NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

An Oveview of the n-dim Environment

Sean Levy, Eswaran Subrahmanian, Suresh Konda,
Robert Coyne, Arthur Westerberg, Yoram Reich

EDRC 05-65-93

An Overview of the n-dim Environment
EDRC-05-65-93

Sean L evy!, Eswaran Subrahmanian?, Suresh Konda®,
Robert Coyne*, Arthur Westerberg®, Yoram Reich®

Email Addresses:
snl@cmu.edu’, sub@cmu.edu?, ssk@cmu.edu®,
coyne@cmu.edu’®, avOa@cmu.edu®, yoram@cmu.edu®
Fax: +1 412 268 5229
Voice +1412 268 5221

February 22,1993

Abstract

The premise of our work is that designers, in the process of doing their work, create models
of various kinds, for various purposes, and that it is the negotiation of the structure and
content of these models that comprises the bulk of the task of doing design. We give here
an overview of a framework for enabling designers to capture and structure as much of
the information they use and generate as is possible. We have designed and implemented
such a system for creating models in a computer that can be

* shared with other designers in the course of an ongoing design,
* made persistent for future recall,

» classified and categorized so as to facilitate both the study of how design is donein
a given organization and the study of design in general.

Our system is generic enough to be useful in domains outside of design, and we posit
it to be useful in general for anyone who needs to manipulate information in a structured
way, an activity called Information Modeling. The acronym chosen for the system, n-dim,
stands for n-dimensional information modeling, to indicate the authors' view that the total
space of information under consideration is multi-dimensional in nature.

Contents

1 Introduction 1
2 Motivation and Background 2
21 Modding and Design: Overview. 2
2.2 Modding and Design: Background = 3
221 Empirical Studiesdoneby EDRC 3

222 Problemsin CollaborativeWwork =~ .~ 5

3 Conceptual Description 7
31 Representation . = . 11
311 Attributes . 11

312 Pessence 12

3.1.3 Structures, Projections and Presentations = =~ =~ . . = . 13

314 RulesandEvents 15

315 Opeaons . = 16

4 Implementation 16
41 Layers s 17
42 BOS TheBasc Object Syssem 19
4.2.1 Prototypes, Identity and Mutability 20

4.3 Object Storage (Workspaces). =~ .~ 22
44 TheRDBMSinndm 22
45 Generdized Searches .~~~ . . . 24

5 Applications and Extensions of H-dim 27
51 Modding and analysis with Azdm: Anexample . =~ 28

52 Tool Integration 33
521 Levdsofintegration . = 34

522 Experiments with Tool Integration . =~ . .~ 37

6 Summary and Future Directions 43

1 Introduction

This report is a compendium of the work of the n-dim research group in that it is the
central repository of al previous and ongoing work conducted by the members of the
group collectively and individually around the project. As such, itisa"living" document
and is expected to be highly dynamic.

Ai-dm stands for n-dimensional modeling and represents both a research program and
a computer software artifact. As aresearch program, it is a series of on-going research
projects on the theoretical and empirical aspects of design practice. Asan artifact, it is both

an embodiment of the lessons learned, and a test bed for testing some of the hypotheses
generated from, the former.

In the second section we indicate the motivation and background upon which n-
dim is based. The third section contains a conceptual description of the n-dim design
environment with the fourth section containing details of the current implementation. The
fourth section gives details of applications and extensionsand the final section concludes
thereport.

2 Motivation and Background

In this section, we seek to motivate /z-dim from itsoriginsin the sudy of design and the
way designers work. It should be noted that n-dim asit is developed in this document
is not meant to be the final solution to the problemsraised here rather, it serves on two
fronts first, asatool to gather empirical data on arather broad domain of which littleis
really known (design), and second as a test bed for trying out solutionsto some problems
aready well established in this domain (for instance, the creation and maintenance of
shared concept networks within groups of designers).

There is a chicken-and-egg problem here, which is common in enterprises such as
/z-dim. On the one hand, there is not really enough data available to propose, apriori, a
wor kable solution to the total problem with any confidence. On the other hand, in order
to gather the necessary data, one needs a working system that will exhibit (we posit) at
least some characterigtics of such a solution to even get darted.

We will first present an overview of the underlying observations and principles behind
our approach, and then proceed to give more a more detailed description of background
studies and information that have informed the evolution of this approach.

2.1 Modding and Design: Overview

In the course of designing things, desgners make models of various kinds, depending
on what kind of desgners they are and what they are designing. By "dedgner”, we
intend to take in the full range of possible assignations. engineers, architects, writers (of
documentation as well as of other sorts), managers, marketing people all areinvolved, in
some sense, in some sort of design.

The models that people make vary, both according to the domain in which they are
working, which may indude standard formulas for accomplishing certain things,' as well
as according to personal preference and judgment (presumably based on experience with
pas designs).

From studies of design, several interesting features of how designers work in various
organizations have been uncovered vis a vis modeling:

" Sandards @ther being taken from thework of standar ds-setting bodies like SO and ANSI, or from the
policies and procedures of the particular organization or disciplinein which the individual works.

» Different designers (and groups of designers) use different vocabularies to describe
the same or very closely related sets of things.

» Engineerstypically spend at most 15% of their time doing standard analytical tasks
[10], the rest of their time being spent negotiating various aspects of the design,
including the structure of the task of doing the design itself.

 Individuals tend to organize information in ways under standable to them, generally
in the form of sketches and notes. Thereis usually substantial overhead incurred in
the process of merging all of the individual representations in a design team into a
single, coherent view.

From these and other observations, we have developed a notion of an Information
Modeling environment which differs substantially from similar concepts developed else-
where (e.g. in thedatabase and Al literature [12]).

One of the key elements of /z-dim is the focus on the human user instead of on
computational entities. This is partly due to the emphasis on the gathering of empirical
data using /i-dim, and partly due to the conviction that the real dlffICU|ty liesin an area
not easily susceptible to automation, namely, negotiation.

2.2 Modding and Design: Background

Through the course of several empirical studies (our own and those of others), it became
clear the a large emphasis must be placed on supporting and capturing information used
for negotiating and creating a shared under standing of the design task, as well as capturing,
as much as possible, the negotiations themselves [6]. Our focus thus became more and
mor e one of providing an environment in which designers can collaborate, in the br oadest
possible sense. The next two sectionswill provide a summary of both the empirical studies
themselves, as well as some problemsinvolved in collaborative (design) work.

2.2.1 Empirical Studies done by EDRC

EDRC has been involved in a number of empirical studies of design in the area of electrical
connector design [27], power system control design at Westinghouse Electric Corporation
[23] and transformer design at Asea-Brown-Boveri [11]. We also studied the problems of
gathering and making accessible materials information in Alcoa Technical Center across
divisions that generate data on properties and performance of materials [24].

In these studies, we identified functional requirements for a design environment to
manage and organize dispersed documents, drawings, and other forms of information.
One of the most fundamental of these requirements was the ability to foster both individual
and group efforts.

In the study of transformer design, we identified functional requirements to facilitate
the accretion of, and access to, institutional memory (viz. " shared memory" in [16]), both
asit relates to design and to the activities surrounding design (marketing, testing, quality
assurance, delivery, etc.) in alarge, multi-national organization.

3

10 |

Information/Knowledge Integration

Partial Integration

Discrete Design Tools

Qs n Effio

Level of Computer Support

Figure 1. Design Efficiency vs Level of Computer Support

The results of the study show that intra-project and inter-project information flows are
not integrated in the current practice of design. Some key deficiencies observed include:

» stand-alone tools are insufficient in producing high quality designs if they are not
integrated and maintained in the context of design practice.

* many errors are due to miscommunications and incomplete infor mation integration.
« apartial integration of analysis tools is insufficient to achieve design efficiency.

In Figure 1, we illustrate the relationship over time between design efficiency and the
level of computer support. Efficiency must be achieved through the integration of the
information technology in the context of the overall process. Our observations about the
design process and the need for integration of information is supported by other studies
such as the comparative cross-national automobile industry study by Clark and Fujimoto
[5]. They have established a clear inter-relationship between integration of problem
solving and design efficiency.

In Figure 2 we illustrate the critical functionalities that an design support system must
provide based on the experience and the role of the design engineer. The nature of design
practice appears to vary systematically between designers of varying skill and experience
levels [11]; asaconsequence, the nature of the infor mation available to and the assistance
required by designers various along the same dimensions. Nevertheless, the synergistic
and returns-to-scale from a common system across all levels of designers implies that the
design system should support a range of requirements.

The novice requires the maximum level of support including being alerted about
problems and guidance in what to change in a design. Experts, on the other hand, need

10

Expert
Expert Consultant
Information o E
Availability g S %
Novice 3"3
& S& g 5
83%2 | 82%
Access to product knowledge &8¢ gg-%
Aid for consultation 3 f'—’g 3e e
0 Alerting - potential problems ae wa.s |

Accumulation of Expertise

Figure 2: Function Requirements by Experience of Designer

suppon morein the area of managing personal and or ganizational product knowledge and
access to a corporate-wide memory bank of design experiences.

Without the ability to suppon a variety of functionalities, design consistency and
quality cannot be achieved easily. Therefore, the design system should not just integrate
information, but must also meet the functional requirements of the range of participants,
from novice to expen, in the design team. The need for management of cross-functional
information content and complexity, and the facility to maintain individual and shared
(i.e. product) information were both apparent in our studies of design [11] [23], and lead
to the central importance of the ability to view the same information in multiple ways and
to index that information in idiosyncratic ways in order that individual access and recall
be made more easy and meaningful.

Another critical issue discovered in the study was the need to provide for terminology
differences that had to be taken into account based on the requirements of the customer in
variouspans of theworld, along with cross country variationsin the standardsinfor mation.

The same conclusions could be drawn in the Alcoa project, where the divisions were
located in the same location but the terminology differences in the existing materials
data and information had to be reconciled for use across multiple projects, divisions, and
products. Here again the necessity for maintaining multiply cross indexed ter minology
was identified as a fundamental requirement, and as a solution, a preliminary material
information system embedding these functionalities system developed.

2,2.2 Problemsin Collaborative Work

To be effective in practice, concurrent engineering requires access to and organization,
communication and negotiation of knowledge accumulated over time and across product
versions and customers. Studies conducted by us and others indicate that design is

a continual negotiation of constraints, terminology and trade-offs for the creation of a
shared understanding and meaning of the design process and product.

For effective communication between members of the design group there must be
consensus on the

* naming (i.e., a shared semantic understanding of relevant terms and concepts)
» constraints (on manufacturing, performance, disposal etc.)
* problem decomposition

e design trade-offs.

Without such agreements, effective communication and coordination of work cannot
occur. However, such agreementscannot, in general, beimposed from the outside but must
be generated by the design group consensually. In order to facilitate reaching consensus,
the design environment must be conducive to conducting and capturing adialog amongthe
engineers. Thisbecome especially critical when, for avariousreasons, thereis an absence
of face-to-facecontacts. This situation can ariseswhen, for instance, design teamsmembers
are separated by significant time and distance or when designers belong to multiple teams
making their physical presence at each team meeting prohibitively expensive in terms of
both money and designer burnout. Hence, individual engineers must be able to participate
in this dialog in an asynchronous manner - different time and different place. However,
in order that the dialog not "drift" over time, it is critical that the context of the dialog be
maintained with maximal fidelity and in particular without loss of the time sequence and
identity of the exchanges (i.e., " who said what to whom when").

In order to facilitate dialog to effect asynchronous collabor ation we need to distinguish
between three important aspects of information used in design:

« Information comes in a variety of representational forms including sketch, picture,
gesture, text (oral and verbal), table, geometry, layout.

» Theinformation is exchanged in a number of media including, paper, face-to-face,
computer, video, film.

* The representational forms exchanged in these media come in formal to informal
modes of communication: reports, memos, e-mail, equational, functional and geo-
metric configurations and descriptions.

Just as important as the form, media, and mode of information in design is its hetero-
geneity. Large scale design projects usually must coor dinate expertise from many different
disciplines representing the functional decomposition of the artifact being produced. The
management of this diversity is the management of cross-functional information in both
its content and its complexity. Moreover, the companies involved in large-scale design
are themselves many-faceted involving a number of different departments devoted to
design engineering, engineering analysis, manufacturing, quality assurance, suppliers,

6

subcontractors, procurement, legal matters, fiscal matters, marketing, customer service
and management. All of these departments plus the sub-departments in charge of vari-
ous pans of design must manage their own information gathering and production. More
important, these separate information and knowledge resour ces have to be shared and co-
ordinated if successful design is to be accomplished. Our studies of information exchange
in design tasks have been crucial in guidingthe development of /i-dim for the management
of work and information in design.

Coordination and management of group activities and work-flow requires that infor-
mation be made available in a meaningful form at the appropriate time. It is the creation
of and access to meaningful information with the seamless integration of these varieties
of information used in and created during the design of the product, is what we term
information management.

Information capture and structuring depends on which representational forms, media,
and modes of communication are used. For example, information techniques useful for
text management are not useful for graphical information. In fact, if such forms are not
appropriately distinguished in the flow of information, they can interfere with and distort
one another. On the other hand, organizational units or concepts extracted from textual
information can be useful in classifying graphical information such as sketches, drawings,
etc.

While the computer is the target medium for information management, care must be
taken to transfer information from other media to it. Insisting that engineers use only
the computer would be counter productive. Hence, the results produced on these other
media must be transferred to or interlinked with the computer. However, tasks performed
in other media like writing and sketching with paper and pencil can be simulated in the
computer using such technologies as electronic tablets as input devices.

Finally, information must be evaluated differently according to the communication
mode in which it is exchanged. For example, most often information coming via e-mail
has to be treated differently from information provided in areport or technical article.

In summary, extensive studies across multiple design domains, cultures, and organi-
zational context lead us to put forward the following " shalls’ as a starting point for the
design of n-dim:

The support environment should enable design and design management to be carried
out within the same uniform information modeling environment. Facilities should be built
into the environment that will enable designers to create shared structures of information
(text, geometry, layout, sketch, pictures). The environment should also permit asyn-
chronous group activity. Finally, facilities are required to enable retrieval of information
by designers with diverse views of that information.

3 Conceptual Description

In this section, we attempt to give first a brief overview of the way in which n-dim
allows one to model information, and then elaborate on certain key elements of this
representation, as well as operational issues associated with usingit. Detailed discussion

of the implementation of the syssem is deferred to Section 4.

The space of objectsin n-dim isconceptually flat; that is, objectsdonot, in any physical
sense, contain other objects. Instead, multiple Sructures can beimposed on thisflat space
by means of special objects called models, which are comprised of links, or relationships
between objects. In thisway, the same object may participatein many models.

n-dim isimplemented in a prototype-based object system calledBOS, the Basic Object
System (see Section 4, below). Sinceit is prototype-based, there are no classes, per sg
rather, any object is a potential prototype for another object. For more information on
prototype-based object systems, see[26].

Thereisabasc cleavage in the space of n-dim obj ects between atomic and structured
objects. Asthe name indicates, atomic objects cannot be broken down any further, e.g.
an integer, a link, a piece of text, an image, an audio bitstream, etc. One could think of
atomic objects as things that have values of some sort.?

The primary form of sructured object is the model. A model is a set of links, which
are, themsalves, atomic objects. The value of alink object is a 3-tuple, source,target,type,
where type is merdy a labd for the link; link types are given their meaning(s) by the
modeling language(s) in which they occur.® Thereisone special link type which isknown
to the sysiem: thepart*link. By convention, part links are displayed as boxesinside
of boxes, whereas all other kinds of links are displayed as directed arrows (but, of cour se,
presentation is highly malleable). For instance, in Figure 3, the model M contains three
links, textually, it could be stated as:

M:
[MA part]
[MB, part]
[A B, rel at edTo]

Thetwopart linksgtatethat A isapanof M and B isapart of M. Both A and B could also
be the targets of thousands of other part links, and thus appear/participate in thousands
of other models.

Modés play (at least) two roles in H-dim: instance/prototype and language® All
objects, whether sructured or not, are constructed using another model as their modeling
language. A mode is a language in n-dim in so far as one asks n-dim to create an object
with it as its language. Typically, modeling languages specify what objects can bein the
model and what relationsthey can haveto one ancther. Such specifications can be thought
of as grammars More formally, the grammar defines:

“The creation of new atomic object types generally requires some programming, since new types of
values often indicate new types of fundamental operations.

%1t is quite possible to have the same link type mean totally different things in different contexts; we
view the meaning of links as something to be negotiated by users of the system over time. Operationalizing
the semantics of particular interpretations of links is consdered an open-ended process, n-dim provides
mechanisms for doing so, but does not requireit to be donein order to usealink type.

“Thisisalink internal to n-dim. Consequently, user-level part linksare quitelegal.

*Wewill usetheterms " instance" and " prototype’ somewhat interchangeably in what follows, since, in
a prototype-based system, the two concepts coincide; the different connotationsare useful in distinguishing
various uses of amodel, however.

Figure 3: A simple n-dim model

 the set of legal parts which modelsin that language may contain;
» the set of legal link types or labels between parts of models in that language;

« rules for composing legal links from the set of legal parts and the set of legal links.

Normally, onewould expect an Ai-dim model intended for use asamodeling languageto
have as pans only other modeling languages; that is, in some form of a" meta" language.
However, there is no such constraint in n-dim; any object can be used as a modeling
language. If, for example, one were to ask n-dim to use an I nteger object® with the
value 1 as a modeling language, one would get an object in the language 1, which could
only have asitsvaluethe number 1. The grammar has one sentence. Consequently, n-dim
models can operate as both instances and prototypes.

As an example, Figure 4 shows a model called TASK which, when interpreted as
a modeling language, would allow creation of models containing BASICTASK objects,
TASK objects, and, funher, allowsapr ecedes link to be created between two TAXK (or
BASICTASK) objects.” In BNF, the grammar would be:

TASK : = BASI CTASK | TASK p TASK;

®Notethat | nteger objects are atomic!

That is, the grammar is recursive. Also, we have not defined what BASICTASK is, but it would
presumably be some form of textual object.

Figure 4: An n-dim modeling language

Any object in /i-dim can also have operations (methods, sec Section 3.1.4, below)
defined on it, which are currently implemented as pieces of code (C or Tel®). When a
mode is used as a language, any oper ationsdefined for it areinherited by modelsthat use
it as a language. In this way, the notion of a modeling language is smilar to, but not the
same as, that of a class or type in the tradition of object-oriented programming. One of
the many ways in which we have taken advantage of the prototype-based object system
is in connection with operations, since any object can be modified on the fly (assuming
it is not published, see below), individual instances can have methods (and other dots)
defined for them.

Finally, there are several built-in modding languages in n-dim. Thefirst two models
given as examples above are in the Univer sal modeling language, which allows any
kind of object, and kind of link, and any composition to becreatediinit. In addition, all basic
atomic objects have an associated language, which packages up the exported operations
on things in that language as far as other n-dim objects are concerned.’ There is also
a Rule modding language, which allows for the congtruction of predicate-consequent
gructuresin terms of basic events defined in the system (such as object and link creation,
deletion, etc. See Section 3.1.4, below). Such rule models can be attached to a model (and
thusto a modeling language) to implement semantics; for instance, the above satement of
the TAK modding language will allow for the sructuring of tasks in terms of precedence

8T cl isa light-weight interpreted language which can be easily embedded into C programsand is used
extensvely in n-dim [19].
*This s yet another way of looking at modeling languages

10

and, viarecursion, by subtasks. It does not, however, placeany restrictions on the number
of tasks allowed in a model of that type, nor does it disallow circular task precedence
linkages, both of which might be desirable. To do so would require the creation of rule
models which, when links are created, check that the attempted construction is not only
grammatically correct, but semantically correct as well.

Given this overview, we will now delve further into the way in which n-dim objects
arerepresented.

3.1 Representation

rt-dim objects all have certain attributes, regardless of whether they are atomic or struc-
tured. In addition, structured objects can have their structure projected in a multiplicity
of ways, which is important vis a vis their interpretation as languages. All objects can
be presented in different ways which can be extended by users of n-dim. Finally, rules,
events and operations arerelated in a number of ways.

3.1.1 Attributes

Preliminary to any attribute is the issue of naming. All n-dim objects have names unique
within the universe of all n-dim objects. This name is system-generated, and utilizes
various pieces of information to be found in any modern, networked environment® to
generate the name. Thus, thereal name (or just name for the remainder of this document)
is generally not known to ordinary users of /i-dim; this name is not to be confused with
any title (or, interchangeably, label) given to the object.

Attributes come in two flavors: intrinsic and contextual. The intrinsic attributes of an
object cannot be separated from it, and, properly speaking, define the object. They do not
change with the context an object isin (e.g. a model it may be part of), and are stored as
physical slotson the (underlying) object.

By contrast, contextual attributes are attributes associated with an object in a particular
context or model. An object can have many values for the same contextual attribute, and
rt-dim decides which one is appropriate by context. One associates contextual attributes
with an object by creating an ATTRIBUTE model containing the object, the name of the
attribute, the model(s) in which the object has this attribute and, optionally, a value or
set of values for the attribute in those models. Certain attribute names, such astitle
are known to n-dim to mean specific things; one can impose such semantics by writing
code to perform arbitrary actions when an object is viewed in a context. For example, one
could associate a shape attribute with an object in certain models and then write code
to be invoked to interpret the value of the shape attribute in order to render the object
specially when viewed in those models.

The set of intrinsic attributesin n-dim has been kept to an absolute minimum.

Owner/Creator. Theperson who created the object. Peoplearealso objectsin the system,
so thisis the name of an object.

Network address, system time and time zone, numeric user |D, etc.

n

Timecreated. The time the object was created. An integer.
Timelast modified. The time the object was last modified. An integer.

Title. Thelabd given by the owner upon creatingit. Whilethetitlecan be changed by the
owner - if the object is not published (see section 3.1.2) - it is essentially inherent
- in that it is not contextually variant.

Published. Whether or not the object has been published. See 3.1.2, below, for a fuller
decription. Thisisa boolean flag.™*

Language. The name of the model which is this objects language.

Access. The name of the modd which describes who has access to this object.

All of the object-valued attributes (creator, language and access) must be published.

Whilethetitle (or label) of an object is an intringic attribute, a very important feature
of n-dim objectsisthat they can have different titlesin different contexts. Thisisachieved
by providing a contextual " alias" attribute which allows a user to refer to the same thing
with different namesin different contextsand still haveit beintrinsically the same thing.*?

The access attribute deserves some special mention. Every object has an access-
control modd,*® which describes who has what kind of access to the object. It is possible
to hide even one's published objects from outside view, if so desired. Access modelsare
samply the n-dim form of an access contral list, with some embelishments. In order to be
activated, an access model mugt be published; to change the access model for an object,
the old one mug be copied and the copy published. It is thus also possible to ak H-dim
questions such as"who had access to this object on this date?", since the whole chain of
access models for that object is available. This is a very important point, snce anyone
who had access to an object could' ve copied it, even if their access had been rescinded at
alater date.

3.1.2 Persistence

All objects have one and only one owner and reside, conceptually, in only one place. An
object's ownership can never be changed, and is set at the timeit is created. 1f an object
is copied, then the copy will be owned by the person making the copy; however, pedigree
information will be retained, so that the owner of the object so copied can inquire as to
what use (i.e. what copies) has been made of his object. This pedigree information isin

Y'Weare experimenting with the notion of " sticky" models, which arewrite-only. Such aloosening of the
nation of publication would permit certain forms of synchronous collaboration within n-dim without intro-
ducing the entire range of difficulties (consistency management, locking, etc.) associated with synchronous
collaboration systems.

In version 0.91, thisis not actually implemented and was found to be one of the major limitationsof the
0.91 prototype. Verson 1.0 remedies this by means of the more general answer to the question of attributes
given here.

BIn a built-in language called ACCESS.

the form of a system-generated (and system-maintained) model, which links the copied
object to its copies; of course, this model is available to the user like any other model.

When an object is first created, it is malleable, but only in so far as its owner is
concerned. Until it ispublished, no one but its owner can even know of its existence.*
The act of publishing an object is similar to the notion of publishing a paper; once the
paper is published, its author cannot go to all of the libraries in the world and remove
it from circulation. In the same way, publishing an object makes it visible to the rest of
the world and, at the same time, immutable, even to its original author. If one wantsto
change a published object, it must be copied, and the copy revised, at which time the
pedigree-maintenance mechanisms described above are activated In this way, the path
any published object has taken through its many copies can always be traced

To publish an object, everything that it depends on must be published, namely, all
targets of part links with the object as source. One is thus guaranteed that when a
published object is manipulated, even sometime (e.g. years) after it was published, it will
behave exactly as it did at the time of publication.”® This is a critical property of published
obj ects, and one reason for the way in which it has been formulated in n-dim.

An example will serve to both crystallize the concept of publication and show why
we have formulated it in such a fashion. Consider an n-dim model containing a piece
of computational software. If it were to be published, then the compiler, linker, and
libraries which together could be shown to work (by, for instance containing test cases
and results) would also be published and frozen. Years later, if one were to use (reuse)
this software, it would be possible to recreate the original program quite faithfully. While
perhaps extreme, the example does show the need for some rigid specifications regarding
persistence of objects and their contexts for them to be of real use in the design situation
where, often, it is very difficult to reconstruct the why and how of often reused pieces or
approaches.

Published objects can never be destroyed, although n-dim does have a notion of
archival vs. active storage, in the same way that libraries move little-used books and
material to less easily accessed but more efficient storage, such as microfiche.

3.1.3 . Structures, Projections and Presentations

The fact that one can create types (e.g. modeling languages) in the same way asone creates
instances, and refer to the normally in other typesraises certain issues of interpretation. In
addition, it is quite often desirable to see the same structure through different filters. For
instance, one might have avery large and complicated model which one would liketo view
with certain link types hidden, or with certain parts hidden. All of these considerations
are dealt with by the structure, projection, presentation split in Az-dim.

Every structured object can potentially correspond to a set of models describing var-

'“In the sense that the results of a search are always either objects owned by the searcher or published
objects.

®|n order to be used as a language, a model must first be published; therefore, any models created using
that language are also guaranteed that their language will not change out from underneath them.

n-dim M2A Universal n—gim M2B Universal
Al £

TASK precades TASK - - T ASK

: :

——— | D

Figure 5: Two projections of a model

ious aspects of it. There are three basic layers: structure, projection and presentation.®.
Projections serve to distinguish between different topological views of the same stracture,
each of which can have a different meaning. For instance, Figure 5 shows two projec-
tions (which are, of course, models), M2A and M2B, of the stracture M2 whose textual
representation could be something like:*".

M2:
[M2, TASK, part]
[TASK, TASK, pr ecedes]

Note that all of the appearances of TASK have the same label, since they are all
reflections of the same abject; in fact, the user would not be able to distinguish between
them. While the different projections are legal models qua model, they have different
meanings when interpreted as languages.

Our examplein Figure 5, interpreted as a language, describes a class of models that
could be called task-flow models. It can be seen why projections are so critical in this
context. The M2A projection of M2, when interpreted as a language, says that one can
make models containing TASK parts linked to themselves. The M2A projection, on the
other hand, says that one can make models containing TASK parts linked to other such
parts. Textually:

M2A:
[MA, TASKI , part]
[TASK1, TASK1, pr ecedes]

M2 B:

'sAtomic objects have only thefirst and the last, projections being nonsensical for them.
YThisisan expansion on the previous example involving the TAK model; see Figure4

14

[MB, TASKI , part]
[M2B, TASK2, part]
[TASK1, TASK2, pr ecedes]

The TASK1 and TASK2 objects are mirrors of the same object, TASK. In this way,
a different topological view, to take a more mathematical dant on things, of the same
dructureis achieved.

There is thus a one-to-N mapping between a dructure and its projections, n-dim
creates adefault projection for a model when it is created, and additional projections are
created trangparently by interacting with the system. That is, creating a projection is not
something the user does expiicidy, it is something that n-dim does for the user.® In the
same way, there is a one-to-N mapping between projections (or sructures, for atomic
objects) and presentations, which are also models. Presentations contain reflections of
the actual objects (e.g. the parts of the projection or gructure being presented), in the
same way that projections contain reflections of the underlying sructural objects. The
reflections in presentations, however, are quite different: they are aggregations of objects
that define things like colors, geometry, and other presentation-related aspects of the
object. One can thus present the same underlying sructure in totally different ways
by viewing it through different projection/presentation models. It should also be noted
that the underlying database of objects can be partitioned to effect more efficient search;
the space of objects of primary concern in most (user-initiated) searches is the space of
dructures. For instance, the user wants to know of a models containing part links to
textual objects created by themselves between two dates; this is purely a query on the
dructure. The corresponding projections and presentations of the resulting models could
be sored by the sysem in an entirely different manner or place.

3.14 Rulesand Events

Suppose we extended the task-flow language above to include a link called assigned
whose source could be a TAK and whose target could be a PERSON object. Let usfurther
say that PERSON objects can have an attribute called HOURSWEEK, which records the
number of hours per week that person has had assigned to tasks, and that TASK objects
can have a HOURS attribute, which states how many hours the task takes per week. One
might then want to refine the task-flow language such that an assigned link would be
disallowed if the HOURSWEEK of the PERSON plus HOURS of the TAK were grester
than or equa to some value.”® The /i-dim mechanism for doing this is a Rule model.
Simply stated, modeling languages define the space of syntactically correct models, but
not necessarily the space of meaningful ones. To implement semantics on a modeling
language,® one creates a Rul e rule model.

Every user or system action in n-dim generates an event, which is broadcast to the
appropriate groups of processes. The kinds of events include:

80f course, it is quite possible to write code to explicitly create projections.
%n the United States, 40.
2°0f course, one can also do so for an instance as well.

15

creation of an object (including links),

destruction of an object,

invocation of an operation (method),

publication of an object.

All events are available in the system event stream. Internally, almost everything a
user does generates an event, which can fire any number of rules. Rules are gructured as
aset of predicates and a consegquence, with the predicates being a composition of boolean
operations on events, and the consequence being, at the moment, a piece of code.”*

Depending on thetype of event, cenain arguments may be availablefor aruletomatch
againg, e.g. arule might declare itsinterest in creation of acertain typeof link in amodel
(or in instances of a modeling language). In this way, n-dim actually resembles a large,
digributed production system, which some additional sructure.

When fired, a rule can return a value to the system that will influence the further
processing of the event (or the event that caused the event). Specifically, arule can

« allow the operation to continue;
» raiszan eror, which will cause the termination of the operation in progress,

* raise an warning, which will present the user with a message and the option to
proceed or not.

In addition, rule consequences can produce side-effects, which can, in turn, generate
other events, and thus fire other rules.

3.1.5 Operations

Internally, operations are actually special cases of rulesthat arefired by an INVOKE event
(either generated due to a user interaction or from apiece of code). Currently, operations
must either be coded in Tel orin C.

4 Implementation

This section describes version 0.91 of the Azdm prototype, currently being used by the
rt-dim group itself. This prototype is being used to "bootstrap” the building of n-dim
itsdf; a the moment, the further development of the prototype is being done largely in
12-dim.

Verson 10 of n-dim is due for release in early 1993; the prototype implementation
described herein is missing some key components of our conceptual design, which 10

“lVarious representations for the consequent are being considered and experimented with.

implements more fully. In particularly, the structure, projection, presentation split, con-
textual attributes, some of the the modeling-language machinery and the rule system are
missing or not fully implemented in 0.91. Never the less, even with so limited a proto-
type, we have found our experience with using this (and previous, even more primitive)
prototypes of the system to be, on the whole, very good.

41 Layers

The architecture of n-dim is layered and adheres to open systems philosophy. There are
five layersin the architecture; from bottom to top (see Figure 6), they are:

» information modeling system (e.g. n-dim itself)

» object system

« adistributed applications layer

» arelational engine for information structuring and management
 the native operating system

e theraw hardware

The object system kernel is prototype based rather than class based. The utility of
a prototype-based object system for engineering applications is well documented (the
SPLINTER from Open University (UK) [28], and the ASCEND system from the EDRC
[20]). From an architectural point of view, any object system can used for this layer. The
restrictions on the type of object system is tied more to the domain of work rather than
being an architectural limitation. In fact, it can easily be shown that one can implement
any form of object-oriented environment (strict class-based a la Smalltalk, mixed classes
and meta-objects a la CLOS, etc.) using a prototype-based one.

We have created an object-oriented environment around T el (an embeddable, small
interpreter that is easily integrated into other programs [19]) called BOS, the Basic Object
System. Duetothe natureof Tcl, itisarelatively painless thingto move theimplementa-
tion of something from Tc1 to C; in effect, the C compiler isour " compiled environment” ,
and T el (with its object-oriented wrappings) isour "interpreted environment” . Currently,
BOS version 2 is being implemented and tested, and contains many substantial improve-
ments over BOS version 1, including a cleaner separation between inter preted syntaxes for
methods and the methods themselves, through a virtual machine (in version 1, interpreted
methods are written in Tel). We have, in effect, used Tel and BOS to prototype an
object-oriented environment based partly on some of the ideas in SELF [26]. In effect,
this is a hybrid environment, with compiled and interpreted components in different lan-
guages. We find such an environment to have many compelling arguments for it over
Lisp-based environments and other available object-oriented environments. Arguments
for this approach are beyond the scope of this document, but are articulated [17].

17

Architecture Layers Current Implementation Future Development

Modeling Kernel n-dim

Object System BOS

Distributed System 1SS

....OSF/DCE

RDBMS POSTGRES.Informix. Orade.SYBASE, ...
Mach,Ultrix,SunOS,

oS AIX.HP-UX OSF/1
MIPS,SPARC,HP-PA, Alpha,...

Hardware RS6K

Figure 6: Architecture and Current implementation

As has already been stated, the space of objects in /x-dim is flat; i.e., all objects are
stored only once no matter how many models " contain" an object. Hence, the overhead
in using objects in multiple models is close to zero since only the the part link needs
to be stored. Thus, the storage of objects in multiple models is significantly reduced.
Note however, that the architecture allows for objects to be stored in multiple locations if
required for efficiency; it is simply that it does not require multiple storage.

The distributed applications kernel in the current implementation is 1SIS, a toolkit
for building distributed systems developed at Cornell University [1]. 1SS provides
communication facilities at different levels of granularity and network configuration,
including situations where many local-area networks are interconnected via (relatively)
slow, long-haul links.

The database layer has undergone several revisions, using several different relational
databases. In the architecture presented above, one will notice that the database is below
the distributed system functionality. In fact, thisis currently how we have implemented
access to relational databases; 1SS process groups are used to implement various pieces
of the architecture, including the relational database. One thus access it by broadcasting
requests to this set of process;, we are thus independent of which actual relational database
is used. The program responsible for answering requests is called the back end. There
are currently versions of the back end implemented on top of Informix and postgres, with
more versions being written as necessary. The back end is structured so that there is
a generic, non-RDBM S-specific portion which uses a very stylized interface to call the
RDBMS. Any RDBM S which a C API can be fitted into n-dim by writing three routines
in C and linking together a new back end program.

18

It should be noted that the objectsthemsalves are not sored in the database, but only
theattributesnecessary to search for objects(e.g. theintringcattributes, see Section 3.1.1,
above). The objectsthemsalves are sored locally in individual workspaces, or (possibly)
in shared spaces if they have been published (and thus made immutable). In fact, this
separ ation between the spacein which objectsare stored vs. the spacein which attributes
about them are kept for the purpose of search can be utilized to great advantage in scaling
tt-dim up for large (hundreds of thousands to millions of objects) applications.

The collection of a set of database processes and wor kspace processes is called a cell.
A broad range of ceil configurationsis possible, from a single, centralized database with
several usersclustered about it (a small work group), to atotally distributed configuration
with both central and localized components for individual users (entire organization or
sub-organization, or clusters of smaller work groups). Studies will be conducted for the
appropriate configuration based on network and load balancing requirements. At some
point, it should be possible to experiment with the use of high-speed networks (such as
CMLPs NECTAR or BBN's Butterfly) depending on the needs of the actual engineering
application. These areissues for further research in the development and deployment of
the collabor ative environment.

4.2 BOS The Basic Object System

The motivation for BOS comes from a variety of factors, including:

» A lack of generally-available prototype-based systems.

» Mog available object-oriented systems are large, monalithic "worlds' which one
must buy into as a whole; if one wishes to use different tools for building GUIs,
accessing relational databases or trying out new ideas, life can be made difficult by
all of the associated baggage.

» The lack of a generally-available object-oriented system that is easily embeddable
in other applications, and which works on or easily ports to the maximum number
of platforms with the minimum amount of effort.

* The need for a system which, in addition to the above points, allows for both
interpreted and compiled methods, possibly written in different languages; the ad-
vantages of interpreted environments for fast prototyping has been widely discussed
[13].

The need for prototype-based systems has been discussed in the literature in a variety
of contexts [3] [4] [20]. Our efforts have been particularly informed by the work of the
SELF group [26] and their arguments for prototype-based object-oriented systems as the
most basic form of object-oriented system, from which any other kind of object-oriented

“The following sections on BOS taken from an unpublished manuscript that make a separate case for
it, outside of the context of n-dim. However, certain aspects of BOS are critical to the understanding of
n-dim's implementation and use.

19

sysem can be "grown". Further, our own work on n-dim, and the requirements in the
domain of engineering in general have been a congtant source of ideas and imperatives
for usinthisarea[28].

BOSisaC-callablelibrary that implements a basic data sructured called a BOS object.
In BOS an object isessentially adata sructure anamed collection of slots. Inheritanceis
a semantic concept placed " over” theredationshipsof these data structuresto one ancther.
Callsareavailableto create and destr oy objects, serialize them into and unpack them from
binary byte-streams, add, remove and modify dotsin objects, and, the most crucial, send
messages to objects. These primitives are available both from C and from Tel; in the
latter case, all BOS objects appear ascommandsin the T el interpreter. Thus, the familiar
gyntax of

obj ect message [argunents...]

is achieved from the interpreted level at no cost. In BOS version 1, the Tel inter-
preter's argument matching mechanisms have been used to smplify the implementation
of the method invocation portions of BOS. In BOS version 2, the dependenceon T el has
been removed, and thesystem greatly extended and optimized for lar ger-scale applications.
More information on BOS itsdlf is availablein [17].

We will attempt to briefly summarize some key points pertaining to prototype-based
object syssems and the use of BOS in n-dim.

4.2.1 Prototypes, Identity and Mutability

If one had to summarizein a single sentence the main differ ence between prototype-based
and class-based object-oriented systems, it could be stated this way:

* A prototypeis an ingance plusits class(es).

In biological terms, every prototype has its own "DNA", with which it can " clone"
itsdlf; it not only contains the values of its slots, but it also contains the definitions of its
dots* By way of comparison, in a class-based object-oriented system, supposing one
had a class for points in three-gpace, defined as a tuple of three real numbers, if you had
the address of the garting location in memory of an instance of this class, but no pointer
to the class object that had its definition, you could not make sense out of what was stored
there®: to understand the object, you must refer totheclass. |n aprototype-based system,
there would be a prototypical point in three-gpace with x, y and z slots, which you would
clone to create a new point object. All one needs to know about the new point is in the
object itsdf.

Generally speaking, one of the major implications of this difference is that in class-
based systems, when you change a class definition, all instances of that class change. In

“BOS verson 1.31 has been used to implement the version of n-dim described in this paper (0.91).
Zor pointersto other objects from which it inheritsdefinitions
~unless, of course, you knew a-priori

20

a prototype-based system, when you change a prototype, it only affects that object; any
objects that may have been cloned from it before you made the change are unaffected.
Every prototypeis freeto evolve on its own, and every prototypeis mutable both in terms
of gructure and in terms of content. In fact, it is quite possible to clone an object and
mute it to the point where it no longer has anything in common at all with the object
you cloned it from. Unless the discipline of grict class-based systems isimposed in the
creation of objectsin a prototype based system, it is not possible to do type checking. In
aprototype-based system where no such discipline is enforced, the system, when asked
the type of an object, can at best provide a list of objects from which it inherits, since the
object could have been modified after having been cloned fromits" class'. In spiteof this
limitation, it isjust this mutability that makes prototypes so attractive for the early stages
of development, when thereisa sort of " soup” of ideas and featuresin which oneistrying
to pick out thereevant pieces and compose them into afirst implementation.

In general, apurdy prototype- or class-based system isnot desirable. Even though the
semantics of aclass-based system can be implemented in a prototype-based one, the need
for one over the other in different settings makes having a system which allows for both
models desrable. For example, in geometric modeling applications, which might have
to manipulate millions of points, surfaces, lines, etc., all of whose Sructureis guaranteed
never to change, having each object represented as a prototype, with the mutability that
implies, is both inefficient and undesrable. Philosophically, as well as pragmatically,
there is not necessarily any need for each one of those million points to have its own
identity, only itsown values.

In BOS we have recognized that mutability during development and design, and
efficiency during production use are concerns that must go hand in hand, and are not
mutually exclusive.

The public interface to BOS mentions only one kind of thing, an object. Internaly,
however, BOS has two different representations for objects. as prototypes (the default),
and as instances. A prototype object is, as has been discussed, mutable with respect to its
structure. Instances, by contrast, cannot have their structure changed; only the values of
their dots can change. All instances point to the prototype from which they were created,
and contain in themselves no structural information, only values. One consequence of
this is that, once a prototype has been used to create instances, when the gructure of the
prototype changes (e.g. dots are added or removed), al of itsinstances will change in a
like manner; that is, the prototype serves as a classfor those instances. BOS provides two
distinct operations to support this functionality:

Clone. Cloning an object produces an exact copy of it. If the object is a prototype, the
resulting clone will also be aprototype. If itis an instance, the clone will aso be an
instance.

Instantiate. Instantiation always creates an instance. If the source object is a prototype,

an instances of that prototype is created. If it is an instance, the effect is the same
asif it were cloned.

21

The two kinds of objects are indistinguishable from the point of view of the caller, with
the exception that the primitives which change the structure of objects (add a slot, remove
a dot) return errorswhen applied toinstances. Sending a message to an instance may take
dlightly longer than sending a message to a prototype (one additional layer of lookup is
required, e.qg. following the pointer from the instance to its prototype), but instances also
require significantly less memory to store, since only the values of the slots, and not their
definitions, are required®.

4.3 Object Storage (Workspaces)

Every user of n-dim has a workspace which is, conceptually, a single place where all of
their (unpublished) objects are stored.?” In addition, thereis a library workspace, where
all the published objectsin a cell are available (they may also be available in other places
as well - H-dim has the potential to optimize access to published objects in whatever way
it seesfit, as they are guaranteed to never change).

An n-dim workspace finds out about other objects by broadcasting queries to the
relational database (Section 4.4, below, describes the structure of this database briefly).
What comes back is always a stream of unique object identifiers (e.g. the ID column).
The objects named in this stream are guaranteed to either be

» owned by the sender, in which case they are stored in the sender's workspace, or

» published, in which case they are accessible by a broadcast to the library.

Objects are stored on disk in a binary hashed file, keyed by object 1D, with the slots
of the object stored as a binary byte-stream. All BOS objects can have their in-memory
representation trandated into a serial stream of bytes, and back again. BOS allows certain
dots in an object to be marked as ephemeral, which means that BOS will effect this
trandation differently for those slots. Slots whose values are by nature temporary (a file
descriptor, a temporary file name, a reference to another object that may only exist for a
short time, etc.) can be marked in this way, in which case BOS will store a null value for
the slot at this point in the byte-stream.

44 TheRDBMSin n-dim

Aswas hoted above, the contents of objects are not stored in therelational database; rather,
dructural attributes of objects, plus some additional information about |ink objects are
stored in relational tables. The tables are structured as shown in Tables 1 and 2.7

%Caching and other optimizations can make the difference in speed of message sends insignificant.

An individual workspace may actually be a process group, distributed over several machines; this is
necessary in cases where, for example, specific objects mug reside on a specific machine so that software
licensed for that machine can be used on them (or, morecorrectly, ther contents).

%0f course, in actually operationalizing n-dim, we take certain liberties, as long as they do not show
themselves to any layer (s) conceptually above the one being oper ationalized. The table structure presented
in Tables 1 and 2 are smplified for the purposes areillugtration.

22

lID | TIMESTAMP | CREATOR | LANGUAGE | ACCESS | PUBLISHED |
[Unique ID | Creat. Time | User | Modeling lang. | Acc. Ctrl. | Pub'd. |

Table 1; Columns of the OBJECTS Table

| 1D SOURCE | TARGET | TYPE | mopEL |
| D of link from OBJECTS | ... Of STIC | ... of trg. | typetag | container |

Table 2: Columns of the LINKS Table

The ID attribute of an object is its unique, system-generated name. Links are cross-
indexed from the LINKS table to the OBJECTS table. So, for instance, finding all of the
linksin amodel is asingle query to the database.

All access to the database happens via ISIS broadcasts. The database subsystem
actually has two components:

» The watchdog, which is responsible for making sure that back-ends are running and
for optimizing the configuration of the back-ends in the cell;

» The back-end, which actually answers queries.

Both of these parts are implemented as 1SIS process groups.”® The back-end is
structured in such away as to be easily portable to different RDBMS systems; in fact,
only one module in the entire system is RDBM S-specific (the one which actually makes
cals to the RDBMS' native API).* The system is designed in such a way as to allow
multiple back-ends to exist in a cell. The watch-dog process group is responsible for
optimizing the over-al configuration of the cell in terms of the number, placement and
responsibilities of the back-end processes, as well as providing some higher-level query
decomposition semantics (see Section 4.5, below, for a more detailed explanation of the
full-blown query machinery). A protocol (which has not yet been fully implemented)
for allowing back-ends to split themselves in two, move from one machine to another,
and generally reconfigure themselves allows the watch-dog to adapt the configuration of
the cell's relational database service to changing conditions. In addition, an intermediate
query language and associated trandator in the back-end is planed, athough not yet
implemented (currently, SQL is used as the query language).

Findly, we wish to experiment with allowing different types of back-ends and opti-
mization strategies to be used in the same cell. At the very least, our present design calls
for two types of back-end processes.

ZCurrently, n-dim requires the commercial version of 1SIS to operate (version 2.2 or higher). Weplan to
have a version of n-dim that will work on the freely-available version of ISIS (version 2.1) by early 1993.

®currently, we haveimplemented ver sionsof the back-end using postgresand Informix. Ingres, SYBASE
and Oracle are planned for 1993.

23

Stable. Stable back-ends are the base-line back-end functionaity. They do not have
experimental features in them, and are meant to be used by the majority of a
user population. Published objectbases (e.g. library workspaces) will have their
attributes serviced by such back-ends.

Experimental. Experimental back-ends might have extensions to the base back-end pro-
tocol in them, optimizations for particul ar kinds of searches, and other such features
that make them undesirable for general use.

In generdl, it is expected that any given back-end process can and will die at some
point, and the system (e.g. the watch-dog processes) should be able to smoothly recover
from such afailure. Experimental back-ends are expected to crash much more often than
stable ones. We wish to be able to configure a cell so that users who wish to simply use
the system can co-exist with developers who are actively extending the system.

45 Generalized Searches

The combination of separate storage for objects and attribute information in the relational
database provides for a maximum of flexibility and scalability in the system. Our initial
experiences with the system show that this has been a good approach. However, without
extension, the base-line architecture described in Sections 4.3 and 4.4 cannot handle
gueries over the content of objects. For instance,

Find ne all nodels in |anguage L not owned by ne
containing part |inks whose target is
an object in |language TEXT which are owned by ne

is atextua rendering of a perfectly acceptable (although, in SQL, quite cumbersome)
query. However, if one were to. in addition, ask that the TEXT objects in the above query
also contain acertain string, or match a certain regular expression, one needs additional
facilities to give an answer, as the contents of the objects (e.g. the value of a TEXT object)
are not in the RDBMS.

In addressing this problem, we have also taken into consideration the more general
problem in terms of the type of contents, e.g. textual, image, audio, video, etc. Every
query is considered by n-dim to have two parts:

» A dtructural part, which can be answered totally in terms of the information in the,
and

* A content part, which can only be answered by examining the contents of atomic
objects.

Thus, in our small example query above, the structural part is the text of the query
given above, which returns a stream of object IDs, each of which must then be examined
to answer the content part of the query. The Dadc architecture is shown in Figure 7.

1

OBJECTS

P ~ T 15,5 My A0 B
- ’
/x: id irTT " ~"v _I n \
| Gl234abxg, GI276ahsI | B l
{ A\D [X regexpMatch .. .]- \ LINKS
- \V/ - = "N ,’ 10) SRy TRG 4 TYPy M
. ¥ 4
,f\ &:.Z;
! I ANy
I ! £ set: oA
| / { G 234abxg, G 276ahsi,...} A
/ | et gt v ~
: /7 [’7X regexpMatch #*foo**
—_—.--—-_.________-__./
l‘ /*{ q
‘ { --—-""""—""""---..__‘
\/ | anguage- L AND A
| link(M?X part) AND N
\ ?X: | anguage- TEXT AND \

\ '\k[’PXregexpMatch " foo* M \|

‘H-‘--_—-—-__——---‘-""-/
tws
!
! process

pP. group

— e w3 beast
= delivery
= reply

® L 9

(final) g“®'y query

Figure 7. Search Architecture

25

answer content struct,

Queries are sent to the database process group, DB, which applies some heuristics to
it to determinein which order things should be done: structurefirst or content first.® The
two parts of the query are processed in sequence; in Figure 7, the structural portion was
answered first (e.g. broadcast to the backend processes, fl, which is a subgroup of the
DB group), and yielded a set of objects. DB replies with a compound result: the results
of the structural query (idset), plusthe content query that was " left over”. These two
-things are put together to form yet another query, which isthen broadcast to the wor kspace
process group, WS; each individual workspace, W, answers for the objects in the set that
reside in it, creating temporary indices of the matching objects on the fly and returning
any objects so found.

Every workspace has associated with it something resembling a relational engine
which can be used to build indices over its objects. For any type of data that one wishes
to make indicies, four pieces of information must be made available to H-dim:

« An alphabet of symbols. For text, this isthe ASCII encoding.®* For other types of
data, it may vary. For instance, some recent work at Xerox PARC [18] has been
donein the field of indexing paintings by gesture. In this case, the alphabet is the
set of gestures so derived;

* An access method. This is a piece of code that will return the raw data from the
value of an atomic /i-dim object in the form needed by the indexing and storage
methods;

* An indexing method. This is a piece of code that, given a query over the alphabet
(or compositions of strings of symbols from the alphabet), builds an index into the
set of objects of the given type matching the criteria;

» A storage method. This is a piece of code that will store the results of arun by the
indexer in some internal format on disk for later use. It also manages invalidation
of indicies due to changes in the underlying objectbase.

In Figure 7, the content parts of the query have been broadcast to the workspace
process group, which will build indices of their individual objects that match the query
and return the results, which finally are the contents of thereply to the original query.

Our rationale for adopting such an approach isrooted in the critical considerations of
flexibility and scalability. Although thekindsof information stored in the wor kspace obj ect
indices and the central relational database are similar (tables of attributes and values), the
volatility of the information in the two places is inverted: attribute information about
objects in therelational database is very small (less than a hundred bytes per object), and
changes very slowly. The number of attributesis known, a priori, which makes building
stable indices possible, and even imper ative.

%11t could very well be the other way around, depending on whatever heuristics are available at thetime
as to which grategy will narrow the search space fastest.
®0r some other, more recent standard, such as the 1SO standard for encoding Latin text.

26

By contrad, a single text or picture object's value in a workspace may be several
kilobytesin length, and may change very rapidly at any given time. Itsattributesare not,
drictly speaking, fixed, and any arbitrary number of indices which mention the object
may be built and, as the objects change, invalidated over time.

Thus, from a scalability point of view, the processes that depend on the relational
database as a shared resource (that is, all of the workspaces in the system) are not
penalized for queries that involve searching over the contents of objects. Aslong as a
wor kgpace transmits queries only over the sructure of objects (which, wemust stress, we
congder to be the most likely case), most of the machinery just described is not needed,;
the relational database can answver the query and return the results. Having minimized
the amount of information stored in the relational database, we have also automatically
minimized the amount of data that must be transmitted acr oss the network, which is, after
all, the most expensive thing one can do. If further refinement of a search is needed, the
work to do so can be automatically balanced acr oss the set of wor kspace processes. From
a flexibility point of view, new types of data and new methods for accessing it can be
developed, implemented, refined and improved over time without disturbing the existing
set of mechanisms.

5 Applications and Extensions of /z-dim

Intheintroductory sections, we noted that engineersuse avariety of modeling and analysis
procedures. It isour contention that no single representation or abstraction technique can
be imposed on designers a priori, without severely limiting their ability to effectively
model. We thus use a notion of conceptual information modeling that allows multiple
classifications to be imposed over a corpus of information. Abstraction levels are imposed
by the users, in whatever way they see fit.

Since designers use a variety of representations to model and analyze designs, de-
pending on the types of functionalities required in the performance of the task, Azdm
supports the incorporation of any tools designers find appropriate to carry out the above
activities. As has been described in previous sections, supporting this integration capa-
bility and insisting that Azdm maintains its usability and scalability requires addressing
significant problems in diverse areas such as: visua programming, distributed databases,
graph grammars, human-computer interaction, and machine learning.

Given these objectives, it is clear that artificial intelligence (Al) is incidental to our
approach; we are, however, using techniques from Al such as semantic network repre-
sentations, rule structures, machine learning techniques, and other techniques and rep-
resentations, as elements in our work. In so far as such, or any other (i.e., relationa
databases, hypermedia, graph grammars, etc.) techniques can be used to empower the
user to organize, conceptualize, and reason over (including model) information, they are
useful to us.

Although our work focuses on enhancing the support for informal modeling and
analysis, we also alow for easy integration of formal modeling and analysis techniques.
This alows n-dim to benefit from research on numerical modeling and analysis devel oped

27

within engineeringdisciplinesaswell asfrom resear ch on symbolic modelingand analysis.

While design is a social process, it also takes place in a larger social context. Thus,
two types of hurdles need to be over comein applying our technique toreal life problems:
organizational and technical. Our contention is that the organizational is more important
than the technical: Seemingly sound techniques fail constantly in practice due to lack
of attention to organizational issues. Our development approach—participatory design
and evolutionary prototyping—is geared towards alleviating this problem [21], while the
techniques implemented in n-dim are meant to provide designer sthe ability to model and
analyze ther organization, the interactions with their peers, and the flow of information
within the organization.

tt-dim has been conceived to facilitate modeling sarting from the initiation of a
design process and continuing throughout the life-cycle of the artifact [25]. The third
generation of n-dim is currently built in a participatory evolutionary prototyping mode:
we encour age user's to use the tool and participate in its development; we use it to model
and implement itsdesign in several ways, including issue-based models (like gIBIS, [6]),
models of the actual implementation of the software (decompositions in terms of class
hierarchies, functional requirements, documents, etc.) and other kinds of information;
and we introduce changes incrementally, rather than abruptly.

5.1 Modding and analysis with n-dim: An example

n-dim can provide support for a wide range of modeling and analysis activities. This
section demongrates this variety as manifest in designing with n-dim. We show that a
ggnificant part of design relies on informal modeling and analysis activities that, in turn,
have a critical impact on the final product. We illustrate these ideas through an example
of designing a hypothetical product: a computer that can be carried by an operator along
the Alaska pipeline to gather information about the conditions of the pipe.

The abdract description of the product just mentioned is sufficient for the designers
to dart modding it. Figure 8 shows several models created by the designers. The
first modd, customer specs built in the Univer sal modeing language includes
an object notes that contains the textual description of the customer's specification.®
model.

The mode includes an initial Sructured description of the textual specification. The
highlighted objects congtitute an abgract model for searching through previous designs.
In order to operationalize such a search, previous designs must have been classified in
many different ways (in this case, by function and various properties, which also may be
classfied separately). Such classifications would have been created over time by both
human designers and, potentially, with the aid of computers®

The search carried out by the designers is a classification-based analysis of previous
designs that allows them to retrieve the relevant cases, which may (and, in thisexample,

"univer sal isabuilt-in language that places no restrictionson the user; any kind of object or link can
beputinaUniver sal

¥The authors are experimenting with the use of natural language and machine lear ning techniques to aid
in the building of such classification sructures.

28

n-dim pipeline m

onitor Universal

n-dim custo

mer specs Universal

customer specs

design issu

es

J-on

[prelim, design |

1previous designs |

Alaska

corred
by nand

ing notes
congitiorn

I<

n-dim design issues Negotiate

future

pipeline monitor

operating
conditions

sub+issue

[temperature
< _ _'N

n-dim prev:by_properties Universal

|function

gather
information

roperty. i
computer p=RiOREL g Carried

by hand

notes

|previ0us designs l

<

< ————|

Figure 8. Example, part 1

29

will) serve as prototypes. The designers found that the results of this search were useful,
and so decided to save the query, results, and some annotations in a separate model so
that future designers (including themselves) would be able to understand the context of
the design currently being carried out.

Figure 8 also contains a smple mode of the preiminary design called pipeline
monitor. Itincludesthe customer specs mode just discussed and smply outlines
that the prdiminary design is based on the design issues derived from the customer
gpecifications. It also includesaprevious designs modd that will be used later in
thedesign (see Figure9).

Thedesign issuesmode, createdin aNegot i at e modeling language (avariant
of gIBI S) depicts the critical issues of the present design and ther relationships. This
modd can provide input to the functional decomposition or to the tasks assigned to
different designers. Note that this mode could be the product of discussions between the
designers on the present problem, but could also be borrowed from one of the computers
retrieved in the search with some relevant modifications.

In Figure9, the desgners are looking at the previous designs found in the last figure,
attempting to solve their problem by taking pieces of other designs and composing them
into an initial cut at solving the present problem. None of the previous designs found will
auit all of the needs of the present Stuation, because theissuesinvolved in the cases found
were dightly different (i.e. performancewas morean issue than operating environment or
weight). Of thedesigns found, two look like they might be able to be modified to meet the
cost congraints. The designersrealize, by searching through parts catalogsin the system,
that another kind of memory could be usad in the present design, which had not been used
in any previous designs of this kind. Further, it appears that if this memory were used, it
would have the dual effect of bringing the cost within range, aswell as satisfying (possibly
with some sort of sengtivity analysis) the other major criteria. An initial decomposition of
the current design (pipeline monitor) is composed by copying the relevant pieces
of the previous designs and the new memory into a part decomposition model.

Note that this illustration does not attempt to present the entire spectrum of queries,
analyses, infor mation-gatheringand other activitiesthat would no undoubtedly berequired
in area use of n-dim. Rather, what is shown is, at a Smple level of abgraction, an
example of how designers could go about narrowing a potentially enormous space down
to a plausible st of alternatives.

Thus far, the designers followed an ungructured sequence of modeling activities to
create an artifact. They progressed from very abgract models to the creation of a model
that contains some previousdesigns. In thisillustration, without the use of a single formal
modeling and analyss technique, we have shown how the designers could committed
themsalves to designing a variant of previous designs.

In Figure 10, the desgners haveretrieved a smple cost analyssmodel from alibrary
of such models, which takes into account only very basic parameters, in this case, the cost
of the power supply, PC board, disk, memory and a general factor for other costs. In the
Simple Cost mode, those subparts might, in turn, be other models that accumulate the
estimated cost by looking at other subparts of the component. The designers copied this
smple cost model and made linkages between the components they chose and the cost

30

n-dim previous designs Universal n-dim remote coll. Part
remote coll.
car computer J package
pager(intellicomp)
reminder book
... DI _|
- — - n-dim car computer Part
n-dim pipeline monitor Part
FaX
package
package
=T = _
FPU| FEF‘ [sensor] n-oim _memory Hralng
name: nee 16mb d
<
| access: 0.2ms
packages: 48,64
power: 2
C——————— |

Figure 9: Example, part 2

31

n-dim

design issues Negotiate

n-dim

pipeline monitor

Part

| pipeline monitor

operating
conditions {

lissue

| temperature}

~n-dim Simple Cost Expression
n-dim cost Real — s assign
fpower suppiy s i
1250.40 op AN _ _ aﬁgn
JopjRCboard] —

O gigkc assign @

’ aSSIQn«--jmemory;

\;\m !
¥y emo_wll

|
othgr_,

2

o>T

Figure 10: Example, part 3

32

calculation models. The Expr ession modeling language hasrulesin it for attempting
to map values along assign links, and would raise an error if it were not possible,
eg. if thepower supply sub-expresson needed a value that was not present in the
power part. Such an n-dim modeling language is useful as a crude tool for doing smple
calculations, and for prototyping more complicated types of expressions.

At thispoint, thedesigner hasdecided that thisisa good enough design to sart working
on in more detail. The design issues modd hasaworking-resolution link
inserted into it between the cost issue and the Simple Cost modd, by way of
justifyingthedecision. Thedesigner now hasto gointo moredetailed typesof analyssand
may require the use of traditional formal modeling techniques which can beincorporated
easly into n-dim. In addition, as the design progresses, theissuesinvolved in thedesign
may change, new sub-issues might emerge through interaction with the customer, etc.

After completing the design, the complete set of activities of all the designers is
remained recorded in n-dim. All the models, with their assumptions, are available in
the sysem and can be used in future design Stuations. Once the product enters the
production and usage stages, additional information is accumulated about the product.®
Thedesignerscan further detail their design models, at least with annotations, with critical
information that validate their assumptions and design decisions. This information is the
result of yet another analysis that is critical for future designs.

52 Tool Integration

In engineering design, a large number of complex programs have been written to support
various analysis and design functions. Studies of current practice in engineering design
reveal that one of the key problems impacting quality and productivity in design is that
of dispersed and loosely coupled information and design tools. Despite networked com-
puter infragructures and sophigticated interfacesto many individual design systems, most
computer-based design toolsremain primarily sand alonein termsof their inter oper ability
with other tools and, of greater importance, in terms of their integration with the complex
web of information that congtitutes an evolving design.

Therefore, if n-dim is to support the integration of design management with design,
enable the capture of design histories and the reuse of designs, the n-dim environment
mug addressissues of tool operation and integration. We can expect that designersin any
engineering design domain will require access to a variety of analysis and synthesis toals.
At all sagesin ateam-based design process, a computer based information infrastructure
for design should enable both the operation and inter oper ability of tools - that is, it should
allow desgnersto trander data from one tool to the next. In addition, the environment
should allow oneto gate and retain theinterrdationshipsamong theinput and output to the
tools, document what problem is being solved and why, attach memos on theimplications
of the results, and generally annotate the use of design tools as desired.

*|n addition, even at the early stages of design, smple models describing the base design can be given
to manufacturing engineers, who can give ther feedback and raise issues of ther own.

521 Levesofintegration

Capturing Input/Output of Decoupled Tools As afirg step, at the smplest level n-
dim can be very useful by just enabling the capture of the design products of tool usage
including both inputs and outputs * these could be files of data in various formsor images
of graphical output. At thislevel, tools need not be integrated in the environment or even
invoked from within /z-dim but ther inputs and/or products can be linked into the design
modeling environment, browsed, annotated, and and reasoned about in the context of the
overall web of design information.

For example, the ABLOOS [7] system for layout synthesis can be adapted and applied
to layout problemsin various domains.® Since a given designer or design team may be
running ABLOOS on problems from different projects or domains or for multiple layout
problemswithin aproject, it would be most helpful to use the n-dim modeling capability to
organize thereaults, link theresultsto particular design sequences, documentsor research
papers, to make annotations or comments, and so on. (see Figure 11)

Asanother example, consder thecurrent methodsand toolsfor object-oriented analysis
(00A), design (OOD) and programming (OOP). Capturing the output of 0O0A /00D tools
suchasOMT [22], or OOSE [14] asimageswould allow designer stopreser veand annotate
versions of reguirements and object models (see Figure 13), or link those models to
design rationales or alternatives that emerge in adesign issue base (n-dim'sNegotiate
modeling language enables the creation of 1Bl Stype [6] issue bases for communication,
discusson and resolution of design issues. Current implementations of 00A/00D tools
to support 00 development methods are immature and rapidly evolving. At thistime they
do not support maintaining versions of requirements models, object-models, etc. These
models must be overwritten as revisons are made in the iterative development process.
Hence thereis no direct support for preserving alternatives or the development history®’

A convenient capability that is smple to implement, but non-essential, to thefirst and
per haps even the second level of tool integration isto create a mode for running a tool out
of rt-dim, e.g., aRun-ABL OOS modd which when opened bringsup the ABLOOS system.
This combined with other facilities of n-dim makes it very convenient to collect outputs
from tools and interrdate these to input files of other information that can beindexed from
n-dim.

Asardfinement of thetool product capturelevel of tool integration the captured output
of toolswould not be gatic but would support interaction. That is, when adesigner opened
the product " file' or modd (for instance, as models in n-dim) the tool that produced the
output would be activated. The designer could then dynamically interact with the output,
change it, save the changes, etc. Thistype of capability is Smilar in certain respectsto the
" Publish and Subscribe’ services available in the version of Microsoft Word and related

®ABLOOS is a generative design system to support layout in in multiple domains including engineering
and architectural design domains. It supports a complimentary partnership between human and computer
design agents. It enables a cooper ative design process based on hierarchical generate-and-test that ispartially
automated and interactive.

¥ a conversation at OOPSLA92, Ivar Jacobson of Objective Systems stated that a future version of
their tool Objectory, which supportsthe OOSE method, would support saving ver sions of models and would
contain some kind of issue base.

34

applications for document production under System 7 on Apple Macintoshes. ® n-dim
aready supports this capability for cenain types of tools such as text editors, and intends
to extend it to other types of tools where feasible.*

In both of the above examples, designers can already gain significant advantage by
using the n-dim environment to reference and index their use of tools in design practice
with only minimal integration of the actual tools. This level might represent a typical
beginning in a progression of experimentation with atool and its gradual integration by
degrees (through the levels described next) into the n-dim environment.

Encapsulation of Tools. At this level, /i-dim will directly support the operation and
interoperability of tools integrated. There are two basic alternative approaches to tool
coupling/integration: '

1. multiple trandators between pairs of tools or sequences of tools; if there are n tools
- with their own representations, this can involve as many nn transators.

2. use a central representation and encapsulate the tools - by means of wrap-
perg/trandators on the tools - to exchange input and output with the central rep-
resentation; for n tools this approach requires a maximum of n wrappers.

Several commercial and academic environments for tool integration exist*® Most of
these systems suggest placing an encapsulation around the tool. This encapsulation carries
out the functions of: (1) trandating data kept in a central repository into the form needed
by the tool to carry out the task to be requested of it, (2) atriggering of the execution of
the tool, and (3) a capturing of the output from the tool with atrandation of that output to
aform that can be put back into the central datarepository. The encapsulation is typically
written in a language like C or C++. Also these systems typically support storing atool
invocation description - where it is located in the computer network and the protocol to
make it execute - in the central datarepository. A designer need only point at that record
and indicate where the system should look for the source data and where it should place
the results to get the tool to execute.

At a higher level of abstraction, combinations of tools can become a single tool.
Jacome and Director [15] suggest another level of abstraction which is to place a model
which describes what atool can do into the central datarepository. Another tool can then
use that information to decide which tools to use to accomplish a higher level task. This
work also suggests there are abstract descriptions of the type of data to be transferred
between the tools. The trandlation routines for the data input and output then are aware
of these abstract data types. In this approach, the system will typically have aternative

*In n-dim, if the tool product were published, a copy would have to be made or the product would be
"read-only" - see section 3.1.2. In this respect n-dim differs fundamentally from the semantics of "publish"”
as utilized by MSWord where changes are deliberately inherited.

*There are some problems in this area shared by MSWord, /z-dim and everyone else - e.g., what if the
application is not available? what if it is incompatible version? how can tools be invoked remotely but
bring up the screen(s) of interest locally fast enough, etc.?

“Oe.g. PowerFrame [9],CadWeld [8]

35

combinations of tools to accomplish the same task. The system, often with user input,
chooses which to use.

Currently, most tool integration frameworks are specialized for certain domains such
as e-cad and opt for the second approach to encapsulation. However, these go only part
way towar dsresolving the problems mentioned above with the main focus of enabling the
inter oper ability of tools, n-dim'sconcept fortool integration, and toalimited extent certain
commercial modeling environments for engineering design such as Wisdom Systems
"Concept Modder” and Metis Software, expand on the idea of tool interoperability to
include interconnecting input and output from tools with the network of information,
decisions and broader concerns of the evolving design.

Currently we are experimenting with the encapsulation level of tool integration into
rt-dim for the ABLOOS system; this example, and some experiments at other levels of
integration, are discussed in Section 5.2.2. The hypothesis is that these systems could be
mor e effectively used if the input for these programs can be extracted from the modeling
gpace (n-dim), and the results returned to the modeling space. By doing so some potential
advantages are that

* theinterface burden is placed on the /z-dim rather than on the support tool/program,
S0 that the support program can continue to be used unchanged,

* the support program will be inter connected with the higher level tracking and mod-
eling of the evolving design - the overall " web of information™; as a consequence,
for instance, users that require the generated information receive it via the n-dims
change natification mechanism;

» alevel of abgraction is achieved from the specific program/tool implementing a
aupport function - when the support function can better be performed by a new
program or tool the old support program can beretired.

Replication of Tools For certain tools sgnificant advantage may be gained by rewriting
the tool and embedding it within /z-dim. For example, as mentioned above there areava-
riety of OOA/OOD methods centered around making combined text and graphical models
for different views of the sysem under development. These are typically centered around
the creation of graphical class and object models with rectangles or " roundtangles’ .

These models show the definition of and inheritance between classes and the associa-
tions between objects including ther composition sructurein the system.

Many of these methods are supported by tools for creating these graphical models.
However, many object-oriented sysem developers currently prefer to use just gandard
drawing tools such as MacDraw because the OOA/D methods and tools are immature
and rapidly evolving. At this time, they also only provide a minimum of support for
consistency checking across models, trandation between models, ver sioning, annotation,

“! Asan exception Booch [2] uses stylized " doud diagrams' for classes which many developer sfind hard
to use because they are hard to draw without a dedicated tool.

or the customization or creation of new relationships in or between models by software
development teams.*

In principle, the generic modeling capabilities of n-dim may be considered to be
a superset of the capabilities of the current OOA/D tools. Therefore, the overhead in
replicating one of these types of tools in n-dim may be reasonable (not to underestimate
the time and resour ces required to produce the interfaces and perfor mance of morerobust
OOA/D that are commercially available). In addition to augmenting the advantages
cited for thefirst level integration of this type of tool in n-dim - support for versioning,
annotation, design history maintenance, linkingto discussion and issue bases - there are
additional benefits to be gained from the deeper integration at this level. Additional
supporting models and modeling languages may be constructed in n-dim to automatically
extract and record from requirements and object models metrics for productivity and
quality assurance in object-oriented software development. For instance, various models
for review, critique and evaluation can be made and linked to the different object-oriented
system view models - requirements, object model, etc. These models would record and
automatically calculate the number and kinds of changes

« from one object model to arevised version;
* made by different development team members;

» made on different projects using the same or different development methods.

We are just beginning to consider and experiment with the possible replication of
certain tools within n-dim. Many of the issues are still to be determined and it is too
early to evaluate the effort and significance of this level of tool integration. In general,
characteristics of candidate tools for this approach appear to be:

» tools whose representations and oper ations are similar to or easily duplicated by the
generic modeling capabilities of n-dim

* tools whose functionalities can be significantly augmented by replication in n-dim,
or whose existing functionalities are enhanced or extended by being " embedded" in
an information modeling infrastructure.

* tools of for which the overhead of replication is modest

5.2.2 Experiments with Tool Integration

We arecurrently exploring theissues and potential advantages/disadvantages of integr ating
certain EDRC design systems and other commer cial systems, written in various languages
and with varying interfaces, into n-dim.

“There are several products rapidly appearing that provide generic nodeand link style object modding
capabilities and rules for customizing the sructure and appearance of the models to adapt the tool to a
particular modeing method.

37

ABLOOS The encapaulation of ABLOOS within /2-dim enables designers to easily re-
formulate layout problems for input to ABLOOS at a high level in n-dim. Designers are
‘also able to capture partial and complete layout solutions as output and link these to the
respective formulations which may vary in the list of objects to be placed, the attributes
of the objects, ther decomposition, congraints on ther placement, etc.

Figures 11 and 12 contain screen dumps of models illustrating the integra-
tion of ABLOOS and an example of its operation from within n-dim. Figure 11
shows a cascade of opened models darting in the upper left with a modd titled
ABLOOQOS ProjectDocumentation which is a history of issues and design deci-
sons reated to this tool encapsulation experiment. Below that thereis an ABLOOS ws
(for ABLOOS workspace) modd selected (highlighted) within user "bs36's’ n-dim
workspace. In this example, ABLOOS ws is shown opened and contains models for
applications and papers.”> The applications model contains models for
applications of ABLOOS in two (widely different) domains, computer board layout and
building layout. The computer jDoard_layout model (middleright in figure) con-
tains modedls for two different board layout projects, dec - a power supply board, and
vuman - the cpu for a portable (wearable) computer for viewing blueprintsin the fied.
Additionally, computer_board_layout contains a modd which serves as a library
of circuit board component types from which a designer can instantiate components (and
add new component types if needed); the designer may need to edit the property values
of ingantiated components to suit a particular board layout problem.

dec contains a model of a specific board layout problem decl and a modd for run-
ningthe ABLOOS system (ab100s-run-dec), customized for theparticular application,
from within n-dim. The modd dec1 contains a number of models of alter native problem
gatements (for mulations of the dec 1 board layout problem) decl _ps1, decl ps2, etc.
It also showsthat for decl__ps1 acorresponding input file mode has been generated (in
CommonLisp) and aresults moddl, results 12/21/91, was created to collect prod-
ucts from running ABLOOS on the decl board with this particular problem formulation.
Theresults 12/21/91 modd is shown open containing other modelsin which inter-
mediate and final layout results have been collected by the designer; in the solutions
model, graphical and symbolic (tool readable) representations of each layout solution may
beindexed. The upper right shows ABLOOS running on a" Power-board" layout problem
- a darting layout is shown, with preplaced components around the edge of the board.
With the modding capabilitiesillugrated in thisexample, a designer is enabled to capture
and index whatever part of a layout design higtory that she finds useful including project
descriptions, documentation and respective input to and output from ABLOOS.

The modeling described so far for ABLOOS could all be accomplished at the first
level of tool integration, however the designer would be required to manually create input
files and link them to problem satements. Figure 12 illustrates the tool encapsulation
level of the integration of ABLOOS. The board layout project represented by the mode
decl is shown again opened in the upper left corner. The rest of the models in the

“ABLOOS isaresearch design system and thepaper s model includes links to publications which are
interrdated to results of applications, pictures of solutions generated, etc.

38

6¢

_¥Jouce 5 =g am

=

(1 wed)ey 10~ (Hur goo

1X ABL QOS ProjectDocumentalon
iln-di m ABL OOSPr oj ect Documentation

IProj ectDocumenti']

m bsm = - 4 e
I.n'-—dim bs36 Workspacejgjdeo
ﬁ‘ﬂn

ABLOOS ws

['VBLOOS Languages| XA ==
a— n—dim ABLOOS wa
SBLOOSj PirojectDoct
applications| E—“ |
{3) applications
n-dim applications

restrire 122149

computer_hoard lavout

or

gindo s (71 wih w

agvY Jo

wed) oot - =— 200

&

‘-}. Its
AN

jdccli>slinputxi| résults J2/237919

it _tile_of

X decl_psl

[n-dim

___ ProblemStatement I

I

H CAPACITOR-10-QT039-a

|X) Phase2

CAPACITOR-10-QT039-C1 Compenent

name:[C1]
part-num:[10~QT039~Cl]
short-size: BQ0 |

I3 gnu-emacst emact O urals*drccmudu

ml

i

AN A
]QAPAQILQR-i§-1941§-Q§| ‘
R CircultBoard CompUbraiy | (
n-di m arcuitBoard_CompL Jbrary Complib
RECTIFIER-11-22399-01]
[CAPACITOR-10-QT039-C1] 1

|CAPAatOR-10-19413-03]

| {4

s

def var *»dec| -resi d« "sHeader S' N
This variabl e shoul d be named <fllenaroe-rcsld> and wil

Zded by RCS to include info on the version of the f\
proclaim "(type string «decl-rcsld«)>

»

make- boar d

:name " Power - boar d"
:range fnake-range :xhl 9585 :yhl 5475)
tconp-align-axls™0 ,
cprimtrans-Info "(-T3" 1200 nil 5025)
A%Pnsgltuents
IS
(make- nenber s- phase
:flrstsol -gen ni
:orderbby-area T

figureillugrate a (amplified) view of usng models and modeling languages customized
for ABLOOS to build a gructured problem satement mode (from a library of compo-
nents for board layout domains) and to automatically generate the corresponding input
file to run the problem in ABLOOS The problem satement moddl decl _psl reflects
the layout problemformulation specified by the designer in terms of domain components,
ther decomposition, order of insertion, and so on. In this example, the layout of com-
ponents by ABLOOS is split into two phases. The capacitor component in the mode
phasel _components was copied from CircuitBoard _CompLibrary (lower
left), and its property values edited (middleright, in the CAPACITOR-10-QT039-C1
model). When the designer has completed sructuring the problem satement she may
sdlect the problem gatement model (e.g., decl _psl), and choose GeneratelnputFile
(not shown) fromamenu in the " Project” modeling language (seethedec1 model, upper
left in figure). This will invoke an ABLOOS trandator within n-dim to automatically
produce the corresponding input filein CommonLisp, readable by ABLOOS. The system
created input filedec_psl _input.clisshown in the lower right opened within atext
editor, and the upper right corner shows the ABLOOS system generating layouts based on
that input file

The ABLOOS encapsulation is currently limited to the generation of input files. Addi-
tional products of this tool encapsulation experiment are:

* an issue base of the design decisons made by the project team in developing
the ABLOOSh-dim encapsulation. This may be a ussful reference for future tool
encapsulation efforts or for the extenson/refinement of the current effort at a later
time. (See the modd ABLOOSJ?rojectDocumentation in the upper left of
figure 11

» abrowser of the code produced - e.g., new modeling languages created. This also
should prove usgful for under sanding the implementation of the tool encapsulation
for futurereference. (Thismode is shown (unopened) in figure 11, lower |eft corner
within the workspace of user " bs36").

Other experiments There are saveral other on-going efforts at tool integrations at
various levels in n-dim. In fact, part of the every-day work of the group has consisted
in creating small, on-the-fly tool integrations usng smple shell scripts and programs to
glue together external programs (editors, text processors, modeling systems) and /z-dim.
A dmple example of thisis the way in which the products of the OMT modeling tool [22]
have been integrated into Ai-dim. A file pointer object* is used to name files containing
OMT models. The user hastold n-dim that, when such pointersare opened, a script should
berun that will arrange to execute OMT on the given file (see Figure 13).

%This is a pre-defined low-level object type in n-dim that contains the name of a file in the filesystem.
Using such objects, the user can, at the very least, point at a file in the system, even if its contents are
unintelligible without the aid of some other program. If the file is executable (either a script or a binary
program), opening such an object results in that program being executed. Otherwise, the user can give
n-dim hints about what to do with certain kinds of files. This mechanism is still very crude, but even in its
current gate is one of the most useful features of the current n-dim prototype.

41

w

WIO-# U1

RIEND_OMT_Model

FRIEND_OMT_Models . Ur

odule: comm.obiJ<tnodeQ Sheet 1:1

N (hodute) (Creave | (St] (Options) (Broaer | (Bios)

m=m © °U_ [FPOIN I-WO Uy T W? N,

[annota~_model_example|

jcommobj.xrh-c")aé.I&omtll
S —comton
@nnotated_model_exampl -:'eg&t;luﬂ‘:w vaand —
100! a5k «_read_info eregister
n-dim annotated _model_example U_'r sunregister ab +gel event
" - «_awh-theck stend
g e eunreglster
licomm.ob|.xmode|30mt[" annotation c ments! -Jisten
-.open
-glose
nu-emacs: emacs @ loo 5" ' {
Attributes: Request_string
Met hods: Satisfy, Generate_request
K3 Name Server NS Swb HS Skelaton
Associ ations: Incident, Request, Action, Person, Depart
—————————————————— *ToCdive +3end lookup esend register
Subj ect: Cbject nodel (ascil version) tend unreglster

In this, as with the sketch on the board, I'Il use « ft
met hods.
Data:

= Read File

Bui | di ng (Subcl ass of Data):

* Name
¢ Const . X P)
dim Talk: coyne&loos Conversation: GM! RPC
[Save... Options.” References.- Send Selection
Fl oors (Aggregal;- esend
o >o* USERS ONLINE (Ued Nov 18 23:16:07 1992) . -
» Links|[T o receive
- Displ «* coyneei 00s (Ued Nov 18 23:16:30 1992) «finish

Roons (Aggr egat -

+ Home

+ Links

Hazards {(found

*Taxt dh

Y

N3 Pretecsl

«tend lookup
esend register
esend unreglster
sreceive

hey, guys, |'ve annotated the OMI nodel In ny workspace

Pachat

«addShort
eaddLong
eaddString
saddFloai
egetShort
egelLong
«getString
sgetFloat
sgetSUe
eset Data
egetDala

In addition, in this example, the OMT model® has been included in another model
and annctated with a textual object. This action may be broadcast (asillustrated in the
figure) toall currently active n-dim usersviathe n-dim talk window.* Already, with only
minimal effort expended on the creation of the script that runs OMT, alarge improvement
in the ability to communicate (and negotiate about) sructures created in this external
tool has been gained. In Figure 13, for instance, an OMT model has been pointed to and
annotated inside of an n-dim model, and other users of the syssem have been told that
such an annotation exists. Such a capability already goes along way towards alleviating
communication breakdowns and errors that can occur; for instance, we observed that a
group of sudents attempting to use OMT for software design in aclass had to resort to
drawing ASCI| versions of parts of OMT models within computer bulletin board and email
traffic, resultingin large and ungainly messages. The ability to Ssmply passreferencescan
be quite a powerful tool in itsef.

Finally, an on-going effort in the integration of the ASCEND system [20] into n-dim is
being carried out by the group.*” Thisisasystem that allows for the construction of large,
equation-based models in a declarative, object-oriented fashion; the syssem compilesthe
declarativever son of themode into an internal r epresentation and choosesthe appropriate
solver for thetask. Libraries of models can be built, used and re-used*

6 Summary and Future Directions

This paper describes work in progress by the n-dim group at the Engineering Research
Design Center at Carnegie Mdlon Univerdty. Although our experiences and reactions
from indudtrial collaborators have been extremey positive, we are still in preiminary
stages of research and deployment of n-dim. Some topics not covered in this paper, but
which deserve mention include

NLP. Members of our group have been experimenting with and implementing natural-
language processing tools for creating thesauri of terms in large corpora of text
relevant to a particular domain. Such thesuari are then used to generate indicies of
smilarity among documents, and to aid in building conceptual networks describ-
ing the domain. All of these activities are being pursued within the framework of
n-dim, both to mode the conceptual ructures thus uncovered and to modd the
relationships between individual documents, documents and concepts, and, eventu-
aly, between different domains. Experiments are being conducted in the areas of
large- and medium-cor e power trandormer design and risk assessment in software
design.

*0r, to be more precise, then-dim pointer to it

AThisfacility iscurrently very limited, and allowsfor smpletextual messages and refer encesto published
objectsto be passed around by all active users of the system.

It should be noted that one of n-dim's philosophical " parents' is the ASCEND system, and the inter-
linkages of ideas, designs, philosophy and structure goes back to the earliest days of /i-dim.

43

Multi-media. We believe that n-dim could provide an ideal environment for structuring
information in multiple media, and for providing a uniform way of accessing and
searching over such information (as the architecture presented in Section 4.5 im-
plies). We are actively pursuing incorporating multi-media objects such as video
data streams into n-dim.

Modeling standards. Several standards efforts that relate to information modeling are
being constantly monitored, and efforts to implement linkage between those stan-
dards and n-dim is ongoing. Standards such as SGML (and, thus, HyTime) and
PDES/STEP, as well as other related efforts are included in this.

Z3950. Thedraft ANSI standard Z39S0 describes a protocol for enabling access to bases
of information via natural-language-like queries in plain text. We are pursuing the
integration of this protocol into n-dim to provide access to Z3950 databases from
within n-dim. One such database is the Carnegie Mellon University online library
catalog system, which includes bibliographic databases and other information. Itis
our goal to be able to our library seamlessly from n-dim by the end of 1993.

Inter-cell linkages. We expect to deploy a number of n-dim cells in 1993, and intend to
use some of them™® as a basis for experimenting with wide-area, n-dim object bases.
Certain aspects of search and the rule-system are impacted by such a situation, and
extending n-dim so that, as much as possible, "reasonable" semantics are preserved
in such a situation is an open issue.

References

[1] K. Birman and et al. The|SISDistributed Systems Toolkit Programmer's Manual.
ISIS Distributed Systems, Inc., 1992.

[2] G. Booch. Object-Oriented Design With Applications. Benjamin Cummins Publish-
ing Company, Inc., NY, 1991.

[3] A. Borning. ThingLab: A Constraint Programming System. PhD thesis, Stanford
University, 1985.

[4] A. Borning. DédtaTak: An Empirically and Aesthetically Motivated Simplifica
tion of the Smalltalk-80 Language. In European Conference on Object-ORiented
Programming. ECOOP, 1987. Paris.

[5] K. Clark and T. Fujimoto. Product Development Performance. Harvard Business
Press, Cambridge, MA, 1991.

[6] J. Conklin and M. L. Begeman. gIBIS: A Hypertext Tool For Exploratory Policy
Discussion. ACM Transaction on Officel nformation Systems, 6(4):303-331,1988.

®Some ceils will be deployed in corporations, who may not wish to be a pan of inter-cell experiments.

44

[7] R.F.Coyne. ABLOOS: A Computational Design Framework For Layout Synthesis.

PhD thesis, Department of Architecture, Carnegie Mdlon Universty, Pittsburgh,
PA, 1991.

[8] J. D. Danidl. An Object Oriented Approach to CAD Tool Control. PhD thesis,
Department of Electrical and Computer Engineering, Carnegie Melon Univergty,
1989.

[9] Design Automation, Inc. Design Management and Engineering Process Automation,
1989.

[10] R.S. Englemore and J.M. Tenenbaum. The Engineers Associate: 1SAT Summer
Study Report. Unpublished Report, Stanford Univer sity., 1990.

[11] S. Finger and et al. Progress Report to ABB. Unpublished, 1992.

[12] M. Flavin. Fundamental Concepts of | nformation Modeling. Yourdon Press, Engle-
wood Cliffs, NJ, 1981.

[13] C. Floyd, H./, R. Budde, and R. Keil-Slawik, editors. Software Development and
Reality Construction. Springer-Verlag, Berlin, 1992.

[14] 1. Jacobson, M. Chrigterson, P. Jonsson, andG. Over gaard. Object-Oriented Software
Engineering: A Use CaseDriven Approach. Addison-Wedey Publishing Company,
NY., 1991.

[15] M. Jacome and S. Director. Design Process Management for CAD Frameworks.
Technical Report 18-27-92, Engineering Design Research Center, Carnegie Mdlon
Univerdty, 1992.

[16] S. Konda, I. Monarch, P. Sargent, and E. Subrahmanian. Shared Memory in Design:
A Unifying Theme For Research and Practice. Research in Engineering Design,
4(1):23-42,1992.

[17] S Levy, E. Subrahmanian, and S. Konda. BOS: A Prototype-based Object System.
Unpublished, 1992.

[18] R. Makkuni. The Electronic Sketch Book of Tibetan Thangka Paintings. Visual
Computer (West Germany), 5(4):22772,1989.

[19] J. Ougerhout. Td: An Embeddable Command Language. In Usenix Winter 1990
Proceedings. USENI X, 1990. Winter conference.

[20] P. C. Pida, T. G. Epperly, K. M. Wederberg, and A. W. Westerberg. ASCEND:
an object-oriented computer environment for modeling and analysis. the modeling
language. Computers & Chemical Engineering, 15(1):53-72,1991.

[21] Y. Rech, S. Konda, I. Monarch, and E. Subrahmanian. Participation and Design:
An Extended View. In M. J. Muller, S. Kuhn, and J. A. Meskill, editors, PDC'92:
Proceedingsof the Participatory Design Conference(Cambridge, MA), pages63-71,
Palo Alto, CA, 1992. Computer Professonals for Social Responsibility.

[22] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and William Lorensen. Object-
Oriented Modeling and Design. Prentice Hall, Englewood Cliffs, NJ, 1991.

[23] M. Rychner and A. Wegerberg. White Paper on Engineering Design. Report to
WestinghouseCorp., 1987.

[24] PM. Sargent, E. Subrahmanian, M. Downs, R. Greene, and D. Rishd. Materials
information and Conceptual Data Modeling. In T. |. Barry and K. W. Reynard,
editors, Computerization and Networking of Materials Databases. Third Volume,
ASTM STP 1140. American Society For Testing and Materials, 1992.

[25] E. Subrahmanian, A. W. Wegterberg, and G. Podnar. TowardsA Shared Information
Environment For Engineering Design. In D. Sriram, R. Logcher, and S. Hukuda,
editors, Computer-Aided Cooper ative Product Development, MI T-JSME Workshop
(Nov., 19891 Berlin, 1991. Springer-Verlag.

[26] D. Ungar and R. B. Smith. SELF: the power of smplicity. USP and Symbolic
Computation, 4(3): 187-205,1991.

[27] D. J. Wilkins, J. M. Henshaw, S. H. Munson-Mcgee, J. J. Solberg, J. A. Heim,
J. Moore, A. Westerberg, E. Subrahmanian, L. Gursoz, R. A. Miller, and G. Glozer.
CINERG: A Design Discovery Experiment. In NSF Engineering Research Confer-
ence, pages 161-182, Amherst, MA, 1989. College of Engineering, University of
M assachustts.

[28] J. Zucker and A. Demaid. Prototype-Oriented Representation of Engineering Design
' Knowledge. Artificial intelligencein Engineering, 7(1):47-61,1992.

46

