
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Layouts, Solids, Grammar Interpreters and Fire Stations

R. Woodbury, E. Griffith

75

Layouts, Solids, Grammar Interpreters
and Fire Stations

Rob Woodbury

Department of Architecture
Carnegie Mellon University
Pittsburgh, PA 15213 USA

Eric Griffith

Construction Engineering Research Laboratory (CERL)
US Army Corps of Engineers
Champaign, IL 61826 USA

This paper is presented in three main parts. First, it reports the results of an effort
to combine two representations (layouts and solid models) within a single genera-
tive framework. Second, it describes fire stations as a building type and reports a
phased grammar that embodies information about the type and generates fire sta-
tion designs likely to be members of the type. Third, it describes a useful way of
controlling grammatical generation via interactive decisions on rule application,
hierarchical decomposition of designs, and ordering of the conflict set of rule in-
stantiations.

Keywords', fire station, layout, generative system, search, solid modeling, spatial
grammar.

1 Introduction

Several generative formalisms exist, for instance, shapes (Stiny, 1980), layouts
(Flemming, 1989), structures (Carlson, 1991) and boundary solid grammars (Heisserman,
1991). Taken singly, these serve as excellent representations for aspects of an overall de-
sign process; but each has its limitations, either theoretical (the representation is limited)
or practical (the present state of knowledge does not include useful implementations of the
formalism). For different stages of design, different representations are appropriate. Com-
bining two or more representations in a single generative process might lead to generation
that is more simple, has greater clarity and is more efficient than would be possible using
only a single representation. Layouts and solids arc two such representations, and their
combination in architecture is appealing. Layouts represent plans; solids support massing
and articulation.

U. Flemming and S. Von Wyk(eds.)t CAAD Futures '93, pp. 75-90.
© 1993 Elsevier Science Publishers B. V. Printed in the Netherlands.

76 Rob Woodbury and Eric Griffith

2 Combining Layouts and Solids

Layouts and solid models are used often as abstractions in design. Formalisms for
their representation exist in many extant systems; generative formalisms that operate over
them arc somewhat more rare and are presently largely confined to research laboratories.
Combining the two abstractions is, in its most simple form, trivial; polygons in a layout
are interpreted as base objects for a sweeping operation that generates solid models, one
for each polygon. The value of such a combination lies in being able to interpret correctly
both rectangles and their related solids as objects in a design. Some examples of such valid
interpretations are (1) architectural spaces interpreted in plan as rectangles and in three di-
mensions as rectangular solids (of possibly varying heights); (2) circuits, in which layouts
represent the size and placement of circuit elements and solids represent the actual objects
that the circuit comprises (the solid representation would be used, for example, for thermal
analysis); and (3) computer cabinets, in which rectangles indicate the placements of ob-
jects on a surface of the cabinet and solids serve as an approximation of the spatial extent
of such objects in the third dimension.

Though formally simple, the combination of layouts and solids can make the devel-
opment of generative models of designs more clear and simple than is possible with either
formalism used separately. A specific discussion of how we have used such a combination
may be found in a later section in this paper; in the current section we present representa-
tions for layouts and solids and our method for combining the two representations in a
single generative mechanism.

Layouts are considered here as arrangements of rectangles with sides parallel to the
axes of a Cartesian coordinate system. Such arrangements provide a useful level of ab-
straction in many design situations. Several representations of layouts with various char-
acteristics have been reported in the literature. Important to us were two properties, both
of which exist in the wall representation and its variants (Flemming, 1989, 1992). First,
it was important that partial designs could be meaningfully represented. The operators of
the wall representation insert (and delete) rectangles individually and a well-formed layout
exists after every operation. Second, it was important that the objects inserted were para-
metric, that is, able to be varied in size and shape within given limits. That the wall rep-
resentation explicitly separates the representation of discrete and continuous variables in
layouts directly supports this need.

Formal descriptions of various schemes based on wall representations are readily
available, and we do not repeat such a description here. Our scheme is essentially that re-
ported in Flemming (1989), but is augmented, in a manner similar to Coyne (1991) by al-
lowing each object to in turn comprise a layout of objects, thus creating a hierarchical
layout. Our actual implementation is more simple than the ones based on Flemming's
(LOOS) and Coyne's (ABLOOS) work, the main differences being:

1. only rule 1 of LOOS is implemented (see Figure 1);
2. the operators apply at any pivot vertex in a layout;
3. orientation of objects is determined at the time of insertion;
4. fixed objects are not allowed in a layout;
5. the system of Goal Objects (GOB's) found in ABLOOS is not duplicated in

its full sophistication; and
6. object insertion operators arc hierarchical in that they can insert an object

without the prior existence of parent objects in the hierarchy.

Of these, difference (2) exists because our generative model is interactive. Having
operators apply at any pivot vertex means that there are many ways to reach a particular

Layouts, Solids, Grammar Interpreters, and Fire Stations 11

configuration and, thus, that early insertion decisions exclude less of the space of possibil-
ities. Differences (1), (3), (4)t and (5) are largely expedient and reflect the time constraints
under which the implementation was completed. Difference (6), hierarchical insertion op-
erators, is due to our desire to use the hierarchical decomposition of a design as an archi-
tectural program whose ordering determines the order of insertion of objects. Supporting
insertion of objects without the precondition of prior insertion of their parents in the hier-
archical decomposition allows a program to be defined in arbitrary order. We call the hi-
erarchical insertion operators and rule 1 taken together the fundamental operators in our
implementation.

• —

• •
•

1—1

Figure 1. Rule 1 (Flemming, 1989). The black rectangle on each side of the rule de-
notes the pivot vertex, a distinguished vertex from which the gray rectangles denoting
the pivot sequence are found. The pivot sequence includes some of the vertices that
(in this case) are above the pivot vertex and adjacent on the right to the same wall
that the pivot vertex is adjacent to. Walls are conceptual separators between verti-
ces; all vertices on the left (right) side of a wall are constrained to be to the left (right)
of the vertices on the right (left) side of a wall. Any vertex not the parent of a layout
may be a pivot vertex for an application of rule 1. The rule may be rotated by incre-
ments of 90 degrees allowing it to be applied in the four principal directions of left,
above, right and below.

Solids are considered here as 3-manifolds with boundary. Several representations
for such objects exist (Vanacek, 1989; Karasick, 1988). We use a variant of the split-edge
data structure that is modified to allow multiple vertex neighborhoods and cycles of pairs
of faces around edges (a more complete description of the representation may be found in
Heisserman (1991)). Our representation scheme is restricted to planar surfaces; thus, the
embedding of a surface in three-space can be described by assigning coordinates to the
vertices of the polygons. The fundamental operators on this representation are variants of
the well-known Euler operators and a set of vertex-based geometry assignment operators.

Layouts and solids are combined in an almost trivial way. Solids may be generated
from a layout as rectangular cuboids, given a description of the plane on which the. layout
exists and a height property for each of the objects in the layout. If the height property of
a layout object is nonexistent or zero an interpretation of it is made as a lamina "solid," that
is, a 2-manifoId with boundary. This requires an extension of the model for a solid, but no
change in the representation for solids. Operators such as the Boolean operations must, of
course, recognize and not accept such laminar solids. As shown in Figure 2, hierarchical
layouts correspond to solids in a number of ways. Every level of a hierarchical layout
comprises a parent, which must be an object allocated in some layout in the hierarchy (un-

78 Rob Woodbury and Eric Griffith

less it is the top-level object) and a set of objects (called the children of the layout) allo-
cated in a layout with the same name as the parent. Every such level can be represented
as a collection of solids by generating solids from either its parent, its children, both its
parent and its children or neither its parent nor its children. Thus, a given hierarchical lay-
out corresponds to a set of collections of solid objects.

Figure 2. The different interpretations of a two-level (+ root) hierarchical layout.
For clarity in this diagram, each level in the hierarchy is given a greater height than
its parent in the hierarchy and the rectangles of each level are shrunk slightly relative
the their parent.

2.1 A Grammar Interpreter
A boundary solid grammar uses the boundary representation described above. The

topology is represented as a graph. Nodes of the graph are topological elements and arcs
are pairwise adjacencies between elements. The geometry is represented as vertex coor-
dinates. In addition to topology and geometry, labels can be associated with any node of
the boundary representation and a state is associated with each instance of the representa-
tion.

Matching is performed on the current state of a design. Matching on solids, possi-
bly recursive and/or hierarchical, is accomplished by logical combinations of the primitive
relational properties of node existence, arc existence, geometry values, label existence and
value, and state value. A single condition can be used to express the conditions of an in-
finite set of graphs using recursive logical definitions. Alternately, a condition may match
greatly varied topology graphs using several logical clauses with the same head.

Operations are performed on the current state of a design. Primitive operations on
solids are the Euler operators, geometry assignments, label operators and the state change
operator. Composite operations on solids are expressed by sequences of primitive opera-
tions, match conditions and composite operations.

A solid rule is a set of match conditions and a sequence of operations. The match
conditions determine when a rule may be applied to a given boundary representation. Each
of the rule's conditions must be satisfied with respect to the given boundary graph and

Layouts, Solids, Grammar Interpreters, and Fire Stations 79

bindings for all free variables must be found. When the rule is applied, the sequence of
operations transform the boundary graph, modifying the representation of the solid(s) and/
or creating additional solids.

A boundary solid grammar comprises: (1) an alphabet appropriate for boundary
graphs, (2) a topologically valid initial boundary graph, (3) a finite set of logical conditions
partitioned into conditions and operations, and (4) a finite set of solid rules formed from
the elements of (3). A boundary solid grammar produces a language of boundary graphs.
The language is all graphs producible by the grammar in which the state is the special state
done.

Rule instantiations (rules that may be applied and their free variable bindings) de-
termine a conflict set, more properly a conflict sequence. The rule instantiations in the
conflict sequence are ordered as part of the control scheme of the device that implements
our grammar.

Genesis is an implementation of the boundary solid grammar formalism sketched
above. It provides facilities for the representation and display of solids, match conditions
and operations, rule definition, and searching the languages of grammars. It is implement-
ed primarily in CLP(R), a constraint logic programming language.

Using essentially Ihc same structure for representation, matching, operations, rules,
and grammar, we have implemented a layout generator for hierarchical graphs that is tight-
ly-integrated with Genesis in the following sense: rules in the interpreter can freely in-
clude conditions that match and operations that act on either the layout or the solid
representation. In particular layouts are displayed as collections of lamina in the solid rep-
resentation, arrayed on some plane in three-space.

3 Fire Stations

Fire stations have become a remarkably standard building type with respect to their
basic configuration. In essence, a fire station comprises three zones: a garage called an
apparatus room, where trucks and equipment are stored; dormitory facilities where per-
sonnel can rest and exercise; and day use facilities, where personnel eat and where admin-
istrative, training, and other daily activities of the fire station occur. The spaces of these
last two zones arc often called service spaces. Several constraints force fire station design
into a few basic organizations. Variants of these are certainly possible and experiments
with non-rectangular geometries have been attempted, but few current station designs
stray far from the basic set. In Figure 3, diagrams A, B, and C violate fewest of the con-
straints discussed below. Diagrams D, E, and F represent types that have been recently
realized in the United States as actual fire stations but which are problematic with respect
to the constraints.

Fire station design is dominated by functional concerns related to rapid access to
equipment and separation of use zones. There is a strong incentive to reduce the "turn-out
time" implied by the design, that is, to make access to the equipment of the station as rapid
and safe as possible in the event of a call to a fire. This has tended to restrict fire station
designs to single story, or at most, split-level, structures, thus eliminating organization F
and some variants of D and E. Placing the dormitory and administrative wings each with
direct access to the apparatus room also reduces turn-out time.

When at all possible within given site conditions, a drive through apparatus room
is preferred. This constraint eliminates configurations with U- and L-shaped service areas
(organizations D and E) from consideration in most cases. Plans for future expansion of
existing fire stations sometimes dictate that all of the service spaces be placed on one side

80 Rob Woodbury and Eric Griffith

of the apparatus room, thus allowing additional apparatus bays to be constructed in the fu-
ture, thus arguing against alternatives B and E.

• Apparatus

HI Services

\7 Possible rear
vehicle entrance

^yp Possible entrance in
two story configurations

Figure 3: Basic organizations for fire stations.

Separation of the dormitory and administrative zones is desirable for acoustic iso-
lation. Organization A does not exhibit strong separation of these two zones, but good sep-
aration can still be accomplished with it.

Within the day use zone, a room called the watch room must be adjacent to all of
the street, the apparatus room and the main public entrance of the fire station.

The site provides several constraints on fire stations. An apron of 30 feet minimum
is required in front of the apparatus room to ensure that operators can see the traffic and
road conditions as they exit the fire station. The apron also performs a secondary function
as a space for cleaning equipment. Currently, environmental requirements on the disposi-
tion of liquids from the cleaning process are tending to separate these two functions. Spe-
cific cleaning spaces now tend to be located in the rear of the station.

The watch room should have unobstructed views of the apron area, although it is
desirable for the watch room to have views along the road in both directions. North or
south facing access directions are preferred over east or west facing ones, in order to elim-
inate the effect that low sun angles can have on vision when exiting from the apparatus
room.

Once-common architectural devices in fire stations, for example, drying towers and
pole slides, have been largely eliminated due to development of hose drying technology
and increasing regulation of on-the-job safety.

3.1 A Grammar for Fire Stations
We have used the combination of layouts and solids described above as the repre-

sentation for a grammar to generate designs for fire stations. Our study posed the follow-
ing question: can a grammar be used as a way to describe standardized designs with
specific properties? Standardization of designs is a strategy increasingly pursued by own-
ers and manufacturers of buildings. Owners of large numbers of functionally similar

Layouts, Solids, Grammar Interpreters, and Fire Stations 81

buildings are attracted to a standardization strategy for the control it provides over cost,
image, and/or building function. Manufacturers of buildings and building components are
attracted to standardized designs for the rationalization of parts and assembly procedures
promised by well-considered modules and standard details. Different owners are con-
cerned with different aspects of standardization.

Present technical tools for representing standardization are arguably weak: they
comprise little more than example drawings and written specifications, taken in various
combinations. Such drawings have the shortcoming of providing only one (or at best a
few) exemplars - in this respect they are overly rigid. They also tend to center on the parts
(be they construction or spatial elements) and provide little control of configuration - in
this respect they tend to be overly permissive. In examples of standard design specifica-
tions that we used, the two forms of documentation sometimes conflicted. The example
designs were in demonstrable conflict with the specifications. Our premise was that a
grammar with appropriate test criteria applied to members of its language could provide a
way of specifying standard designs that would be flexible in the type of control that it
would permit, yet open in the possible designs that would be acceptable under the stan-
dard. We have been able to partially support this premise. Generation of exemplar stan-
dard designs and of variations close to the exemplars is readily possible. As usual in
writing grammars, it proved to be much more difficult not to generate undesirable designs
that it was to generate designs from a given set of examples. Apparently if grammars are
to be used as a way of describing standardized buildings, they must be coupled with post-
processing steps that accept only those designs that meet the criteria of the standard. The
value of grammars, then, is that they are a means to express known desirable patterns in
buildings in a constructive sense.

If grammars are to be useful for describing designs, people must be able to use
them. There must be ready ways to describe grammar rules and to search the spaces of
designs given by these rules. In the GENESIS formalism and implementation, describing
grammar rules is a straightforward if skilled task, but searching a space of designs is only
weakly supported, this latter issue we address in the present work. A particular limitation
in the present implementation is that only a single current state is supported with no back-
tracking. Accepting this limitation means that the tools available for controlling search are
the order of insertion of objects, and the order in which rule instantiations appear in the
conflict set. Even in these apparently tight limits, we found that useful control of search
could be achieved.

The description of standard fire stations that formed the basis of our study empha-
sized the separation of design decisions into blocks, to distinguish those blocks controlled
by standards from those controlled by local concerns. Siting, planning, and three-dimen-
sional development, in particular, were to be separated. The standard specified some cri-
teria for siting, but left considerable latitude for adaptation. The plans of the actual fire
stations were tightly specified, both as specifications supported by drawings of individual
spaces and by exemplar designs of entire fire stations. Three-dimensional development of
the designs was explicitly left mostly to local control, primarily because the local context
and codes could not be anticipated centrally. Our grammar mirrors this separation; more
strongly, it is organized into a sequence of phases, each generating some aspect of the de-
sign. The early phases operate on layouts; the later ones operate on solids. A list of the
phases follows. For each phase, the input and output representations are specified.

Site: A rectangular site is presumed. Input: the size of the site. Output: a hierar-
chical layout containing only a single object denoting the site.

82 Rob Woodbury and Eric Griffith

Roads: Roads may occur on any side of a site and in any combination. Input: the
site as a hierarchical layout. Output: a hierarchical layout of one level containing
the site and rectangles for the roads adjacent to the site.

Setbacks: Site setbacks differ depending on the presence or absence of roads along
site boundaries. Input: the output from the road phase. Output: a two level hierar-
chical layout. The site in the input layout is expanded to a layout containing the
required setbacks and a zone for the buildable area.

Station layout: A station is laid out one space at a time, in the order given in a
hierarchical decomposition of the station. Input: The output from the site setback
phase plus a building program as a hierarchical decomposition of the design. Out-
put: A hierarchical layout in possibly many levels, but generally including the
three main fire station zones (apparatus room, administration wing and dormitory
wing) as the main components of the station level (the one immediately below the
buildable area object in the hierarchical layout).

Interior wall placement: Spaces in a fire station are distinguished by a function
property from ihc set (circulation, apparatus zone, exterior, general}. Objects of
general functionality arc presumed to have the same function as their name; thus
their actual function is unique in a particular design. Interior walls are placed
around objects of either circulation or general functionality. Input: the station lay-
out specified above. Output: A hierarchical layout with the hierarchy describing
the station collapsed into a single layout (a hierarchical layout is collapsed into a
non-hierarchical layout by replacing objects in the hierarchical layouts by the lay-
outs which they head). In this graph, objects denoting half-walls are placed around
every object of circulation or general functionality and on the boundary that sep-
arates those objects from others of different functionality (see Figure 4). Half-walls
inherit the height property of the spaces they partially enclose. Half-walls greatly
simplify the later placement of exterior walls, and this is the motivation for their
use.

Wall and space extrusion: Walls and spaces are extruded into the third dimension
using the height parameter associated with each object. At this stage, the represen-
tation used by the grammar is transformed to a representation of solid objects. The
layout representation, although retained and used in the matching of many rules, is
no longer changed by rule application. Input: the above station layout with half
walls from the previous phase. Output: The station layout plus a collection of solid
models, one for each object in the station layout.

Exterior walls: Exterior walls are added to all exposed half-walls. Heights of ad-
jacent spaces may be adjusted at this stage to simplify the exterior walls and subse-
quent roofs. Input: the output of the previous phase. Output: the input plus solid
models representing the exterior walls.

Openings: Windows and doors are added to the design. Doors may join any space
to an adjacent circulation space and any two spaces within a level of a hierarchical
decomposition. Doors vary from standard openings for single doors to the com-
plete absence of a wall. Windows may be inserted in each space adjoining the ex-
terior in a number of options related the position of a window within a room. Input:
the output from the phase above. Output: the input with openings added to the sol-
ids representing the exterior walls.

Layouts, Solids, Grammar Interpreters, and Fire Stations 83

Figure 4. A layout and the same layout with half-walls added around each of its con-
stituent rectangles.

Roofs: The shape and structural pattern of the roof is established. Presently only
the roof forms from the example corpus are generated. These are horizontal roofs
of low slope and long overhang (vaguely reminiscent of the Prairie School style).
Input: the output of the above phase. Output: the input plus solid models repre-
senting the overall roof geometry.

3.2 An Example Derivation of a Fire Station

Figure 5 shows sample steps in an example derivation of a fire station. The deriva-
tion follows the steps given in the grammar described above. Successive slides show the
site; roads and setbacks; basic station organization; development of apparatus room, ad-
ministrative and dormitory wings; insertion of half-walls; extrusion of spaces and walls;
addition of outside walls; and finally placement of apparatus openings, doors and win-
dows.

Figure 5a. A site for a fire station.

84 Rob Woodbury and Eric Griffith

Figure 5b-d. Roads and setbacks from the fire station (b); a basic spatial organiza-
tion for a fire station (c); and development of the apparatus room of a Fire station (d).

Layouts, Solids, Grammar Interpreters, and Fire Stations 85

Figure 5c-g. Development of the administrative wing of a fire station (c); develop-
ment of the dormitory wing resulting in a complete fire station plan (f); and insertion
of interior walls (g).

86 Rob Woodbury and Eric Griffith

Figure 5h-j Extrusion of spaces and walls (h); addition of outside walls (i); and
placement of apparatus openings, doors and windows (j).

Layouts, Solids, Grammar Interpreters, and Fire Stations 87

:4 A Control Scheme for Rule Application

A control scheme is necessary in any generative formalism. The control scheme
we use is a combination of hierarchical decomposition, strictly interactive decisions about
application of rule instantiations from the conflict set, and a depth-first priority tree for the
appearance of rule instantiations in the conflict set. In this priority schedule, substitution
of pre-generated partial designs is first, followed by specializations of the preconditions
for rule 1 inserting special objects, followed by the order of the hierarchical decomposi-
tion, followed by specializations of the preconditions for rule 1 inserting program objects,
and lastly followed by the fundamental rules themselves inserting program objects. Both
the components of this control scheme and their order in the conflict set developed from
our experience using the layout system. Certainly, the control strategy is heuristic. Other
orderings are possible and may very well work well—this one merely has the advantage
that it appears to work well in the grammars we tested.

An object, once placed, may be expanded into a layout if one or more layouts for
that object already exists. For example, Figure 6 shows that a truck bay in an apparatus
room of a fire station may be allocated as a single object. Depending on its context, dif-
ferent clearance zones may be added around the truck bay. Thus the truck bay is replaced
by a layout containing an object for the actual space for the truck as well as objects repre-
senting each of the clearance zones.

Figure 6. A truck bay (black rectangle) may be expanded into an actual bay for a
truck and clearance zones at its sides. The grey rectangles represent the clearance
zones that must exist at each end of a truck.

A hierarchical decomposition of a design is specified as a tree of unique names, one
for each space to be allocated in the design. In the notation we use, a group denotes a
single layout and its parent object. Objects appearing as parents must appear as objects in
some other group with the exception of a single object denoted as the top-level object. An
example decomposition for one part of a fire station follows:

topjevel (station).
group (station, (adm_wing)).
group (watch, (bath, storage, alarm)).
group (day_area, (kitchen, dining, day_train)).
group (offices, (shift_super_office, fire__insp_office)).
group (adm_supply, (admin_supply, training_supply)).
group (adm_wing, (day_arca, offices, ha!15, adm_supply, ha!14, watch)).

88 Rob Woodbury and Eric Griffith

Decisions about inserting objects from this hierarchical decomposition are made in
the order in which the objects are specified as members of a group. The appearance of an
object as the parent of a group is ignored in the insertion order. When an object without
an inserted parent is encountered its parent and recursively all of its uninserted parents are
inserted into the layout. Thus in the group specification above, the order of insertion
would be:

adm__wing, watch, bath, storage, alarm, day_area, kitchen, dining, day_train, offic-
es, shift_super__office, fire_insp_office, adm_supply, admin_supply, training_sup-
ply, hall5, hall4.

As shown in Figure 7, the LHS of rule 1 finds a pivot-vertex in the layout in which
an object is to be allocated; a direction from that pivot-vertex that indicates the direction
in which the new object is to be inserted and identifies & full-pivot-sequence of objects that
are eligible to participate in the operation; and a pivot-sequence that indicates a prefix of
the full-pivot-sequence. This LHS will find precisely once every possible instantiation of
rule 1 in a given layout.

Ihs(add_room_in_sublayout,
(RoomName,Layout,Pivot,Direction,PivotSequence)):-

state(add_room),
current_selection(RoomName,GroupName),
inserted(GroupName),
named_graph(GroupName,Layout),
pick_pivot_vertex(Layout,Pivot),
pick_direction(Direction),
pick_pivot_sequence(Pivot,Direction,PivotSequence,Layout).

rhs(add_room_Jn_$ublayout,
(RoomName,Layout,Pivot,Direction,PivotSequence)):-

invcrsc_direction(Dircclion,lnvcrse),
add_rotated_vertex_at(RoomName,Inverse,Room,Pivot,

PivotSequence,Direction,Layout,NewLayout),
stow(NewLayout),
pop_program_item(RoomName),
set_state(select_room).

Figure 7. The Prolog code of rule 1. The left-hand side (lhs) of the rule matches if
the grammar is currently adding rooms, if the layout that will contain the Room has
been inserted and can be found, and if a pivot vertex, direction, and pivot sequence
can be found. The right-hand side (rhs) adds the vertex, thereby transforming the
Layout to the NewLayout, puts the NewLayout into the representation, removes
RoomName from the list of items to be added and puts the grammar into a state in
which it will look for another room to add.

The control strategy is interactive in the following sense. After each insertion of a
rectangle the entire conflict set of instantiated rules is, in principle, made available to the
user in the order given above.

Layouts, Solids, Grammar Interpreters, and Fire Stations 89

Each object which can be expanded into a predetermined layout appears in the con-
flict set in order of the recency of insertion of the object to be expanded. Thus most re-
cently allocated objects will be matched for expansion first. If not expanded at this stage,
an object will remain unexpanded until one of the members of the group of which it is head
is inserted. Once this occurs, none of the predetermined solutions for that group apply and
the rest of the group must also be inserted interactively.

After object expansions in the conflict set come the insertion of special objects.
These are spaces that are pertinent to all designs generated by a grammar even though they
do not appear in a specific architectural program. For example in fire stations, the appa-
ratus bay is often pushed forward of the rest of the building. Insertion of objects denoting
exterior offset spaces accomplishes this movement.

The rest of the rule instantiations appear in the conflict set in the order given by a
depth-first traversal of a three-level tree. The first choice is the object to be inserted, the
first object chosen being the first uninserted object given in the hierarchical decomposi-
tion. Once an object is chosen, rule instantiations are formed from a sequence of rules that
contain first specialized and then general rules. The pivots, directions and pivot-sequences
for these compose the third level of the tree and are found in the order of recency of inser-
tion of the objects. Most recently inserted objects appear first as pivots. Figure 8 diagrams
the order of appearance of rule instantiations in the conflict set.

Rule matching

Object to be inserted

Specialized then general rules

Pivots, directions and pivot sequences
based on recency of insertion

Figure 8. The order of choices in inserting an object.

The rest of the rule instantiations appear in the conflict set in the order given by a
depth-first traversal of a three-level tree. The first choice is the object to be inserted, the
first object chosen being the first uninserted object given in the hierarchical decomposi-
tion. Once an object is chosen, rule instantiations are formed from a sequence of rules that
contain first specialized and then general rules. The pivots, directions and pivot-sequences
for these compose the third level of the tree and are found in the order of recency of inser-
tion of the objects. Most recently inserted objects appear first as pivots. Figure 8 diagrams
the order of appearance of rule instantiations in the conflict set.Decisions about which rule
instantiation in the conflict set to apply are made by the user. The rule instantiations are
presented in order described above. A choice of one instantiation fires the chosen rule and
invokes the creation of a new conflict set of rule matches. Evaluation of the conflict set is
entirely lazy—a rule instantiation is computed only when the instantiation immediately
preceding it in the conflict set is declined by the user.

90 - . Rob Woodbury and Eric Griffith

5 Conclusions

Given the present state of this work, our conclusions must be modest. It is theoret-
ically simple and practically possible to combine layout and solid representations in a sin-
gle grammar implementation. A simple control structure that comprises hierarchical
decomposition of a design with ordering of rule instantiations in the conflict set gives sur-
prisingly good control for interactive rule-based generation of designs. Grammars for fire
station designs can be written in a clean sequence of phases, each of which is visited once
in a process of generation. Examples from a corpus of fire station designs and some inter-
esting variations of those examples can be generated with relative ease. We hope to con-
tinue this work and to produce more insightful results on the relation between grammars
and standardized building programs.

Acknowledgements

The research described here was partially supported by the Construction Engineer-
ing Research Laboratory of the United States Army Corps of Engineers and by the Engi-
neering Design Research Center, a center at Carnegie Mellon University funded by the
National Science Foundation. The author ackowledges the considerable assistance of
Kevin Zawicki, for programming much of the grammar reported, and to Jeff Heisserman,
for programming advice and for comments on a draft of the paper.

References

Carlson, C, McKelvey, R., and Woodbury, R.., 1991. "An Introduction to Structure and
Structure Grammars," Planning and Design 18(4), pp. 417-426.

Coyne, R., 1991. ABLOOS: An Evolving Hierarchical Design Framework, Ph.D. Disser-
tation, Department of Architecture, Carnegie Mellon University.

Flemming, U., Baykan, C.A., Coyne, R.F., Fox, M.S., 1992. "Hierarchical Generate-and-
Test vs. Constraint Directed Search: A Comparision in the Context of Layout Syn-
thesis," in J.S. Gero and F. Sudweeks (eds.), Artificial Intelligence in Design '92.
Dordrecht: Kluwer Academic Publishers, pp. 817-838.

Flemming, U., 1989. "More on the Representation and Generation of Loosely Packed Ar-
rangements of Rectangles," Planning and Design, Vol. 16, pp. 327-359.

Heisserman, J.A., 1991. Generative Geometric Design and Boundary Solid Grammars,
Ph.D. Dissertation, Department of Architecture, Carnegie Mellon University.

Karasick, M, 1988. On the Representation and Manipulation of Rigid Solids, Ph.D. Dis-
sertation, Department of Computer Science, McGill University, Montreal, P.Q.,
Canada.

Stiny, G., 1980. "Introduction to Shape and Shape Grammars," Environment and Plan-
ning B 7(3), pp. 343-352.

Vanacek Jr., G., 1989. "Protosolid: An Inside Look," Technical Report CSD-TR-92J,
Computer Science Department, Purdue University.

Zurier, R., 1982. The American Firehouse: An Architectural and Social History, New
York: Abbeville Press.

