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Abstract

This paper reviews the effects of the presence of hard constraints in the stabil-
ity of model predictive control (MPC). Assuming a fixed active set, we show that
the optimal solution can be expressed in a general state-feedback closed form. This
corresponds to a piecewise linear controller, for the linear model case. The changes
introduced in the original unconstrained solution by the active constraints, as well
as other dlFeds related to the loss of degrees of freedom are clearly depicted in the
current analysis. In addition to modifications in the unconstrained feedback gain,
we show that the presence of active output constraints can introduce extra feedback
terms in the predictive controller. This can lead to instability of the constrained
closed-loop system with certain active sets, independently of the choice of tuning
parameters used. To cope with these problems and extend the constraint handling
capabilities of MPC, we introduce the possibility of considering soft constraints.
Here we compare the use of the 12 (quadratic), I\ (exact), and Zoonhorm penalty
formulations. The analysis reveals a strong similarity between the constrained and
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unconstrained control laws, which allows a direct extrapolation of the unconstrained
tuning guidelines to the constrained case. In particular we show that the exact
penalty treatment has identical stability characteristics to the correspondent uncon-
strained case, and therefore seems well suited for general soft constraint handling,
even with nonlinear models. These extensions are included in the previously devel-
oped Newton control framework, allowing the use of the approach within a consistent
framework for both linear and nonlinear process models, and increasing the scope
of application of the method. Simple process examples are given to illustrate the
capabilities of the proposed approaches.

1 Introduction

An important aspect in the application of model predictive control (MPC) is the effect
of the presence of constraints in the stability of the resultant closed-loop system. Recent
work by Zafiriou (1990-91) has shown this to be a significant issue, because of the fre-
guency with which saturation can occur during routine operation. Considering the QDMC
framework, he was able to identify several situations where the decrease in the degrees of
freedom available to influence the process masked the effect of the tuning parameters for
stabilization, rendering the constrained system unstable. A study of these effects becomes
therefore an important issue in the design of constrained control systems.

Presently, the design of constrained predictive controllers is most often an iterative
process. Typically, it starts with a candidate set of tuning parameters, representing an ac-
ceptable unconstrained design, obtained by taking into consideration e.g., the performance
and robustness of the unconstrained system. The closed-loop performance of this controller
then needs to be evaluated in the presence of the constraints which can potentially be-
come active during the operation of the process. Depending on the results obtained, it
might be necessary to adjust the initial parameters in order to achieve a good overall be-
havior with all possible active sets. These changes require in turn a re-evaluation of the
modified design according to the criteria used in the first step. Hence it is essential in a
good constrained design methodology to have the components to: 1) assess the closed-loop
performance of the process, especially its stability properties, in the presence of various




types of constraints; ii) a systematic procedure for adjusting the tuning parameters, or if
necessary adapt the constraint handling methodology used, in order to provide a good,
global, closed-loop performance. Both of these issues are addressed in detail throughout
this paper.

We start by presenting a comprehensive treatment of the effects of the presence of
active constraints in the stability of the predictive control. This study is motivated by
the pioneering work of Zafiriou (1990; 1991a, b) in this area. Similar to his analysis,
the nonlinearities introduced by the presence of active constraints are handled through
separ ate consider ation of each different active set. A disadvantage of this approach is that
a complete analysis requires checking all possible combinations of constraints, in order
to guarantee global properties. This is essentially a combinatorial task, which introduces
considerable difficulties in the analysis of predictive horizons of the size usually considered
in practice. However, as described below, much of the same information can be derived
from a dgnificantly smaller subset of constraints. The present analysis also shows that
the optimal solution can be expressed in a general state-feedback closed form, similar
to the unconstrained case. Here the maodifications introduced in the original solution by
the presence of constraints are clearly displayed. Even so, a change in the adjustable
parameters of the controller might not be sufficient to prevent, in the worst case, the
instability of the closed-loop system with certain active sets, asillustrated in the examples
included.

Todeal with the stability problems caused by the presence of active hard constraints, we
introduce in thiswork a constraint relaxation scheme based on the use of penalty functions.
This feature is also created as an extension of the previoudy developed Newton control
framework (Li and Biegler, 1989; Oliveira and Biegler, 1993), allowing a straightforward
generalization of these results to the nonlinear case, because of the uniform treatment of
both types of systems provided by the formalism.

This paper is organized as follows, a brief review of the Newton control formulation is
given in Section 2. This is followed by the stability analysis of MPC in the presence of
hard constraints, in Section 3. Assuming a fixed active set, we first show that the optimal
input profile can be expressed in a general state-feedback form. In addition to changes
in the unconstrained feedback structure, we demonstrate that the presence of active out-

3




put constraints can introduce extra feedback terms in the predictive controller. Therefore
together with a decrease in the degrees of freedom available, this can lead to stability
problems of the constrained system with certain active sets, independently of the choice
of tuning parameters used. A constraint relaxation treatment capable of preventing the
occurrence of these problems is introduced in Section 4. Here we address first the com-
mon case of a quadratic penalty objective, for which smpler stability results are derived,
comparéd to the treatment of Zafiriou (1991a). These relate directly the stability of the
relaxed constrained problem to an equivalent modification in the tuning parameters of the
original unconstrained problem. We show that in general only a maximum finite value
of the penalty parameter can be tolerated for stability. Since the stability characteristics
of the relaxed problem are still dependent on the current active set, this approach suffers
from the same disadvantage as the hard constraint analysis, of being combinatorial with
the length of the predictive horizon used.

To eliminate this last requirement we then introduce an alternative soft constraint
treatment, that usesthe I\ or Zoonarm penalty formulations. In this case, we demonstrate
that the resultant constrained system has identical stability properties to the correspond-
ing unconstrained situation. Moreover if the original hard constrained controller is stable,
the I\ strategy requires only afinite penalty parameter (larger than the norm of the Kuhn-
Tucker multipliers) to match the solution of the original problem, in contrast with the
quadratic penalty case which requires a parameter value of infinity. This characteristic
allows much better control of the errors resulting from constraint relaxation, and smpli-
fies considerably the use of the soft constraints, especially for nonlinear systems. We also
discuss in this section the possibility of occurrence of steady-state oflfegts for large values of
the penalty parameter and short horizons (due to the receding nature of the control law),
together with sufficient conditions for their elimination. The use of alternative penalty
formulations and their possible effects on the closed-loop stability properties are also con-
sdered here. Finally, these developmentsareillustrated with application to several process
examples.




2 Preliminary definitions

This section presents a short overview of the Newton control formulation used in the
analysis of the stability properties of MPC in the next section; a more complete description
can be found in Oliveira and Biegler (1993). The analysis presented here is based on the
control law expressed in magnitude form, where the independent variable is U. This
formulation is particularly convenient for studying the stability properties of the resultant
controller.

Wedenote by u G R™ the vector of system inputs (manipulations), x G R™ the vector
of state variables, y G R" the vector of system outputs, 6 € R™ a vector of system
parameters, and d G H™ the vector of process disturbances. The lengths of the input and
output predictive horizons are m and p, respectively, with m<p. The identity matrix of
order n is denoted here by /, e R™". We start by defining a discrete system operator as

Xk = ScH = X(tk + T; ty Z*, uy, d\ 0),

wherewe assumethat the transition function x is continuous and differentiable with respect
to all of its arguments. This operator can be obtained from a continuous plant model,
provided that it satisfies the proper Lipschitz continuity conditions (Economou, 1985), or
by direct application of discrete identification techniquesto the system under consider ation.
In a samilar form, we denote the operator induced by the control algorithm generically by
UfcH = ip(Xk,UkYrk)y Where yy corresponds to the value of an external reference input
(set-point), specified over a finite horizon (also in discrete time). Thus, together with the
previous plant model, an augmented closed-loop system can be defined as
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where we have omited the dependence of zon T, d and O for clarity of notation.
More specifically, the selection of the control law in the Newton framework is based on
a quadratic performance index in a moving horizon of length p, which corresponds to the




solution of the following constrained quadratic programming (QP) problem

mn % = Ve - Qe -¥)+(U- U)QU - U) (2.29)
st. Y=Y+ S,U (2.2b)
Ui<U <Uy (2.2¢)
YiSY<_ VY. (2.2d)

The solution of this QP corresponds to a Newton step towards the sol ution of the predictive
control problem for a nonlinear process model, or the optimal profile in the linear case.
Here Q = diag{(?;} € R**** and Q, = diag{Qu} € R*™)* ™) axe adjustable
weights in the objective. Also, capital letters E, A", Y and U are used throughout the
paper to denote augmented vectors defined for the entire predictive horizon. Thus for
example, U corresponds to the augmented input vector

nm—ET T T 17
Ve RTUS T uy, Yam

The vector U, defines a reference trajectory fot the inputs, similar to the role of Y* for
the outputs. S, is the system dynamic matrix. This matrix can be formed directly from a
linear process model or obtained from a sensitivity analysis of a nonlinear model around a
nominal trajectory U (Oliveira and Biegler, 1993). It generates in the second case a linear
time-varying (LTV) approximation of the original process model, as part of the Newton
iteration. Y* corresponds to the system response for a zero input. For linear models, Y*
can be expressed directly in terms of the initial conditions and sensitivity coefficients, as

Cer1Ps
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Replacing (2.2b) directly in the objective, leads to the following formulation

min  J; = {ET - <SEN'QI(E* - SpU) + (U - U)TQy(U - U)) (2.39)
st Ui<U <Uy (2.30)
Yd < S\U < Yq, (2.3¢)

where we have defined E* = Yo - Y\ Yfg = Y; - Y\ and Y& = Y- Y*.
For the unconstrained case, the analytical solution of the previous problem is

U = {ftQiSm + (?25)-1(" Q" + QU,) "~Kxt + d* + dr, (2.4)
where
H=88Q:i8n+ Q (2.50)
K = -H-'9Q,c* (2.5b)
dp=frtnin (2.5¢)
d, = H-'9Q,U.. (2.6d)

In the above solution, /f corresponds to a state feedback term, while dgp and d, can be
seen as additional bias terms, denoting the fact that nonzero reference values are used for
VY and U,. Clearly, only K contributes to the stability of the closed-loop system, since the
remaining terms are fixed and bounded. The receding nature of MPC also requires that
only the firg move in computed profile be implemented at a time, with the calculation
repeated at the next sampling point, usng any additional information available. This
implies that the implemented manipulation at t* is Uk = f7m O oo Oj' Cl, where U is
given by the solution of either (2.3) or (2.4). ) )




3 Effect of active hard constraints in the closed-loop
stability
In the presence of active hard constraints, the optimal input profile needs to be found

as the solution of (2.3). For a fixed (given) active set, we will denote the corresponding
constraints as

2 (3.1a)
Yba - Y*® = Yba - CTXk. (31b)

1°U
S*U

The superscript 2 is introduced to denote active constraints. We represent the number
of currently active input and output active constraints by n, and ny, respectively. In this
case, the matrices 12 G R™*A™> and <¥ e R"V*("p) are obtained through selection of
therows of /,,,» and <, that correspond just to the currently active constraints. Here Ug
and Y@ represent the values of the active input and output bounds, respectively. These
express either upper or lower bounds, or equality constraints which can also be specified
for these variables. The above set of constraints can also be represented in a more compact
form as

AU = c,, (3.2)

el el

The effects of the presence of constraints are better illustrated with a range and null-
space decomposition, performed on the matrix of constraints A. Since this matrix can be
considerably ill-conditioned, it is preferable to base the decomposition on a QR factor-
ization of AT with column pivoting (Golub and Van Loan, 1989). The advantage of this
algorithm is that the determination of the numerical rank of the matrix to be factorized
can be done smultaneoudy in a numerically robust form, taking into consideration the
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precison of the data available. Assuming that therank of A is7V < n” leads to

ATP=QR=[g, 3] [f] : (3.3)

where Q G K™ js an orthogonal matrix satisfying Q'Q = /,,., and Tl G R™ *(*«h#*> i
an upper triangular matrix. P G R™ +")¥(™ +") is a permutation matrix, obtained by
inter change of the columns of the identity matrix of the same order. Q, and Q, correspond
to a partition of the columns of Q with Qy G R™ ™" and Q, G R™ *(»<-"es), respectively.

Pre-multiplying both members of (3.3) by Q" gives QAP = Tl and QjAP = 0.
This implies that

PTAQ, = TI" and AQ; = 0, ‘ (3.4)

and therefore Q, corresponds to a basis for the null-space of A. Hence the full U space
can be partitioned into range and null-space components as

U= QyUy + QU (3.9)

whereUy, G R™ and U, G R™*""™. Theoptimal solution for U can then be found separately
in terms of these two components, which can be combined in the end according to (3.5)
to give the optimal profile. It should be noted that since the U, component is entirely
determined by the current active constraints, the number of degrees of freedom in the
input profile to be determined isjust fi*-— n,.

We will start by calculating {7,, which can be obtained by replacing (3.5) in (3.2),
giving AQUy = c,. This implies that PTAQU, = P'c, or from (3.4),

Uﬂ
RYU, = P' [Y},“ —bym} = PTc,. (3.6)

If TV = Tu +ny, i.e., A is full row-rank, (3.6) constitutes a set of linear lower triangular
equations which can be solved by forward substitution to obtain U,. The solution can also




be expressed analytically as

Us Us

— -T T b - b
u, =R"TP [ N *a‘_[B, K,] [ “],
Yh-Y Yo - Y

or
U, = ByUy + K(Y,* - Y™, (3-7)

where we have defined L\B\, Kyl as a compatible partition of the columns of TZ" T, As
with the unconstrained case, the contributions for Uy in (3.7) can be grouped into a bias
term (given by B,U% + K,Y*), and a feedback term —K,Y*? It should be noted that this
last term will only appear in the optimal prdfile if there exist output constraints which are
active.

However if rir < Uu + riy, the matrix TZ" will have a lower trapezoidal structure, and
the linear system (3.6) is overdetermined, corresponding in general to a digoint active set.
In this case it is possible to create the partitions

RT Cau
RT=| ™ and ¢ = ,
[RI"] - L«z]

where ftE G R™ ™ corresponds to the upper triangular part of ft, Hf G R("<*+n,-n)xnr is
theremaining rectangular matrix, and c,, G R/, CQX £ R™™v~""" constitute an equivalent
partition of c,. This allows us to solve the lower triangular system VAU, = P'c,, to find
U,. The computed solution can then be plugged back in the remaining equations, to check
the feasibility of (3.6). If this set of equalities is compatible, then U, can still be expressed
in the form (3.7), with L\By K,] corresponding now to a column partition of 7ﬁ,~TPT. It
should be noted that in this case the choice of active constraints which areretained in TZu
doesn't affect the stability properties of the resultant controller (although it apparently
can induce a different feedback structure), since all choices of constraints produce the same
value of U,.

On the other hand, the term U, is determined by adjusting the remaining degrees of
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freedom in the profile to minimize the objective, if there axe any left. Prom (2.3), J, can
be expressed as

Jo(U) = c+2a"U + UTHU, (3.8)
where a = -S*QIE* - Q,U, and H is given by (2.5a). Replacing (3.7) in (3.8) gives
| Jo(Uz) = congant + 2a'QU, + 2U,/$HQ,U, + UjQHQU..
Solving VJ,(Uz) = 0 leads to
U, = (QHQYQ'{a + HQyU,). (3.9)

Equations (3.7) and (3.9) can finally be combined to give the analytical solution of the
predictive control law. Replacing these in (3.5) gives

U= K +4,5p + One + Ony + dhy, (310)
where we have defined
He = Q2(SIQiSm + Q,)Q* (3.114)
B = QH;'Q", (3.11b)
Kh = -(/n<m - B*QyKyC** - BSIQ,C* (3.11¢)
Ohvep = BSFQIFsp (3.11d)
dhr - BQZUr (3110)
e = (Intm - BH)QBUS (3.11f)
dny = (In;m — BH)Q K, Y. (3.11g)

Analogoudly to the uncongtrained solution, the stability of the closed-loop law depends
only on Kh, sincethe other terms arefixed within agiven active set, and are bounded for all
sets of constraints. Comparing (3.10) with the corresponding unconstrained solution (2.4)
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it is possible to observe that the general diFett of the presence of constraints is to change
the feedback structure of the system, replacing the unconstrained Hessan H by JB, and
introducing also additional bias terms dhy and dhy in it. In addition, the presence of active
output constraints may yield extra feedback terms, asindicated by (3.11c). These feedback
terms, which depend just on the current active set, can induce closed-loop instability in
certain situations, as illustrated in the examples below. Also, as pointed out by Zafiriou
(1990), we note that the stability properties of the predictive control law (3.10) with hard
constraints are identical for each of the upper and lower bounds in the process variables,
since the feedback term in it is not influenced by the magnitudes of the boimds Ub and Yb
in (3.1).

The global stability properties of the constrained system can now be considered. As
indicated by (3.10), the overall controller is piecewise linear in £, with a structure which
isonly dependent on the current active set. This allowsthe use of the contraction mapping
principle to show the following results.

Theorem 1 (Economou, 1985) Consider the augmented closed-loop system (2.1) de-
fined by the discrete LTV model Zx+1 = PuZe+I'rtix, together with the state-feedback cor]I-'
trol law (3:10), wt\ = tifEZ*+YY Uk+d(ys, Ur). Define also an initial state zo = [x]  VE\
and reference inputs TAfcH = V*> Urppi-i =t t =1, — ,P. If

) - - o
nnO“ - H dX(T,X,UsyO/OU) =i o= ?é <0< 1, Vz £ B(ZQ, r)’ where
dz _ =
ooz T ?‘]’c’.lyfalf-"-\\ . and  6(20,r) = {ZER™™ : \z-*>| <},
1 =7

then the system has a unique asymptotically stable equilibrium point zz = [x% uJ]" in
B(zo,r). Furthermore, B(zQ,T0O) is a region of attraction for z.. (Here || * || represents any
consistent norm definition).

This theorem provides a sufficient condition for the stability of the closed-loop system,
although its application with constrained systems is frequently limited in practice by the
need of finding a consistent norm for different active sets. The next result is smpler to
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verify in the general case, even though it represents only a necessary condition for stability.

Theorem 2 (Zafiriou, 1990) Consider the augmented closed-loop system (2.1) defined
by the discrete LTV model Xk+\ = $kXk + FkUk, together with the state-feedback control
law (3.10), txfcH = ~k"k + Yfdifc + d(ysp, Ur), an initial state ZQ = [X] u$\T and reference
inputs yepykt+i = V*, *Vferd = u*,’t = 1,... ,p. This system can only be asymptotically
stablein B{ZQ"r) if

Ps(F'(2) =ps ( ** 1) <6<1,  V*€B{z,r),
A

where ps(™) represents the spectral radius of a matrix, pg(A) = max* |At(i4)|.

As mentioned, this theorem providesjust a minimal. condition for global stability. Never-
theless, it is frequently used in practice, together with an implicit assumption about the
rate of change of the system structure'. For exarhple, when considering the closed-loop
response of a LTI model with a fixed set-point, and sufficiently small disturbances such
that no changes in the current active set occur, thislast condition becomes also sufficient
for stability, since a fixed active set induces a fixed control structure. Furthermore, since
any induced norm constitutes an appropriate consistent norm, Theorem 1 becomes also
easer to apply in this situation. Both of these results will be useful later in the context of
the soft constraint handling methodology described below.

3.1 Special cases
We consder now some specific cases of (3.10), which introduce special characteristics in

the closed-loop behavior, when some particular combinations of constraints are active.

Only input constraints active In thiscase, the only active constraints are of the form
(3.1a). Because of the special structure of the matrix of constraints, the range and null

e, the so called slowly varying systems, (Vidyasagar, 1978).
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space decomposition is straightforward. For example, if

|a:[o 0 10 o}

0000 1]’
then
_ . '010" '11
OO 0 0 0
n A 00/010 01
Uu 10000 00
(IT=|1 o] =
0 0 ooloo1 00
N |0 1/0 00} LO O]
LU 1l
Qy Qz n/o

As can be observed, Q, may be taken in this situation as (/*7, and Q, formed from the
remaining columns of the correspondent identity matrix. Prom (3.5), this immediately
implies that if there are no constraints active in the first interval of the horizon, the
implemented control input Uk always comes from the Q, (or null) space, and corresponds
to the first components of (3.9). Also in this case, TZ = 2, and there's no need for
column pivoting during the QR factorization of A. Furthermore, the projected Hessian H,
isssimply formed by selection of thefree columns and rows of if, according to (3.11a). The
inverse of this matrix is later projected back into the full space during the computation of
B, asindicated by (3.11b).

First output constraint active, with single-input systems Here the bases for the

range and null spaces of the constraint matrix need to be found in general through the
standard decomposition algorithm described above. However since Q, always corresponds
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to a basis for the null space of A, thisimplies that

ay| 0 - 0
: : ol 21 22 21 ni~n,

AQ; = ., 0 oo 0]z n22 ot Zomgene| = 0,
Gligel 024+l 0 O Loeeiiicniini..

and therefore thefirst row of Q, must beidentically null, i.e, \m 2y *+* Zisc_y] =0.
Prom (3.5), thisimplies that the null space contribution to U is completely omitted in the
implemented control Uk, and is determined by U, alone. As a consequence, the normal
feedback structure of the controller is suspended, and the only possible source of feedback
in the closed-loop system will be any active output constraints, as indicated by (3.11c). If
there are only active input constraints, then the system will essentially behave as open-
loop. This situation corresponds therefore to one of the most severe loss of degrees of
freedom that can be induced by the presence of active constraints. It may easily induce
closed-loop instability in several situations, such as with open-loop unstable plants and
systems with non-minimum, phase characteristics. This behavior is observed in some of
the examples presented below.

Maximum rate limits in the inputs Maximum bounds in the rate of variation of
the manipulated variables corresponds also to a frequently used direct control objective
in MPC; most of the existing implementations provide some facility for the treatment of
these constraints. These limits are especially useful to prevent aggressive control moves
caused by strong changes during the process operation. The corresponding constraints can
be expressed in the form

|A%pqi| = \uti - Ufct-il < Attmay " i=0,...,m—1,
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with Uk~i given, and Attmax representing the maximum allowed input move during a unique
sampling interval. These equations can also be written in matrix form as

'AC/maX _S GU S_ AC/)TIQX’

where
1 0 00 e 0 O
-1 1 00 e 0 O
G=|0 -1 10 e 0 0] €ROmx(nm) (3.12a)

| O 0 0 0 e -1 1

! A j=1
AUpaxs = {it.fC_| + DUmax | (3.12b)

Atmax F=2,..,m.

When active, these constraints become equalities of the form G®U = AC/”, where G*
and A C/”" areformed from the active rows of G and Al/max- The effects of their presence
on the closed-loop stability, eg. with a mixture of constraints of the other types can
therefore be treated by the algorithm described previoudy. Applying a similar reasoning,
it is possible to conclude that, analogous to the effect of active absolute bounds on the
inputs, the stability properties with rate constraints depend just on the given active set,
and not on the bounds themselves. However, the tuning parameters used can certainly
influence whether or not a given active set of this type can become active (i.e., optimal).
Also, we should notice that because of the special form of (3.12a), smilar considerations
to the constrained single-input system case can be made here. Having a rate constraint
active during the first sampling interval will also cause the closed-loop system to behave
essentially as open-loop during the same period of time. Hence possible stability problems
with unstable plants can be anticipated in this situation as well.
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3.2 Examples

We illustrate now the application of the previous method in the elucidation of the con-
strained stability properties of MPC, with a number of smple process examples. These
particular models were selected in order to provide a broad view of the possible behav-
iors and stability effects that can result with active hard constraints. The results shown
here were obtained through an implementation of the algorithm described above in the
Mathematica language (Wolfram, 1991).

Example 3.1 Wewill start with thefirst order plustime-delay SISO system given by the

transfer function
50.06a_

C«=(TTT)-
This corresponds to a frequently used class of models, that describes chemical processes
with relatively simple and slow dynamics. The equivalent discrete pulse transfer function
obtained with a sampling time T = 0.1 is
0.03921(z +1.427)
O = %(+-0.9048)

For this model, we consder only smple bounds in the input and output variables, of
the form (3.1). The lengths of the predictive horizons used with it are m = p = 5, with
tuning parameters Q, = 1, Q, = 0.01. In Figure 1 we have represented the spectral radius
of the resultant closed-loop system, for each possible active set that can occur with this
type of bounds. In order to sweep all different combinations of constraints in a systematic
form, the following procedure is used. We begin by appending the output horizon to the
end of the input horizon, in order to form a unique extended horizon, as indicated in
Figure 2. Then, starting at the left, we read the correspondent binary number obtained
by assigning either the bit 0 or 1 to the position of each variable in the extended horizon,
depending on whether the correspondent constraint is inactive or active. For example, the
total number of constraints in this case is 219 = 1024. This means that the active set 0
will correspond to the unconstrained system; the active set 1 denotes the situation where
only the firg input in the firg interval of the horizon is active; the active set number 32
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represents the firs output constrained only during the firs interval; finally the last active
set (1024) represents the fact all input and output constraints are active smultaneoudly.

[Figure 1 about here]
[Figure 2 about here]

As can be observed, there exist certain active sets for this system which will make the
resultant closed-loop system unstable. This is indicated by the existence of points above
the unit spectral radius line in Figure 1. The problem. occurs with the given tuning
parameters, even though the spectral radius of the unconstrained system is about 0.33,
well below the stability limit. A closer inspection of these situations reveals that the
instability always occurs when the firg output constraint in the horizon is active. This
behavior was anticipated in the special cases considered before, since the discrete plant
model has a zero outside the unit circle. Henceto avoid possibleinstability, thisobservation
requires the use of a different approach for constraint handling, or even a system redesign
such that these constraints will not become active during the normal plant operation.
Furthermore, the example shows that all of the possible values of the closed-loop spectral
radius are essentially grouped into various clusters, a fact that can be used to smplify
significantly the elucidation of the stability properties of the constrained system. According
to this observation, the most important information can usually be obtained through
the investigation of only a much smaller subset of constraints than the total number
of possible combinations. For instance in this case, it would be sufficient to evaluate
the stability properties of the system with all input constraints active throughout the
horizon (pg. = 0.90), all output constraints active throughout the horizon (p* = 1.43),
and both sets smultaneously (ps = 1.43), together with the unconstrained information
(P". = 0.33). Thisreguires examining only 4 active sets, instead of the full 1024 cases. This
guideline, although heuristic in nature, can potentially lead to tremendous reductions in
the effort involved in a constrained stability analysis of a predictive controller with linear
time-invariant (LTI) models. It also applies successfully to all of the remaining examples
presented below.
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Example 3.2 We consder now the linear, SISO, open-loop unstable system described by
the discrete transfer function

z+1

CHE) = o vos

Similarly to the previous example, we are also interested in assessing the possible effects
that smple bounds in the input and output variables might have on stability. Figure 3
represents the spectral radius of the resultant closed-loop system, for each possible active
set, when predictive horizons of length m = p =5, and tuning parameters Q, = Q, = 1
are used. Because the model is open-loop unstable, stability problems during closed-loop
operation are possible now when the input saturates. This is indicated by a value of
pn = 171 for all cases where the firg input in the horizon is constrained. As in the
previous example, the clustering of values of the spectral radius is clearly visible in Figure
3. This is further evidence about the applicability of the heuristic rule given before- As
expected, the pointslocated in theline p® = 1 are generated by active output constraints,
since the model has a zero at z = 1. Also with this system, additional stability problems
can result if rate constraints specified for the inputs become active. For example, whenever
arateconstraint is active during thefirst interval in the horizon, the correspondent spectral
radius becomes p,, = 1.71, indicating that the system is behaving essentially as open-loop.
Thissituation requires therefore also special attention to avoid instability of the closed-loop
system.

[Figure 3 about here]

Example 3.3 We examine now the stability properties of MPC applied to the linearized
modd of a FCC (Fluid Catalytic Cracking) unit. This model was obtained by linearization,.
followed by normalization, of the Lee and Kugelman (1973) model around a nominal stable
operating pont, as described in Oliveira and Biegler (1993). This example illustrates
therefore the use of the previous methodology to study the local stability properties of a.
nonlinear model, around a fixed operating point. Using a sampling time T = 0.05 leads.
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to the following discrete model

[0.07362  0.1148  0.01044  0.4390] [.0.2495 0.6030
0.03940 0.1492 0.008940 0.8111 0.01680 0.2505

Tp41 = I + Ug
0.2794 -0.7511 -0.003253 -6.127 -5.785 7.2139
10.04545 0.1559 0.0097/98 0.8384 ] | 0.01157 0.1217

0 10
yk= Tk,
0 0 10

wherex = \Cgc Tx Cyq Trg\;T andu = LIFa Fé;T. Here C. denotesthe coke content in
the spent catalyst, T, thereactor bed temperature, C,q the coke content in theregener ated
catalyst, and T4 is regenerator bed temperature. The manipulated variables are F, (air
flow rate) and F. (catalyst recirculation rate). The tuning parameters selected are Q, =
diag{l,0.1} and Q, = diag{0.01,0.01}. In order to limit the number of possible active
sets, the lengths of the predictive horizons were fixed in this case as m = p = 3, with a
total number of 2'2 = 4096 distinct constraint sets. The spectral radius of the closed-loop
system for each of these possible cases is plotted in Figure 4.

[Figure 4 about here]

Several situationsthat may lead to closed-loop instability can also be observed in this
figure. For instance, if the constraints in thefirst input u\ become active throughout the
predictive horizon, then the closed system has p* = 1.12. Similar behavior occurs if the
second input saturates, leading in this caseto p* = 1.01. The maximum value of spectral
radius (pgs = 4.04) is obtained however when both u*i and y\ are at their bounds. This
behavior with the input constraints could not be easily anticipated just by examining the
unconstrained characteristics of the plant, since the mode is open-loop stable and the
unconstrained closed-loop system has p* = 0.53. Looking now at the possible effects of
the horizon lengths in the constrained stability shows that if m is kept equal to p, then
the horizons need to be at least 7 intervals long to avoid problems associated with the
saturation of u\ (alone), and 16 intervals for case of it2- These requirements are therefore
much more restrictive than the needs for the smple stabilization of the unconstrained
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system. Nevertheless, the stability problem mentioned, that occurs when both u% and y\
are constrained either during thefirst interval, or throughout the entire horizon, cannot be
solved ssimply by increasing the length of the horizons used. If these constraints are active
only during the first interval, it implies that the first two rows of Q, are null, according
to the special cases consdered before; if they are active throughout the entire horizon,
then the null space has zero dimension, and the solution is entirely determined by the
range space component. As a result, the closed-loop spectral radius will be well above
the stability limit in both cases. These active sets require therefore special attention in
the design of the control system, such that they do not occur during normal operation of
the process, or even the use of a different approach for constraint handling, like the soft
constraint formalism described below.

Example 3.4 We center now our attention on the well-known Wood and Berry (1973)
distillation model, represented by the transfer matrix

12.8e«_  -18.9c-*1 [3.8¢"% 1
Gyls) = | |
{(0.0a+1) (1475+D) J LTZ25+ g

(1675+1)  (2L05+1) Q (\_  (1495+)
Using a sampling time T = £eads to the f(f)Howing distrete rﬂét?&' ]

07440 08789 1 0.2467
— | z09419)z7 (z-0.9535) | — | Z0.9351)*°
HGy(z) 05786 1302 | HGq(s) :
[(z-0.9123)2  (z-0.9329)7° L(*-0.9270)z%J

In order to use this model within the Newton framework, the discrete transfer matrix was
firs converted to a balanced state-space realization, using a standard technique based on
a singular-value decomposition of the correspondent Hankel matrix (Chen, 1984). This
resulted in a state-space mode of order 22, One interesting characteristic of this model is
the presence of large time-delays, which introduce a minlmum limit in the length of the.
horizons that can be used for predictive control. Consequently, a large number of possible
constraints need to be examined in a stability analysis of this system. For example, the
present value of T yields a minimum number of 22*1® = 262 x 10° active sets. This number
can be further reduced taking into consideration the special structure of the model. For
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instance, the effect of the current control action will not affect the values of y, until at least
3intervalsin the future. Therefore the constraints where this variable is saturated during
the first 3 intervals in the horizon do not need to be considered, since the correspondent
rows of the dynamic matrix are identically zero. This brings down the minimum number
of sets to 2'°> = 32 x 10°. Even 0, this number is significantly larger than the previous
cases, making this example a good candidate for the use of the heuristic guideline given
before. : '
Table 1 represents the spectral radius of the closed-loop system for-the different active
sets possible where a given variable is saturated throughout the entire horizon. According
to the previous rule, this information provides a good indication of whether stability prob-
lems with hard constraints can be expected with this system. The tuning parameters used
in this case are Q, = diag{l,I}, Q, = diag{0.1,0.1}, together with horizons of length
m =p = 10. Ascan be observed, the closed-loop spectral radiusis now below the stability
limits in all cases. The discrete modd is also open-loop stable, and has either no multi-
variable or individual zeros outside the unit circle. Therefore, under these circumstances,
no significant constrained stability problems are anticipated with the present example.

[Table 1 about herel]

Example 3.5 The last example consists of a laboratory system composed of two tanks
and a connecting delay channel (Borrie, 1986). The continuous model for this system is
described by the trandfer function matrix

) ]52—0.2* 15s
<?(«) = [3(05;13?2* (St_l_)__(;js)] *
(s+3} (s+3)
Here the output variables represent the signals from the flow and pressure transducers,
while the inputs represent the control signals to the upper and lower valves, respectively.
Using a sampling time of T = 0.07 results in the following discrete model

" 0.01478(z+5.409) 0.09136(z-1)
_ Z-0.8106)Z° (z-0.9324)(z-0.8106)
HG(Z) - 0.0(2955g2+5?4092 -0.1894 ] ) (3'13)
. (z-0.8106)z z-0.8106
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Asin thelast example, a balanced state-spacerealization was also formed from the discrete
model, resulting in a state-space model of order 6. We plotted in Figure 5 the spectral
radius of the resultant closed-loop system, for predictive horizons of length 3, with Q, =
diag{l, 1}, Q, = diag{0.1,0.1}. A close look at these results reveals that there axe also
several active setsthat can induce closed-loop instability with the above tuning parameters.
Depending on the amount by which the stability limit is violated, these situations fall
essentially into one of two different categories. '

In thefirst group, we have active setswith p, dightly abovethe stability-limit- (typically . -

less than 1.05). Examples of thisgroup are for instance the constraint sets COO000000CR
(P = 1.004), COOOOCOCAICO2 (Par = 1017), and 010000101001, (A* = 1-041). Similar
to the previous FCC example, the stability properties of these cases can be improved
simply by increasing the lengths of the predictive horizons used* Furthermore, since they
correspond to situations where a given variable is not constrained throughout the horizon,
the likelihood of stability problems caused by their occurrence during normal operation is
certainly low. In the second category, we have constraint sets with p* well above the unit
gpectral radius line (around 5.41). This behavior isfirst observed with the constraint set
OI000AI0IAIO2 and also occurswhenever both of the outputsare saturated smultaneously.
Here possible stability problems need to be consdered more serioudy, since they are not
affected by the tuning parameters used, especially the lengths of the horizons. This is
a consequence of the discrete model having a multivariable zero at z = 5.409, revealed
by constructing the canonical Smith-McMillan form of (3.13). Hence special care is also
needed to ensure that these hard constraints do not occur during normal operation, due
to the incapability of MPC to handle them.

[Figure 5 about here]

4 Strategies for soft constraint handling

In order to remove the dependence of the closed-loop stability of MPC on certain active
sets, several approaches have been proposed. Ricker et al. (1988) and Zafiriou (1991a) first

suggested the use of a quadratic relaxation of the output constraints in the origin of these-

23




problems. Based on this philosophy, the last author derived a soft-constrained stability
analysisfor the QDM C framework, to assess the existence of potential constrained stability
problems. Aswith the hard constrained case, this analysis suffers from the disadvantage of
being combinatorial in the length of the horizon used. More recently Rawlings and Muske
(1991) proposed an alternative approach, based on the use of a fixed state-feedback law.
This approach relies on the removal of the constraints that become infeasible in the begin-
ning of the horizon. By keeping a finite input horizon, and exténding the output horizon
to infinity, it is shown that the resulting control law has guaranteed stability properties
smilar to the LQR framework. Moreover, since the problem has only a finite number of
degrees of freedom, it can still be solved on-line as a quadratic program, provided that
an upper bound on the time for constraint feasibility is used. However this bound is de-
pendent on the controller itsdf, and is difficult to obtain without introducing considerable
conservativeness in the measure itsdf. Additionally, the method does not provide a strict
guarantee that the output constraints will eventually be enforced (especially in the pres-
ence of disturbances), due to the receding nature of MPC. In this group of approaches,
one can also include the treatment of Mayne and Michalska (1990), which consists of the
specification of a final equality constraint for the state vector at the end of the predictive
horizon. This modification can be seen as a particular case of the Rawlings and Muske
approach though, by noting that an infinite weight (equivalent to the specification of a
final state constraint) isjust a special case of the initial condition used for the recursive
solution of the controller gain in the first method. As in the previous approach, guaran-
teed stability properties can be derived, provided that the constraint set remains always
feasible.

In order to generalize the constraint treatment, we need to consider in more detail the
consequences of a potential constraint violation in the process. Depending on their impor -
tance, process constraints can usually be classified as hard (if no violations are allowed at
any time), or soft (where violations might be tolerated to satisfy other objectives). Ex-
amples in the first category include actuator limits, or safety constraints. In the second
category we have e.g., output bounds corresponding to product specifications. While the
original MPC formulation allows the specification of hard constraints, it might be prefer-
able to consider, in some situations, a reformulation of (some of) the original constraints
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j=1,...,n,, such that

{1 j'" output constraint active at either the upper or lower bound, at £y
Tii =

[0 otherwise.

This definition allows us to eliminate the constraints (4.2b, ¢) in the above problem,
by substituting them directly in the objective function. Doing so yields the following
unconstrained problem

min 3* = J; + p{SyU - YN)'R{SU - 1£), (4.3)

where Y& = Y, — Y* is formed from the appropriate elements of Y\ or Y,, depending on
which constraints axe active. This problem can be solved analytically, giving

Unin = (SH(@Qu+ pR)Sm+Q2) T (3818 + QU, + pSRRY;Y)
= KoX¢ + Oy + daw + %ay> (4.4)

where

H, = Sf'f;(Q: + pR)Spm + Q2

Ky = —H;'Sp(Qy + pR)C

dar = H ;IQZUr —
dogp = H'SoQn Yo

dyy = pH;'SRY,.

A close look at the structure of the solution (4.4) reveals the following result:

Theorem 3 The stability characteristics of the relaxed constrained problem (4.2) are
equivalent to the stability of the unconstrained problem (2.3a), with the tuning parameters
Q — Qi+0R Q; Q..

The proof for this theorem is given in the Appendix. This result equates the effects of
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the presence of soft constraints to an equivaent change in the tuning parameters of the
unconstrained system. This corresponds to a more straightforward result than the stability
criterion given by Zafiriou (1991a). Since the term pR depends on the current active s,
different active sets have in generd dissmilar effects on the closed-loop stability. Hence
as in the hard constraint case, a complete stability analyss requires a combinatorial study
of the effects of different constraints, which can be difficult to perform for large horizons.
Because the approach affects only output constraints, the total number of combinations
that need to be considered now isjust 2", though. Asin the hard constraint case, the
stability characteristics of the constrained control law are identical for both boimds, since
the feedback gain K, does not depend on Yp>

In addition, this approach requires knowing how the tuning parameters affect the
closed-loop stability of the unconstrained system, for a wide range of parameter values.
This task can be readily accomplished for LTI systems, where a unique curve of the
closed-loop spectral radius, as a function of the penalty parameter p is needed. However
this information is more difficult to obtain with other types of modes (such as LTV or
nonlinear systems), where it becomes dependent on the initial conditions or on the oper-
ating region considered. The following examples illustrate the possible application of the
anadysis with smple LTI models.

Example 4.1 Consder the mode defined in Example 3.1. Using predictive horizons of

length m = p = 3, and nomina tuning parameters Q, = 1, Q, = 0.01, we plotted in
Figure 6 the closed-loop spectral radius as a function of the penalty parameter p, for al
possble active sets. In addition to the unconstrained information, we have 2° — 1 = 7
curves to check.

[Figure 6 about here]

From Figure 6, we observe that closed-loop stability is guaranteed for Q\ < 41 (approx-
imately). This limit corresponds aso to the case where the output constraint isjust active
inthe first interval of the horizon. Therefore this implies that if the output constraints for
this example are relaxed as 0ft constraints, the penalty parameter used must obey p < 40
in order to avoid closed-loop instability with some of the present active sets.
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Example 4.2 (Rawlings and Muske, 1991) We consder now the discrete, open-loop
stable realization

Thkpr = !4/3 -2/3:| Zr + [1] Uy, (4.59)
1 0 G
vk = [-2/3 1] X, (4.5b)

obtained from the continuous system

42 Ils
G = 52449+ 42’

T
with a sampling time T = 0.1. We assume a initial condition Xo = [3 3] and output
constraints \yk\ < 0.5, or equivalently for the state-space representation

-2/3 1 05

[ 213 - 1} - {0.5] '
This example exhibits also stability problems when we try to enforce the output bounds
given, as hard constraints. For example, since the initial condition violates the output
constraint, from (4.5) we need VLQ > 1.75 to satisfy this constraint at t\. However this
condition causes also the state vector to increase in norm at t\. This implies in turn
that u\ > wp, in order to keep insde the feagble region. The input and state sequences
will consequently increase in magnitude, in an unbounded form. Furthermore,-including
maximum bounds in the input, in the form \uk\ < Umex will only make the constrained
problem infeasible at some point in the future. Like most of the previous examples, this
effect is independent of the tuning parameters used, since the control solution is always
obtained from the range space of the constraints.

Using a quadratic penalty relaxation of the output constraints, with horizons of length

5, leads to 2° — 1 = 31 possible active sets to consider. For Q, = Qu = 1, we plotted in
Figure 7 the effects of the penalty parameter p in the closed-loop spectral radius, for all
possible constraint combinations. The stability limit isin thiscase Q\ < 3.1, corresponding
again to the output congtraint being active just during the firg interval of the horizon.
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[Figure 7 about here)]

Figure 8 illustrates the control profiles obtained with this constraint relaxation strat-
egy. In dal cases except with the highest vaue of p the system is stabilized, athough this
requires the output constraint to be violated during the first two intervals. To veify the
conservativeness of the above stability limit, we tried to obtain numericaly the minimum
vaue of p that would make the closed-loop system unstable, from the given initial con-
ditions. The vaue found in Figure 8 is pgtica £ [29.1,29.2], which is higher than the
theoretical limit of p with al constraints active, respectively pm* = 21.2. The discrep-
ancy between these values is due to the small value of X used, since the spectral radius
provides only a sufficent condition for stability. This difference can be decreased smply
by increasing the norm of X, because the feedback and bias terms in the control law have
roughly opposite effects in the magnitude of {/, in the present case.

[Figure 8 about here]

As mentioned previoudy, one of the main disadvantages of the quadratic penalty for-
mulation is that, even for LTI systems, the determination of the corresponding stability
limits becomes a non-trivial task for large predictive horizons. Instead of explicitly enu-
merating al possible combinations of constraints, the evaluation of these limits would be
faster if the problem was formulated as an equivalent optimization problem. However the
resultant problem is difficult to solve, because the spectral radius is in genera a nonlin-
ear, nonconvex, and nondifferentiable function of the parameter p. Some methods under
development for the constrained robustness analysis of LTI systems (Balakrishnan and
Boyd, 1991; Young et al., 1992) show however some promise in this situation. Based on
the use of abranch and bound algorithm, these methods are able to refine successvely the
estimates provided by approximate bounds, dlowing the attention to be centered quickly
in the regions of the parameter space that are of more importance. Their use for the
determination of the stability limits of the quadratic penalty remains a topic of further
research.

The above result can dso be generdized to the case where a mixture of both hard
and soft constraints are consdered smultaneoudly. In order to do that, we define first the
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vectors Yh and Y; as the components of the augmented output vector Y for which hard
and soft constraints are specified, respectively. In a set sense, we assume that YhUY; =Y,
and Yh Pl Ys = 0. Using a smilar line of reasoning to the previous analysis, it is possible
to derive the following result:

Theorem 4 Consider the constrained quadratic penalty formulation, with a mixture of
hard and soft output constraints

Min  Jzemix = (E* = SaU)TCN(E* - SU) + (U- U,fQy(U - U,) + pe'e

(4.6a)

st. UisU<U, (4.6b)
Yih<S Yh< Yun (4.60)
Yise<Ya<Ypya + € (4.6d)
€=0. (4.6e)

Tie stability properties of the mixed constrained problem (4.6) are equivalent to the
stability of the correspondent hard constrained only problem (4.6a-c) and e = 0, with the
tuning parameters Q\ <— Q\ + pR, Q\ <— Q-

The proof for this theorem is given in the Appendix. It allows the stability properties
of a predictive problem with mixed types of constraints to be related to the stability
of the correspondent hard constrained only problem, for which the analysis presented in
Section 3 can be applied. Using these results, it istherefore possible to perform a stability
analysis of linear models in the presence of a large variety of constraints. The method
provides also a systematic mechanism for the choice of appropriate values for the tuning
parametersin order to avoid most of the problems described in the examples of Section 3.
Also, although the previous formulation was targeted to the use of soft output constraints,
the same approach can be used to treat input constraints, provided that the bounds that
these represent can be relaxed. The analysis of this case using the methodology described
previoudly is straightforward. ‘
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4.2 Exact penalty treatment

One of the properties of the quadratic penalty mentioned previoudy is that for finite
values of p, the original output constraints may not be satisfied, which translates to non-
zero values of e. This means that a violation of the original constraints is unavoidable with
this formulation. Replacing the penalty term by the I\ (exact) penalty function, eliminates
however the necessity of increasing the penalty parameter to infinity to recover the original
constrained solution. A sufficient condition for this is to have p > |Ajoo, where A is the
vector of Lagrange multipliers of the constraints in the original problem (Fletcher, 1987).
This formulation allows therefore a better control of the errors resultant from constraint
softening.

Using the I\ penalty and starting by ignoring the presence of input constraints, allows
us to express the predictive problem (2.2) as

min J'z = h + r' max{0, Y - Yg} + r" max{0, -Y + F/}, (4.7)

with J<i given by (2.3a). Herer € R"°P = [p- X p]. isavector of penalty parameters. The
penalty termsin (4.7) can berearranged, leading to the equivalent constrained formulation

min Jb=h+r'e (4.83)
st. Yi-e<y<yiite (4.8b)
6>0, (4.8¢)

with € keeping its original definition from Section 4.1. The solution of (4.8) can also be
obtained in analytical form, and expressed by

Umin = (SnQ15m
= Kzi + dyp+dr +<ky, (4.9
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where K, dy, and dr are defined by (2.5b-d), and
diy = —(Sp@1Sm + Q2) " SpA/2-

The derivation of (4.9) is presented in the Appendix. Here Ai is a vector of Lagrange
multipliers for the active constraints. The main difference with respect to the quadratic
penalty treatment is that the multiplier Ai replaces now the penalty parameter r in the
feedback law. The presence of each active set introduces consequently a different bias term
dby in the control law, dependent on the correspondent Lagrange multipliers. It is dso
noted in the Appendix that |Aijoo < p, which imposes an upper bound on the magnitude
of the term d*. We therefore have the following result:

Property 1 The control law (4.9), for the exact penalty relaxation of the output con-
strained control problem with afinitep, hasidentical stability properties to the corre-
spondingunconstrainedcontrollaw(2.3a).

This result is immediately established using the boundedness properties of de, dr
and d\yy, and noting that the feedback term is identica to the unconstrained case. Asa
consequence, the approach becomes consderably smpler to apply, especialy with time-
varying and nonlinear systems, when compared with the previous quadratic constraint
relaxation strategy. Moreover, since it is possible to use arbitrary vaues for the penalty
parameter p without changing the stability properties of the formulation, the origina
constrained solution can be approximated much closer, or even recovered for sufficiently
large values of p, provided that the origind hard constrained problem is stable. The
following example illustrates this behavior.

Example 4.3 Condder again the linearized modd of a FCC unit described in Example
3.3. The previous anaysis indicated that stability problems can occur in the presence of
hard constraints, if both u, and Y\ saturate smultaneoudy. This situation ,Ls Illustrated
in Figure 9, where we plotted the closed-loop response for yg, = [0.3 02] , withm =
p = 20, using an initial condition 7o = 0.2793 03000 0.0564 0.3200J , and remaining
parameters identical to the previous example. The hard constraints are in this case u<i <
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—00397 and t/i < 0.3. As can be observed, the controller starts by bringing y, closer to its
set-point, which induces the appearance of oscillation, since both of the hard constraints
become active. This causes the ouputs to move away from the set-points after t = 0.25
(because of the finite accuracy used in the computation of the solution). The outputs
converge then very dowly to their respective reference vaues, indicating that this problem
might occur again in the future.

[Figure 9 about here]

The correspondent results using a I\ penalty relaxation of the output constraint are
shown in Figure 4.3. In contrast with the hard constraint situation, the profiles do not
show any visible oscillation, and the desired set-points are reached at the end of the first
interval. This example illustrates therefore the ease of use of the I\ penalty formulation.
In contrast with the quadratic penalty formulation, no additional stability information is
required now to choose the vaue of p (except knowing that the input only constrained
system is dso stabilized by the present tuning parameters).

[Figure JO about here]

A particular characteristic of this formulation is that in certain situations, as in the
next example, large values of p can produce undesirable steady-state offsets in the closed-
loop response, due to the receding nature of the MPC law. These offsats correspond aso to
aviolation of the original constraints, but they can be eliminated smply by increasing the
length of predictive horizon used. More precisdly, this property can be stated as follows:

Property 2 The control law (4.9), correspondent to the exact penalty relaxation of the
output constrained control problem (4.8), exhibits no steady-state offsets for a perfect
model, and any finite value of the penalty parameter p, when the length of the output
predictivehorizon goestoin& nity.

This property can be demonstrated by noting that with an infinite output horizon, the
objective function (4.88) can only be made finite if the last input in the control profile
is able to satisfy the limit of the set-point trajectory f;,, a some point in the output
horizon. Therefore, as long as the set-point is feasble and reachable, the optimal solution
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will have no permanent constraint violation, since the existence of at least one feasble
point corresponding to a finite objective is guaranteed in this case. Hence by choosing
a aufficiently large output horizon, it becomes possible to use any value of p, in order
to limit the error resultant from constraint relaxation. An additional way of eliminating
these offsets is the use of integral action in the controller, eg. as considered by Olivera
and Biegler (1993). The following example illustrates this behavior with different horizon
lengths.

Example 4.4 Consder again the system of Example 4.2. Using the same conditions as
in the previous case, we plotted the control profiles correspondent to predictive horizons
of length m = p = 5 in figure 11. The closed-loop system is stable for all values of the
penalty parameter, although high values of p produce a steady-state offset, as mentioned.
However, when the length of the predictive horizon is increased to 10 intervals (in Figure
12), this problem disappears, and all curves reach now the desired set-point.

[Figure 11 about here]
[Figure 12 about here]

Similar to the quadratic penalty case, the stability properties with a mixture of both
hard and soft constraints can be related back to the stability of the correspondent hard
constrained only system. This is consdered in the following theorem.

Theorem 5 Consider the constrained I\ penalty formulation, with a mixture ofhard and
soft output constraints

P Jowix = (B* - SNUQIIE* - §,U) + (U- U)'QqU - Uy) + r'e

(4.10a)

st. UisU<U, (4.10b)
Yin < Yh < Yen (4.10¢)
Yiee<Y<Y,s + € (4.10d)
e=0. (4.10e)
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Tie stability properties of the mixed constrained problem (4.10) are exactly identical to
the stability of the correspondent hard constrained only problem (4.10a-c), with e = 0.

The proof for this theorem can also be found in the Appendix. The identical sta-
bility properties of the I\ penalty to the hard constraint only case make therefore the
exact penalty approach considerably easer to use than the quadratic penalty formulation,
since this approach doesn't require the knowledge of how certain changes in the tuning
parameters affect the stability of the correspondent constrained system.

4.3 Constraint relaxation using other penalty formulations

The marked difference in the results derived in the previous sections for the two penalty
formulations considered, can be seen essentially as a consequence of the use of quadratic
versus linear penalty terms in the objective. The results obtained in this last case can
therefore be expected to hold true for other penalty formulations which are linear in e,
such as the case of the <» norm. In this case the soft constraint formulation can be
expressed as

min  Jy. = J2 + pe

st. Yt-ee<Y<Y, +ee

ex0,

HP
with£=1[l 1 e« | ,andeG R+ now. A smilar analysisto the one developed in the

previous section shows that Properties 1 and 2, together with Theorem 5 also apply in the
present case. The main difference now is the bound for the Lagrange multiplier Ai, which
can be shown to satisfy |Ai|li < p instead. Otherwise, the control law is also given by
(4.9). The performance of this formulation with the model considered in the Example 4.4
isillustrated in Figure 13, with horizons of length m = p = 10, and identical conditions to
the previous case. The behavior showed is similar to the one obtained previousy with the
li penalty (including the appearance of steady-state offsets with small horizons). However
since the infinity norm only weights the maximum constraint violation observed in the
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horizon, changes in p will induce now essentially the opposite effect in the characteristics
of the closed-loop response. For instance making p larger will produce a lower peak,
resulting in a dower output response, which stays outside the constraint bounds longer.
This is a consequence of the inverse response nature of the system. We can also note
that, contrary to the behavior of this system with the h penalty, all profiles in Figure 13,
for p~ O, have now a peak of smaller amplitude than the corresponding unconstrained
response.

[Figure 13 about here]

5 Conclusions

This paper presented a systematic analysis of the stability properties of MPC, in the
presence of both hard and soft constraints. A perspective smilar to treatment of Zafiriou
(1990; 1991a, b) was used, which handles the nonlinearities introduced by the presence
of active constraints through separate consideration of each different active set. Some
important characteristics of the predictive control law were revealed here for the first time,
These include the derivation of an explicit closed form expression for the optimal sol Qtion of
the predictive problem in the presence of both hard and mixed types of constraints, as well
as showing that active output constraints can introduce additional feedback terms in the
constrained controller. As proposed above, the algorithm relies on a range and null space
decomposition of the matrix of hard constraints, which is well suited for numerical (large
scale) computation, and can be implemented in a numerically robust form, e.g. through
a QR decomposition. The examples considered show also that, in most cases, the more
important stability information relative to the presence of hard constraints can be derived
by considering just a significantly smaller subset of constraints than the total number of
possible combinations. This allows a considerable reduction in the effort required for a
constrained stability analysis of a linear model.

In addition to providing tools for systematic diagnosis of possible stability problems
with hard constraints, this paper presented some alter native constraint handling method-
ologies that enable these problems to be avoided. This is done through a relaxation of
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the problematic hard congtraints, usng a penalty formulation. This approach is most
useful for output constraints, which represent frequently control objectives, rather than
rigid limitsin the process.

Starting with the case of a quadratic penalty, we showed that the stability prbperti&
with soft constraints can be related to the stability of the equivalent system with these
constraints removed, by a smple change in the tuning parameters used. This corresponds
in general to a finite maximum value of the penalty parameter that can be tolerated for
stability. Also, this approach still suffers from the disadvantage of being combinatorial in
the length of the predictive horizon used. The exact (or h) penalty eliminates this last
requirement, leading to a constrained formulation that has the same stability properties
as in the absence of the soft constraints. Because of the nature of the problem, this last
result extends also to other penalty formulationswhich arelinear in the constraint violation
term. This is especially true with the case of the Zom norm, for which a stronger bound
for the Lagrange multipliers was shown to exist. This characteristic, together with the
requirement of a finite value of the penalty parameter to match the solution of the original.
problem, simplifies considerably the use of soft constraints, especially for time-varying and
nonlinear systems. We believe that the use of this exact penalty treatment has profound
consequences on the design of constrained controllers, since it opens the possibility of
using essentially all of the available tools for constrained control in this situation as well
(e.g., robustness, etc.). This observation is particular pertinent to LTI models, for which
a multitude of design methods is currently available.
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Appendix
Proof of Theorem 3. The optimality conditions for (4.2) can be written as

£=J, +pe'e + X'y(SyU -Yr-e) + \J(-SpU + Yi*q - ©) - Xje

WWC = 2ASIQSn + QU - tZQXET - 2Q.U, + <A, - A) = 0 (A.la)

V.E = 2pe-A,-A,-A2, =0 (A.lb)

Asie; = 0 (Alc)

Aai(SmU =Yy —€)i =0 (A.1d)

Mi(~SpU + Y3 —€); =0 (A.le)

Ay 20, A«=0, A,2=0, (A.1f)

with i = 1,... ,nop. Assuming distinct upper and lower output bounds, the following

combinations of values for the multipliers are possible:

1. A, = A=A, =0, Vi =1,... np. This corresponds to the unconstrained case

6=0).

2. Xi=\Ww=0, Xj >0. From (A.lIc), thisimplies that e = 0. However from (A.lb),
this implies that X, + A% < 0, which contradicts the initial assu_mption. Hence this

combination of multipliers is not possible.

3. Xy >0, Xu=0, X;i =0. From (A.lb), thisimpliesthat A* = 2/9%-, and consequently
g > 0. In this case we have from (4.2b), (S\U)—— Y~ + ¢, and (4.3) can be used

in this case with Ri ~ 0, and YEq = Yy,.

4. X;i =0, Ak >0, Xoai =0. From (A.lb), thisimplies that Xu = 2pe® and consequently
g > 0. In this case we have from (4.2b), (S\U)i = Y* - ¢, and (4.3) can be used

aso in this case with Ri * O, and Y = Y* ;.
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5. Xy > 0, Xu =0, A > 0. FV/an (A.lc), g = 0, and (A.Ib) gives X, + X5 = 0,
which is inconsistent with the original assumption. This combination of multipliers
is therefore not possible.

6. X =0, Xu> 0, Atz > 0. Similarly to case 5, thisleads to A + Xy{ = 0, which isaso
inconsistent with the original assumption. Hence this combination of multipliers is
not possible.

Hence (4.4) can be used with all consistent combinations of multipliers. This leads to

Umin = H; Y (SEQLE™ + QIUr + pSLRY;w)
= H' (SpQi(Yep - O + QaU; + pSIR(Y;, - V)
= H' (~SE(Q1 +pR)Y* +ScQiY* +Q,U, +pSHRYy),

and therefore

Amin = (SMQI + pRI"M + Q2) V"' AMQI 'k PRIC Tk + SpQ1Yp + QaUs + pSERY) .
(A.2)

Comparing (A.2) with (2.4), we note that the feedback term becomes identical in both
cases, iIf we replace Q\ in (2.4) by Qi + pR. Therefore the stability properties of the
relaxed controller are identical to the equivalent unconstrained controller with the new
tuning parameters. .

Proof of Theorem 4. Similar to the hard constraint stability analysis of Section 3, we
start by assuming that the present hard active set is known, and given by (3.1). Also, asin
the soft-constrained only case, we define R = diag{ri}, i = 1,... ,p, with r» = diag{ry},
j=1,...,n,, such that?

1 j'" output soft constraint active at either bound, at tk+%
Tis =
10 otherwise.

“Clearly, values of R different of zero will only occur now with the elements of Y,.
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This definition allows us to eliminate the soft constraints (4.6d) in the mixed formulation,
by substituting them directly in the objective function. Doing so yields the following hard
constrained praoblem |

min  JM A = J* + p(SyU - YE)'R(SWU - Y&)
u
st. ru=u%
MU = YR - YRR

This problem can now be treated using the hard-constrained approach described in Section
3. Since the hard constraints are identical in both cases, we will have the same bases for
the range and null subspaces Q, and Q, in both situations, as well as the same range space
solution Uy, given by (3.7). Prom (4.6a), the objective can be expressed as

J2a,mix{U) = constant + 2a'sU + U'HgU, (A.3)

with a. = -SIQ*"E* - Q.U; - pS&RY" H, = S*(Qi + pR)S;, + Q.. The first order
coefficient can also be expressed as

a = -SIQ«(Y* -Y)- QU, - pSRR(Y, -Y")
= SM + pR)V - SfcQiYv- QU - pSARY*. (AA)

Replacing (3.5) in (A.3) gives
J2a,n™(U;) = constant + 2ajQU, + 2U,"$HQU, + U,Q"HQ,Us.
Solving VJ2a,mix(U,) =0 leads to

U, = -{Q"HQ)'Q'(as + H.QuUy). (A.5)




Equations (3.7) and (A.5) can finally be combined to give the analytical solution of the
mixed constrained formulation. Replacing these equations in (3.5) gives

U= KXk + 4,Sp + Oy + dpy + dsy, (A.6)
where we have defined
Hpa = Q?HaQ (A7)
Ba = QIH;aiQTz . (A-8)
K. = -(/n<m - BaH2)QK,C? - BgS{Qi + pR)C* (A.9)
doy = (Ingm - BHIQK,Ys® + pB,S | RY;, (A.10)

with df,sp, dhr and dhy defined by (3.11d-f). Comparing now (A.6) with (3.10), it is
possible to observe that the feedback term becomes identical in both cases if we replace
Qi in (3.10) by Qi + pR. Therefore the stability properties of the mixed formulation are
equivalent to the stability of the correspondent hard constraint only formulation, with the
new tuning parameters. D

Derivation of (4.9). We start with the optimality conditions of (4.8)

£=J,+, €+ XI(Y* +SaU - Yy -6 +\J{-Y* -SU+Y, -6 - Aje

Vol =V + ST (A — \)

=2{9QS, + QU - 2SEQIE* - 2Q.U, + <FHA, - A) =0 A1)
ViE=r-\,-\i-A,=0 (A.11b)

Aze; =0 (A.11c)

Ai(Y =Yy —€); =0 (A.11d)

Xni-Y + Yt-gtr O (A.lle)

Aui=0, Ax=0, A3=0, (A.11)
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withi =1,... ,np. From (A.llb,f) we conclude immediately that

|Ajoo < P, |A/loo < P-

Assuming distinct upper and lower output bounds, together with the non-degenerancy of
the problem?, the following combinations of values for the multipliers need to be considered:

1. Xy=Xi=A,=0,Vz=1,... ,np. Thisisinconsistent with (A.llb,f), and therefore
this combination of multipliers is not possible.

2. Xyl = Xu =0, Xz > 0. Prom (A.llc), thisimplies that e, = 0, and from (A.llb) we
have Ay = p. This corresponds therefore to the unconstrained case.

3. At >0, Xu=0, A =0. Prom (A.llc), thisimplies that e, > 0, and we will have
some constraint violation. Prom (A.llb), we obtain A» = p. In this case (A.lla)
becomes

WC = V3 + <¥AX = 0, (A.12)

with Ait = Al

4. Xyi =0, At >0, Aj =0. Prom (A.llc), thisimplies that e > 0, and we will have
some constraint violation. Prom (A.llb), we obtain Xu = p. In this case (A.12)
applieswithAH = —XU.

5 Xi >0, Xy =0, Az >0. FVam (A.llc), g = 0. Also from (A.lld), Y;- = Yy, which
corresponds to the exact solution of the original constrained problem. In this case
(A.12) is dso valid, with A® = A} < p.

6. Xyl =0, Xu > 0, Ay > 0. Similarly to case 5, this corresponds to the exact solution
of the original constrained problem, now at the lower bound. Here (A.12) is aso
valid with Xu = —A* <p.

3Le., there axe no redundant constraints (either linearly dependent, or with the same solution as the
unconstrained formulation).
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Hence (A.12) is aso valid for all consistent combinations of constraints. Ai G R"°P can
now be defined as

0 ifAui:Xu:O
/\h’: Ki ifAui>0 t i=1,---,n0p_
Ay ITA»>0

Solving (A.12) for U gives findly
Uin = (Sx@Q18m + Q2) " (SEQ1E* + Q:U, -ShAi/2).
D

Proof of Theorem 5. As previoudly, we start by assuming that the present hard active
set is known, and given by (3.1). Defining Ys = Y* +SU (i.e., the outputs for which
soft constraints are specified), the optimality conditions of (4.10) can be written as

C=J+r e+ AL (Y +SmlU -Yus®)  + ALYy — SmsU + Vi€
+ ALIOU = Ug) + A (SU - Yoo + V™) — AJe

VoL = Vo + (1) Ay + (S2) Ay + Shg(Agu - Xs1) = 0 (A.133)
Vl=r-Agq-Xd-A;=0 (A.13b)

Agi€; = O (A.13¢)

Aoui(Yo — Yus —€)i =0 (A.13d)

Ati(=Y, + Y, —€); =0 (A.13¢)

Aeu =0, X,i =0, Ax=0, (A.13f)
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with i = 1,... , ngs, Where ngs represents the total number of output variables for which
soft constraints are specified. Prom (A.13b,f) it is also possible to conclude that

IAJoo < P, \Kl\oo < P- (A.14)

Considering now the possible values for the multipliers A®, AJ and A2 in a smilar fashion
to the derivation of (4.9), shows that (A.13a) can also be expressed in the form

VoL = Vh + (%) e + (M) Kny + 5T = 0, (A.15)

by defining in this case

0 if Agu,l = AsZ)i =0
A= (Xl ifAsu»>0 , =1,
X, if Aagi>0

Comparing (A.15) with the optimality conditions of the hard-constraint only case, it is
possible to observe that the the only difference between these two cases is the presence
of the additional bias term S"MAi in (A.15). Since this term doesn't affect the feedback
gain and is bounded in magnitude according to (A.14), the mixed constraint formulation
possesses therefore identical stability properties to the correspondent hard constraint only
formulation. .
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List of Tables

1  Closed-loop spectral radius of Example 3.4 for the cases where a given vari-
able is condtrained throughout the horizon. .~~~ .~ .~ . .
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Congtrained variables

V2 W | U Ui Psr
no no|no no |0961
no no| no yes |0.947
no no|lyes no |} 0.953
no no|yes yes [ 0.953
no yesyno no }0.961
no yes| no yes {0942
no yesjyes no | 0.953
no yestyes yes |0.942
yes nofno no {0961
yes no{no yes | 0.953
yes no|yes no [ 0.953
yes no|yes vyes | 0.953
yes yes| no no {0961
yes yes| no yes | 0.953
yes yes|yes no | 0.961
yes yes|yes yes | 0.953

Table 1: Closed-loop spectral radius of Example 3.4 for the cases where a given variable
Is constrained throughout the horizon.
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