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ABSTRACT

Previous studies on process integration have generally considered reaction and separation

as processes that occur sequentially in a flowsheet In this paper, a unified formalism is

presented for the synthesis of reaction-separation systems, while ensuring "optimal"

energy management The synthesis model stems from a target-based approach for reactor

networks due to an earlier study. It is shown that by postulating a species dependent

residence time distribution function , one can arrive at a general representation for a

reaction-separation network. Optimization of this distribution function leads to a

separation profile as a function of time along the length of the reactor. The synthesis

model is formulated as a mixed integer optimal control problem, where the integer

variables account for the fixed costs of separation. The control profiles include the

temperature, the separation profile, and residence time distribution defined for the

network. Costs for maintaining a separation profile are handled through a separation

index (defined to model the intensity of separation), and a fixed charge for any

separation between two components in the reaction mixture. Also, using an energy

targeting formulation, the maintenance of the optimal temperature profile is integrated to

the energy flows within the flowsheet Strategies based on simultaneous optimization

and model solution are presented for the optimization problem and demonstrated for two

case studies.



1. Introduction

Decomposition techniques for chemical engineering systems are largely based on

the concept of unit operations. These provide a natural scheme for classifying the

physical phenomena occurring in the different subsystems, thereby reducing significantly

the complexity for analysis of these systems. At the same time, however, this

decomposition has also shadowed to some extent the amalgamation of the various

physical phenomena represented by the respective unit operations. The integration of the

synthesis schemes developed for different subsystems (for example, reactors, energy

networks, and separation systems) has recently received substantial attention. Notable

among these are the conceptual design ideas of Douglas (1988), and the schemes based

on the idea of hierarchical decomposition (Douglas, 1985,1989; Glavic et al., 1988). On

the other hand, by assuming distillation based sharp splits, Piboleau and Roquet (1988)

developed mixed integer programming formulations to optimize reactor-separator

performance* FloudasetaL (1989) extended their mixed integer nonlinear programming

formulation for reactor synthesis to include reactor, separator and recycle units. Despite

the insights that have resulted from these efforts, a major limitation stems from the fact

that they currently do not allow the combination of various physical phenomena in

different subsystems . For example, the above approaches do not consider the synthesis

of novel schemes such as simultaneous reactive separation processes within their

framework.

In this paper, we aim to develop a targeting scheme with a capability to

simultaneously assess the importance of reaction, mixing, separation, and heat exchange

on overall performance. The synthesis approach is developed in the light of the ideas

previously presented on the sequential bounding scheme for reactor targeting

(Balakrishna and Biegler, 1992 a,b). By considering the reactor as the main unit of the

chemical plant, we develop formulations to derive a reactor network that performs

optimally in conjunction with the separation and energy network. While previous

formulations have considered reaction and separation as sequential operations in a

flowsheet, our model is developed to consider simultaneous reaction and separation as an

option within the network.

In the next section, we develop a non-isothermal reactor model, which allows for

separation as reaction progresses. This is facilitated through a special choice of



residence time distribution. Optimization of this residence time distribution function

leads to a separation profile as a function of age. Following this, we consider the

amalgamation of this formulation with energy minimization and develop simplifications

for systems with highly exothermic reactions. The solution to this model gives us a lower

bound on the performance index; and schemes to successively improve these bounds are

presented. These ideas are demonstrated on two example problems, and the results

indicate significantly better overall performance, when all the subsystems are considered

simultaneously. Particularly, the influence of separation in the course of reaction seems

to play an important role in overall performance.

2. Model Formulation : Combined Reaction-Separation Model

Figure 1 below shows a schematic of a simultaneous reaction - separation model.
In a reactor targeting model to include separation, we essentially postulate an age based
separation function vector (y) in the same spirit as a residence time distribution function

for homogeneous reactors. However, here each species has its own residence time

distribution function dependent on its separation function yc. Also, Xo is the mass

concentration of feed entering the reactor network, a is the independent variable

denoting the age of a molecule as it progresses along the length of the reactor. Qo is the

flow rate at the entrance of the network and mc(a) is the mass of component c in the

reactor at age a. We define a separation function yc(a) such that between age a and a +

5a, a mass fraction of species c equivalent to Yc(a)5a leaves the reactor.

Hence,

^P* = -yc(a)mc(a) + R(X,T)Q(a) (1)
da

where

: Mass flow of species c at age a (c = 1, C)

Q(a) : Volumetric flow rate at age a

X(a) : Mass concentration vector

m(a) : Mass flow vector (Array of n^)

R(X,T) : Reaction Rate Vector

For a homogenous system, if p is the density of the system, then,

dC> £ Vc(oc)mc(oc)
da " c i l p (2)



We assume constant density systems for the sake of simplicity , even though variable

density could be considered by a straightforward extension to this model.

Consider an infinitesimal element 5a in the reactor-separator configuration above, where,

: Mass Concentration of species c at age a

X^a+Sa) : Mass Concentration of species cat age a + 5 a

Y(a) : Vector of separation fractions at age a. (array of yc (a))

A differential balance around an infinitesimal element 5a for component c gives :

Xc(a+Sa)Q<x+5a) - x c ( a ) Q ( a ) =

Rc(X,T)Q(a)5a - yc(a)Q;a)Xc(a)5a (3)

C
£yc(a)Xc(a)

Q(a+5a) = Q(a)(l - — 5a) (4)
P

Substituting for Q(a+5a) from (4) in (3), we get,

C
Z Yc(a)Xc(a)

Xc(a+5a)Q(a)[l- — 5a] - Xc(a)Q(a) =
P

Rc(X,T)Q(a)6a - Yc(a)Q(a)Xc(a)5a

or

C
X Yc(a)Xc(a)

[Xc(a+5a)-Xc(a)]/5a - Xc(a+5a) —
P

RC(X,T) - Yc(a)Xc(a)

Taking the limit as 5a tends to zero, we have:



- Rc(x,T) + Xc(a)[ i ^ Z X W . r c ( o ) )
da p

With this governing equation, a mathematical model (PI) for maximizing the
performance index in this reacting environment can be derived as follows:

Max Jexit(mc(cxit), Q,x) (PI)
y,T

^ = RC(X,T) + X c ( a ) [ Y ( C C ) T X ( a ) - Y c (a ) ] ; c - l .C
da p

da c=l p

m(a) = X(a)Q(a)

(6)

C C
E mc(O) = I mc(exit) (7)

c=l c=l

mc(exit) = Jyc(a)mc(a)da (8)
0

x=Jaf(a)da (9)
0

g(y,X,|i) ^ 0 (10)

h(y,X,n) = 0 (11)

Here, J is an objective function specified by the designer, X(a) is the mass
concentration vector of molecules of age a. nico is the mass flow of each species at the
entrance to the reactor, m^exit) is the mass flow of each species at the reactor exit given



as the integral of outlet flows at different points within the reacting system, x, the

residence time, is determined from the RTD function f for the system as shown in

Equation (13) below. The derivation of the actual RTD function for this system in terms

of the Ys is relegated to the appendix. Also, g and h represent the inequality and equality

constraints imposed by the environment variables (ji) on the reaction system.

Clearly, the above formulation is an optimal control problem with differential

equation constraints, where the Yc's, and the temperature are the control profiles. The

solution to this model will give us the optimal separation profile along the reactor. It is

clear that the second term in Equation (5) models the effect of separation within the

reactor network. Furthermore, if we consider in equation (5) that all the elements of the

vector 7(oc) are the same (which implies that there is no relative separation between the

species in the reactor), then the second term vanishes, since

^YcP, therefore, [ Y ( a ) T X ( a ) - Y c ( a ) ] = 0; V ceC
c P

Thus, the governing equation to this reactor scheme reduces to that of segregated flow,

and the formulation reduces to the segregated flow optimization problem (Balakrishna

and Biegler (1992a)). Furthermore, in this case, the yc can be directly related to the RTD

function (Appendix A) through the following relation:

where, f(a) is the residence time distribution of the molecules within the reactor network,
a

F(a) is the cumulative RTD = f f(t)dt

However, if the 7c's are not the same for all components (c), i.e; there exists a separation

profile, then the actual RTD for this system is given by:

where, qc(a) =



The solution to the model PI gives us the optimal separation profile as a function of age

within the reactor. However, to solve PI as a nonlinear programming problem, some

discretization of profiles will be necessary. Moreover, a continuous separation profile

may not be implementable in practice. To address this, we take advantage of the

structure of a discretization procedure for the differential equation system. In this case,

we choose orthogonal collocation on finite elements (Cuthrell and Biegler, 1987) to

discretize the above model for the state variables X and Q. This results in a reactor

structure as shown in Figures 2a and 2b, where we restrict separation only to the ends of

each finite element

Note the differential equations are converted to algebraic equations through

collocation, and the optimal control problem is now reduced to the nonlinear program

shown below. Furthermore, it can be shown that as Aoc tends to zero, this discretized

model is a close approximation to the original optimal control problem; as shown in

Appendix B. The Yc(oc) in the original model now reduces to a mass split fraction vector

of each species at the end of the i* element (yCtiX The control profiles temperature (T)

and separation fractions (yc) (i.c, the degrees of freedom for the optimization problem)

are assumed to be piecewise constant within each element, while the state variables are

represented as Lagrange polynomials. The solution to this nonlinear program yields the

values of Yc's at the end of each element, so that we now know the mass split fractions of

each component at each separation level.

Let the set I = {i} denote the set of finite elements, {k},{j} denote the sets of

collocation points. The target to the reaction-separation model can then be derived by the

solution to the following nonlinear programming problem:

Max Jexit(mexit>Q>x) (P2)

ci - R(Xy,Ty) = 0 @tj st j * 0 (14)

X(0) = Xo (15)

Xiend ^XfcLkOend) (16)

4+l « [Xc,iend ] Qi [ 1- YCti ] (17)



XioQ(i) = raj (18)

] (19)

(22)

=tmax (23)

where,

: Mass concentration vector at collocation point k in finite

element i (point [ij])

: Derivative of Lagrange interpolation polynomial at [ij]

Yi : Mass split fraction vector at the end of finite element i (Array of Ycti)

f(i) : Actual RTD for the system at element i given by (13)

Tjj : Temperature at [ij]

X^d : Mass concentration vector at the end of elements

mi : Species Mass flow vector entering element i

Qi : Total Volumetric Flow Rate entering element i

(14) represents the equations of orthogonal collocation applied to the differential

equations at the collocation points. Aoci is the length of each finite element. The values

for X at an element are extrapolated to find the values Xiend at the end of that element

through Lagrange interpolation in (16). Equations (17), (18) and (19) represent mass

balances at the separation point The mass flow rate of each species exiting the reactor is

shown in (20). The discretized RTD function is given in (21); and the expression for the

mean residence time follows in (22). As Aa —> 0, this model is equivalent to the original

reaction-separation model, PL The main difference is that we allow separation only at

the end of each element; within each element no separation occurs. Though the model

appears nonlinear, the nonlinearities are actually reduced when one considers the rates in

terms of the mass fractions. The solution to this model then gives us the optimal

separation split fractions as a function of age along the reactor.
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Note that while the profiles from (PI) may not be straightforward to implement as

a practical design, solution of this model requires the discretization given in (P2). The

solution of (P2), however, is physically realizable because it represents reacting segments

(PFR's with residence times determined from P2) in series with separation units between

them (see Figures 2a and 2b). This realization has actually been performed for the two

example problems in section 6.

One important issue that still needs attention is the objective function. It is

intuitively obvious that if a separation cost is not associated with it, we will usually end

up getting near complete separations of products, and hence complete conversions to an

extent possible within stoichiometric constraints. Thus the attainable region in

concentration space can easily be the entire stoichometric space. Unfortunately, to get an

accurate representation for the separation cost is rather difficult, especially when sharp

splits are not enforced Here, we present a simple cost model by assuming that the

variable cost of separation is determined by two factors, namely, the difficulty of

separation and the mass flow rate through the separator.

We first consider an example for modeling the separation costs. As shown in the

schematic below, a stream with components A,B,C and mass flow rates FA , FB, Fc

undergo a separation operation into two output streams, with mass flow rates FA 1 , FB1,

FC1 and mass flows F^2, Fg2> FC2 respectively. The streams A, B, and C are arranged in

a sequential order of separability; for example, in the case of distillation, we may assume

that A, B and C are in a decreasing order of volatility. The mass fractions yA, yB, and JQ ,

are then defined as: yA = FA1/FA, 7iB = FBl/FB- Yc = FCl/FC

If the split fractions YA - Yb - Yo * c n ** *s obvious that we only have a splitting

operation without any separation. However, if they are riot equal, then there is a relative

separation between two adjacent components in the mixture. Given that the streams are

arranged in a monotonic order of separability, we define, iyA - yB\9 as a measure of the

intensity of separation between the two components. When YA " YB = YB ~ Yc = 0» w e

have only a splitting operation among these components, and the cost of separation is

identically zero; whereas if YA " YB = ±lf wc h a v e a sharp split, between components A

and B. Any intermediate degree of separation could then be modeled by complete sharp

split separation followed by mixing, to achieve the desired composition.
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In order to generalize this to formulate the separation costs, let M ={m} denote

the set of all components in the reacting system and let these be arranged in some

monotonic order of relative separability, for example volatilities. If Q is the mass flow

rate handled by the separator, then the cost of separation may be described by:

ital +Q)perating (24)

Cf1Xed(mn)ymn+ £ PmnlAYmnlQ (25)
m;n=m+l

Here, ymn is the binary variable associated with the separation of components m

and n, such that if ymn = 0, AYmn = 0; and if ymn = 1; Aymn ^ 1. The second term in the

above expression models the intensity of separation. Here, pm n is a cost coefficent for

unit separation between two adjacent components m and n and reflects the difficulty of

separation between components m and n. Q is the net flow through the separation

network. The above formulation gives us a reasonably accurate representation for sharp

splits between adjacent components, i.e, IAymnl = 1. For nonsharp splits, there are two

further options. First, the functional form of (25) assumes that the separation cost

includes a fixed charge and is. proportional to the feed flow rate multiplied by the degree

of separation in that unit Often, this is an adequate representation of separation costs; at

least through appropriate choices of pm n and CfiXed» it can serve as a lower bound on

these costs. On the other hand, an upper bound on nonsharp separation costs can be

derived simply by enforcing Amn = 1 in (27) whenever ym n = 1 and thus modeling

nonsharp splits by sharp splits followed by mixing.

Since we have binary variables, simple azeotropy or solubility constraints may be

added without much difficulty into the optimization problem. For example, let f(X) > 0,

be the azeotropy constraint which must be active whenever a separation is attempted

between components m and n. (X is some subset of the variables in the problem). This

can be written as:

f ( X ) £ L ( l - y m n ) (26)

where L is a suitable lower bound on f(X). An example of these constraints is shown for

the Williams-Otto problem in section 6. Finally, the operating cost (reboiler and
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condenser duties in distillation, for example) can directly be incorporated into the energy

minimization framework presented in the next section.

The presence of IAymnl, in the cost function makes the objective function in P2 a

non-differentiable one. However, this does not pose a problem since the cost function

could be remodeled by adding the following constraints within P2.

" Qixed(mn)ymn - X Pmn AmnQ - Coperating
m;n=m+l

Yn " Ym

Since Amn is to be minimized in the objective, it is easy to show that this

reformulation would result in Amn = IAymn I, as we desired, at the optimal solution.

Having addressed the nondifferentiablity, the other question that now remains is the

evaluation of pm n . One of the ways to determine this would be through a nonlinear

regression technique, where one could run several separation simulations based on sharp

splits and get an approximate value of the parameter pm n for particular systems. Here,

the above separation targeting technique has been tested on the Williams-Otto flowsheet

problem using different test values for the cost coefficients. This problem is also

interesting due to the azeotropy constraints that exist in the system. The return on

investment (ROI) is chosen as the objective function and a comparison between the

results with and without the integration of the reactor with the flowsheet is presented in

the examples section.

3. Unified Formulation for Optimal Energy Utilization

The combined reaction-separation model has its advantages in its ability to

consider both reaction and separation within one framework. In this section, we extend

this formulation to include energy minimization using concepts of energy targeting, so

that the heat effects within the reactor are integrated optimally with the energy flows in

the flowsheet Heat integration involves the matching of heat loads between a set of hot

and cold streams so as to minimize the cost of utilities for the network. However, the

reacting streams cannot be classified a priori, because an optimal temperature trajectory

within the reactor could be both nonlinear and nonmonotonic. To address this, we

discretize the temperature profile within the reactor and use the concept of candidate
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streams (Balakrishna and Biegler, 1992b). The optimal temperature trajectory in the

reactor is approximated by a set of isothermal segments followed by temperature change

between these segments as shown in Figure 4.

Here the horizontal lines correspond either to hot streams or cold streams

depending on whether the reaction is exothermic or endothermic. The vertical sections

may involve heating and cooling and therefore we assume the presence of both heaters

and coolers between the reacting segments. Also, these streams are candidate streams

because they may or may not be present in the optimal network, depending on the

separation profiles within the network. Furthermore, both the heaters and the coolers

before any reacting segment cannot be active simultaneously, since it would be

suboptimal to heat and then cool the same stream. Figure 2b shows one finite element of

the discietized reactor-separator representation of Figure 2a along with the candidate heat

exchange streams.

The energy minimization scheme for this network follows the development for

reactor networks in Balakrishna and Biegler( 1992b). Here, we extend this formulation to

optimize the reactor separation profile, while ensuring maximal energy integration. The

discretized reactor separator model is integrated within an energy targeting framework

based on minimum utility consumption (Duran and Grossmann, 1986). For energy

targeting we consider only utility costs in the simultaneous synthesis procedure, as these

often tend to be most directly affected when one considers integrated flowsheet

optimization. On the other hand, capital cost targets can also be incorporated easily into

the formulation given below, if required. Based on these assumptions, a unified reactor-

separator-energy target can be derived from the solution to the following mixed-integer

nonlinear programming problem:

Max T (GW,QH, QC) = J (GW) - CHQH - ccQcr C^p (P3)

s. t Sk Xik Lk
f(aj) - R(Xy, Tij)A<Xi = 0 j = 1, K (28)

X(0) = Xo (29)

Xiend=IkXikLk(tend) (30)

X^oFi = (l-Yc4-l)Xc,(H)endF(i-l) (31)

Fc,exit= Si Yea Xcf(i)cndFi (32)
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ymn

l

Yin " Yn

Yn-7m

Q C = Q H +

(33)
(34)

(35)

(36)

(37)

ceCheH

ZHP(\|/) = £wc[max{0;
CEC

- £wh[max{O;Thfa-
heH

QH ^ZH P (V) . V pinch candidates p

.{TP-ATroJJ.max^tcinMTP.ATm}}].

; Th««t. TP}] (38)

(39)

(40)

(41)

Here, the variables are defined as follows:

\\f : Set of variables in the reaction-separation-energy network

(Variables in Equations (28) to (39)
co : Set of external flowsheet parameters

Q H , Q C : Heating and Cooling utility loads
CH»CC : Cost coefficient for utility loads
WH»WC : Heat capacity flow rates for hot and cold streams respectively
Qep : Total Separation Cost

p : Pinch candidates, inlet temperatures of all cold and hot streams

Th"1* Thout: Inlet and Oudet temperatures respectively for hot stream h

tc™* t c o u l : M c t ^d Oudet temperatures respectively for cold stream c

Fj : Total mass flow rate at element i.

Zf|P : Heating deficit above the pinch for pinch candidate p
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The objective function F, is a function of the variables within the unified reactor model,

and the heating and cooling utility loads. The cost model for separation presented in the

previous section is directly incorporated within F as C^p. The operating costs for the

separation profile (for example, heat loads in the case of distillation) are directly

incorporated into the energy minimization formulation. Equation (28) is the residual from

the orthogonal collocation discretization for the rate equation within each finite element,

similar to model P2. Equations (31) and (32) are the mass balance equations for the

separation and the sum of bypasses leaving the reactor model. Equations (37) to (39)

correspond to those in the energy minimization subsystem. Equation (37) is an energy

balance for hot and cold streams with inlet temperature vectors given by Th™ and tcin ;

and outlet temperature vectors given by Thout and tcout, respectively. TP, the pinch

candidate temperature, corresponds to combined vector of all the inlet temperatures for

the hot streams, and to"1 + ATm for all the cold streams. Equation (38) is the value of the

heating deficit above every candidate pinch (Duran and Grossmann, 1986), where each

candidate pinch given by TP. The minimum heating utility consumption is then given by

the maximum of the ZJJP values from (38). Thus equation (38) is of dimensionality of the

total number of heat exchange streams. The heats of reaction are directly accounted for

by the heat capacity flow rates of the reacting streams as follows. If QR is the heat of

reaction to be removed (or added, for endothermic reactions) to maintain isothermality in

the reacting segment, the equivalent (FCp)h or Wh for this reacting stream is equated to

QR, and we assume a 1 K temperature difference for this reacting stream. For pure

condensing or boiling liquids within the separators , we again assume a 1 K temperature

difference with an equivalent heat capacity set to the heats of vaporization. Equations

(40) and (41) are the equations that bind the integrated reactor variables (\j/) with the rest

of the flowsheet variables (co).

It is clear that the above formulation corresponds to a nondifferentiable mixed

integer nonlinear program due to the presence of the max functions in (38). Here, we use

the hyperbolic approximation function developed in Balakrishna and Biegler (1992b) to

convert the above problem to a continuous nonlinear program. We approximate

max(0,Z) as sqrt(Z2 + e2)/2 + Z/2, where e is chosen to be sufficiently small (e = 0.01).

The advantage in this representation is that it provides a single function approximation

over the entire domain, unlike previous quadratic or exponential approximations. The

solution to the resulting smoothed MINLP will determine the optimal exit flow

distribution and temperature profiles for the reactor network, while simultaneously

minimizing the utility consumption for the entire flowsheet
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4 Model Simplification for Special Systems

The formulation above provides a general scheme for synthesizing energy

integrated reaction-separation networks. However, for large flowsheets or complex

reaction mechanisms, the non-linearities within this model can be severe. Especially, the

smoothing of (38) results in an extremely non-linear set of (NH + Nc) equations, where

NH and Nc are the total number of hot and cold streams, respectively. Here, we

investigate strategies to simplify this model for sytems with substantially high reaction

exothermicities. Typically, the heat content to be removed from the hot streams in the

flowsheet is much higher than the energy content in the cold streams for highly

exothermic reaction systems. A typical T-Q plot for such a system is shown in Figure 5.

The hot stream curves are relatively flat for such systems and much hotter than the

cold streams over a long range, and the maximum hot and cold stream temperatures are

the same. This is because, the maximum hot stream temperature for exothermic reactions

is usually the temperature of the inlet stream to the reactor which is the same temperature

at the exit from the preheater (the cold stream). It can be inferred from the T-Q plot that

for such systems, the pinch point will correspond to the highest temperature of the hot

stream, and the energy demand from a hot utility, which is very small, is equal to

FpHTRATmin, where FPHTR is the heat capacity flow rate of the cold stream in the

preheater and ATmin is the minimum approach temperature. Also, since the hot stream

curve is always above the cold stream curve, most of the cold streams which have

relatively small heat content can be moved over a long range with the same minimum

utility consumption. The width (or the heat content) of the hot stream at a higher

temperature ensures that there is no temperature crossover. It follows then that for such

cases, the pinch point is already predetermined. Therefore, the constraints (38) and (39),

which are formulated to identify the pinch points can be omitted. Since QH is no longer

evaluated from (39), the utility cost in the objective function is now reformulated from

CHQH + ccQc in P3 to the following expression:

CuriL = CCEAQCH + FPHTRATmin] + CH[FpHTRATmin]

where, AQCH = Qc - QH *S the energy deficit, given by the energy balance equation in

(37). This reformulation leads to substantial savings in the effort for solving the problem,
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since it eliminates a large number of nonlinear constraints (and nonlinear nonzero

elements) from the smoothing of (38). The optimization then only determines the

optimal spread of the cold stream curves to achieve maximum heat integration. Example

2 illustrates the application of both formulation P3 and its simplification and the results

indicate that similar profiles are obtained in both cases with substantial savings in

computer effort for the simplified model.

5 Reactor Extensions

The solution to formulation P3 gives us an optimal network for the reactor flow

configuration shown in Figure 1. However, this flow model may not be sufficient for the

synthesis problem, and we need to check if there are any other reactors that will help us

improve the objective function. The solution of P3, therefore, gives only a lower bound

on the objective function for the synthesis problem. Using the constructive approach

developed in Balakrishna and Biegler (1992b), we check for CSTR extensions from the

solution to our unified reactor targeting model, because CSTR's lead to reasonably good

targets and yield much smaller problems. In other words, we add a CSTR model to the

targeting model of Figure 1, and solve P3 along with the CSTR extension to our model.

This constitutes the addition of the following constraints in P3 in order to maximize F(2)

instead of F.

Max r(2)(<D,\|K2),QH,Qc) = J«»M 2 ) ) 'CHQH-ccQc - Qep (P4)

[Constraints of P3]

+ R (XcSTR , TCSTR) * CSTR

Here, Y<2) is the set of new variables in the reactor energy network, which includes all

the variables within y and the new variables XCSTR» TCSTR and XCSTR with the

corresponding heat exchange variables for cooling/heating the stream in the CSTR.

There are no additional separation variables, since separation is confined to the

segregated flow component of this system. XexU^3^ is the reactor exit concentration

variable within model P3. If the optimal solution to this formulation r(2)* £ T*, then we

have a reactor extension that improves the objective function. The next step consists of

creating the new convex hull of concentrations and checking if there are further

extensions that improve the objective function within the flowsheet constraints. We

continue this procedure until there are no further reactor extensions that improve the
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objective function. However, for these systems, reactor extensions are less likely to be

observed than for systems without reactive separation. This is mainly because the choice

of separation already includes a large choice for the attainable region. The advantage

with this scheme is that only the simplest model that is needed for the reaction system is

solved.

6 Example Problems

In this section, we present two example problems to illustrate our synthesis

approach. The first example illustrates the combined reaction-separation model for a

reaction system, while the second example shows the application of the unified reaction-

separation-energy integration model. Comparisons are made between sequential and

simultaneous modes of synthesis, and the applicability of the simplified energy target

model is also verified.

Example 1. Here, we consider the Williams and Otto flowsheet problem (Williams and

Otto, 1960) which has been often studied as a typical flowsheet optimization problem.

The schematic of the flowsheet for this problem is shown below.

The plant is to manufacture a chemical P and consists of a reactor, a heat

exchanger to cool the reactor outflow, a decanter to separate a heavy byproduct G and a

distillation column to separate product P. A portion of the bottom product is recycled to

the reactor and the rest is used as fuel.

1. A + B -> C

2 . C + B -» P + E

3. P + C -> G

The rate vector for components A,B,CJP,E,G respectively is given by,

-2k 2 X B Xc-k 3 X P X c ;
; 1 . 5 k 3 X P X c ]

where, ki = 6. 1074 h-1 wt fraction, k2 = 15. 0034 h-1 wt fraction, k3 = 9. 9851 h-1 wt
fraction.
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The X's here denote the weight fractions of the components. FA, FB are the flow

rates of fresh A and B. FQ is the flow rate of waste G and Fp is the fixed exit flowrate of

pure P out of the plant Traditionally, this problem has been solved previously by

assuming the reactor to be an isothermal CSTR and optimizing the volume and

temperature of this CSTR to maximize the return on investment Here, we replace the

CSTR with our reaction-separation targeting model of Figure 1. A flat temperature

profile (isothermal system with temperature as variable) was assumed within the model.

This model is now embedded within a global recycle, i.e; the inlet conditions to this

targeting model PI arc now given by the recycle and the fresh feed flow rates. Included

among the constraints in this system are the constraints in P2 and the mass balances at the

global recycle. The order of volatilities in the system is given by the following

descending order of [P,E,C,B,A]; G is a heavy by-product Furthermore, component P

forms an azeotropic mixture with component E, hence there is an azeotropy constraint in

the system. The azeotropy constraint requires that whenever a separation between

components P and E is attempted, an amount of P equivalent to at least 10 percent weight

fraction of E is lost along with stream E. This can be modeled by:

0.1FE[ifCnd] - U(l-y iPE);

where,
yi,PE : Binary variable denoting separation between P and E in element i
FP[i+l,0] : Mass flow ofP entering finite element i+1

: Mass flow of E leaving finite element i

and U is a reasonably large positive number.

The objective function, namely the rate of return, includes all raw material and

separation costs for the entire plant, and is given by the following expression:

J = [8400 (0.3FP+0.0068FD-0.02FA-0.03FB-0.01FG -
- 0.124*8400 (0.3FP + 0.0068FD) - C ^ * * 1 - 2.22FR ] / (6FRx);

Here, FR denotes the total flow of species within the reactor, FD is the flow of byproducts

from the distillation column that are used for fuel, x is the residence time within the

reactor, CSq)
var and C^p***^ are the variable and fixed costs for separation, given by the

expressions in (25) and (26).
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In the discretization procedure, we used fixed collocation element lengths and

restricted separation to occur only between elements. The following three cases were

considered:

Case (a): Separation only after the reaction steps are completed: Here, reaction and
separation are totally uncoupled and take place seqentially, precisely as described in the
flowsheet However, the CSTR is replaced by our reactor targeting model where all the
Yc,i

f s are forced to be equal to each other, i.e; separation is turned off within the reactor.

Since there is no separation during the reaction process, there are no binary variables and

the problem just reduces to a non-linear program. A return on investment (ROI) of 130%

has been typically obtained for this problem in the literature with the fixed CSTR model.

With the reactor targeting model integrated within the flowsheet, a ROI as high as 278%

was obtained, thus indicating that significant savings can be obtained by integrating the

reactor with the flowsheet, even with very simple models. Here the optimal reactor

network is given by a single plug flow reactor with a residence time of 0.0111 h. This is

the same case described and detailed in Balakrishna and Biegler (1992a).

Case (by. Separation allowed during reaction : Here, we embed the complete reactor-

separator targeting model and allow simultaneous reaction and separation. The

formulation now is a mixed integer nonlinear program due to discrete decisions involved

in the separation at different ages within the model. The azeotropy constraints should be

active only if there is a separation between P and E in the midst of the reaction.

DICOPT++ (Viswanathan and Grossmann, 1990) was used to solve the resulting

optimization problem from the application of model P2. All of the optimization models

were formulated within the GAMS modeling system (Brooke et al., 1988) Because the

separation costs associated with detailed designs can vary over a wide range, we present

the following two cases to demonstrate the sensitivity to separation costs. We expect

more detailed simulations to follow these trends qualitatively as well.

(i) Cfixcd(mn) = $200000, per separation attempted between any two components m and n,

and the separation cost coefficient of Equation (26), pmn= 0. 0001. In this case, we

observe a very high ROI of 1027% and the optimal network indicates a key separation

between components C and (EP) (AycE > 0) with components P, E and G going to the

reactor exit as shown in the Table I below. The optimization model (223 constraints, 230

variables) was solved in 295.57 sees on a VAX 6320. The separation profile indicates P,



21

E, and G leaving the reactor, which agrees with intuition, since G is a waste by-product

with significant penalties and removal of P curbs the production of G. No further CSTR

extensions that improve the objective function are observed for this system. Also, the

mean residence time was 0,009 hrs and the reactor network is shown in the Figure 7.

Note that at each separation node in Figure 7, there are two sharp splits involved; the first

one between components PE and C, the second between component A and component G.

(ii) In this case the cost coefficient py was increased 50 times to 0.005. Here, the optimal

network indicated no separation within the reactor, since the raw materials were not

expensive enough to warrant the high separation costs. The optimal ROI was therefore

the same as in case (a), namely 278%, where we have a reactor without any separation

profile followed by the distillation as columns shown in Figure 6.

Example 2 . For this process we consider a gas phase reaction that follows Van de Vusse

kinetics, with a reaction diagram as shown below. This mechanism is typical is several

industrial processes, such as propylene chlorination.

ki k2

A - > B —> C

k3 i

D

where,

8. 86 X 106 h-1, k20 = 9.7 X 109 h"1, k30 = 9. 83 X 103 lit-moH h -1; and

Ei = 15.00 kcal/gmol, E2 = 22.70 kcal/gmol and E3 = 6.920 kcal/gmol

A H A - > B = -0.4802 kcal/gmol, AHB->c = - 0.918 kcal/gmol and AHA ->D = - 0. 792

kcal/gmol.

Here, we seek to devise a reaction separation network featuring energy integration for

this system using the proposed targeting scheme. The feed to the plant consists of pure

A. This is mixed with the recycle gas stream consisting of almost pure A, and preheated

(Cl) before entering the reactor. The flowsheet in Figure 8 shows the reaction separation

network followed by final separation columns to obtain product streams containing pure
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B and a C-D mixture. The volatility of components in the network are given in the

following descending order: [A,B,C,D]. The distillation columns are assumed to operate

with a constant temperature difference between reboiler and condenser temperatures

(Andrecovich and Westerberg, 1985) and can operate over various pressure levels. The

reflux ratios are assumed fixed and the column temperatures are functions of the pressure

in the column, which is variable so that efficient heat integration can be attained between

the distillation columns and the rest of the process. The operating costs of the distillation

columns (reboiler and condenser duties) are directly incorporated into the energy

integration formulation. The reactor here is modeled by the discretized targeting model as

shown in Figure 5, with 8 finite elements in the collocation procedure. The discretization

procedure results in a total of 18 candidate hot streams and 11 candidate cold streams

within the reaction separation network. The objective here is to maximize the total profit

given by:

J = 30FB - 18FCD - 6.95x10-4x1^ - 4.566FA(1 + 0.010*^15 - 320)) -

In this expression, FB, FCD represent the production rates of B and CD respectively. FAO

is the amount of fresh feed The first term corresponds to the product value, while the

second term corresponds to the cost of waste treatment for undesired products C and D.

The third term corresponds to the reactor capital cost, while the fourth and the fifth terms

correspond to the recycling costs. CSep denotes the costs incurred for maintaining a

desired separation profile and is given by Equation (25). The operating costs of the

columns are directly incorporated into the energy network in terms of condenser and

reboiler heat loads. We assume that the cost of the reactor can be described by the total

residence time and is independent of the type of reactor. This can be justified on the

grounds that the capital cost of the reactor itself is often much smaller than the operating

costs and the capital costs of the downstream processing steps. A target production rate

of 960000 lb/day is assumed for the desired product B. Here, we consider two

alternatives. Firstly, we consider the sequential reaction and separation approach, where

we force all the separation fractions to only split fractions. In the second case, we solve

the above problem with the formulation proposed in P3. Here, the reactive-separation

system and the energy network are optimized simultaneously. Table II and Figures 9 and

10 present a comparison between the results obtained for simultaneous reactive

separation and sequential reaction and separation.
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The results clearly show that by considering simultaneous reaction and separation

as an option within the network, significant increases in overall profit can be obtained for

this system. As shown in Figure 9, the separation profiles indicate removal of B and CD

as reaction progresses, while retaining A for the complete residence time of 0.45 sees.

The temperature profile is a falling one as long as B and CD remain in the reactor. At

every point where B and CD are separated out of the reactor, the temperature rises. This

is because as long as there is only A, a high reaction rate is desired to minimize reactor

volume, however as more B is produced the temperature profile falls so as to reduce the

excessive degradation of B to product C. Thus the optimal temperature profile in this

case is a non-monotonic one. Also among the 8 finite elements used in the discretization,

only the candidate streams corresponding to 6 elements are active, since at the end of the

sixth element, all molecules leave to the reactor exit (t=0.45 sees), as shown by the

separation profile in Figure 9. Furthermore, of the eighteen candidate hot streams and

eleven candidate cold streams, only twelve hot streams and six cold streams were active

in the optimal network. Also, from the solution of the reactor extension problem (P4) no

reactor extensions are observed that improve the objective function for both sequential

and simultaneous formulations.

An energy analysis shows that the temperature enthalpy curve for this system

follows the criteria for substantially exothermic reactions. The simultaneous formulation

is again applied to this system by using the simplification for such systems as described

in Section 3. Table HI presents a comparison of the results obtained by solving the

complete model P3 and the simplified model derived from P3, for the simultaneous case.

The results clearly show that the targets derived are nearly the same in terms of utility

costs and the overall profit function, while the reduction is computer effort is significant

Thus the simplified model is sufficient for deriving targets for this system. Even if the

exothermicity conditions are not satisfied, the solution to the simplified model provides a

good starting point Note that once the flow patterns and the temperature profiles are

known, the HEN network can easily be synthesized with available tools (e.g.,

MAGNETS, Floudas et al, 1986). Also, the network is innately flexible since the cold

streams can be moved over a long range of the T-Q curve for the same minimum utility

consumption.

Conclusions
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The examples clearly show the advantages of simultaneously considering

reaction, separation, and energy management within one framework. Even though there

have been previous efforts in integrating process subsystems, reaction and separation

were always considered as sequential processes within the flowsheet This work is a first

step in analyzing simultaneous reaction and separation as an option within a flowsheet

The formulation is developed from a simple choice of a species dependent residence time

distribution, the optimization of which leads to a separation profile along the length of the

reactor. The first example illustrates that depending on the relative ratio of the separation

costs to the raw material costs, the reactor network can change from a plug flow reactor

(PFR) to a PFR with a separation profile shown in Table I.

The accurate evaluation of the separation costs can be difficult for many systems.

This, however, does not pose a serious problem, since the targeting approach can still be

applied by using bounds on the separation costs. As mentioned above, in the general case

of non-sharp splits, lower and upper bounds on the separation costs can be derived By

applying the formulation P3, with both the lower and upper bounds on the separation

costs, we can assess the importance of separation in the course of reaction. Clearly, if the

solution with a lower bound on the separation costs indicates that separation is non-

optimal in the course of reaction, we can infer that for this system, separation during the

process of reaction is non-optimal even with the actual costs. Again, if we find

separation to be optimal during the course of reaction, with an upper bound on the

separation costs, we can infer that reactive separation could be an attractive option in the

actual case with realistic costs. With such a bounding analysis, the importance of

separation in the course of reaction can be evaluated.

The amalgamation of this formulation with an energy minimization scheme leads

to a more powerful tool for preliminary design. While previous work (Glavic et al. ,

1988) has considered only the case of adiabatic or isothermal systems with sequential

reaction and separation, here, we allow any optimal temperature profile within the

reactor. This is accomplished through the concept of candidate streams, which are

required to match the optimal temperature profile within the reactor. Example 2

illustrates the application of this targeting model for a system with Van de Vusse

kinetics. For the separation costs considered, the optimal solution indicates that B, C, D

are separated out to the reactor exit This is intuitively justified, since there are penalties

on producing excessive C and D. Furthermore, the cooling costs and reactor volume are

also lowered due to the smaller flow rates within the reactor network. The results also

show that for substantially exothermic reactions a simpler model can be solved in much
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less time. For large synthesis problems, even if the exothermicity conditions are not

completely satisfied, this simplification could yield reasonably good initial targets. It

must be noted, however that most reactor synthesis problems are highly nonlinear and

global optimality cannot usually be guaranteed- However, the sequential bounding

scheme leads to a robust solution procedure since relatively simple optimization problems

are solved with monotonically improving objectives. The main strength of the

constructive approach is that only the simplest model that is needed is solved, and reactor

extensions are generated only when they are required
I'.

APPENDIX A: RTD FOR THE SEPARATION TARGETING PROBLEM

Here, we derive the residence time distribution for the seg flow model with separation.

Let f(oc) be the true residence time distribution of the molecules within the reactor

network- We know then that if Q(a) is the flow rate at any age a, then:

Q(a) = Q o ( l -F(a)) (A-l)

a
where F(a) is the cumulative distribution function = f f(t)dt

In the model with separation we have,

Vc((X)mc(<x)

da

Q(0) =Qo

The solution of this gives :

a

Q(a) = Q0 - Zc fYc(a)qc(a)da (A-2)

where^Ca) =

Equating the right hand sides of (A-l) and (A-2) and rearranging, we get



26

F«x)
• * /

Vc(«)qc(«)r

Differentiation of this integral gives:

which gives the actual residence time distribution function for this system.

If Yc(oc) is independent of component c, then

=> f(a) =yc(a)(l-F(a)) =

Thus, given one distribution function it is easy to get the other and thus get an
expression for the mean residence time.

APPENDIX B: Proof for Discretization Equivalence

We need to prove that the nonlinear programming formulation, P2 is equivalent to the
original optimal control problem PI in the limit as the length of the finite elements goes
to zero. The differential mass balances, in the reacting model PI are given by:

Rc(X,T)Qa5a - Y*c,aQaXc,a

Qa+5a = Qa(l -

(B-l)

(B-2)
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(B-1) can be rewritten as the following set of equations (see Figure B -1):

Xa+8aQa+5a " X'aQa+5a = R(X,T)Qa8a (B-3)

X'c,aQa+5a = ^ .aQa " Qa <Y*c,aXc,a) V c ( B ' 4 )

Equations (14-16) correspond to a particular choice for (B-3), while Equation (17)

corresponds exactly to Equation (B-4), where Yj.j = y*. Since (B-3) and (B-4 )are

equivalent to (B-1) and (B-2), it is enough to show that (B-1) corresponds to the original

model (PI)

Therefore, substituting (B-2) for the value of Qa+ga into (B-1), we get:

= Rc(X,T)6a -

Dividing by 6a and taking the limit as 6a —> 0, we get;

f w o c()[
da p

whereas 5a~>0, W 6 a ->Ya

The above differential equation is the same as the governing equation for the reaction-
separation model, and hence as 6a --> 0, the equivalence is proved
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Nomenclature

c : Index set of components in the reaction system
CH>CC : Cost coefficient for utility loads

C : Total number of components in reaction system

Cost associated with a separator

Residence time distribution

Total mass flow rate at element i.

J : Objective function for synthesis

Lk(oc) : Lagrange interpolation polynomial of degree k

Lkf((x) : Derivative of the Lagrange interpolation polynomial

Mass flow of component c

mc(exit) : Mass flow of component cat reactor exit

mc(0) : Mass flow of component cat reactor entry

Pmn • Cost coefficient for unit separation between two components m and n

QfQo • Volumetric flow rate and flow at reactor entry respectively

QH>QC : Heating and Cooling utility loads

R : Reaction Rate Vector

T : Temperature

Temperature in CSTR

Inlet and Outlet temperatures respectively for hot stream h

Inlet and Outlet temperatures respectively for cold stream c
WH»WC : Heat capacity flow rates for hot and cold streams respectively

Mass concentration vector in the discretized model

Mass concentration at the end of element i

Xo : Concentration vector at reactor entry

Concentration at exit of CSTR extension

Mass concentration at reactor exit

ymn : Binary variable denoting separation between components m and n

Heating deficit above the pinch

Greek Letters

V : Set of variables in the reaction-separation-energy network

CD : Set of external flowsheet parameters

a : Age within reacting environment
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Y : Species split fraction vector (array of Yc)

p : Density

F : Objective function for unified model Pf3



Figure 1. Flow model for combined reaction-separation targeting

Figure 2a, Finite Element Discretization for Reaction-Separation targeting model

Figure 2b: Discretized model for energy minimization

Figure 3. Illustration for separation mass fractions

Figure 4: Optimal trajectory approximation

Figure 5 T-Q plot for typical exothermic systems

Figure 6 Flowsheet for Williams-Otto Reaction-Separation Synthesis

Figure 7. Reactor module for Williams - Otto Flowsheet

Figure 8. Flowsheet for Reaction-Separation Synthesis with Energy Integration

Figure 9 Separation profiles along reactor length (Simultaneous Case)

Figure 10 Temperature Profile (Simultaneous Case)

Figure B-l. Reactor Discretization
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Age within targetting model (hrs)

0.004

0.012

Fraction of P,E,G to join reactor exit

1.00

1.00

Table I. WDliams-Otto Example - Case b(i)
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Overall Profit

Hot utility load

Cold utility load

Sequential Reaction and

Separation model

53.87 xlO6$/yr

3.20 xlO5BTU/hr

131.120 xl&BTU/hr

Simultaneous Reactive

separation model

202.33 x 106 $/yr

2.13 x 105 BTU/hr

126.799 x 106 BTU/hr

Table II. Results for seqential and simultaneous formulations
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Overall Profit

Hot utility load

Cold utility load

Variables

Constraints

CPU time (Vax 6320)

Complete Model

202.33 xl()6$/yr

2.13 x 105 BTU/hr

126.799 x 106 BTU/hr

792

820
239 sees

Simplified Model Solution

202.23 xlO6$/yr

2.3 x 105 BTU/hr

126.82 x lO6 BTU/hr

703

703
133 sees

Table DDL Comparison between rigorous and simplified model solutions


