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Abstract

This paper reviews the effects of the presence of hard constraints in the stabil-

ity of model predictive control (MPC). Assuming a fixed active set, we show that

the optimal solution can be expressed in a general state-feedback closed form. This

corresponds to a piecewise linear controller, for the linear model case. The changes

introduced in the original unconstrained solution by the active constraints, as well

as other eflFects related to the loss of degrees of freedom are clearly depicted in the

current analysis. In addition to modifications in the unconstrained feedback gain,

we show that the presence of active output constraints can introduce extra feedback

terms in the predictive controller. This can lead to instability of the constrained

closed-loop system with certain active sets, independently of the choice of tuning

parameters used. To cope with these problems and extend the constraint handling

capabilities of MPC, we introduce the possibility of considering soft constraints.

Here we compare the use of the I2 (quadratic), l\ (exact), and Zoo-norm penalty

formulations. The analysis reveals a strong similarity between the constrained and
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unconstrained control laws, which allows a direct extrapolation of the unconstrained

tuning guidelines to the constrained case. In particular we show that the exact

penalty treatment has identical stability characteristics to the correspondent uncon-

strained case, and therefore seems well suited for general soft constraint handling,

even with nonlinear models. These extensions are included in the previously devel-

oped Newton control framework, allowing the use of the approach within a consistent

framework for both linear and nonlinear process models, and increasing the scope

of application of the method. Simple process examples are given to illustrate the

capabilities of the proposed approaches.

1 Introduction

An important aspect in the application of model predictive control (MPC) is the effect

of the presence of constraints in the stability of the resultant closed-loop system. Recent

work by Zafiriou (1990-91) has shown this to be a significant issue, because of the fre-

quency with which saturation can occur during routine operation. Considering the QDMC

framework, he was able to identify several situations where the decrease in the degrees of

freedom available to influence the process masked the effect of the tuning parameters for

stabilization, rendering the constrained system unstable. A study of these effects becomes

therefore an important issue in the design of constrained control systems.

Presently, the design of constrained predictive controllers is most often an iterative

process. Typically, it starts with a candidate set of tuning parameters, representing an ac-

ceptable unconstrained design, obtained by taking into consideration e.g., the performance

and robustness of the unconstrained system. The closed-loop performance of this controller

then needs to be evaluated in the presence of the constraints which can potentially be-

come active during the operation of the process. Depending on the results obtained, it

might be necessary to adjust the initial parameters in order to achieve a good overall be-

havior with all possible active sets. These changes require in turn a re-evaluation of the

modified design according to the criteria used in the first step. Hence it is essential in a

good constrained design methodology to have the components to: i) assess the closed-loop

performance of the process, especially its stability properties, in the presence of various



types of constraints; ii) a systematic procedure for adjusting the tuning parameters, or if

necessary adapt the constraint handling methodology used, in order to provide a good,

global, closed-loop performance. Both of these issues are addressed in detail throughout

this paper.

We start by presenting a comprehensive treatment of the effects of the presence of

active constraints in the stability of the predictive control. This study is motivated by

the pioneering work of Zafiriou (1990; 1991a, b) in this area. Similar to his analysis,

the nonlinearities introduced by the presence of active constraints are handled through

separate consideration of each different active set. A disadvantage of this approach is that

a complete analysis requires checking all possible combinations of constraints, in order

to guarantee global properties. This is essentially a combinatorial task, which introduces

considerable difficulties in the analysis of predictive horizons of the size usually considered

in practice. However, as described below, much of the same information can be derived

from a significantly smaller subset of constraints. The present analysis also shows that

the optimal solution can be expressed in a general state-feedback closed form, similar

to the unconstrained case. Here the modifications introduced in the original solution by

the presence of constraints are clearly displayed. Even so, a change in the adjustable

parameters of the controller might not be sufficient to prevent, in the worst case, the

instability of the closed-loop system with certain active sets, as illustrated in the examples

included.

To deal with the stability problems caused by the presence of active hard constraints, we

introduce in this work a constraint relaxation scheme based on the use of penalty functions.

This feature is also created as an extension of the previously developed Newton control

framework (Li and Biegler, 1989; Oliveira and Biegler, 1993), allowing a straightforward

generalization of these results to the nonlinear case, because of the uniform treatment of

both types of systems provided by the formalism.

This paper is organized as follows; a brief review of the Newton control formulation is

given in Section 2. This is followed by the stability analysis of MPC in the presence of

hard constraints, in Section 3. Assuming a fixed active set, we first show that the optimal

input profile can be expressed in a general state-feedback form. In addition to changes

in the unconstrained feedback structure, we demonstrate that the presence of active out-



put constraints can introduce extra feedback terms in the predictive controller. Therefore

together with a decrease in the degrees of freedom available, this can lead to stability

problems of the constrained system with certain active sets, independently of the choice

of tuning parameters used. A constraint relaxation treatment capable of preventing the

occurrence of these problems is introduced in Section 4. Here we address first the com-

mon case of a quadratic penalty objective, for which simpler stability results are derived,

compared to the treatment of Zafiriou (1991a). These relate directly the stability of the

relaxed constrained problem to an equivalent modification in the tuning parameters of the

original unconstrained problem. We show that in general only a maximum finite value

of the penalty parameter can be tolerated for stability. Since the stability characteristics

of the relaxed problem are still dependent on the current active set, this approach suffers

from the same disadvantage as the hard constraint analysis, of being combinatorial with

the length of the predictive horizon used.

To eliminate this last requirement we then introduce an alternative soft constraint

treatment, that uses the l\ or Zoo-norm penalty formulations. In this case, we demonstrate

that the resultant constrained system has identical stability properties to the correspond-

ing unconstrained situation. Moreover if the original hard constrained controller is stable,

the l\ strategy requires only a finite penalty parameter (larger than the norm of the Kuhn-

Tucker multipliers) to match the solution of the original problem, in contrast with the

quadratic penalty case which requires a parameter value of infinity. This characteristic

allows much better control of the errors resulting from constraint relaxation, and simpli-

fies considerably the use of the soft constraints, especially for nonlinear systems. We also

discuss in this section the possibility of occurrence of steady-state oflfeets for large values of

the penalty parameter and short horizons (due to the receding nature of the control law),

together with sufficient conditions for their elimination. The use of alternative penalty

formulations and their possible effects on the closed-loop stability properties are also con-

sidered here. Finally, these developments are illustrated with application to several process

examples.



2 Preliminary definitions

This section presents a short overview of the Newton control formulation used in the

analysis of the stability properties of MPC in the next section; a more complete description

can be found in Oliveira and Biegler (1993). The analysis presented here is based on the

control law expressed in magnitude form, where the independent variable is U. This

formulation is particularly convenient for studying the stability properties of the resultant

controller.

We denote by u G R™1 the vector of system inputs (manipulations), x G Rn* the vector

of state variables, y G Rn° the vector of system outputs, 6 € R/1* a vector of system

parameters, and d G Hnd the vector of process disturbances. The lengths of the input and

output predictive horizons are m and p, respectively, with m<p. The identity matrix of

order n is denoted here by /„ e Rnxn . We start by defining a discrete system operator as

Xk = Sfc+i = X(tk + T; tky Z*, uk, d\ 0),

where we assume that the transition function x is continuous and differentiable with respect

to all of its arguments. This operator can be obtained from a continuous plant model,

provided that it satisfies the proper Lipschitz continuity conditions (Economou, 1985), or

by direct application of discrete identification techniques to the system under consideration.

In a similar form, we denote the operator induced by the control algorithm generically by

Ufc+i = ip(xk,uk,yrk)y where yrk corresponds to the value of an external reference input

(set-point), specified over a finite horizon (also in discrete time). Thus, together with the

previous plant model, an augmented closed-loop system can be defined as

\zkyyrk)= \ I , (2.1)
\ )

where we have omited the dependence of z on T, d and 0 for clarity of notation.

More specifically, the selection of the control law in the Newton framework is based on

a quadratic performance index in a moving horizon of length p, which corresponds to the



solution of the following constrained quadratic programming (QP) problem

mm J2 = (VSP - Y)rQl(Ysp -

s.t. Y = Y'+ SmU

Ut<U <UU

Yt<Y< Yu.

- Ur)
rQ2(U - Ur) (2.2a)

(2.2b)

(2.2c)

(2.2d)

The solution of this QP corresponds to a Newton step towards the solution of the predictive

control problem for a nonlinear process model, or the optimal profile in the linear case.

Here Qx = diag{(?yi} € R ^ * ^ * and Q2 = diag{Qui} € R^™)*^™) axe adjustable

weights in the objective. Also, capital letters E, A", Y and U are used throughout the

paper to denote augmented vectors defined for the entire predictive horizon. Thus for

example, U corresponds to the augmented input vector

nm F T T T 1 T

~"~" [ k k-\-l k-\-m—1J

The vector Ur defines a reference trajectory fot the inputs, similar to the role of Y^ for

the outputs. Sm is the system dynamic matrix. This matrix can be formed directly from a

linear process model or obtained from a sensitivity analysis of a nonlinear model around a

nominal trajectory U (Oliveira and Biegler, 1993). It generates in the second case a linear

time-varying (LTV) approximation of the original process model, as part of the Newton

iteration. Y* corresponds to the system response for a zero input. For linear models, Y*

can be expressed directly in terms of the initial conditions and sensitivity coefficients, as

= C*xk =

. Cx+P (n j - i

Xk-



Replacing (2.2b) directly in the objective, leads to the following formulation

min J2 = {ET - <Sm£/)TQi(£* - SmU) + (U - Ur)
TQ2(U - Ur) (2.3a)

s.t. Ui<U <UU (2.3b)

Yu < SmU < Y;d, (2.3c)

where we have defined E* = Ysp - Y\ Yfd = Yt - Y\ and Y& = YU- Y*.

For the unconstrained case, the analytical solution of the previous problem is

U = {ftQiSm + ( ? 2 ) - 1 ( ^ Q 1 ^ + Q2Ur) ^Kxt + d^ + dr, (2.4)

where

+ Q2 (2.5a)

= -H-lSlQxC* (2.5b)

= fr1^!^ (2.5c)

= H-lSlQ2Ur. (2.6d)

In the above solution, /f corresponds to a state feedback term, while dgp and dr can be

seen as additional bias terms, denoting the fact that nonzero reference values are used for

V̂ p and Ur. Clearly, only K contributes to the stability of the closed-loop system, since the

remaining terms are fixed and bounded. The receding nature of MPC also requires that

only the first move in computed profile be implemented at a time, with the calculation

repeated at the next sampling point, using any additional information available. This

implies that the implemented manipulation at t* is Uk = f/m 0 • • • Oj C/, where U is

given by the solution of either (2.3) or (2.4).



3 Effect of active hard constraints in the closed-loop

stability

In the presence of active hard constraints, the optimal input profile needs to be found

as the solution of (2.3). For a fixed (given) active set, we will denote the corresponding

constraints as

IaU = f/6
a (3.1a)

S^U = Yb
a - Y*a = Yb

a - CTxk. (3.1b)

The superscript a is introduced to denote active constraints. We represent the number

of currently active input and output active constraints by nu and ny, respectively. In this

case, the matrices Ia G RnwX^m> and <S£ e Rnvx(n°p) are obtained through selection of

the rows of /n .m and <Sm that correspond just to the currently active constraints. Here Ug

and Yb represent the values of the active input and output bounds, respectively. These

express either upper or lower bounds, or equality constraints which can also be specified

for these variables. The above set of constraints can also be represented in a more compact

form as

AU = ca, (3.2)

where

The effects of the presence of constraints are better illustrated with a range and null-

space decomposition, performed on the matrix of constraints A. Since this matrix can be

considerably ill-conditioned, it is preferable to base the decomposition on a QR factor-

ization of AT with column pivoting (Golub and Van Loan, 1989). The advantage of this

algorithm is that the determination of the numerical rank of the matrix to be factorized

can be done simultaneously in a numerically robust form, taking into consideration the
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precision of the data available. Assuming that the rank of A is 7V < n^ leads to

a]
0

where Q G KTliXni is an orthogonal matrix satisfying QTQ = /n., and Tl G R1^ *(*«+»*> is

an upper triangular matrix. P G R(n" +nv)x(n"+nv) is a permutation matrix, obtained by

interchange of the columns of the identity matrix of the same order. Qy and Qz correspond

to a partition of the columns of Q with Qy G RniXTlr and Qz G R1* *(»<-"••), respectively.

Pre-multiplying both members of (3.3) by QT gives Q%ATP = Tl and QjATP = 0.

This implies that

PTAQy = TlT and AQZ = 0, (3.4)

and therefore Qz corresponds to a basis for the null-space of A. Hence the full U space

can be partitioned into range and null-space components as

U = QyUy + QzUzy (3.5)

where Uy G Rnr and Uz G Rn*""nr. The optimal solution for U can then be found separately

in terms of these two components, which can be combined in the end according to (3.5)

to give the optimal profile. It should be noted that since the Uy component is entirely

determined by the current active constraints, the number of degrees of freedom in the

input profile to be determined is just fi* — nr.

We will start by calculating {7y, which can be obtained by replacing (3.5) in (3.2),

giving AQyUy = ca. This implies that PTAQyUy = PTca or from (3.4),

= PT (3.6)

If TV = Tiu + ny, i.e., A is full row-rank, (3.6) constitutes a set of linear lower triangular

equations which can be solved by forward substitution to obtain Uy. The solution can also



be expressed analytically as

Uy =

or

Yh
a-Y*

Ky] y* - y*

Uv = Ky(Yb
a - (3-7)

where we have defined \BV Ky] as a compatible partition of the columns of TZ"TPT. As

with the unconstrained case, the contributions for Uy in (3.7) can be grouped into a bias

term (given by ByU% + KyY*), and a feedback term —KyY*a. It should be noted that this

last term will only appear in the optimal profile if there exist output constraints which are

active.

However if rir < Uu + riy, the matrix TZT will have a lower trapezoidal structure, and

the linear system (3.6) is overdetermined, corresponding in general to a disjoint active set.

In this case it is possible to create the partitions

and

where ft£ G Rn^xn^ corresponds to the upper triangular part of ft, Hf G R(n<*+ny-nr)xnr is

the remaining rectangular matrix, and cau G R/^, CQX £ Rnu+nv~"nr constitute an equivalent

partition of ca. This allows us to solve the lower triangular system V^Uy = PTcauy to find

Uy. The computed solution can then be plugged back in the remaining equations, to check

the feasibility of (3.6). If this set of equalities is compatible, then Uy can still be expressed

in the form (3.7), with \By Ky] corresponding now to a column partition of 7£~TPT. It

should be noted that in this case the choice of active constraints which are retained in TZu

doesn't affect the stability properties of the resultant controller (although it apparently

can induce a different feedback structure), since all choices of constraints produce the same

value of Uy.

On the other hand, the term Uz is determined by adjusting the remaining degrees of

10



freedom in the profile to minimize the objective, if there axe any left. Prom (2.3), J2 can

be expressed as

J2(U) = c + 2aTU + UTHU, (3.8)

where a = -S^QiE* - Q2Ur and H is given by (2.5a). Replacing (3.7) in (3.8) gives

J2(UZ) = constant + 2aTQzUz + 2Uy
r$HQzUz + UjQjHQzUz.

Solving VJ2(UZ) = 0 leads to

Uz = -(QT
2H QzY

lQT
z{a + HQyUy). (3.9)

Equations (3.7) and (3.9) can finally be combined to give the analytical solution of the

predictive control law. Replacing these in (3.5) gives

U = Khxk + 4,sp + dhr + dhu + dhy, (3.10)

where we have defined

HP = Q?(SlQiSm + Q2)Q* (3.11a)

B = QtH;lQT
z (3.11b)

Kh = -(/n < m - B^QyKyC** - BSlQxC* (3.11c)

dhr8p = BSTQiFsp

dhr = BQ2Ur

dhu = (Intm - BH)QyByUS

Analogously to the unconstrained solution, the stability of the closed-loop law depends

only on Kh, since the other terms are fixed within a given active set, and are bounded for all

sets of constraints. Comparing (3.10) with the corresponding unconstrained solution (2.4)

11



it is possible to observe that the general eflFect of the presence of constraints is to change

the feedback structure of the system, replacing the unconstrained Hessian H by JB, and

introducing also additional bias terms dhU and dhy in it. In addition, the presence of active

output constraints may yield extra feedback terms, as indicated by (3.11c). These feedback

terms, which depend just on the current active set, can induce closed-loop instability in

certain situations, as illustrated in the examples below. Also, as pointed out by Zafiriou

(1990), we note that the stability properties of the predictive control law (3.10) with hard

constraints are identical for each of the upper and lower bounds in the process variables,

since the feedback term in it is not influenced by the magnitudes of the boimds Ub and Yb

in (3.1).

The global stability properties of the constrained system can now be considered. As

indicated by (3.10), the overall controller is piecewise linear in £*, with a structure which

is only dependent on the current active set. This allows the use of the contraction mapping

principle to show the following results.

Theorem 1 (Economou, 1985) Consider the augmented closed-loop system (2.1) de-

fined by the discrete LTV model

trol law (3.10), uk+\ = tyfeZ*+Y

and reference inputs T/sp,fc+t = y*>

together with the state-feedback con-

trol law (3.10), uk+\ = tyfeZ*+YkUk+d(ysp, Ur). Define also an initial state z0 = [xj v£\

If- i = tx*, t = 1, — ,

nnoii = dX(T;x,u,y%u')

dz
du < 0 < 1, Vz € B(ZQ, r), where

and 6(20, r) = {z € Rn'+n< : \\z - *>|| < r},
_\\X(T;zo,y*)-zo\\
= fT

then the system has a unique asymptotically stable equilibrium point ze = [x% uJ]T in

B(zo,r). Furthermore, B(ZQ,TO) is a region of attraction for ze. (Here || • || represents any

consistent norm definition).

This theorem provides a sufficient condition for the stability of the closed-loop system,

although its application with constrained systems is frequently limited in practice by the

need of finding a consistent norm for different active sets. The next result is simpler to

12



verify in the general case, even though it represents only a necessary condition for stability.

Theorem 2 (Zafiriou, 1990) Consider the augmented closed-loop system (2.1) defined

by the discrete LTV model Xk+\ = $kXk + FkUk, together with the state-feedback control

law (3.10), txfc+i = ^k^k + Yfctifc + d(ysp, Ur), an initial state ZQ = [xj u$\ and reference

inputs ysPyk+i = V*, *V,fc+t-i = u*, t = 1 , . . . ,p. This system can only be asymptotically

stable in B{ZQ^ r) if

Psr(F'(z)) = Psr ( ** lk ) < 6 < 1, V* € B{z0, r),

where psr(
m) represents the spectral radius of a matrix, p8r(A) = max* |At(i4)|.

As mentioned, this theorem provides just a minimal condition for global stability. Never-

theless, it is frequently used in practice, together with an implicit assumption about the

rate of change of the system structure1. For example, when considering the closed-loop

response of a LTI model with a fixed set-point, and sufficiently small disturbances such

that no changes in the current active set occur, this last condition becomes also sufficient

for stability, since a fixed active set induces a fixed control structure. Furthermore, since

any induced norm constitutes an appropriate consistent norm, Theorem 1 becomes also

easier to apply in this situation. Both of these results will be useful later in the context of

the soft constraint handling methodology described below.

3.1 Special cases

We consider now some specific cases of (3.10), which introduce special characteristics in

the closed-loop behavior, when some particular combinations of constraints are active.

Only input constraints active In this case, the only active constraints are of the form

(3.1a). Because of the special structure of the matrix of constraints, the range and null

1Le., the so called slowly varying systems, (Vidyasagar, 1978).
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space decomposition is straightforward. For example, if

Ia =
0 0 1 0 0
0 0 0 0 1

then

0
A
U

1

0
n
U

o"
u
0

0
1

1

'o
0
1

0

0

0

0
0

0

1

Qy

1

0
0

0

0

0

1
0

0

0

Qz

o"
0
0

1

0

' 1

0

0
0
0

o'
1

0

0

0

n/o
As can be observed, Qy may be taken in this situation as (/a)T , and Qz formed from the

remaining columns of the correspondent identity matrix. Prom (3.5), this immediately

implies that if there are no constraints active in the first interval of the horizon, the

implemented control input Uk always comes from the Qz (or null) space, and corresponds

to the first components of (3.9). Also in this case, TZ = 2^, and there's no need for

column pivoting during the QR factorization of A. Furthermore, the projected Hessian Hp

is simply formed by selection of the free columns and rows of if, according to (3.11a). The

inverse of this matrix is later projected back into the full space during the computation of

B, as indicated by (3.11b).

First output constraint active, with single-input systems Here the bases for the

range and null spaces of the constraint matrix need to be found in general through the

standard decomposition algorithm described above. However since Qz always corresponds

14



to a basis for the null space of A, this implies that

AQZ =

aUl 0

ahii2

0

0

0

^22 = 0,

and therefore the first row of Qz must be identically null, i.e., \zn zyi • • • zi>n<_nr] = 0.

Prom (3.5), this implies that the null space contribution to U is completely omitted in the

implemented control Uk, and is determined by Uy alone. As a consequence, the normal

feedback structure of the controller is suspended, and the only possible source of feedback

in the closed-loop system will be any active output constraints, as indicated by (3.11c). If

there are only active input constraints, then the system will essentially behave as open-

loop. This situation corresponds therefore to one of the most severe loss of degrees of

freedom that can be induced by the presence of active constraints. It may easily induce

closed-loop instability in several situations, such as with open-loop unstable plants and

systems with non-minimum phase characteristics. This behavior is observed in some of

the examples presented below.

Maximum rate limits in the inputs Maximum bounds in the rate of variation of

the manipulated variables corresponds also to a frequently used direct control objective

in MPC; most of the existing implementations provide some facility for the treatment of

these constraints. These limits are especially useful to prevent aggressive control moves

caused by strong changes during the process operation. The corresponding constraints can

be expressed in the form

= \uk+i - Ufc+i-il < i = 0 , . . . , m — 1,

15



with Uk~i given, and Attmax representing the maximum allowed input move during a unique

sampling interval. These equations can also be written in matrix form as

-AC/ m a x < GU < AC/,

where

1
- 1

0

0

0
1

- 1

0

0
0

1

0

0 •••
0 •••

0 •••

0 •••

0
0

0

- 1

0
0

0

1

(3.12a)

±t!fc_l + j = 1
(3.12b)

When active, these constraints become equalities of the form GaU = A C / ^ , where Ga

and A C / ^ are formed from the active rows of G and Al/max- The effects of their presence

on the closed-loop stability, e.g. with a mixture of constraints of the other types can

therefore be treated by the algorithm described previously. Applying a similar reasoning,

it is possible to conclude that, analogous to the effect of active absolute bounds on the

inputs, the stability properties with rate constraints depend just on the given active set,

and not on the bounds themselves. However, the tuning parameters used can certainly

influence whether or not a given active set of this type can become active (i.e., optimal).

Also, we should notice that because of the special form of (3.12a), similar considerations

to the constrained single-input system case can be made here. Having a rate constraint

active during the first sampling interval will also cause the closed-loop system to behave

essentially as open-loop during the same period of time. Hence possible stability problems

with unstable plants can be anticipated in this situation as well.
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3.2 Examples

We illustrate now the application of the previous method in the elucidation of the con-

strained stability properties of MPC, with a number of simple process examples. These

particular models were selected in order to provide a broad view of the possible behav-

iors and stability effects that can result with active hard constraints. The results shown

here were obtained through an implementation of the algorithm described above in the

Mathematica language (Wolfram, 1991).

Example 3.1 We will start with the first order plus time-delay SISO system given by the

transfer function
p-0.06a

G«=(7TT)-
This corresponds to a frequently used class of models, that describes chemical processes

with relatively simple and slow dynamics. The equivalent discrete pulse transfer function

obtained with a sampling time T = 0.1 is

0.03921(z +1.427)
HG[Z) = *(*-0.9048) '

For this model, we consider only simple bounds in the input and output variables, of

the form (3.1). The lengths of the predictive horizons used with it are m = p = 5, with

tuning parameters Qy = 1, Qu = 0.01. In Figure 1 we have represented the spectral radius

of the resultant closed-loop system, for each possible active set that can occur with this

type of bounds. In order to sweep all different combinations of constraints in a systematic

form, the following procedure is used. We begin by appending the output horizon to the

end of the input horizon, in order to form a unique extended horizon, as indicated in

Figure 2. Then, starting at the left, we read the correspondent binary number obtained

by assigning either the bit 0 or 1 to the position of each variable in the extended horizon,

depending on whether the correspondent constraint is inactive or active. For example, the

total number of constraints in this case is 210 = 1024. This means that the active set 0

will correspond to the unconstrained system; the active set 1 denotes the situation where

only the first input in the first interval of the horizon is active; the active set number 32
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represents the first output constrained only during the first interval; finally the last active

set (1024) represents the fact all input and output constraints are active simultaneously.

[Figure 1 about here.]

[Figure 2 about here.]

As can be observed, there exist certain active sets for this system which will make the

resultant closed-loop system unstable. This is indicated by the existence of points above

the unit spectral radius line in Figure 1. The problem occurs with the given tuning

parameters, even though the spectral radius of the unconstrained system is about 0.33,

well below the stability limit. A closer inspection of these situations reveals that the

instability always occurs when the first output constraint in the horizon is active. This

behavior was anticipated in the special cases considered before, since the discrete plant

model has a zero outside the unit circle. Hence to avoid possible instability, this observation

requires the use of a different approach for constraint handling, or even a system redesign

such that these constraints will not become active during the normal plant operation.

Furthermore, the example shows that all of the possible values of the closed-loop spectral

radius are essentially grouped into various clusters, a fact that can be used to simplify

significantly the elucidation of the stability properties of the constrained system. According

to this observation, the most important information can usually be obtained through

the investigation of only a much smaller subset of constraints than the total number

of possible combinations. For instance in this case, it would be sufficient to evaluate

the stability properties of the system with all input constraints active throughout the

horizon (pg,. = 0.90), all output constraints active throughout the horizon (p^ = 1.43),

and both sets simultaneously (psr = 1.43), together with the unconstrained information

(p .̂ = 0.33). This requires examining only 4 active sets, instead of the full 1024 cases. This

guideline, although heuristic in nature, can potentially lead to tremendous reductions in

the effort involved in a constrained stability analysis of a predictive controller with linear

time-invariant (LTI) models. It also applies successfully to all of the remaining examples

presented below.
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Example 3.2 We consider now the linear, SISO, open-loop unstable system described by

the discrete transfer function

Similarly to the previous example, we are also interested in assessing the possible effects

that simple bounds in the input and output variables might have on stability. Figure 3

represents the spectral radius of the resultant closed-loop system, for each possible active

set, when predictive horizons of length m = p = 5, and tuning parameters Qy = Qu = 1

are used. Because the model is open-loop unstable, stability problems during closed-loop

operation are possible now when the input saturates. This is indicated by a value of

pn = 1.71 for all cases where the first input in the horizon is constrained. As in the

previous example, the clustering of values of the spectral radius is clearly visible in Figure

3. This is further evidence about the applicability of the heuristic rule given before- As

expected, the points located in the line p^ = 1 are generated by active output constraints,

since the model has a zero at z = 1. Also with this system, additional stability problems

can result if rate constraints specified for the inputs become active. For example, whenever

a rate constraint is active during the first interval in the horizon, the correspondent spectral

radius becomes pm = 1.71, indicating that the system is behaving essentially as open-loop.

This situation requires therefore also special attention to avoid instability of the closed-loop

system.

[Figure 3 about here.]

Example 3.3 We examine now the stability properties of MPC applied to the linearized

model of a FCC (Fluid Catalytic Cracking) unit. This model was obtained by linearization,

followed by normalization, of the Lee and Kugelman (1973) model around a nominal stable

operating pont, as described in Oliveira and Biegler (1993). This example illustrates

therefore the use of the previous methodology to study the local stability properties of a

nonlinear model, around a fixed operating point. Using a sampling time T = 0.05 leads
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to the following discrete model

-0.2495 0.6030

0.01680 0.2505

-5.785 7.2139

0.01157 0.1217

0.07362 0.1148 0.01044 0.4390

0.03940 0.1492 0.008940 0.8111

0.2794 -0.7511 -0.003253 -6.127

0.04545 0.1559 0.009798 0.8384

0 1 0 0̂

0 0 1 0

where x = \C8C Trx Crg Trg\ , and u = LFa FA . Here Csc denotes the coke content in

the spent catalyst, Trx the reactor bed temperature, Crg the coke content in the regenerated

catalyst, and Trg is regenerator bed temperature. The manipulated variables are Fa (air

flow rate) and Fc (catalyst recirculation rate). The tuning parameters selected are Qy =

diag{l,0.1} and Qu = diag{0.01,0.01}. In order to limit the number of possible active

sets, the lengths of the predictive horizons were fixed in this case as m = p = 3, with a

total number of 212 = 4096 distinct constraint sets. The spectral radius of the closed-loop

system for each of these possible cases is plotted in Figure 4.

[Figure 4 about here.]

Several situations that may lead to closed-loop instability can also be observed in this

figure. For instance, if the constraints in the first input u\ become active throughout the

predictive horizon, then the closed system has p^ = 1.12. Similar behavior occurs if the

second input saturates, leading in this case to p^ = 1.01. The maximum value of spectral

radius (psr = 4.04) is obtained however when both u*i and y\ are at their bounds. This

behavior with the input constraints could not be easily anticipated just by examining the

unconstrained characteristics of the plant, since the model is open-loop stable and the

unconstrained closed-loop system has p^ = 0.53. Looking now at the possible effects of

the horizon lengths in the constrained stability shows that if m is kept equal to p, then

the horizons need to be at least 7 intervals long to avoid problems associated with the

saturation of u\ (alone), and 16 intervals for case of it2- These requirements are therefore

much more restrictive than the needs for the simple stabilization of the unconstrained
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system. Nevertheless, the stability problem mentioned, that occurs when both u% and y\

are constrained either during the first interval, or throughout the entire horizon, cannot be

solved simply by increasing the length of the horizons used. If these constraints are active

only during the first interval, it implies that the first two rows of Qz are null, according

to the special cases considered before; if they are active throughout the entire horizon,

then the null space has zero dimension, and the solution is entirely determined by the

range space component. As a result, the closed-loop spectral radius will be well above

the stability limit in both cases. These active sets require therefore special attention in

the design of the control system, such that they do not occur during normal operation of

the process, or even the use of a different approach for constraint handling, like the soft

constraint formalism described below.

Example 3.4 We center now our attention on the well-known Wood and Berry (1973)

distillation model, represented by the transfer matrix

[ 12.8e-« -18.9c-3 '1 [ 3.8e"8' 1

(16.75+1) (21.05+1) Q ( \ _ (14.95+1)
6.6e~7« -19.4e-*« ' ^ ' W "~ 4.9e-3' '

J L J

J L(14.45+1) J L (13.25+1) J

Using a sampling time T = 1, leads to the following discrete model

0.7440 -0.8789 1
(z-0.9419)z (z-0.9535)*3

0.5786 -1.302
.(z-0.9123)z7 (z-0.9329)z3J

0.2467
(z-0.9351)*8

0.3575
L(*-0.9270)z3J

In order to use this model within the Newton framework, the discrete transfer matrix was

first converted to a balanced state-space realization, using a standard technique based on

a singular-value decomposition of the correspondent Hankel matrix (Chen, 1984). This

resulted in a state-space model of order 22, One interesting characteristic of this model is

the presence of large time-delays, which introduce a minimum limit in the length of the

horizons that can be used for predictive control. Consequently, a large number of possible

constraints need to be examined in a stability analysis of this system. For example, the

present value of T yields a minimum number of 22+16 ~ 262 x 103 active sets. This number

can be further reduced taking into consideration the special structure of the model. For
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instance, the effect of the current control action will not affect the values of y2 until at least

3 intervals in the future. Therefore the constraints where this variable is saturated during

the first 3 intervals in the horizon do not need to be considered, since the correspondent

rows of the dynamic matrix are identically zero. This brings down the minimum number

of sets to 215 ~ 32 x 103. Even so, this number is significantly larger than the previous

cases, making this example a good candidate for the use of the heuristic guideline given

before.

Table 1 represents the spectral radius of the closed-loop system for the different active

sets possible where a given variable is saturated throughout the entire horizon. According

to the previous rule, this information provides a good indication of whether stability prob-

lems with hard constraints can be expected with this system. The tuning parameters used

in this case are Qy = diag{l,l}, Qu = diag{0.1,0.1}, together with horizons of length

m = p = 10. As can be observed, the closed-loop spectral radius is now below the stability

limits in all cases. The discrete model is also open-loop stable, and has either no multi-

variable or individual zeros outside the unit circle. Therefore, under these circumstances,

no significant constrained stability problems are anticipated with the present example.

[Table 1 about here.]

Example 3.5 The last example consists of a laboratory system composed of two tanks

and a connecting delay channel (Borrie, 1986). The continuous model for this system is

described by the transfer function matrix

1.5e -0 .2* 1.5s
(s+3) (s+l)(s+3)

3.0e"°-2* -3
(s+3) .

<?(«) =

Here the output variables represent the signals from the flow and pressure transducers,

while the inputs represent the control signals to the upper and lower valves, respectively.

Using a sampling time of T = 0.07 results in the following discrete model

"0.01478(z+5.409)

HG(z) = (z-0.8106)z3

0.02955(2+5.409)
. (z-0.8106)z3

0.09136(z-l)
(z-0.9324)(z-0.8106)

-0.1894
z-0.8106

(3.13)
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As in the last example, a balanced state-space realization was also formed from the discrete

model, resulting in a state-space model of order 6. We plotted in Figure 5 the spectral

radius of the resultant closed-loop system, for predictive horizons of length 3, with Qy =

diag{l, 1}, Qu = diag{0.1,0.1}. A close look at these results reveals that there axe also

several active sets that can induce closed-loop instability with the above tuning parameters.

Depending on the amount by which the stability limit is violated, these situations fall

essentially into one of two different categories.

In the first group, we have active sets with pa slightly above the stability limit (typically

less than 1.05). Examples of this group are for instance the constraint sets OOOIOOOOIOOO2

(Psr = 1.004), OOOIOOOOIOOI2 (Par = 1017), and 0100001010012 (A* = 1-041). Similar

to the previous FCC example, the stability properties of these cases can be improved

simply by increasing the lengths of the predictive horizons used* Furthermore, since they

correspond to situations where a given variable is not constrained throughout the horizon,

the likelihood of stability problems caused by their occurrence during normal operation is

certainly low. In the second category, we have constraint sets with p^ well above the unit

spectral radius line (around 5.41). This behavior is first observed with the constraint set

OIOOOOIOIOIO2, and also occurs whenever both of the outputs are saturated simultaneously.

Here possible stability problems need to be considered more seriously, since they are not

affected by the tuning parameters used, especially the lengths of the horizons. This is

a consequence of the discrete model having a multivariable zero at z = 5.409, revealed

by constructing the canonical Smith-McMillan form of (3.13). Hence special care is also

needed to ensure that these hard constraints do not occur during normal operation, due

to the incapability of MPC to handle them.

[Figure 5 about here.]

4 Strategies for soft constraint handling

In order to remove the dependence of the closed-loop stability of MPC on certain active

sets, several approaches have been proposed. Ricker et al. (1988) and Zafiriou (1991a) first

suggested the use of a quadratic relaxation of the output constraints in the origin of these
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problems. Based on this philosophy, the last author derived a soft-constrained stability

analysis for the QDMC framework, to assess the existence of potential constrained stability

problems. As with the hard constrained case, this analysis suffers from the disadvantage of

being combinatorial in the length of the horizon used. More recently Rawlings and Muske

(1991) proposed an alternative approach, based on the use of a fixed state-feedback law.

This approach relies on the removal of the constraints that become infeasible in the begin-

ning of the horizon. By keeping a finite input horizon, and extending the output horizon

to infinity, it is shown that the resulting control law has guaranteed stability properties

similar to the LQR framework. Moreover, since the problem has only a finite number of

degrees of freedom, it can still be solved on-line as a quadratic program, provided that

an upper bound on the time for constraint feasibility is used. However this bound is de-

pendent on the controller itself, and is difficult to obtain without introducing considerable

conservativeness in the measure itself. Additionally, the method does not provide a strict

guarantee that the output constraints will eventually be enforced (especially in the pres-

ence of disturbances), due to the receding nature of MPC. In this group of approaches,

one can also include the treatment of Mayne and Michalska (1990), which consists of the

specification of a final equality constraint for the state vector at the end of the predictive

horizon. This modification can be seen as a particular case of the Rawlings and Muske

approach though, by noting that an infinite weight (equivalent to the specification of a

final state constraint) is just a special case of the initial condition used for the recursive

solution of the controller gain in the first method. As in the previous approach, guaran-

teed stability properties can be derived, provided that the constraint set remains always

feasible.

In order to generalize the constraint treatment, we need to consider in more detail the

consequences of a potential constraint violation in the process. Depending on their impor-

tance, process constraints can usually be classified as hard (if no violations are allowed at

any time), or soft (where violations might be tolerated to satisfy other objectives). Ex-

amples in the first category include actuator limits, or safety constraints. In the second

category we have e.g., output bounds corresponding to product specifications. While the

original MPC formulation allows the specification of hard constraints, it might be prefer-

able to consider, in some situations, a reformulation of (some of) the original constraints
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j = 1 , . . . , no, such that

1 j t h output constraint active at either the upper or lower bound, at

[0 otherwise.

This definition allows us to eliminate the constraints (4.2b, c) in the above problem,

by substituting them directly in the objective function. Doing so yields the following

unconstrained problem

min J^ = J2 + p{SmU - Y^)TR{SmU - 1£), (4.3)

where Y& = Yb — Y* is formed from the appropriate elements of Y\ or Yu, depending on

which constraints axe active. This problem can be solved analytically, giving

) 1 ($&!& + Q2Ur

= KaXk + dar + daw + day>

where

dar = H;lQ2Ur

day = PH;lSlRYh.

A close look at the structure of the solution (4.4) reveals the following result:

Theorem 3 The stability characteristics of the relaxed constrained problem (4.2) are

equivalent to the stability of the unconstrained problem (2.3a), with the tuning parameters

The proof for this theorem is given in the Appendix. This result equates the effects of
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the presence of soft constraints to an equivalent change in the tuning parameters of the

unconstrained system. This corresponds to a more straightforward result than the stability

criterion given by Zafiriou (1991a). Since the term pR depends on the current active set,

different active sets have in general dissimilar effects on the closed-loop stability. Hence

as in the hard constraint case, a complete stability analysis requires a combinatorial study

of the effects of different constraints, which can be difficult to perform for large horizons.

Because the approach affects only output constraints, the total number of combinations

that need to be considered now is just 2n°p, though. As in the hard constraint case, the

stability characteristics of the constrained control law are identical for both boimds, since

the feedback gain Ka does not depend on Yj>.

In addition, this approach requires knowing how the tuning parameters affect the

closed-loop stability of the unconstrained system, for a wide range of parameter values.

This task can be readily accomplished for LTI systems, where a unique curve of the

closed-loop spectral radius, as a function of the penalty parameter p is needed. However

this information is more difficult to obtain with other types of models (such as LTV or

nonlinear systems), where it becomes dependent on the initial conditions or on the oper-

ating region considered. The following examples illustrate the possible application of the

analysis with simple LTI models.

Example 4.1 Consider the model defined in Example 3.1. Using predictive horizons of

length m = p = 3, and nominal tuning parameters Qy = 1, Qu = 0.01, we plotted in

Figure 6 the closed-loop spectral radius as a function of the penalty parameter p, for all

possible active sets. In addition to the unconstrained information, we have 2P — 1 = 7

curves to check.

[Figure 6 about here.]

From Figure 6, we observe that closed-loop stability is guaranteed for Q\ < 41 (approx-

imately). This limit corresponds also to the case where the output constraint is just active

in the first interval of the horizon. Therefore this implies that if the output constraints for

this example are relaxed as soft constraints, the penalty parameter used must obey p < 40

in order to avoid closed-loop instability with some of the present active sets.
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Example 4.2 (Rawlings and Muske, 1991) We consider now the discrete, open-loop

stable realization

Vk

4/3 - 2 / 3

1 0

= [-2/3 l] xk,

(4.5a)

(4.5b)

obtained from the continuous system

G{S) =
4 2 ~ l l s

with a sampling time T = 0.1. We assume a initial condition x0 = [3 3] and output

constraints \yk\ < 0.5, or equivalently for the state-space representation

- 2 / 3 1

2/3 - 1
xk<

0.5

0.5

This example exhibits also stability problems when we try to enforce the output bounds

given, as hard constraints. For example, since the initial condition violates the output

constraint, from (4.5) we need VLQ > 1.75 to satisfy this constraint at t\. However this

condition causes also the state vector to increase in norm at t\. This implies in turn

that u\ > w0, in order to keep inside the feasible region. The input and state sequences

will consequently increase in magnitude, in an unbounded form. Furthermore, including

maximum bounds in the input, in the form \uk\ < Umax will only make the constrained

problem infeasible at some point in the future. Like most of the previous examples, this

effect is independent of the tuning parameters used, since the control solution is always

obtained from the range space of the constraints.

Using a quadratic penalty relaxation of the output constraints, with horizons of length

5, leads to 25 — 1 = 31 possible active sets to consider. For Qy = Qu = 1, we plotted in

Figure 7 the effects of the penalty parameter p in the closed-loop spectral radius, for all

possible constraint combinations. The stability limit is in this case Q\ < 3.1, corresponding

again to the output constraint being active just during the first interval of the horizon.
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[Figure 7 about here.]

Figure 8 illustrates the control profiles obtained with this constraint relaxation strat-

egy. In all cases except with the highest value of p the system is stabilized, although this

requires the output constraint to be violated during the first two intervals. To verify the

conservativeness of the above stability limit, we tried to obtain numerically the minimum

value of p that would make the closed-loop system unstable, from the given initial con-

ditions. The value found in Figure 8 is pCnticai £ [29.1,29.2], which is higher than the

theoretical limit of p with all constraints active, respectively pm^ = 21.2. The discrep-

ancy between these values is due to the small value of x0 used, since the spectral radius

provides only a sufficient condition for stability. This difference can be decreased simply

by increasing the norm of x0, because the feedback and bias terms in the control law have

roughly opposite effects in the magnitude of {/, in the present case.

[Figure 8 about here.]

As mentioned previously, one of the main disadvantages of the quadratic penalty for-

mulation is that, even for LTI systems, the determination of the corresponding stability

limits becomes a non-trivial task for large predictive horizons. Instead of explicitly enu-

merating all possible combinations of constraints, the evaluation of these limits would be

faster if the problem was formulated as an equivalent optimization problem. However the

resultant problem is difficult to solve, because the spectral radius is in general a nonlin-

ear, nonconvex, and nondifferentiable function of the parameter p. Some methods under

development for the constrained robustness analysis of LTI systems (Balakrishnan and

Boyd, 1991; Young et al., 1992) show however some promise in this situation. Based on

the use of a branch and bound algorithm, these methods are able to refine successively the

estimates provided by approximate bounds, allowing the attention to be centered quickly

in the regions of the parameter space that are of more importance. Their use for the

determination of the stability limits of the quadratic penalty remains a topic of further

research.

The above result can also be generalized to the case where a mixture of both hard

and soft constraints are considered simultaneously. In order to do that, we define first the
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vectors Yh and Y3 as the components of the augmented output vector Y for which hard

and soft constraints are specified, respectively. In a set sense, we assume that YhUY3 = Y,

and Yh PI Ys = 0. Using a similar line of reasoning to the previous analysis, it is possible

to derive the following result:

Theorem 4 Consider the constrained quadratic penalty formulation, with a mixture of

hard and soft output constraints

min

s.t. Ui<U<Uu

Ylh < Yh < Yuh

Yls-e<Ya<YHa + €

€>0.

h(E* - SmU) + (U- UrfQ2(U - Ur) + peTe
(4.6a)

(4.6b)

(4.6c)

(4.6d)

(4.6e)

Tie stability properties of the mixed constrained problem (4.6) are equivalent to the

stability of the correspondent hard constrained only problem (4.6a-c) and e = 0, with the

tuning parameters Q\ <— Q\ + pR, Q\ <— Q2-

The proof for this theorem is given in the Appendix. It allows the stability properties

of a predictive problem with mixed types of constraints to be related to the stability

of the correspondent hard constrained only problem, for which the analysis presented in

Section 3 can be applied. Using these results, it is therefore possible to perform a stability

analysis of linear models in the presence of a large variety of constraints. The method

provides also a systematic mechanism for the choice of appropriate values for the tuning

parameters in order to avoid most of the problems described in the examples of Section 3.

Also, although the previous formulation was targeted to the use of soft output constraints,

the same approach can be used to treat input constraints, provided that the bounds that

these represent can be relaxed. The analysis of this case using the methodology described

previously is straightforward.
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4.2 Exact penalty treatment

One of the properties of the quadratic penalty mentioned previously is that for finite

values of p, the original output constraints may not be satisfied, which translates to non-

zero values of e. This means that a violation of the original constraints is unavoidable with

this formulation. Replacing the penalty term by the l\ (exact) penalty function, eliminates

however the necessity of increasing the penalty parameter to infinity to recover the original

constrained solution. A sufficient condition for this is to have p > |A|oo, where A is the

vector of Lagrange multipliers of the constraints in the original problem (Fletcher, 1987).

This formulation allows therefore a better control of the errors resultant from constraint

softening.

Using the l\ penalty and starting by ignoring the presence of input constraints, allows

us to express the predictive problem (2.2) as

min J'2b = h + rT max{0, Y - YU} + rT max{0, -Y + F/}, (4.7)

with J<i given by (2.3a). Here r € Rn°p = [p- • • p] is a vector of penalty parameters. The

penalty terms in (4.7) can be rearranged, leading to the equivalent constrained formulation

min J2b = h + rTe (4.8a)

s.t. Y i - e < y < y t t + e (4.8b)

6 > 0, (4.8c)

with € keeping its original definition from Section 4.1. The solution of (4.8) can also be

obtained in analytical form, and expressed by

p + dr + <ky, (4.9)
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where K, dsp and dr are defined by (2.5b-d), and

The derivation of (4.9) is presented in the Appendix. Here Ai is a vector of Lagrange

multipliers for the active constraints. The main difference with respect to the quadratic

penalty treatment is that the multiplier Ai replaces now the penalty parameter r in the

feedback law. The presence of each active set introduces consequently a different bias term

dby in the control law, dependent on the correspondent Lagrange multipliers. It is also

noted in the Appendix that |Ai|oo < p, which imposes an upper bound on the magnitude

of the term d^. We therefore have the following result:

Property 1 The control law (4.9), for the exact penalty relaxation of the output con-

strained control problem with a finite p, has identical stability properties to the corre-

sponding unconstrained control law (2.3a).

This result is immediately established using the boundedness properties of

and d\yy, and noting that the feedback term is identical to the unconstrained case. As a
consequence, the approach becomes considerably simpler to apply, especially with time-

varying and nonlinear systems, when compared with the previous quadratic constraint

relaxation strategy. Moreover, since it is possible to use arbitrary values for the penalty

parameter p without changing the stability properties of the formulation, the original

constrained solution can be approximated much closer, or even recovered for sufficiently

large values of p, provided that the original hard constrained problem is stable. The

following example illustrates this behavior.

Example 4.3 Consider again the linearized model of a FCC unit described in Example

3.3. The previous analysis indicated that stability problems can occur in the presence of

hard constraints, if both u2 and y\ saturate simultaneously. This situation is illustrated

in Figure 9, where we plotted the closed-loop response for y8p = [o.3 0.2] , with m =

0.2793 0.3000 0.0564 0.3200J , and remaining

parameters identical to the previous example. The hard constraints are in this case u<i <
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—0.0397 and t/i < 0.3. As can be observed, the controller starts by bringing y2 closer to its

set-point, which induces the appearance of oscillation, since both of the hard constraints

become active. This causes the ouputs to move away from the set-points after t = 0.25

(because of the finite accuracy used in the computation of the solution). The outputs

converge then very slowly to their respective reference values, indicating that this problem

might occur again in the future.

[Figure 9 about here.]

The correspondent results using a l\ penalty relaxation of the output constraint are

shown in Figure 4.3. In contrast with the hard constraint situation, the profiles do not

show any visible oscillation, and the desired set-points are reached at the end of the first

interval. This example illustrates therefore the ease of use of the l\ penalty formulation.

In contrast with the quadratic penalty formulation, no additional stability information is

required now to choose the value of p (except knowing that the input only constrained

system is also stabilized by the present tuning parameters).

[Figure JO about here.]

A particular characteristic of this formulation is that in certain situations, as in the

next example, large values of p can produce undesirable steady-state offsets in the closed-

loop response, due to the receding nature of the MPC law. These offsets correspond also to

a violation of the original constraints, but they can be eliminated simply by increasing the

length of predictive horizon used. More precisely, this property can be stated as follows:

Property 2 The control law (4.9), correspondent to the exact penalty relaxation of the

output constrained control problem (4.8), exhibits no steady-state offsets for a perfect

model, and any finite value of the penalty parameter p, when the length of the output

predictive horizon goes to in&nity.

This property can be demonstrated by noting that with an infinite output horizon, the

objective function (4.8a) can only be made finite if the last input in the control profile

is able to satisfy the limit of the set-point trajectory t/*p, at some point in the output

horizon. Therefore, as long as the set-point is feasible and reachable, the optimal solution
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will have no permanent constraint violation, since the existence of at least one feasible

point corresponding to a finite objective is guaranteed in this case. Hence by choosing

a sufficiently large output horizon, it becomes possible to use any value of p, in order

to limit the error resultant from constraint relaxation. An additional way of eliminating

these offsets is the use of integral action in the controller, e.g. as considered by Oliveira

and Biegler (1993). The following example illustrates this behavior with different horizon

lengths.

Example 4.4 Consider again the system of Example 4.2. Using the same conditions as

in the previous case, we plotted the control profiles correspondent to predictive horizons

of length m = p = 5 in figure 11. The closed-loop system is stable for all values of the

penalty parameter, although high values of p produce a steady-state offset, as mentioned.

However, when the length of the predictive horizon is increased to 10 intervals (in Figure

12), this problem disappears, and all curves reach now the desired set-point.

[Figure 11 about here.]

[Figure 12 about here.]

Similar to the quadratic penalty case, the stability properties with a mixture of both

hard and soft constraints can be related back to the stability of the correspondent hard

constrained only system. This is considered in the following theorem.

Theorem 5 Consider the constrained l\ penalty formulation, with a mixture of hard and

soft output constraints

mm J2Mlix = (E* - SnUfQiiE* - SmU) + (U- Ur)
TQ2(U - Ur) + rTe

(4.10a)

s.t. Ui<U<Uu (4.10b)

Yih < Yh < Yuh (4.10c)

Yis-e<Ys<Yus + e (4.10d)

e > 0. (4.10e)
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Tie stability properties of the mixed constrained problem (4.10) are exactly identical to

the stability of the correspondent hard constrained only problem (4.10a-c), with e = 0.

The proof for this theorem can also be found in the Appendix. The identical sta-

bility properties of the l\ penalty to the hard constraint only case make therefore the

exact penalty approach considerably easier to use than the quadratic penalty formulation,

since this approach doesn't require the knowledge of how certain changes in the tuning

parameters affect the stability of the correspondent constrained system.

4.3 Constraint relaxation using other penalty formulations

The marked difference in the results derived in the previous sections for the two penalty

formulations considered, can be seen essentially as a consequence of the use of quadratic

versus linear penalty terms in the objective. The results obtained in this last case can

therefore be expected to hold true for other penalty formulations which are linear in e,

such as the case of the /<» norm. In this case the soft constraint formulation can be

expressed as

min J2c = J2 + pe

s.t. Yt-ee<Y<Yu + ee

e>0,

HP

with £ = [l 1 • • • ll , and e G R+ now. A similar analysis to the one developed in the

previous section shows that Properties 1 and 2, together with Theorem 5 also apply in the

present case. The main difference now is the bound for the Lagrange multiplier Ai, which

can be shown to satisfy |Ai|i < p instead. Otherwise, the control law is also given by

(4.9). The performance of this formulation with the model considered in the Example 4.4

is illustrated in Figure 13, with horizons of length m = p = 10, and identical conditions to

the previous case. The behavior showed is similar to the one obtained previously with the

li penalty (including the appearance of steady-state offsets with small horizons). However

since the infinity norm only weights the maximum constraint violation observed in the
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horizon, changes in p will induce now essentially the opposite effect in the characteristics

of the closed-loop response. For instance making p larger will produce a lower peak,

resulting in a slower output response, which stays outside the constraint bounds longer.

This is a consequence of the inverse response nature of the system. We can also note

that, contrary to the behavior of this system with the h penalty, all profiles in Figure 13,

for p ^ O , have now a peak of smaller amplitude than the corresponding unconstrained

response.

[Figure 13 about here.]

5 Conclusions

This paper presented a systematic analysis of the stability properties of MPC, in the

presence of both hard and soft constraints. A perspective similar to treatment of Zafiriou

(1990; 1991a, b) was used, which handles the nonlinearities introduced by the presence

of active constraints through separate consideration of each different active set. Some

important characteristics of the predictive control law were revealed here for the first time,

These include the derivation of an explicit closed form expression for the optimal solution of

the predictive problem in the presence of both hard and mixed types of constraints, as well

as showing that active output constraints can introduce additional feedback terms in the

constrained controller. As proposed above, the algorithm relies on a range and null space

decomposition of the matrix of hard constraints, which is well suited for numerical (large

scale) computation, and can be implemented in a numerically robust form, e.g. through

a QR decomposition. The examples considered show also that, in most cases, the more

important stability information relative to the presence of hard constraints can be derived

by considering just a significantly smaller subset of constraints than the total number of

possible combinations. This allows a considerable reduction in the effort required for a

constrained stability analysis of a linear model.

In addition to providing tools for systematic diagnosis of possible stability problems

with hard constraints, this paper presented some alternative constraint handling method-

ologies that enable these problems to be avoided. This is done through a relaxation of
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the problematic hard constraints, using a penalty formulation. This approach is most

useful for output constraints, which represent frequently control objectives, rather than

rigid limits in the process.

Starting with the case of a quadratic penalty, we showed that the stability properties

with soft constraints can be related to the stability of the equivalent system with these

constraints removed, by a simple change in the tuning parameters used. This corresponds

in general to a finite maximum value of the penalty parameter that can be tolerated for

stability. Also, this approach still suffers from the disadvantage of being combinatorial in

the length of the predictive horizon used. The exact (or h) penalty eliminates this last

requirement, leading to a constrained formulation that has the same stability properties

as in the absence of the soft constraints. Because of the nature of the problem, this last

result extends also to other penalty formulations which are linear in the constraint violation

term. This is especially true with the case of the Zoo norm, for which a stronger bound

for the Lagrange multipliers was shown to exist. This characteristic, together with the

requirement of a finite value of the penalty parameter to match the solution of the original

problem, simplifies considerably the use of soft constraints, especially for time-varying and

nonlinear systems. We believe that the use of this exact penalty treatment has profound

consequences on the design of constrained controllers, since it opens the possibility of

using essentially all of the available tools for constrained control in this situation as well

(e.g., robustness, etc.). This observation is particular pertinent to LTI models, for which

a multitude of design methods is currently available.
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Appendix

Proof of Theorem 3. The optimality conditions for (4.2) can be written as

£ = J2 + peTe + XT
u(SmU -Y^-e) + \J(-SmU + Yt*d - e) - Xje

VVC = 2{SlQlSm + Q2)U - ttZQxET - 2Q2Ur + <S£(AU - A,) = 0 (A.la)

V,£ = 2pe-Au-A,-A2 = 0 (A.lb)

= 0 (A.lc)

A u i > 0 , A«>0 , A 2 i > 0 ,

with i = 1 , . . . ,nop. Assuming distinct upper and lower output bounds, the following

combinations of values for the multipliers are possible:

1. Au = Aj = A2 = 0, Vi = 1, . . . ,nop. This corresponds to the unconstrained case

(6 = 0).

2. Xui = \u = 0, X2i > 0. From (A.lc), this implies that e* = 0. However from (A.lb),

this implies that Xui + A/t < 0, which contradicts the initial assumption. Hence this

combination of multipliers is not possible.

3. Xui > 0, Xu = 0, X2i = 0. From (A.lb), this implies that A^ = 2/9ct-, and consequently

e{ > 0. In this case we have from (4.2b), (SmU)i — Y^ + eu and (4.3) can be used

in this case with Ri ^ 0, and Y£di =

4. Xui = 0, A/* > 0, X2i = 0. From (A.lb), this implies that Xu = 2pe^ and consequently

e{ > 0. In this case we have from (4.2b), (SmU)i = Y^ - eu and (4.3) can be used

also in this case with Ri ^ 0, and Y^ = Y*di.
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5. Xui > 0, Xu = 0, A2t > 0. FVom (A.lc), e{ = 0, and (A.lb) gives Xui + X2i = 0,

which is inconsistent with the original assumption. This combination of multipliers

is therefore not possible.

6. Xui = 0, Xu > 0, A2t > 0. Similarly to case 5, this leads to A^ + X2{ = 0, which is also

inconsistent with the original assumption. Hence this combination of multipliers is

not possible.

Hence (4.4) can be used with all consistent combinations of multipliers. This leads to

+ QlUr + pS

- O + Q2Ur + PSlR(Yb - V))

+ PR)Y* + SfcQiY* + Q2Ur + pS%RYb) ,

and therefore

^min = ( Sm\Ql + pRj^m + Q2) \"^m\Ql '
(A.2)

Comparing (A.2) with (2.4), we note that the feedback term becomes identical in both

cases, if we replace Q\ in (2.4) by Qi + pR. Therefore the stability properties of the

relaxed controller are identical to the equivalent unconstrained controller with the new

tuning parameters. •

Proof of Theorem 4. Similar to the hard constraint stability analysis of Section 3, we

start by assuming that the present hard active set is known, and given by (3.1). Also, as in

the soft-constrained only case, we define R = diag{ri}, i = 1 , . . . ,p, with r» = diag{ry},

j = 1 , . . . , no, such that2

1 j t h output soft constraint active at either bound, at tk+%

10 otherwise.

2Clearly, values of R different of zero will only occur now with the elements of Ya.
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This definition allows us to eliminate the soft constraints (4.6d) in the mixed formulation,

by substituting them directly in the objective function. Doing so yields the following hard

constrained problem

min J^ ^ = J* + p(SmU - Y£)TR(SmU - Y&)
u

s.t. ru = u%
S^U = Yb

a - Y*a.

This problem can now be treated using the hard-constrained approach described in Section

3. Since the hard constraints are identical in both cases, we will have the same bases for

the range and null subspaces Qy and Qz in both situations, as well as the same range space

solution Uy, given by (3.7). Prom (4.6a), the objective can be expressed as

J2a,mix{U) = constant + 2aT
8U + UTHSU, (A.3)

with a. = -SlQ^E* - Q2Ur - pS&RY^ Ha = S^(Qi + pR)Sm + Q2. The first order

coefficient can also be expressed as

aa = -SlQx (Y^ -Y)- Q2Ur - pS

= S^ + PR)V - SfcQiYv- Q2Ur - pS^RY*. (AA)

Replacing (3.5) in (A.3) gives

J2a,n^(Uz) = constant + 2ajQzUz + 2Uy
T$HsQzUz + UZQT

ZHSQZUZ.

Solving VJ2a,mix(Uz) = 0 leads to

U, = -{QT
zHsQz)-

lQT
z(as + H.QyUy). (A.5)
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Equations (3.7) and (A.5) can finally be combined to give the analytical solution of the

mixed constrained formulation. Replacing these equations in (3.5) gives

U = Ksxk + 4,sP + dhr + dhu + dsy, (A.6)

where we have defined

Hpa = Q?HaQt (A.7)

Ba = QlH;a
iQT

z . (A.8)

K. = - ( / n < m - BaHa)QyKyC'a - B8Sl{Qi + pR)C* (A.9)

- BsHa)QyKyYb
a l

with d/l,Sp, dhr and dhU defined by (3.11d-f). Comparing now (A.6) with (3.10), it is

possible to observe that the feedback term becomes identical in both cases if we replace

Qi in (3.10) by Qi + pR. Therefore the stability properties of the mixed formulation are

equivalent to the stability of the correspondent hard constraint only formulation, with the

new tuning parameters. D

Derivation of (4.9). We start with the optimality conditions of (4.8)

£ = J2 + r
T€ + Xl(Y* + SmU - Yu - e) + \J{-Y* - SmU + Yt - e) - Aje

(A. lla)
2{SlQxSm + Q2)U - 2S£QiE* - 2Q2Ur + <S£(AU - A,) = 0

V t £ = r - \u - \i - A2 = 0

= 0

Xni-Y + Yt-ejt^O (A.lle)

Atti>0, AK>0, A2i>0, (

44



with i = 1 , . . . , nop. From (A.llb,f) we conclude immediately that

|Au|oo < P, |A/|oo < P-

Assuming distinct upper and lower output bounds, together with the non-degenerancy of

the problem3, the following combinations of values for the multipliers need to be considered:

1. Xu = Xi = A2 = 0, Vz = 1, . . . , nop. This is inconsistent with (A.llb,f), and therefore

this combination of multipliers is not possible.

2. XUi = Xu = 0, X2i > 0. Prom (A.llc), this implies that e, = 0, and from (A.llb) we

have A2i = p. This corresponds therefore to the unconstrained case.

3. AUt > 0, Xu = 0, A2t = 0. Prom (A.llc), this implies that e, > 0, and we will have

some constraint violation. Prom (A.llb), we obtain Au» = p. In this case (A.lla)

becomes

VVC = V J2 + <S£Ax = 0, (A.12)

with Ait = Aui.

4. XUi = 0, A/t > 0, A2j = 0. Prom (A.llc), this implies that e* > 0, and we will have

some constraint violation. Prom (A.llb), we obtain Xu = p. In this case (A.12)

applies with AH = —XU.

5. Xui > 0, XH = 0, A2i > 0. FVom (A.llc), e{ = 0. Also from (A.lld), Y- = Yui, which

corresponds to the exact solution of the original constrained problem. In this case

(A.12) is also valid, with A^ = Au* < p.

6. XUi = 0, Xu > 0, A2i > 0. Similarly to case 5, this corresponds to the exact solution

of the original constrained problem, now at the lower bound. Here (A.12) is also

valid with Xu = — A;* < p.

3Le., there axe no redundant constraints (either linearly dependent, or with the same solution as the
unconstrained formulation).
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Hence (A. 12) is also valid for all consistent combinations of constraints. Ai G Rn°p can

now be defined as

0 if Aui = Xu = 0

Ki if Aui > 0

-A,t if A» > 0

nop.

Solving (A. 12) for U gives finally

Q2Ur -

D

Proof of Theorem 5. As previously, we start by assuming that the present hard active

set is known, and given by (3.1). Defining Ys = Y* +SmaU (i.e., the outputs for which

soft constraints are specified), the optimality conditions of (4.10) can be written as

C = J2 + rTe -Yus-e) Yls-e)

- Yb
a

= VJ2 - Xsl) = 0

r - Asu - Xsi - A2 = 0

= 0

i > 0, Xa,i > 0, A2i > 0,

(A. 13a)

(A. 13b)

(A.13c)

(A.13d)

(A.13e)

(A.13f)
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with i = 1, . . . , nos, where nos represents the total number of output variables for which

soft constraints are specified. Prom (A.13b,f) it is also possible to conclude that

|AsJoo < P, \Kl\oo < P- (A.14)

Considering now the possible values for the multipliers A^, Asj and A2, in a similar fashion

to the derivation of (4.9), shows that (A. 13a) can also be expressed in the form

= V h + + (^)TXhy + , = 0, (A.15)

by defining in this case

0 if

Xsu,i i f .

—X.i i i f

,i = AsZ)i = 0

,»>0

i > 0

Comparing (A.15) with the optimality conditions of the hard-constraint only case, it is

possible to observe that the the only difference between these two cases is the presence

of the additional bias term S^Ai in (A.15). Since this term doesn't affect the feedback

gain and is bounded in magnitude according to (A.14), the mixed constraint formulation

possesses therefore identical stability properties to the correspondent hard constraint only

formulation. •
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Psr
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Table 1: Closed-loop spectral radius of Example 3.4 for the cases where a given variable
is constrained throughout the horizon.
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