any other model.

When an object is first created, it is malleable, but only in so far as its owner is
concerned. Until it is published, no one but its owner can even know of its existence.14

The act of publishing an object is similar to the notion of publishing a paper; once the
paper is published, its author cannot go to all of the libraries in the world and remove
it from circulation. In the same way, publishing an object makes it visible to the rest of
the world and, at the same time, immutable, even to its original author. If one wants to
change a published object, it must be copied, and the copy revised, at which time the
pedigree-maintenance mechanisms described above are activated In this way, the path
any published object has taken through its many copies can always be traced

To publish an object, everything that it depends on must be published, namely, all
targets of p a r t links with the object as source. One is thus guaranteed that when a
published object is manipulated, even some time (e.g. years) after it was published, it will
behave exactly as it did at the time of publication.15 This is a critical property of published
objects, and one reason for the way in which it has been formulated in n-dim.

An example will serve to both crystallize the concept of publication and show why
we have formulated it in such a fashion. Consider an n-dim model containing a piece
of computational software. If it were to be published, then the compiler, linker, and
libraries which together could be shown to work (by, for instance containing test cases
and results) would also be published and frozen. Years later, if one were to use (reuse)
this software, it would be possible to recreate the original program quite faithfully. While
perhaps extreme, the example does show the need for some rigid specifications regarding
persistence of objects and their contexts for them to be of real use in the design situation
where, often, it is very difficult to reconstruct the why and how of often reused pieces or
approaches.

Published objects can never be destroyed, although n-dim does have a notion of
archival vs. active storage, in the same way that libraries move little-used books and
material to less easily accessed but more efficient storage, such as microfiche.

3.1.3 Structures, Projections and Presentations

The fact that one can create types (e.g. modeling languages) in the same way as one creates
instances, and refer to the normally in other types raises certain issues of interpretation. In
addition, it is quite often desirable to see the same structure through different filters. For
instance, one might have a very large and complicated model which one would like to view
with certain link types hidden, or with certain parts hidden. All of these considerations
are dealt with by the structure, projection, presentation split in Az-dim.

Every structured object can potentially correspond to a set of models describing var-

l4In the sense that the results of a search are always either objects owned by the searcher or published
objects.

15 In order to be used as a language, a model must first be published; therefore, any models created using
that language are also guaranteed that their language will not change out from underneath them.
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Figure 5: Two projections of a model

ious aspects of it. There are three basic layers: structure, projection and presentation.16.
Projections serve to distinguish between different topological views of the same stracture,
each of which can have a different meaning. For instance, Figure 5 shows two projec-
tions (which are, of course, models), M2A and M2B, of the stracture M2 whose textual
representation could be something like:17.

M2:
[M2,TASK,part]
[TASK,TASK,precedes]

Note that all of the appearances of TASK have the same l a b e l , since they are all
reflections of the same object; in fact, the user would not be able to distinguish between
them. While the different projections are legal models qua model, they have different
meanings when interpreted as languages.

Our example in Figure 5, interpreted as a language, describes a class of models that
could be called task-flow models. It can be seen why projections are so critical in this
context. The M2A projection of M2, when interpreted as a language, says that one can
make models containing TASK parts linked to themselves. The M2A projection, on the
other hand, says that one can make models containing TASK parts linked to other such
parts. Textually:

M2A:
[M2A,TASKl,part]
[TASK1,TASK1,precedes]

M2B:
l6Atomic objects have only the first and the last, projections being nonsensical for them.
17This is an expansion on the previous example involving the TASK model; see Figure 4
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[M2B,TASKl,part]
[M2B,TASK2,part]
[TASK1,TASK2,precedes]

The TASK1 and TASK2 objects are mirrors of the same object, TASK. In this way,
a different topological view, to take a more mathematical slant on things, of the same
structure is achieved.

There is thus a one-to-N mapping between a structure and its projections; n-dim
creates a default projection for a model when it is created, and additional projections are
created transparently by interacting with the system. That is, creating a projection is not
something the user does expiicidy, it is something that n-dim does for the user.18 In the
same way, there is a one-to-N mapping between projections (or structures, for atomic
objects) and presentations, which are also models. Presentations contain reflections of
the actual objects (e.g. the parts of the projection or structure being presented), in the
same way that projections contain reflections of the underlying structural objects. The
reflections in presentations, however, are quite different: they are aggregations of objects
that define things like colors, geometry, and other presentation-related aspects of the
object. One can thus present the same underlying structure in totally different ways
by viewing it through different projection/presentation models. It should also be noted
that the underlying database of objects can be partitioned to effect more efficient search;
the space of objects of primary concern in most (user-initiated) searches is the space of
structures. For instance, the user wants to know of a models containing p a r t links to
textual objects created by themselves between two dates; this is purely a query on the
structure. The corresponding projections and presentations of the resulting models could
be stored by the system in an entirely different manner or place.

3.1.4 Rules and Events

Suppose we extended the task-flow language above to include a link called a s s i g n e d
whose source could be a TASK and whose target could be a PERSON object. Let us further
say that PERSON objects can have an attribute called HOURS-WEEK, which records the
number of hours per week that person has had assigned to tasks, and that TASK objects
can have a HOURS attribute, which states how many hours the task takes per week. One
might then want to refine the task-flow language such that an a s s i g n e d link would be
disallowed if the HOURS-WEEK of the PERSON plus HOURS of the TASK were greater
than or equal to some value.19 The /i-dim mechanism for doing this is a Rule model.
Simply stated, modeling languages define the space of syntactically correct models, but
not necessarily the space of meaningful ones. To implement semantics on a modeling
language,20 one creates a Rule rule model.

Every user or system action in n-dim generates an event, which is broadcast to the
appropriate groups of processes. The kinds of events include:

18Of course, it is quite possible to write code to explicitly create projections.
19 In the United States, 40.
20Of course, one can also do so for an instance as well.
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• creation of an object (including links),

• destruction of an object,

• invocation of an operation (method),

• publication of an object.

All events are available in the system event stream. Internally, almost everything a
user does generates an event, which can fire any number of rules. Rules are structured as
a set of predicates and a consequence, with the predicates being a composition of boolean
operations on events, and the consequence being, at the moment, a piece of code.21

Depending on the type of event, cenain arguments may be available for a rule to match
against, e.g. a rule might declare its interest in creation of a certain type of link in a model
(or in instances of a modeling language). In this way, n-dim actually resembles a large,
distributed production system, which some additional structure.

When fired, a rule can return a value to the system that will influence the further
processing of the event (or the event that caused the event). Specifically, a rule can

• allow the operation to continue;

• raise an error, which will cause the termination of the operation in progress;

• raise an warning, which will present the user with a message and the option to
proceed or not.

In addition, rule consequences can produce side-effects, which can, in turn, generate
other events, and thus fire other rules.

3.1.5 Operations

Internally, operations are actually special cases of rules that are fired by an INVOKE event
(either generated due to a user interaction or from a piece of code). Currently, operations
must either be coded in Tel or in C.

4 Implementation

This section describes version 0.91 of the Az-dim prototype, currently being used by the
rt-dim group itself. This prototype is being used to "bootstrap" the building of n-dim
itself; at the moment, the further development of the prototype is being done largely in
/2-dim.

Version 1.0 of n-dim is due for release in early 1993; the prototype implementation
described herein is missing some key components of our conceptual design, which 1.0

21 Various representations for the consequent are being considered and experimented with.



implements more fully. In particularly, the structure, projection, presentation split, con-
textual attributes, some of the the modeling-language machinery and the rule system are
missing or not fully implemented in 0.91. Never the less, even with so limited a proto-
type, we have found our experience with using this (and previous, even more primitive)
prototypes of the system to be, on the whole, very good.

4.1 Layers

The architecture of n-dim is layered and adheres to open systems philosophy. There are
five layers in the architecture; from bottom to top (see Figure 6), they are:

• information modeling system (e.g. n-dim itself)

• object system

• a distributed applications layer

• a relational engine for information structuring and management

• the native operating system

• the raw hardware

The object system kernel is prototype based rather than class based. The utility of
a prototype-based object system for engineering applications is well documented (the
SPLINTER from Open University (UK) [28], and the ASCEND system from the EDRC
[20]). From an architectural point of view, any object system can used for this layer. The
restrictions on the type of object system is tied more to the domain of work rather than
being an architectural limitation. In fact, it can easily be shown that one can implement
any form of object-oriented environment (strict class-based a la Smalltalk, mixed classes
and meta-objects a la CLOS, etc.) using a prototype-based one.

We have created an object-oriented environment around T e l (an embeddable, small
interpreter that is easily integrated into other programs [19]) called BOS, the Basic Object
System. Due to the nature of Tc 1, it is a relatively painless thing to move the implementa-
tion of something from Tc 1 to C; in effect, the C compiler is our "compiled environment",
and T e l (with its object-oriented wrappings) is our "interpreted environment". Currently,
BOS version 2 is being implemented and tested, and contains many substantial improve-
ments over BOS version 1, including a cleaner separation between interpreted syntaxes for
methods and the methods themselves, through a virtual machine (in version 1, interpreted
methods are written in Te l ) . We have, in effect, used T e l and BOS to prototype an
object-oriented environment based partly on some of the ideas in SELF [26]. In effect,
this is a hybrid environment, with compiled and interpreted components in different lan-
guages. We find such an environment to have many compelling arguments for it over
Lisp-based environments and other available object-oriented environments. Arguments
for this approach are beyond the scope of this document, but are articulated [17].
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Figure 6: Architecture and Current implementation

As has already been stated, the space of objects in /x-dim is flat; i.e., all objects are
stored only once no matter how many models "contain" an object. Hence, the overhead
in using objects in multiple models is close to zero since only the the part link needs
to be stored. Thus, the storage of objects in multiple models is significantly reduced.
Note however, that the architecture allows for objects to be stored in multiple locations if
required for efficiency; it is simply that it does not require multiple storage.

The distributed applications kernel in the current implementation is ISIS, a toolkit
for building distributed systems developed at Cornell University [1]. ISIS provides
communication facilities at different levels of granularity and network configuration,
including situations where many local-area networks are interconnected via (relatively)
slow, long-haul links.

The database layer has undergone several revisions, using several different relational
databases. In the architecture presented above, one will notice that the database is below
the distributed system functionality. In fact, this is currently how we have implemented
access to relational databases; ISIS process groups are used to implement various pieces
of the architecture, including the relational database. One thus access it by broadcasting
requests to this set of process; we are thus independent of which actual relational database
is used. The program responsible for answering requests is called the back end. There
are currently versions of the back end implemented on top of Informix and postgres, with
more versions being written as necessary. The back end is structured so that there is
a generic, non-RDBMS-specific portion which uses a very stylized interface to call the
RDBMS. Any RDBMS which a C API can be fitted into n-dim by writing three routines
in C and linking together a new back end program.
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It should be noted that the objects themselves are not stored in the database, but only
the attributes necessary to search for objects (e.g. the intrinsic attributes; see Section 3.1.1,
above). The objects themselves are stored locally in individual workspaces, or (possibly)
in shared spaces if they have been published (and thus made immutable). In fact, this
separation between the space in which objects are stored vs. the space in which attributes
about them are kept for the purpose of search can be utilized to great advantage in scaling
tt-dim up for large (hundreds of thousands to millions of objects) applications.

The collection of a set of database processes and workspace processes is called a cell.
A broad range of ceil configurations is possible, from a single, centralized database with
several users clustered about it (a small work group), to a totally distributed configuration
with both central and localized components for individual users (entire organization or
sub-organization, or clusters of smaller work groups). Studies will be conducted for the
appropriate configuration based on network and load balancing requirements. At some
point, it should be possible to experiment with the use of high-speed networks (such as
CMLPs NECTAR or BBN's Butterfly) depending on the needs of the actual engineering
application. These are issues for further research in the development and deployment of
the collaborative environment.

4.2 BOS: The Basic Object System

The motivation for BOS comes from a variety of factors, including:22

• A lack of generally-available prototype-based systems.

• Most available object-oriented systems are large, monolithic "worlds" which one
must buy into as a whole; if one wishes to use different tools for building GUIs,
accessing relational databases or trying out new ideas, life can be made difficult by
all of the associated baggage.

• The lack of a generally-available object-oriented system that is easily embeddable
in other applications, and which works on or easily ports to the maximum number
of platforms with the minimum amount of effort.

• The need for a system which, in addition to the above points, allows for both
interpreted and compiled methods, possibly written in different languages; the ad-
vantages of interpreted environments for fast prototyping has been widely discussed
[13].

The need for prototype-based systems has been discussed in the literature in a variety
of contexts [3] [4] [20]. Our efforts have been particularly informed by the work of the
SELF group [26] and their arguments for prototype-based object-oriented systems as the
most basic form of object-oriented system, from which any other kind of object-oriented

22The following sections on BOS taken from an unpublished manuscript that make a separate case for
it, outside of the context of n-dim. However, certain aspects of BOS are critical to the understanding of
n-dim's implementation and use.
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system can be "grown". Further, our own work on n-dim, and the requirements in the
domain of engineering in general have been a constant source of ideas and imperatives
for us in this area [28].

BOS is a C-callable library that implements a basic data structured called a BOS object.
In BOS an object is essentially a data structure: a named collection of slots. Inheritance is
a semantic concept placed "over" the relationships of these data structures to one another.
Calls are available to create and destroy objects, serialize them into and unpack them from
binary byte-streams, add, remove and modify slots in objects, and, the most crucial, send
messages to objects. These primitives are available both from C and from Tel; in the
latter case, all BOS objects appear as commands in the Te l interpreter. Thus, the familiar
syntax of

object message [arguments...]

is achieved from the interpreted level at no cost. In BOS version I,23 the Tel inter-
preter's argument matching mechanisms have been used to simplify the implementation
of the method invocation portions of BOS. In BOS version 2, the dependence on Tel has
been removed, and the system greatly extended and optimized for larger-scale applications.
More information on BOS itself is available in [17].

We will attempt to briefly summarize some key points pertaining to prototype-based
object systems and the use of BOS in n-dim.

4.2.1 Prototypes, Identity and Mutability

If one had to summarize in a single sentence the main difference between prototype-based
and class-based object-oriented systems, it could be stated this way:

• A prototype is an instance plus its class(es).

In biological terms, every prototype has its own "DNA", with which it can "clone"
itself; it not only contains the values of its slots, but it also contains the definitions of its
slots.24 By way of comparison, in a class-based object-oriented system, supposing one
had a class for points in three-space, defined as a tuple of three real numbers, if you had
the address of the starting location in memory of an instance of this class, but no pointer
to the class object that had its definition, you could not make sense out of what was stored
there25: to understand the object, you must refer to the class. In a prototype-based system,
there would be a prototypical point in three-space with xy y and z slots, which you would
clone to create a new point object. All one needs to know about the new point is in the
object itself.

Generally speaking, one of the major implications of this difference is that in class-
based systems, when you change a class definition, all instances of that class change. In

23 BOS version 1.31 has been used to implement the version of n-dim described in this paper (0.91).
24or pointers to other objects from which it inherits definitions
^unless, of course, you knew a-priori
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a prototype-based system, when you change a prototype, it only affects that object; any
objects that may have been cloned from it before you made the change are unaffected.
Every prototype is free to evolve on its own, and every prototype is mutable both in terms
of structure and in terms of content. In fact, it is quite possible to clone an object and
mute it to the point where it no longer has anything in common at all with the object
you cloned it from. Unless the discipline of strict class-based systems is imposed in the
creation of objects in a prototype based system, it is not possible to do type checking. In
a prototype-based system where no such discipline is enforced, the system, when asked
the type of an object, can at best provide a list of objects from which it inherits, since the
object could have been modified after having been cloned from its "class". In spite of this
limitation, it is just this mutability that makes prototypes so attractive for the early stages
of development, when there is a sort of "soup" of ideas and features in which one is trying
to pick out the relevant pieces and compose them into a first implementation.

In general, a purely prototype- or class-based system is not desirable. Even though the
semantics of a class-based system can be implemented in a prototype-based one, the need
for one over the other in different settings makes having a system which allows for both
models desirable. For example, in geometric modeling applications, which might have
to manipulate millions of points, surfaces, lines, etc., all of whose structure is guaranteed
never to change, having each object represented as a prototype, with the mutability that
implies, is both inefficient and undesirable. Philosophically, as well as pragmatically,
there is not necessarily any need for each one of those million points to have its own
identity, only its own values.

In BOS we have recognized that mutability during development and design, and
efficiency during production use are concerns that must go hand in hand, and are not
mutually exclusive.

The public interface to BOS mentions only one kind of thing, an object. Internally,
however, BOS has two different representations for objects: as prototypes (the default),
and as instances. A prototype object is, as has been discussed, mutable with respect to its
structure. Instances, by contrast, cannot have their structure changed; only the values of
their slots can change. All instances point to the prototype from which they were created,
and contain in themselves no structural information, only values. One consequence of
this is that, once a prototype has been used to create instances, when the structure of the
prototype changes (e.g. slots are added or removed), all of its instances will change in a
like manner; that is, the prototype serves as a class for those instances. BOS provides two
distinct operations to support this functionality:

Clone. Cloning an object produces an exact copy of it. If the object is a prototype, the
resulting clone will also be a prototype. If it is an instance, the clone will also be an
instance.

Instantiate. Instantiation always creates an instance. If the source object is a prototype,
an instances of that prototype is created. If it is an instance, the effect is the same
as if it were cloned.
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The two kinds of objects are indistinguishable from the point of view of the caller, with
the exception that the primitives which change the structure of objects (add a slot, remove
a slot) return errors when applied to instances. Sending a message to an instance may take
slightly longer than sending a message to a prototype (one additional layer of lookup is
required, e.g. following the pointer from the instance to its prototype), but instances also
require significantly less memory to store, since only the values of the slots, and not their
definitions, are required26.

4.3 Object Storage (Workspaces)

Every user of n-dim has a workspace which is, conceptually, a single place where all of
their (unpublished) objects are stored.27 In addition, there is a library workspace, where
all the published objects in a cell are available (they may also be available in other places
as well - H-dim has the potential to optimize access to published objects in whatever way
it sees fit, as they are guaranteed to never change).

An n-dim workspace finds out about other objects by broadcasting queries to the
relational database (Section 4.4, below, describes the structure of this database briefly).
What comes back is always a stream of unique object identifiers (e.g. the ID column).
The objects named in this stream are guaranteed to either be

• owned by the sender, in which case they are stored in the sender's workspace, or

• published, in which case they are accessible by a broadcast to the library.

Objects are stored on disk in a binary hashed file, keyed by object ID, with the slots
of the object stored as a binary byte-stream. All BOS objects can have their in-memory
representation translated into a serial stream of bytes, and back again. BOS allows certain
slots in an object to be marked as ephemeral, which means that BOS will effect this
translation differently for those slots. Slots whose values are by nature temporary (a file
descriptor, a temporary file name, a reference to another object that may only exist for a
short time, etc.) can be marked in this way, in which case BOS will store a null value for
the slot at this point in the byte-stream.

4.4 The RDBMS in n-dim

As was noted above, the contents of objects are not stored in the relational database; rather,
structural attributes of objects, plus some additional information about l i n k objects are
stored in relational tables. The tables are structured as shown in Tables 1 and 2.28

26Caching and other optimizations can make the difference in speed of message sends insignificant.
27 An individual workspace may actually be a process group, distributed over several machines; this is

necessary in cases where, for example, specific objects must reside on a specific machine so that software
licensed for that machine can be used on them (or, more correctly, their contents).

28Of course, in actually operationalizing n-dim, we take certain liberties, as long as they do not show
themselves to any layer(s) conceptually above the one being operationalized. The table structure presented
in Tables 1 and 2 are simplified for the purposes are illustration.
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ID
Unique ID

TIMESTAMP

Creat. Time
CREATOR

User
LANGUAGE

Modeling lang.
ACCESS
Acc. Ctrl.

PUBLISHED
Pub'd.

Table 1: Columns of the OBJECTS Table

ID
ID of link from OBJECTS

SOURCE

... Of STC

TARGET

... of trg.
TYPE
type tag

MODEL

container

Table 2: Columns of the LINKS Table

The ID attribute of an object is its unique, system-generated name. Links are cross-
indexed from the LINKS table to the OBJECTS table. So, for instance, finding all of the
links in a model is a single query to the database.

All access to the database happens via ISIS broadcasts. The database subsystem
actually has two components:

• The watchdog, which is responsible for making sure that back-ends are running and
for optimizing the configuration of the back-ends in the cell;

• The back-end, which actually answers queries.

Both of these parts are implemented as ISIS process groups.29 The back-end is
structured in such a way as to be easily portable to different RDBMS systems; in fact,
only one module in the entire system is RDBMS-specific (the one which actually makes
calls to the RDBMS' native API).30 The system is designed in such a way as to allow
multiple back-ends to exist in a cell. The watch-dog process group is responsible for
optimizing the over-all configuration of the cell in terms of the number, placement and
responsibilities of the back-end processes, as well as providing some higher-level query
decomposition semantics (see Section 4.5, below, for a more detailed explanation of the
full-blown query machinery). A protocol (which has not yet been fully implemented)
for allowing back-ends to split themselves in two, move from one machine to another,
and generally reconfigure themselves allows the watch-dog to adapt the configuration of
the cell's relational database service to changing conditions. In addition, an intermediate
query language and associated translator in the back-end is planed, although not yet
implemented (currently, SQL is used as the query language).

Finally, we wish to experiment with allowing different types of back-ends and opti-
mization strategies to be used in the same cell. At the very least, our present design calls
for two types of back-end processes:

29Currently, n-dim requires the commercial version of ISIS to operate (version 2.2 or higher). We plan to
have a version of n-dim that will work on the freely-available version of ISIS (version 2.1) by early 1993.

30Currently, we have implemented versions of the back-end using postgres and Informix. Ingres, SYBASE
and Oracle are planned for 1993.
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Stable. Stable back-ends are the base-line back-end functionality. They do not have
experimental features in them, and are meant to be used by the majority of a
user population. Published objectbases (e.g. library workspaces) will have their
attributes serviced by such back-ends.

Experimental. Experimental back-ends might have extensions to the base back-end pro-
tocol in them, optimizations for particular kinds of searches, and other such features
that make them undesirable for general use.

In general, it is expected that any given back-end process can and will die at some
point, and the system (e.g. the watch-dog processes) should be able to smoothly recover
from such a failure. Experimental back-ends are expected to crash much more often than
stable ones. We wish to be able to configure a cell so that users who wish to simply use
the system can co-exist with developers who are actively extending the system.

4.5 Generalized Searches

The combination of separate storage for objects and attribute information in the relational
database provides for a maximum of flexibility and scalability in the system. Our initial
experiences with the system show that this has been a good approach. However, without
extension, the base-line architecture described in Sections 4.3 and 4.4 cannot handle
queries over the content of objects. For instance,

Find me all models in language L not owned by me
containing part links whose target is
an object in language TEXT which are owned by me

is a textual rendering of a perfectly acceptable (although, in SQL, quite cumbersome)
query. However, if one were to. in addition, ask that the TEXT objects in the above query
also contain a certain string, or match a certain regular expression, one needs additional
facilities to give an answer, as the contents of the objects (e.g. the value of a TEXT object)
are not in the RDBMS.

In addressing this problem, we have also taken into consideration the more general
problem in terms of the type of contents, e.g. textual, image, audio, video, etc. Every
query is considered by n-dim to have two parts:

• A structural part, which can be answered totally in terms of the information in the,
and

• A content part, which can only be answered by examining the contents of atomic
objects.

Thus, in our small example query above, the structural part is the text of the query
given above, which returns a stream of object IDs, each of which must then be examined
to answer the content part of the query. The Dasic architecture is shown in Figure 7.
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Queries are sent to the database process group, DB, which applies some heuristics to
it to determine in which order things should be done: structure first or content first.31 The
two parts of the query are processed in sequence; in Figure 7, the structural portion was
answered first (e.g. broadcast to the backend processes, fl, which is a subgroup of the
DB group), and yielded a set of objects. DB replies with a compound result: the results
of the structural query ( i d s e t ) , plus the content query that was "left over". These two
things are put together to form yet another query, which is then broadcast to the workspace
process group, WS; each individual workspace, W, answers for the objects in the set that
reside in it, creating temporary indices of the matching objects on the fly and returning
any objects so found.

Every workspace has associated with it something resembling a relational engine
which can be used to build indices over its objects. For any type of data that one wishes
to make indicies, four pieces of information must be made available to H-dim:

• An alphabet of symbols. For text, this is the ASCII encoding.32 For other types of
data, it may vary. For instance, some recent work at Xerox PARC [18] has been
done in the field of indexing paintings by gesture. In this case, the alphabet is the
set of gestures so derived;

• An access method. This is a piece of code that will return the raw data from the
value of an atomic /i-dim object in the form needed by the indexing and storage
methods;

• An indexing method. This is a piece of code that, given a query over the alphabet
(or compositions of strings of symbols from the alphabet), builds an index into the
set of objects of the given type matching the criteria;

• A storage method. This is a piece of code that will store the results of a run by the
indexer in some internal format on disk for later use. It also manages invalidation
of indicies due to changes in the underlying objectbase.

In Figure 7, the content parts of the query have been broadcast to the workspace
process group, which will build indices of their individual objects that match the query
and return the results, which finally are the contents of the reply to the original query.

Our rationale for adopting such an approach is rooted in the critical considerations of
flexibility and scalability. Although the kinds of information stored in the workspace object
indices and the central relational database are similar (tables of attributes and values), the
volatility of the information in the two places is inverted: attribute information about
objects in the relational database is very small (less than a hundred bytes per object), and
changes very slowly. The number of attributes is known, a priori, which makes building
stable indices possible, and even imperative.

31 It could very well be the other way around, depending on whatever heuristics are available at the time
as to which strategy will narrow the search space fastest.

32Or some other, more recent standard, such as the ISO standard for encoding Latin text.
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By contrast, a single text or picture object's value in a workspace may be several
kilobytes in length, and may change very rapidly at any given time. Its attributes are not,
strictly speaking, fixed, and any arbitrary number of indices which mention the object
may be built and, as the objects change, invalidated over time.

Thus, from a scalability point of view, the processes that depend on the relational
database as a shared resource (that is, all of the workspaces in the system) are not
penalized for queries that involve searching over the contents of objects. As long as a
workspace transmits queries only over the structure of objects (which, we must stress, we
consider to be the most likely case), most of the machinery just described is not needed;
the relational database can answer the query and return the results. Having minimized
the amount of information stored in the relational database, we have also automatically
minimized the amount of data that must be transmitted across the network, which is, after
all, the most expensive thing one can do. If further refinement of a search is needed, the
work to do so can be automatically balanced across the set of workspace processes. From
a flexibility point of view, new types of data and new methods for accessing it can be
developed, implemented, refined and improved over time without disturbing the existing
set of mechanisms.

5 Applications and Extensions of /z-dim

In the introductory sections, we noted that engineers use a variety of modeling and analysis
procedures. It is our contention that no single representation or abstraction technique can
be imposed on designers a priori, without severely limiting their ability to effectively
model. We thus use a notion of conceptual information modeling that allows multiple
classifications to be imposed over a corpus of information. Abstraction levels are imposed
by the users, in whatever way they see fit.

Since designers use a variety of representations to model and analyze designs, de-
pending on the types of functionalities required in the performance of the task, Az-dim
supports the incorporation of any tools designers find appropriate to carry out the above
activities. As has been described in previous sections, supporting this integration capa-
bility and insisting that Az-dim maintains its usability and scalability requires addressing
significant problems in diverse areas such as: visual programming, distributed databases,
graph grammars, human-computer interaction, and machine learning.

Given these objectives, it is clear that artificial intelligence (AI) is incidental to our
approach; we are, however, using techniques from AI such as semantic network repre-
sentations, rule structures, machine learning techniques, and other techniques and rep-
resentations, as elements in our work. In so far as such, or any other (i.e., relational
databases, hypermedia, graph grammars, etc.) techniques can be used to empower the
user to organize, conceptualize, and reason over (including model) information, they are
useful to us.

Although our work focuses on enhancing the support for informal modeling and
analysis, we also allow for easy integration of formal modeling and analysis techniques.
This allows n-dim to benefit from research on numerical modeling and analysis developed
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within engineering disciplines as well as from research on symbolic modeling and analysis.
While design is a social process, it also takes place in a larger social context. Thus,

two types of hurdles need to be overcome in applying our technique to real life problems:
organizational and technical. Our contention is that the organizational is more important
than the technical: Seemingly sound techniques fail constantly in practice due to lack
of attention to organizational issues. Our development approach—participatory design
and evolutionary prototyping—is geared towards alleviating this problem [21], while the
techniques implemented in n-dim are meant to provide designers the ability to model and
analyze their organization, the interactions with their peers, and the flow of information
within the organization.

tt-dim has been conceived to facilitate modeling starting from the initiation of a
design process and continuing throughout the life-cycle of the artifact [25]. The third
generation of n-dim is currently built in a participatory evolutionary prototyping mode:
we encourage users to use the tool and participate in its development; we use it to model
and implement its design in several ways, including issue-based models (like gIBIS, [6]),
models of the actual implementation of the software (decompositions in terms of class
hierarchies, functional requirements, documents, etc.) and other kinds of information;
and we introduce changes incrementally, rather than abruptly.

5.1 Modeling and analysis with n-dim: An example

can provide support for a wide range of modeling and analysis activities. This
section demonstrates this variety as manifest in designing with n-dim. We show that a
significant part of design relies on informal modeling and analysis activities that, in turn,
have a critical impact on the final product. We illustrate these ideas through an example
of designing a hypothetical product: a computer that can be carried by an operator along
the Alaska pipeline to gather information about the conditions of the pipe.

The abstract description of the product just mentioned is sufficient for the designers
to start modeling it. Figure 8 shows several models created by the designers. The
first model, customer s p e c s built in the U n i v e r s a l modeling language includes
an object n o t e s that contains the textual description of the customer's specification.33

model.
The model includes an initial structured description of the textual specification. The

highlighted objects constitute an abstract model for searching through previous designs.
In order to operationalize such a search, previous designs must have been classified in
many different ways (in this case, by function and various properties, which also may be
classified separately). Such classifications would have been created over time by both
human designers and, potentially, with the aid of computers.34

The search carried out by the designers is a classification-based analysis of previous
designs that allows them to retrieve the relevant cases, which may (and, in this example,

" u n i v e r s a l is a built-in language that places no restrictions on the user; any kind of object or link can
be put in a U n i v e r s a l

34The authors are experimenting with the use of natural language and machine learning techniques to aid
in the building of such classification structures.
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will) serve as prototypes. The designers found that the results of this search were useful,
and so decided to save the query, results, and some annotations in a separate model so
that future designers (including themselves) would be able to understand the context of
the design currently being carried out.

Figure 8 also contains a simple model of the preliminary design called p i p e l i n e
monitor. It includes the customer s p e c s model just discussed and simply outlines
that the preliminary design is based on the design issues derived from the customer
specifications. It also includes a p r e v i o u s d e s i g n s model that will be used later in
the design (see Figure 9).

The de s i gn i s s u e s model, created in a Nego t i at e modeling language (a variant
of glBIS) depicts the critical issues of the present design and their relationships. This
model can provide input to the functional decomposition or to the tasks assigned to
different designers. Note that this model could be the product of discussions between the
designers on the present problem, but could also be borrowed from one of the computers
retrieved in the search with some relevant modifications.

In Figure 9, the designers are looking at the previous designs found in the last figure,
attempting to solve their problem by taking pieces of other designs and composing them
into an initial cut at solving the present problem. None of the previous designs found will
suit all of the needs of the present situation, because the issues involved in the cases found
were slightly different (i.e. performance was more an issue than operating environment or
weight). Of the designs found, two look like they might be able to be modified to meet the
cost constraints. The designers realize, by searching through parts catalogs in the system,
that another kind of memory could be used in the present design, which had not been used
in any previous designs of this kind. Further, it appears that if this memory were used, it
would have the dual effect of bringing the cost within range, as well as satisfying (possibly
with some sort of sensitivity analysis) the other major criteria. An initial decomposition of
the current design ( p i p e l i n e monitor) is composed by copying the relevant pieces
of the previous designs and the new memory into a part decomposition model.

Note that this illustration does not attempt to present the entire spectrum of queries,
analyses, information-gathering and other activities that would no undoubtedly be required
in a real use of n-dim. Rather, what is shown is, at a simple level of abstraction, an
example of how designers could go about narrowing a potentially enormous space down
to a plausible set of alternatives.

Thus far, the designers followed an unstructured sequence of modeling activities to
create an artifact. They progressed from very abstract models to the creation of a model
that contains some previous designs. In this illustration, without the use of a single formal
modeling and analysis technique, we have shown how the designers could committed
themselves to designing a variant of previous designs.

In Figure 10, the designers have retrieved a simple cost analysis model from a library
of such models, which takes into account only very basic parameters, in this case, the cost
of the power supply, PC board, disk, memory and a general factor for other costs. In the
Simple Cost model, those subparts might, in turn, be other models that accumulate the
estimated cost by looking at other subparts of the component. The designers copied this
simple cost model and made linkages between the components they chose and the cost
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calculation models. The Expres s ion modeling language has rules in it for attempting
to map values along a s s i g n links, and would raise an error if it were not possible,
e.g., if the power supply sub-expression needed a value that was not present in the
power part. Such an n-dim modeling language is useful as a crude tool for doing simple
calculations, and for prototyping more complicated types of expressions.

At this point, the designer has decided that this is a good enough design to start working
on in more detail. The d e s i g n i s s u e s model has a w o r k i n g - r e s o l u t i o n link
inserted into it between the c o s t issue and the Simple Cost model, by way of
justifying the decision. The designer now has to go into more detailed types of analysis and
may require the use of traditional formal modeling techniques which can be incorporated
easily into n-dim. In addition, as the design progresses, the issues involved in the design
may change, new sub-issues might emerge through interaction with the customer, etc.

After completing the design, the complete set of activities of all the designers is
remained recorded in n-dim. All the models, with their assumptions, are available in
the system and can be used in future design situations. Once the product enters the
production and usage stages, additional information is accumulated about the product.35

The designers can further detail their design models, at least with annotations, with critical
information that validate their assumptions and design decisions. This information is the
result of yet another analysis that is critical for future designs.

5.2 Tool Integration

In engineering design, a large number of complex programs have been written to support
various analysis and design functions. Studies of current practice in engineering design
reveal that one of the key problems impacting quality and productivity in design is that
of dispersed and loosely coupled information and design tools. Despite networked com-
puter infrastructures and sophisticated interfaces to many individual design systems, most
computer-based design tools remain primarily stand alone in terms of their interoperability
with other tools and, of greater importance, in terms of their integration with the complex
web of information that constitutes an evolving design.

Therefore, if n-dim is to support the integration of design management with design,
enable the capture of design histories and the reuse of designs, the n-dim environment
must address issues of tool operation and integration. We can expect that designers in any
engineering design domain will require access to a variety of analysis and synthesis tools.
At all stages in a team-based design process, a computer based information infrastructure
for design should enable both the operation and interoperability of tools - that is, it should
allow designers to transfer data from one tool to the next. In addition, the environment
should allow one to state and retain the interrelationships among the input and output to the
tools, document what problem is being solved and why, attach memos on the implications
of the results, and generally annotate the use of design tools as desired.

35In addition, even at the early stages of design, simple models describing the base design can be given
to manufacturing engineers, who can give their feedback and raise issues of their own.
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5.2.1 Levels of integration

Capturing Input/Output of Decoupled Tools As a first step, at the simplest level n-
dim can be very useful by just enabling the capture of the design products of tool usage
including both inputs and outputs * these could be files of data in various forms or images
of graphical output. At this level, tools need not be integrated in the environment or even
invoked from within /z-dim but their inputs and/or products can be linked into the design
modeling environment, browsed, annotated, and and reasoned about in the context of the
overall web of design information.

For example, the ABLOOS [7] system for layout synthesis can be adapted and applied
to layout problems in various domains.36 Since a given designer or design team may be
running ABLOOS on problems from different projects or domains or for multiple layout
problems within a project, it would be most helpful to use the n-dim modeling capability to
organize the results, link the results to particular design sequences, documents or research
papers, to make annotations or comments, and so on. (see Figure 11)

As another example, consider the current methods and tools for object-oriented analysis
( 0 0 A), design (OOD) and programming (OOP). Capturing the output of 0 0 A / 0 0 D tools
such as OMT [22], orOOSE [ 14] as images would allow designers to preserve and annotate
versions of requirements and object models (see Figure 13), or link those models to
design rationales or alternatives that emerge in a design issue base (n-dim's Negot i a t e
modeling language enables the creation of IBIS-type [6] issue bases for communication,
discussion and resolution of design issues. Current implementations of 0 0 A / 0 0 D tools
to support 00 development methods are immature and rapidly evolving. At this time they
do not support maintaining versions of requirements models, object-models, etc. These
models must be overwritten as revisions are made in the iterative development process.
Hence there is no direct support for preserving alternatives or the development history37

A convenient capability that is simple to implement, but non-essential, to the first and
perhaps even the second level of tool integration is to create a model for running a tool out
of rt-dim, e.g., a Run-ABLOOS model which when opened brings up the ABLOOS system.
This combined with other facilities of n-dim makes it very convenient to collect outputs
from tools and interrelate these to input files of other information that can be indexed from

As a refinement of the tool product capture level of tool integration the captured output
of tools would not be static but would support interaction. That is, when a designer opened
the product "file" or model (for instance, as models in n-dim) the tool that produced the
output would be activated. The designer could then dynamically interact with the output,
change it, save the changes, etc. This type of capability is similar in certain respects to the
"Publish and Subscribe" services available in the version of Microsoft Word and related

36ABLOOS is a generative design system to support layout in in multiple domains including engineering
and architectural design domains. It supports a complimentary partnership between human and computer
design agents. It enables a cooperative design process based on hierarchical generate-and-test that is partially
automated and interactive.

37In a conversation at OOPSLA92, Ivar Jacobson of Objective Systems stated that a future version of
their tool Objectory, which supports the OOSE method, would support saving versions of models and would
contain some kind of issue base.
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applications for document production under System 7 on Apple Macintoshes. 38 n-dim
already supports this capability for cenain types of tools such as text editors, and intends
to extend it to other types of tools where feasible.39

In both of the above examples, designers can already gain significant advantage by
using the n-dim environment to reference and index their use of tools in design practice
with only minimal integration of the actual tools. This level might represent a typical
beginning in a progression of experimentation with a tool and its gradual integration by
degrees (through the levels described next) into the n-dim environment.

Encapsulation of Tools. At this level, /i-dim will directly support the operation and
interoperability of tools integrated. There are two basic alternative approaches to tool
coupling/integration:

1. multiple translators between pairs of tools or sequences of tools; if there are n tools
with their own representations, this can involve as many nn translators.

2. use a central representation and encapsulate the tools - by means of wrap-
pers/translators on the tools - to exchange input and output with the central rep-
resentation; for n tools this approach requires a maximum of n wrappers.

Several commercial and academic environments for tool integration exist40 Most of
these systems suggest placing an encapsulation around the tool. This encapsulation carries
out the functions of: (1) translating data kept in a central repository into the form needed
by the tool to carry out the task to be requested of it, (2) a triggering of the execution of
the tool, and (3) a capturing of the output from the tool with a translation of that output to
a form that can be put back into the central data repository. The encapsulation is typically
written in a language like C or C++. Also these systems typically support storing a tool
invocation description - where it is located in the computer network and the protocol to
make it execute - in the central data repository. A designer need only point at that record
and indicate where the system should look for the source data and where it should place
the results to get the tool to execute.

At a higher level of abstraction, combinations of tools can become a single tool.
Jacome and Director [15] suggest another level of abstraction which is to place a model
which describes what a tool can do into the central data repository. Another tool can then
use that information to decide which tools to use to accomplish a higher level task. This
work also suggests there are abstract descriptions of the type of data to be transferred
between the tools. The translation routines for the data input and output then are aware
of these abstract data types. In this approach, the system will typically have alternative

38In n-dim, if the tool product were published, a copy would have to be made or the product would be
"read-only" - see section 3.1.2. In this respect n-dim differs fundamentally from the semantics of "publish"
as utilized by MSWord where changes are deliberately inherited.

39There are some problems in this area shared by MSWord, /z-dim and everyone else - e.g., what if the
application is not available? what if it is incompatible version? how can tools be invoked remotely but
bring up the screen(s) of interest locally fast enough, etc.?

4Oe.g. PowerFrame [9],CadWeld [8]
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combinations of tools to accomplish the same task. The system, often with user input,
chooses which to use.

Currently, most tool integration frameworks are specialized for certain domains such
as e-cad and opt for the second approach to encapsulation. However, these go only part
way towards resolving the problems mentioned above with the main focus of enabling the
interoperability of tools, n-dim 's concept fortool integration, and to a limited extent certain
commercial modeling environments for engineering design such as Wisdom Systems
"Concept Modeler" and Metis Software, expand on the idea of tool interoperability to
include interconnecting input and output from tools with the network of information,
decisions and broader concerns of the evolving design.

Currently we are experimenting with the encapsulation level of tool integration into
rt-dim for the ABLOOS system; this example, and some experiments at other levels of
integration, are discussed in Section 5.2.2. The hypothesis is that these systems could be
more effectively used if the input for these programs can be extracted from the modeling
space (n-dim), and the results returned to the modeling space. By doing so some potential
advantages are that

• the interface burden is placed on the /z-dim rather than on the support tool/program,
so that the support program can continue to be used unchanged;

• the support program will be interconnected with the higher level tracking and mod-
eling of the evolving design - the overall "web of information"; as a consequence,
for instance, users that require the generated information receive it via the n-dims
change notification mechanism;

• a level of abstraction is achieved from the specific program/tool implementing a
support function - when the support function can better be performed by a new
program or tool the old support program can be retired.

Replication of Tools For certain tools significant advantage may be gained by rewriting
the tool and embedding it within /z-dim. For example, as mentioned above there are a va-
riety of OOA/OOD methods centered around making combined text and graphical models
for different views of the system under development. These are typically centered around
the creation of graphical class and object models with rectangles or "roundtangles".41

These models show the definition of and inheritance between classes and the associa-
tions between objects including their composition structure in the system.

Many of these methods are supported by tools for creating these graphical models.
However, many object-oriented system developers currently prefer to use just standard
drawing tools such as MacDraw because the OOA/D methods and tools are immature
and rapidly evolving. At this time, they also only provide a minimum of support for
consistency checking across models, translation between models, versioning, annotation,

41 As an exception Booch [2] uses stylized "cloud diagrams" for classes which many developers find hard
to use because they are hard to draw without a dedicated tool.



or the customization or creation of new relationships in or between models by software
development teams.42

In principle, the generic modeling capabilities of n-dim may be considered to be
a superset of the capabilities of the current OOA/D tools. Therefore, the overhead in
replicating one of these types of tools in n-dim may be reasonable (not to underestimate
the time and resources required to produce the interfaces and performance of more robust
OOA/D that are commercially available). In addition to augmenting the advantages
cited for the first level integration of this type of tool in n-dim - support for versioning,
annotation, design history maintenance, linking to discussion and issue bases - there are
additional benefits to be gained from the deeper integration at this level. Additional
supporting models and modeling languages may be constructed in n-dim to automatically
extract and record from requirements and object models metrics for productivity and
quality assurance in object-oriented software development. For instance, various models
for review, critique and evaluation can be made and linked to the different object-oriented
system view models - requirements, object model, etc. These models would record and
automatically calculate the number and kinds of changes

• from one object model to a revised version;

• made by different development team members;

• made on different projects using the same or different development methods.

We are just beginning to consider and experiment with the possible replication of
certain tools within n-dim. Many of the issues are still to be determined and it is too
early to evaluate the effort and significance of this level of tool integration. In general,
characteristics of candidate tools for this approach appear to be:

• tools whose representations and operations are similar to or easily duplicated by the
generic modeling capabilities of n-dim

• tools whose functionalities can be significantly augmented by replication in n-dim,
or whose existing functionalities are enhanced or extended by being "embedded" in
an information modeling infrastructure.

• tools of for which the overhead of replication is modest

5.2.2 Experiments with Tool Integration

We are currently exploring the issues and potential advantages/disadvantages of integrating
certain EDRC design systems and other commercial systems, written in various languages
and with varying interfaces, into n-dim.

42There are several products rapidly appearing that provide generic node and link style object modeling
capabilities and rules for customizing the structure and appearance of the models to adapt the tool to a
particular modeling method.
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ABLOOS The encapsulation of ABLOOS within /2-dim enables designers to easily re-
formulate layout problems for input to ABLOOS at a high level in n-dim. Designers are
also able to capture partial and complete layout solutions as output and link these to the
respective formulations which may vary in the list of objects to be placed, the attributes
of the objects, their decomposition, constraints on their placement, etc.

Figures 11 and 12 contain screen dumps of models illustrating the integra-
tion of ABLOOS and an example of its operation from within n-dim. Figure 11
shows a cascade of opened models starting in the upper left with a model titled
ABLOOS_Pro jec tDocumentat ion which is a history of issues and design deci-
sions related to this tool encapsulation experiment. Below that there is an ABLOOS_ws
(for ABLOOS workspace) model selected (highlighted) within user "bs36's" n-dim
workspace. In this example, ABLOOS_ws is shown opened and contains models for
a p p l i c a t i o n s and papers.4 3 The a p p l i c a t i o n s model contains models for
applications of ABLOOS in two (widely different) domains, computer board layout and
building layout. The computer jDoard_ layout model (middle right in figure) con-
tains models for two different board layout projects, dec - a power supply board, and
vuman - the cpu for a portable (wearable) computer for viewing blueprints in the field.
Additionally, computer_board_layout contains a model which serves as a library
of circuit board component types from which a designer can instantiate components (and
add new component types if needed); the designer may need to edit the property values
of instantiated components to suit a particular board layout problem.

dec contains a model of a specific board layout problem d e c l and a model for run-
ning the ABLOOS system (ab 1 o o s - run-dec), customized for the particular application,
from within n-dim. The model dec 1 contains a number of models of alternative problem
statements (formulations of the dec 1 board layout problem) dec l _ p s 1, dec l _ p s 2, etc.
It also shows that for dec l__ps 1 a corresponding input file model has been generated (in
CommonLisp) and a results model, r e s u l t s _ l 2 / 2 1 / 9 1 , was created to collect prod-
ucts from running ABLOOS on the decl board with this particular problem formulation.
The r e s u l t s_ l 2 / 2 1 / 9 1 model is shown open containing other models in which inter-
mediate and final layout results have been collected by the designer; in the s o l u t i o n s
model, graphical and symbolic (tool readable) representations of each layout solution may
be indexed. The upper right shows ABLOOS running on a "Power-board" layout problem
- a starting layout is shown, with preplaced components around the edge of the board.
With the modeling capabilities illustrated in this example, a designer is enabled to capture
and index whatever part of a layout design history that s/he finds useful including project
descriptions, documentation and respective input to and output from ABLOOS.

The modeling described so far for ABLOOS could all be accomplished at the first
level of tool integration, however the designer would be required to manually create input
files and link them to problem statements. Figure 12 illustrates the tool encapsulation
level of the integration of ABLOOS. The board layout project represented by the model
d e c l is shown again opened in the upper left corner. The rest of the models in the

43 ABLOOS is a research design system and the papers model includes links to publications which are
interrelated to results of applications, pictures of solutions generated, etc.
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figure illustrate a (simplified) view of using models and modeling languages customized
for ABLOOS to build a structured problem statement model (from a library of compo-
nents for board layout domains) and to automatically generate the corresponding input
file to run the problem in ABLOOS. The problem statement model d e c l _ p s l reflects
the layout problem formulation specified by the designer in terms of domain components,
their decomposition, order of insertion, and so on. In this example, the layout of com-
ponents by ABLOOS is split into two phases. The capacitor component in the model
phasel_components was copied from CircuitBoard_CompLibrary (lower
left), and its property values edited (middle right, in the CAPACITOR-10-QT039-C1
model). When the designer has completed structuring the problem statement s/he may
select the problem statement model (e.g., d e c l _ p s l ) , and choose GeneratelnputFile
(not shown) from a menu in the "Project" modeling language (see the dec 1 model, upper
left in figure). This will invoke an ABLOOS translator within n-dim to automatically
produce the corresponding input file in CommonLisp, readable by ABLOOS. The system
created input file dec_ps l _ i n p u t . c 1 is shown in the lower right opened within a text
editor, and the upper right corner shows the ABLOOS system generating layouts based on
that input file.

The ABLOOS encapsulation is currently limited to the generation of input files. Addi-
tional products of this tool encapsulation experiment are:

• an issue base of the design decisions made by the project team in developing
the ABLOOS/n-dim encapsulation. This may be a useful reference for future tool
encapsulation efforts or for the extension/refinement of the current effort at a later
time. (See the model ABLOOSJ?ro jec tDocumentat ion in the upper left of
figure 11.)

• a browser of the code produced - e.g., new modeling languages created. This also
should prove useful for understanding the implementation of the tool encapsulation
for future reference. (This model is shown (unopened) in figure 11, lower left corner
within the workspace of user "bs36").

Other experiments There are several other on-going efforts at tool integrations at
various levels in n-dim. In fact, part of the every-day work of the group has consisted
in creating small, on-the-fly tool integrations using simple shell scripts and programs to
glue together external programs (editors, text processors, modeling systems) and /z-dim.
A simple example of this is the way in which the products of the OMT modeling tool [22]
have been integrated into Ai-dim. A file pointer object44 is used to name files containing
OMT models. The user has told n-dim that, when such pointers are opened, a script should
be run that will arrange to execute OMT on the given file (see Figure 13).

is a pre-defined low-level object type in n-dim that contains the name of a file in the filesystem.
Using such objects, the user can, at the very least, point at a file in the system, even if its contents are
unintelligible without the aid of some other program. If the file is executable (either a script or a binary
program), opening such an object results in that program being executed. Otherwise, the user can give
n-dim hints about what to do with certain kinds of files. This mechanism is still very crude, but even in its
current state is one of the most useful features of the current n-dim prototype.
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In addition, in this example, the OMT model45 has been included in another model
and annotated with a textual object. This action may be broadcast (as illustrated in the
figure) to all currently active n-dim users via the n-dim talk window.46 Already, with only
minimal effort expended on the creation of the script that runs OMT, a large improvement
in the ability to communicate (and negotiate about) structures created in this external
tool has been gained. In Figure 13, for instance, an OMT model has been pointed to and
annotated inside of an n-dim model, and other users of the system have been told that
such an annotation exists. Such a capability already goes a long way towards alleviating
communication breakdowns and errors that can occur; for instance, we observed that a
group of students attempting to use OMT for software design in a class had to resort to
drawing ASCII versions of parts of OMT models within computer bulletin board and email
traffic, resulting in large and ungainly messages. The ability to simply pass references can
be quite a powerful tool in itself.

Finally, an on-going effort in the integration of the ASCEND system [20] into n-dim is
being carried out by the group.47 This is a system that allows for the construction of large,
equation-based models in a declarative, object-oriented fashion; the system compiles the
declarative version of the model into an internal representation and chooses the appropriate
solver for the task. Libraries of models can be built, used and re-used*

6 Summary and Future Directions

This paper describes work in progress by the n-dim group at the Engineering Research
Design Center at Carnegie Mellon University. Although our experiences and reactions
from industrial collaborators have been extremely positive, we are still in preliminary
stages of research and deployment of n-dim. Some topics not covered in this paper, but
which deserve mention include

NLP. Members of our group have been experimenting with and implementing natural-
language processing tools for creating thesauri of terms in large corpora of text
relevant to a particular domain. Such thesuari are then used to generate indicies of
similarity among documents, and to aid in building conceptual networks describ-
ing the domain. All of these activities are being pursued within the framework of
n-dim, both to model the conceptual structures thus uncovered and to model the
relationships between individual documents, documents and concepts, and, eventu-
ally, between different domains. Experiments are being conducted in the areas of
large- and medium-core power transformer design and risk assessment in software
design.

45Or, to be more precise, the n-dim pointer to it
^This facility is currently very limited, and allows for simple textual messages and references to published

objects to be passed around by all active users of the system.
47It should be noted that one of n-dim's philosophical "parents" is the ASCEND system, and the inter-

linkages of ideas, designs, philosophy and structure goes back to the earliest days of /i-dim.
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Multi-media. We believe that n-dim could provide an ideal environment for structuring
information in multiple media, and for providing a uniform way of accessing and
searching over such information (as the architecture presented in Section 4.5 im-
plies). We are actively pursuing incorporating multi-media objects such as video
data streams into n-dim.

Modeling standards. Several standards efforts that relate to information modeling are
being constantly monitored, and efforts to implement linkage between those stan-
dards and n-dim is ongoing. Standards such as SGML (and, thus, HyTime) and
PDES/STEP, as well as other related efforts are included in this.

Z3950. The draft ANSI standard Z39S0 describes a protocol for enabling access to bases
of information via natural-language-like queries in plain text. We are pursuing the
integration of this protocol into n-dim to provide access to Z3950 databases from
within n-dim. One such database is the Carnegie Mellon University online library
catalog system, which includes bibliographic databases and other information. It is
our goal to be able to our library seamlessly from n-dim by the end of 1993.

Inter-cell linkages. We expect to deploy a number of n-dim cells in 1993, and intend to
use some of them48 as a basis for experimenting with wide-area, n-dim object bases.
Certain aspects of search and the rule-system are impacted by such a situation, and
extending n-dim so that, as much as possible, "reasonable" semantics are preserved
in such a situation is an open issue.
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