NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



Multiperiod Design Optimization
with SQP Decomposition

D.Varvarezos, L. Biegler, L Grossmann
EDRC 06-155-93




Multiperiod Design Optimization
with SQP Decomposition

Dimitrios K. Varvaiezos, Lorenz T. Biegler* and Ignacio E. Grossmann
Department of Chemical Engineering
Carnegie Mdlon Univerdgty
Pittsburgh, PA 15213

December 1992

* Author towhom all correspondence should beaddressd.




Abstract

This paper presents a new decomposition method for solving large scale
multiperiod design problems. These problems are formulated as nonlinear optimization
problems with a special block angular structure and linking variables. The proposed
method, based on Successive Quadratic Programming, uses a decoupling scheme and
projects the original problem into a quadratic subproblem involving only the complicating
variables. Using this subproblem as the main coordination step, the problem in the full
space is solved as a stream of independent single period problems.

The key property of this method is that the computational effort scales linearly to the
number of periods compared to a quadratic and cubic increase for general purpose reduced
gradient and SQP methods, respectively. Toillustrate thisproperty, the method is applied
to four example problems including two in multiperiod chemical process design. Its
performance is superior to both MINOS and SQP in terms of computational demands,
number of function evaluations and solution robustness.




1. Introduction

In this work we address the problem of designing multiperiod chemical plants, a
special class of the more general problem of design for flexibility. The advantage of a
formal approach to the design of multiperiod plants is that operation is guaranteed to be
feasible and optimal over the specified set of operating conditions. The importance of
developing systematic methods for designing multiperiod plants as well as the difficulty
associated with this approach was discussed in our previous work (Varvarezos,
Grossmann and Biegler, 1992),

* Difficulties in formulating and solving multiperiod design models stem from the
large scale size of the problem. As the number of periods increases, there is a
disproportionate increase in the computational demand and a corresponding decreasein the
robustness for andard optimization methods. Thisbehavior prohibitsthe solution of even
moder atdly sized multiperiod modelswith gandard general purpose nonlinear optimization
methods. It is therefore the objective of this paper to develop an efficient method for
solving nonlinear multiperiod problems.

In this work we propose a decomposition scheme based on Successive Quadratic
Programming (SQP) principles for solving general nonlinear multiperiod models that
guarantees global convergence to a local optimum. The theoretical properties and the
conceptually smple Newton-based framework are the main reasons for choosing to base
our decompaosition on successive quadratic programming. On the other hand, by using the
special sructure of the multiperiod problem we can avoid the shortcomings usually
associated with SQP methods. With this decomposition method (M PD/SQP) the issue of
computational efficiency and robustness with increasing the number of periods is
effectively addressed.

Theres of the paper is organized asfollows. Section 2 describes the mathematical
form of the problem and gives a brief review of decomposition methods for this particular
problem gructure. In Section 3 we present the development of our decomposition method
garting with a decoupling scheme, a range and null space decomposition and finally a
projection scheme on the small subspace of complicating variables. The problem of
explicitly dealing with inequality congraintsis addressed in Section 3.4 asan integral part
of this work. Section 4 demondrates the theoretical and algorithmic properties of the
method. The performance characteristics are illustrated in Section 5 with two small
multiperiod problems and through two multiperiod process design problems involving a
Heat Exchanger Network (HEN) design and a small flowsheet problem. Comparisons are




drawn to genera purpose optimization algorithms where it is shown that the computational
effort for the proposed method scales linearly to the number of periods. Finaly,
conclusions are discussed in Section 6.

2. Problem Statement

The multiperiod design problem in steady state operation for a given topology can
be represented in a mathematical programming form by a nonlinear programming problem
(NLP). A structural characteristic of the multiperiod problemisthat it involves two distinct
classes of variables, the design and the state-control variables. The design variables, d,
represent equipment parameters such as reactor and vessel volumes or heat exchanger
areas, and remain the samein all periods of operation. The state and control variables, X],
represent operating conditions such as temperatures, flowrates or concentrations, and are
different for each period of operation i. The general NLP formulation for the multiperiod
problem involves the minimization of a cost based objective function consisting of fixed
costs (%) and operating costs (fj) for each period subject to a set of equality and inequality
constraints for each period (hj, gj), as well as constraints on the design variables and
bounds on all thevariables. The resulting problem (P.1) is:

N .
minimize* =fo(d) + £/,(<*,*, (P.I)

subjectto A (d,x)=0 1]

r(d)<0

xje€ X; = {x; € R | xL < xi<XiU}, i=l,... N
de D={de Raldl<d <dU}

In the above formulation the order of the periods can be arbitrary since the operation of
each period is independent of its relative position in the sequence. An important
characteristic of this problem lies in its block diagonal structure as shown in Figure la.
The design variables, d, are the complicating variables interconnecting all periods of
operation, whereas the overall matrix remains sparse but structured.

There are two major difficulties associated with the solution of the multiperiod
problem that relate to the computational efficiency and robustness. Firstly, the
computational requirements for solving (P.1) using genera purpose optimization methods,




such asreduced gradient or successive quadratic programming, increase quadratically or
even cubically as a function of the number of periods consdered. Secondly, as arcsult of
the large problem size these methods are likely to fail to find a solution, especially asthe
number of periods becomes larger. Based on the above arguments, the need for a special
solution method to efficiently address this problem becomes apparent A promising
direction isone that exploits the block diagonal gructure of the problem (in xO through a
decomposition strategy. Once the design variables are fixed, the subproblems for each
period become decoupled, and hencethey can be optimized independently for x\g i=I, N.

For the case of multiperiod Linear Programming (UP) problems, special block
angular structured problems have been addressed through special solution procedures
ranging from primal-dual decompositionsto forward smplex methods (see Aronson, 1980
for a review). However, few methods have addressed the NLP problem through
decomposition schemes. The main characterigtic of these methods is a two phase solution
procedure. In thefirst phase design variables are fixed and the decoupled problems are
solved. In the second phase, thedesign variables are updated The basicidea behind the
NL P decomposition strategy by Grossmann and Halcmane (1982), is based on a projection
restriction procedure (Grigoriadis, 1979) by which the problem at the level of design
variables is reduced into one in which variables are eliminated by using the active
congtraints at each time period An important limitation with these decomposition
techniques lies in the definition of therestricted problem which requires the dynamic
elimination of gate variablesfrom the equation and active inequalities which change at each
major iteration.

The most recent work in multiperiod optimization addressed the problem in both
NLP and MINLP formulations (Varvarezos, Grossmann and Biegler, 1992) for convex
problems. An outer-approximation based method was developed in which the original
problem was approximated by accumulating linearized versions through a two phase
procedure. This method was successfully applied to the solution of convex problems and
in particular to the design of multiproduct batch plants with future capacity expansions.
However, since the method was developed for convex fonnulations there are limitations of
applicability to non-convex problems.

3. Proposed MPD/SQP Method

This new method is motivated from the ideas of Successive Quadratic Programming
(Han, 1977). These methods are known to have global conver gence properties under mild




conditions to a local solution. The main reason for using SQP as the framework of this
decomposition comes from a dual view of the method with respect to different modeling
environments. From an equation based modeling gandpoint, in which the linear algebra
dominates the overall computational effort, function evaluations are not particularly
expensiveto obtain. In amodular process smulation environment, however, in which one
function evaluation corresponds to a full smulation, the number of function evaluationsis
critical for a successful method It is also known that SQP-like methods are in general
favored in such modeling environments due to the fewer function evaluations required.
Therefore, the need for developing a method that can be successful in both modeling
frameworks suggests an SQP-based approach to the decompaosition.

Theidea behind this method comesfrom a decompostion scheme for a special class
of parameter estimation problems (Tjoa and Biegler, 1991) with a similar block diagonal
gructure involving equality consgtraints only. Here, a Quadratic Programming (QP)
subproblem issolved only in the design variable space and the sate and control variables at
each period are calculated separately. The advantage of such a scheme is that the
computational effort for obtaining the state and control variables increases only linearly
with the number of periods.

One way to exploit the gructure of the NLP problem (P.1) is by introducing
additional period dependent pseudo-design variables 6] toreplacethedesign variablesin the
equationsfor each period Since all of these have to be equal to the design variable vector
d, we also add one set of equations for each period:

$ -d=0 i =1li.. N (3.1
and initialize 5} tod This trandformation provides a special sructure for the coupling
variablesd, although it does not completely decouplethedifferent periods. In thisgructure
the complicating variables, d, appear in a small subset of linear equations as seen in (P.2).
The new gructure of the problem after the decoupling can be seen in Figure Ib. This
gructureisfurther utilized through arange and null decomposition schemefor each period

In order to transform all the inequality congraints into equations and simple
bounds, we introduce additional non-negative dack variables si. With all of the additional
variables and congraints (P-1) becomes:

N
minimize 0 =/</<) + X/, ", Xj (P.2)




abjectto h-*S'xJ=0

0 I = 1..N
S,-d=0
r(d)<0
xje Xj = [x;e RrIxl<x <xV}, i=l,... N
deS={seR™I 970}, i=1,... N
deD={deR<nd"£d£d"}, &eD i=1,... N

Applying an SQP scheme we can solve the above problem (P.2) iteratively by detennining
a search direction at each iteration k from diefollowing quadratic programming problem:

minimize<p ~ Vglo' M sy Vi, M. +
2
. . (P.3)
| (Vofi P+ Sp VL)
i~l
subjectto & + VAT p, =0 i=1 ..V
r+ Vg Ad £ 0
= Xf Bt 1 10
pi = |85 - 8 h=18 +3 VK=K 19,6 +s)10
S+ lg -Ad 1 11

pi€ Pi= (pie R | pl <p <pU}, =120 N
Ad e D = [Ad = (dk+] - dk) RquL-dkSAdeU-dk]

Here LQ and L, arethe Lagrangian functionsbased on (P.2) defined as:

L-/.GO +T (4,
N
L = _fdp)+ K@) A + Ry,

2=

where 1 includes r and the bounds on Ad, XQ and X. are the Lagrange multipliers
correspondingto F and ” respectively. Matrix Rj isadiagonal matrix with its eements
representing whether the bound on a sate or control variable is active or not based on the
current active set Aj = {j | py =pjj® } (for smplicity of notation superscript B denotes
ether lower or upper bound), so that:




. (OifjeA
R? = { lifjeA,.} (3:2)

and m are the Lagrange multipliers corresponding to the active bounds on the expanded
state and control variables step pj.

Problem (P.3) is the full space QP that has to be solved at each iteration. In order
to exploit the specia structure of the above problem we will consider the first order Kuhn-
Tucker optimality conditions for the state and control variable step vector pj

(Vf, +V2Lp + VRTA, + Ry, = 0 |
k + V,h?Pi =0
R (i -pf)0

Ltf ip, ~pf) =0

3.1 Range and Null Space Decomposition

In order to reduce the dimensionality of the problem and exploit its special structure
wewill introduce arange and null space decomposition scheme. Theideaisto partition the
full space of the state and control variables Pj at each period into two subspaces. The null
space Zj will be tangent to the equality constraints of the quadratic problem (P.3), whereas
the range space Y| will be orthogonal to Zj so that the following relations hold:

VP =0

4F 34)
Z]Y, =0

Accordingly the step direction for the state and control variables p; becomes:
A =7%Pz, + YiPr, (3.5)

By pre-multiplying the first equation in (3.3) by Z', using (3.4) and (3.5) the following
system of equations gives the new direction for the variables p;. A standard assumption
with reduced Hessian methods, that will be used here, is that ZiVZLjYipyj is negligible.
Note also from the definition of /i, in (P.3) that pz and py; areimplicit functions of Ad.




R+ V20 p =0 (3.6)

Zsapzz * Ysipn:RipiB

z/ v, f: +ZfV2pL,ZiPzi + Z.:: # =0

HereZg and Y ) aregiven by:
Z, =R Z
Ys = Rn Yi

3.7)

Since the range and null spaces based on (3.5) are not uniquely defined, the exact forms
used in this work are based on partitioning X; into (n-m) independent (control) and m
dependent (date) variables, z; and y-, respectively. Thisdlows the following definitions of
Z;andYj (Tjoaand Biegler, 1992):

/ Vo) V)T 0
Z ={-(V,h (VA and Y, = I 0| (38
0 0 1

3.2 Projection Step
System (3.6) is now decoupled into two square systems that can be solved successively.
First pYi isfound by:

Pr,=-<?*YJh (3.9)

and then pzj is given by the solution of the following system:

zZ'viLz, Zj zZ'v.f,
[fs, ; ] ft] _ [rR’Tpf .7, pn] (3.10)

In the above system Z&\Ys_ and/?, are matrices defined by the collection of the nonzero
rows of the corresponding matrices. Similarly, /Z, is defined by the nonzero elements of
F-. Notethat in (3.9) and (3.10) the vectors Pz} and pyj arelinearly related to Ad through
K, (see P.3). For smplicity of notation we will express pzi and pyi in terms of Ad as
follows

Pz = Az + B; Ad ad  ZtPz, =\ + ZgAd

Pr, = Ay, + By Ad ad  vipr, = ¥, + YgAd (3.11)




where Azj, Bzi, Ayi and Byi are obtained through the solution of (3.9) and (3.10). Now
if we substitute (3.11) into the original QP in (P.3) we get a projected QP expressed only in
terms of Ad.

N
minimize 0 = [Vdf: + %[ foir (Zs, + Yn,) + (Z, + YA‘)T V;L, (Z, +Y,) ]]M

+ %MT [ngn + i[ (Zy,+ Yy ) V2L (Z, + Y,) ]] Ad

i=1

subject to r+VgoM < 0 (P.4)

Since all the variables Pi are expressed in terms of Ad the solution of the above QP is the
main coordination step in this method since it provides all the information necessary to
construct the next search direction for the state and control variables at each period.
Formulating this projected QP in the space of d makes it much more convenient to solve for
two reasons. Firstly, for process design problems we have dim(d) « N- dim(xj) and
secondly we note the size of the projected QP (P.4) is independent of the number of
periods N.

3.3 Quasi-Newton Updates to the Hessians

The need for an approximation to the exact Hessian is the main idea behind quasi-
Newton methods. This approximation is obtained by using the known curvature along the
search direction. A commonly used approximation is given by the BFGS formula given

by:

KTk T
HVM =g« - HssH_ . W (3.11)
£+ ST|;|kS Y's
=V _vVy
where: Y " f
s= X - X

and H¥ is the approximation to the Hessian at the k* iteration.

In this problem there are two Hessian matrices to approximate. The first is the
reducedHessian of theLagrangianfor each period Z]*V\L¥L; that appearsin (3.10). Inthe
reduced Hessian update definitions of s and y in the BFGS update formula (3.11) are not
unique and a number of different choices have been proposed (Nocedal and Overton,
1985). Inthiswork we have:

— Lyk—\\ T*;YJ MikH ‘_7"‘""\'7 fAr

Y~ J (3.12)
s ax XN




where a is the steplength from the linesearch (which is used in each major iteration to
reduce the merit function). Note that based on the above definitions no Lagrangian
multiplier estimates arerequiredfor evaluating y.

The second Hessian that has to be evaluated is the projected Hessian for d, that

appears in (P.4) and has the form [Vfc, + £{ (Zg + Ya)" Vil (Zac+ Ya) 1. A

BFGS update scheme will be used heretoo. Thechoiceof y and sfor this update based on
the gradient in (P.4) should be:

o s

VIS + S(V f @ *YB) + (Z* + YA V% (Zg + Ye))
- [v,,f, + ZIVJJ (Zsi + Yai) + (27 + YN V% (Zg + YB() ]
s=a(dt+1_dk)

However, since some of the termsin the above formulas are not explicitly known and also
based on the fact that their contribution vanishes as p, approaches zer o, these tennswill be
ignored leading to:

y=k/o +f{vy/f Yo + A VL2, 1]'"
L im] ]

i [v,f: sfovive + ZjvEZA Y (313)

s = a(d™ - d*)

Herewenotethat VA fJ Zg; wasignored in (3.13) because it involves terms that reflect on

the active set that are redundant Since the second order information regar ding the bounds
iszerothisterm isonly affected by changesin the active set and its contribution does not
reflect on thetrueHessian. Henceit deterioratesthe approximation. An alternativetothe
update for evaluating the projected Hessian in d is an exact evaluation directly from (P.4).
This, however, requires information on the full Hessian for each period that is not
available. In order to resolve this, a direct update on the full Hessian, as opposed to the
reduced Hessian, could be employed. The main problem with this approach, though, apart
from the increased computational demands, is that the full Hessian updates can become
sgngular, which leads to gability problemsfor the method.

In order to guarantee a descent direction for this method we need to ensurethat both
the reduced Hessian for each period (Zj"BjZ}) as well as the projected Hessian in d are
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positive definite. The necessary conditionsfor a positive definite BFGS updateis an initial
positive definite matrix (the identity matrix is usually chosen in the absence of any
additional information) and s'y > 0. Normally, when s'y < Qiit is necessary to skip the
BFGS updates to avoid indefiniteness or sngularity in the new approximation (Nocedal
and Overton, 1985). An alternative to this (Powell, 1978) attempts to perform an
approximate update under these conditions. Asaresult of testing we recommend updating
thereduced Hessian for each period Z ~ B~ using Powell damping when sy :£0, whereas
for the projected Hessian in d we smply skip the updates. The reasons behind this
selection come from the different role of the two Hessians in this method. For the
projected Hessian in d we are being conser vative by skipping in order to keep the matrix
positive definite and well conditioned, since the actual projected Hessian in d is expected to
remain positivedefinite. For thereducedHessan for each period zJTBJZJ, however, thisis
only necessary if none of the degrees of ffeedom are consumed.

Finally, in the case where lIdl —> 0 and llyll » lidl the updates may become
singular even if s'y > 0 and the true matrix isnot singular. In that caseit is also advisable
to skip the updatesin order to maintain the superlinear conver gence characteristics of the
method.

3.4 Active Set Method

Asdescribed in the decomposition part of the method, all theinequality congtraints
involving state and control variables are trandormed into equations by adding new dack
variables. Therefore all the inequality condraints that remain have the form of smple
bounds on the state and control variables. '

The most important consideration in developing an active set scheme for the given
decomposition comes from the need to preserve the simplicity and uniformity of the
decomposition. The main ideaisto develop the bounding scheme preserving at the same
time the gructure of the method. As already presented in the development of the method
(in (3.1) through (3.10)), the null space Z is defined only in terms of the equality
condraints and is completely independent of the changesin the active bounds. This allows
a uniform representation of all the periods. Also in the context of the reduced Hessian
updates, Z¥ and Z*** have the same size and therefore s and y are always well defined.
The handling of the active bounds is done through the solution of system (3.10).

In agandard SQP method each QP subproblem (P.3) is solved to optimality at each
iteration. Thisisequivalent in our caseto solving (P.4) to optimality and determining the
correct active set for the state and control variable bounds at each iteration. Thisisnot a
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very attractive option, however, since it would require the solution of (P.4) and (3.10)
several times, adding and deleting boundsin each major iteration. On the other hand, the
solution of (P.3) for the correct active set at each iteration doesnot necessarily reflect upon
the correct active set at the optimum, especially in the early iter ations wher ethe information
built up in the problem isinsufficient and the predicted sepsareinaccurate. Although there
areproposalsin theliteratureto terminate the solution of the QP early, the great majority of
SQP algorithms solve the QP subproblem to optimality. It can be shown, however, that
under mild conditions (Prieto, 1989) the incomplete solution of the quadratic subproblem
does not affect the conver gence properties of SQP methods.

Here, wewill introduce an adaptive scheme with an early termination criterion for
the QP subproblem (P.3), that has a guaranteed bound on the effort necessary to satidfy it
In particular, the projected subproblemin d (P.4) will always be solved to optimality for a
given active set. The termination criteria are naturally connected to the decomposition
method and are defined in terms of the active set and the bounds encountered along the
predicted search direction.

In this method we attempt to follow a feasible path with respect to the state and
control variable bounds. We gart with a point Xj° within the bounds and we add bounds as
they are encountered on the cour se of each new direction pj¥. By solving (3.10) and (P.4)
we have a new direction for all the sate and control variables. For thisdirection wefind
the largest steplength OQ (0£OLQE£ 1) for which no bound isviolated. The bound that
correspondsto thisfeasible OQ (in case of course OQ < 1) isadded totheactive set If this
aD) isless than a certain threshold value related to the progress of the method (e.g. k/30,
wherek isthe mgjor iterations counter) a minor iteration isperformed; L e., the projected
QP (P.4) is solved with the new active set at the same point of linearization. In addition to
that, no more than |; bounds are allowed to be added to any period in a single minor
iteration cycle. Thevalue of 1; should be a small number (between 1 and n-m) to avoid
overloading periods with bounds in the early stages of the method. From the above
arguments there is a tradeoff between adding many congraints early which may require
more iterations to remove, and using a lower threshold value on <XQ (and /j) which may
require more iterations to add all the necessary congraints. In thiswork a value of k/30
was used as a cutoff point for the minor iterations. The congtant used as a denominator
(30) isarbitrary but it reflects on an average maximum number of expected iterations. Also
for the value of the maximum number of added bounds for a full minor iterations cycle, t,
we used (n - m)/2.

Anocther important characteristic of this active st method stems from our
decomposition procedure. Since we have effectively decoupled all different periods, only n
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- m active bounds can be set at each period. The total number of degrees of freedom for
the multiperiod problem is N-(n-m)+dim(d) and ther efore there is an additional number of
dim(d) possible active bounds that should be accounted for. As is often the case in
multiperiod problems, someor even all of the possible active bounds are active at a single
period. Since, the maximum possible number for active bounds per period is actually n -
m + dim(d), some of the degr ees of freedom corresponding to the design variables haveto
be consumed in some of the periods. In order to deal with this problem some of the active
bounds on state and control variables have to be added to the projected QP (P.4) so that
they areexplicitly enforced. Thisnumber, however, should not exceed (dim(d) - dim(™))
sgncethisisthe maximum number of degrees of freedomin the projected QP.

3.5 Modd SQP/MPD Algorithm

Based on the above discussion the algorithm for the proposed SQP/MPD method
can be summarized asfollows:

Step 1. Choose garting point for dfi and xfi. Initialize thereduced Hessian for each period
and the projected Hessian in d to identity. Set major iteration counter k =0. Set
active set Ag? =0.

Step 2. Check for convergence. If the Kuhn-Tucker error islessthan the desired tolerance
e STOP. Evaluatethe objectivefunction and congraintsand all the gradients <3 h,
V<ifos Aphit Aphi® (i%» d¥)- Set minor iteration counter m = 0 and t\ = 0. Set up
aloop for all periodsi:

a. Update active set A" by removing at most one inactive constraint with the
most negative\L Condruct Rj.

b. Set up auxiliary matricesto sorethefunction and the gradients partitioned into
dependent and independent variables and use LU decomposition scheme to obtain
Zi.

c. Updatetheinverse of the reduced Hessian (ZjT V,°Li Zi)-1.

d. Solve(3.9) and (3.10) toget matricesZAl, ZBJ, YA; YBj
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Sep 3. Calculate the gradient y in (3.13) for the projected QP. If m = 0 update the
reduced Hessian for the projected QP. Solve the QP subproblem to get a new
direction Ad“ for the design variables.

Sep 4. Caculate the new directions Z* py;, Yi py; and Axfc for each periodi. Test for
feasibility with respect to state and control variable bounds in the new direction
based on afull step (XQ = 1). Iffeasible proceed to Step 5.

a If XQ = 1 resultsin bound violation, then find the maximum OQ without bound
violation. Add the corresponding bound (i*»j*) to A <. If O0>k/30 proceed to
Step 5.

b. Ifcco<k/30then: Set 4<—4+1. If \> (n-m)/2 proceed to Step 5. Set
m<—m-+1. For periodi*:

b.l. Solve (3.9) and (3.10) to get the new matrices ZAi*, zBI*.

b.2. Goto Step 3.

Sep 5. Perform a line search using an augmented Lagrangian based merit function
(Biegler and Cuthrell, 1985) to get a step size a starting from G3Q (0 £a £ 0Q).
Set xjk+l = x£ + a Axi* and d*+l = d* + a Ad*. Set k <— k+1 and return to
Step 2.

The above steps can be schematically seenin Figure 2. This agorithm was implemented in
FORTRAN and was used to solve several multiperiod problems. The code used for
solving the quadratic subproblems was QPSOL (Gill et al.g1983).

4. Method Remarks

From atheoretical standpoint the SQP/MPD method described above has a global
convergence property under mild conditions. This is the result of the local convergence
properties associated with Newton-based methods combined with the minimization of an
appropriate merit function through aline search that ensures global convergence to alocal
optimum. Note that although the proposed decomposition method greatly affects the
computational characteristics of the solution process, it does not affect the convergence
properties associated with the underlying SQP method.

One important characteristic of this method is the use of an incompl ete solution to
the QP subproblem (P.3) as the search direction for the merit function. Here each
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subproblem is solved to optimality assuming that the current active set is correct. This
early termination of the QP subproblems, regardless of the possible inefficiency that it may
introduce, is needed to enfor ce a drict bound on the number of QP subproblems that need .
to be solved at each SQP iteration. Thisbound isimportant in practice, since the number of
solutions of the QP subproblem (P.4) and (3.10) needed to solve (P.3) may be very high.

From a complexity sandpoint, the computational demands for this method have a
linear relation to the number of periods consdered. Given a correct active set, the main
computational effort islinear to the number of periods, as can be seen from the sructure of
the algorithm in Section 3.5. However, this property cannot be proved due to the NP-
hardness associated with the general NLP formulation of the problem (Bellare and
Rogaway, 1992). The complexity of the problem before the decomposition is NP-hard in
N-n variables, C(N-n), where n can be any measure of the input variables. Through the
decomposition we solve N problems with NP-hard complexity in n variables, C(n). If the
dructure of C issgmilar to C* then the complexity of the new problem is N-C(n). Hence, if
the above assumption holds, thereisareduction in complexity for the proposed method.

Another important characteritic of the SQP/MPD method is its embedded
paralldism. Asa matter of fact, the only non-parallel step in this algorithm is the solution
of the projected QP which is the common coordination step for all the periods. This
property can be utilized in a paralled computing environment to further decrease
computational demands.

A drawback in the way this method isimplemented is the approximation of thefirs
term in the objective function of the projected QP in (P.4). This approximation affects the
accuracy of the Hessan estimate and therefore is expected to increase the number of
iterations of the method. One way to avoid this problem is by constructing or
approximating the full Hessian for each period provided that the stability issue of this
approximation is also addressed.

In this work the handling of bounds was done through an active set scheme
described earlier. However, thisisnot the only alternative. A different approach includes
the use of penalty or barrier methods. An exact penalty method was investigated in this
work but the results were not satisfactory especially for large problems mainly dueto the
gngularity in the Hessansintroduced by the penalty rdated termsin the obj ective function.
Ancther potentially promising approach, that was not investigated in this work, isthe use
of barrier methods which became very popular lately; it isnot clear, though, whether the
problemsrdated to numerical sability aswell as the choice of the barrier parameter have
been successfully addressed.




5. Example Problems

In order toillustrate the proposed method we consder four exampleproblems. The
firg two problems are general mathematical formulations of multiperiod models and are
consdered for examining the general trends of the method The other two are problems
related to multiperiod process design in chemical engineering. The firg is a small
multiperiod flowsheet design problem involving a CSTR and a heat exchanger (Grossmann
and Halemane, 1982) as seen in Figure 3. The goal is to decide on the volume of the
reactor and the area of the heat exchanger, providing feasible and optimal operation for all
periods. The other process design example addresses the optimal design of a heat
exchanger network with fixed topology consisting of four units (Floudas and Grossmann,
1986) as seen in Figure4.

5.1 Multiperiod Example Models A and B

In order to investigate the generality of this method on problems with different
numbers of degr ees of freedom as well as problems that aretightly or lightly constrained,
we consider two small nonlinear multiperiod example problems. Although chemical
process design problems have typically few degrees of freedom at the optimum, we
congtructed these two problems for the pur pose of testing the method in a more general
multiperiod NLP frameworic Themodd of problem A is:
(a) objectivefunction

minimize/ = d® + ~ae® - 5x, + *f) (E.

i=]
(b) equality congraints
A+ P% - 2c3 - 5d - 2 = 0
(¢) inequality congraints
-x - Y5+ 01<? < 0
1 ds50

Mode B'isa congrained version of (A). Itisformed by the addition of upper and lower
boundstoall the sateand control variables:

(d) gateand control variable bounds
0<, x\ <3

0< x\ <3 (E2
0<4 <3
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The data for the parameters in this model (&}, (3,7%) for some of the periods are listed in
Tablel. The maximum number of periods examined in this problem was 20. The total
number of design and state and control variables for this problem are 1 + 3N (1 and 3N
respectively) into 2N equality and inequality constrains (N and N respectively, excluding
simple bounds on the variables)- The total number of the degrees of freedom for this
problem based on the equality constraintsis 1 + 2N. The problem sizes for models A and
B for different number of periods are presented in Tables I and HI, respectively.

Using the above models A and B solving up to 20 period problems, the
performance of the proposed MPD/SQP method is compared to areduced gradient method
(MINOS 5.2, Murtagh and Saunders, (1985)) and areduced Hessian successive quadratic
progranming method (SQP, (Vasanthargjan, Viswanathan and Biegler, 1990)). The
results for models A and B, summarized in Tables IV and V respectively, show that the
proposed method is superior to both methods in terms of computational efficiency. The
SQP/MPD method, as anticipated from its agorithmic properties, presents alinear increase
of the CPU time requirements with respect to the number of periods. In both models the
performance pattern shows alinear increase for MPD/SQP, a quadratic for MINOS and a
cubic for SQP, as shown in Figures 5 and 6.

52 Flowsheet Example

In this example achemical plantisto be des gned to produce different productsin N
different time periods. The reaction for al products is assumed to be first order exothermic
of thetype A—> B. The reactor temperature is controlled by a recycle stream through the
heat exchanger using cooling water. The objective is to minimize the total annualized cost
consisting of the fixed and operating costs. The mathematical model describing this system
will form the constraint space of our optimization problem (E.3):

(a) net cost (annualized investment cost + operating cost)

minimize C = 0.3 (2804 V" + 2912A%) + £(2.2 10" W + 882 10" F\)
i-l

(E.3)
(b) reactor materia balance

Cc -C A
C‘

(¢) reactor heat baance
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¢ L .
((AH F; 22—l = Rc (- 1) +Q
Aq

(d, €) heat exchanger heat balance

Q.l'
Ql’

Fic @ -Ty)
we, (T, -T,)

i

(O heat exchanger design
Q = A UAV,
(- L8)-(Jd-Th) {(T;‘ -Ti )T - T - T + T; - r;)}a

AT;m - F i 2
{0 T
T; - T,

(g) reactor design

V-V A

(h) bounds on conversion

09 =251

C‘A.
(i) minimum appr oach temperaturefor heat exchange

(j) maximum reactor temperature, minimum water temperature, logical conditions
TS T
r;<r; <36

In addition, all the variables involved in this design are positive. The values of al the
parameters for some of the periods considered are given in Table VI. This problem
involves a total of 2 + 9N design and state and control variables (2 and 9N respectively)
and 9N equality and inequality constraints (6N and 3N respectively, excluding simple
bounds on the variables or inequality constraints that can be expressed as simple bounds).
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Including the bounds we have 2 + 9N + 12N = 2 + 2IN total constraints. The total
number of the degrees of freedom for this problem based on the equality constraints are 2 +
3N. A list of the problem size for different number of periods is presented in Table VIL

Theresults, summarized in Table VIII, show that the proposed method is superior
to both methods in terms of computational efficiency, robustness and potential for large
multiperiod problems. The SQP/MPD method, as anticipated from its algorithmic
properties and shown in the two previous examples, preserves the linear behavior of the
CPU time requirements with respect to the number of periods. The computational trends as
a function of the number of periods for al the methods are presented in Figure 1.
Regarding the issue of robustness, for problems with more than 5 or 10 periods MINOS
failed to reach the optimum from the given starting point and required a starting point
within 20% of the optimum to succeed. However, for larger size problems with 15 or 20
periods even this starting point was not sufficient for converging to a solution. The
proposed method on the other hand, appears to be far less sensitive to the selection of the
starting point. The optimal solution of this problem in terms of the total annualized cost
and the design variablesis presented in Table DC for different numbers of periods.

5.3 Heat Exchanger Network Example

In this example a heat exchanger network (HEN) is to be designed that includes
three heat exchangers (A, A, A3), one utility unit (A4) and four process streams, two hot
and two cold. The additional cooling load in this network is provided through water in the
fourth heat exchanger (A4). Theobjective is to minimize the annual cost of this network
consisting of the investment plus the operating (utility) cost The mathematical formulation
of this multiperiod problem (E.4) is given below:

(8) net cost (annualized investment cost 4- operating cost)
N

minimize C = 900 (<* + /9%*+*£*+ A®) + A £(310-3<£) (E4)

(b) energy baances o _
5(r;.-r) = Q.
20(r;, - 1j) = Q
5-16=Q; |
20(563 -Ta) = Q
Ti-Ti, = Qi

3033-T) = <&
15 (T', - 350) = Qi




(c) desgn equations _
< UA AT,
0i < UA, AT},
Qi < UA AT,

Q; s UA,AT,,
(d) feasibility inequalities

r2-1; 2 AT,

le-I, = AT,

NN ar,

It.- 393 2 AT,

r; < 323

The term ATi, represents the mean logarithmic temperature and is gpproximated by the
formulagiven inthe previousmodd (E.1-Q, (Chen, 1987). Thedatafor the parametersin
thismodd (Tj, T3, Ts, Tg) for someof theperiodsarelisted in Table X. Thetemperature
rangefor the cooling water is 300-320 (K). The maximum number of periods examined
in thisproblem is20. The total number of design and state and control variablesfor this
problem are4 + 8N (4 and 8N respectively) into 12N equality and inequality constrains
(7N and 5N respectively, excluding smple bounds on the variables or inequality
congraints that can be expressed as smple bounds). Including the bounds we have 4 +
12N + 9N =4 + 21N tota congraints. The total number of the degrees of freedom for this
problem based on the equdity congraintsare4 + N. A list of the problem size for different
number of periodsis presented in Table XL

The proposed method was gpplied to the solution of this problem with up to 20
period problems. Theresultsalong with comparisonswith MINOS and SQP are presented
in Table XII. In a manner smilar to the flowsheet example the proposed method
outperforms the above methods retaining the linear increase of computationd demands with
the number of periods. The computationd requirements are plotted for all three methodsin
Figure 8, attesting to the trends observed in dl the previous examples. As shown in
Figures 5 through 8 for al the examples consdered, the computationa requirements for
MINOS and SQP increase quadraticaly and cubicaly, respectively, with the number of
periods, while the increase is linear for the proposed method. From the robustness
gandpoint MINOS failed to solve problems with more than 12 periods from the given
garting point For 15 and 20 period problems it was necessary to provide a starting point
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very close to the optimal solution in order for MINOS to find the optimum. However, for
this problem the results for SQP regarding function evaluations were better than
MPD/SQP. Thiscan be attributed to the very few degrees of freedom that this problem has
in combination with the fact that at the optimum there are no degrees of freedom for the
design variables. On the other hand, for the proposed method since all the degrees of
freedom in theprojected QP in d areconsumed it takesmoreiterationsto find the correct set
of projected bounds. In general though, even at the level of function evaluations,
SQP/MPD outperforms the reduced space SQP method, as can be seen from therest of the
example problems. The optimal solution of this problem in terms of the total annualized
cost and the optimal sizes of the heat exchangers is presented in Table X111 for different
numbers of periods.

6. Conclusions

We have proposed a new decomposition method for solving multiperiod design
optimization problems, based on successive quadratic programming. Our approach differs
from previous approaches because it scales linearly to the number of time periods. This
property allows the solution of large multiperiod problems considering arealistically high
number of periods. Its performance is superior to general purpose optimization methods
and overcomes therapid increase in computational demands and conver gence difficulties as
afunction of the time periods. Based on the algorithmic properties and some preiminary
results, this method is more efficient in terms of function evaluations, computational time
requirements and robustness compared to both a general purpose SQP method and the
reduced gradient method MINOS.

The theoretical conver gence propertiesfor thismethod arein principle the same as
for a gandard reduced Hessian SQP method. Unlike gandard SQP, however, the
performance of this method is not affected by the total number of degrees of freedom which
in turn depends on the number of periods. This comes as a natural result of the
decomposition since the problem is addressed for the most part as a stream of paralld
single period problems. Although the method's behavior regar dingcomputational demands
can be explained based on the decomposition arguments, the efficiency with respect to the
function evaluationsis not self evident The main reason for this efficiency comesfrom the
fact that the Hessian estimates are independent for each period, and therefore more
accurate, as opposed to uniform estimates for the (full or reduced) Hessian of the full
multiperiod problem.
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Directions for further improvement of this method should point towards a better
Hessian approximation at the level of the projected QP that would decr ease the number of
major iterations. At the algorithmic level, addressing theissue of an efficient initialization
of the Hessan would further increase the efficiency of the method
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List of Tables

Tablel. Datafor some of theperiodsfor the example problems A and B (E.1), (E.2).

Period 1 5 10 15 20 Range
a 1.0 5.0 10.0 55 0.5 [0.5- 10.0]
p 1.0 7.0 8.0 7.5 8.5 [1.0- 9.2]

_Yy LO 6J) 1.0 6.5 7.5 [1.0- 8.5]

TableH Problem sizesfor different number of periodsin example model A (E. 1)
Total number Number (*) Total number 0> Degrees<>

Number of
periods of variables of congraints ofconstraints of freedom
1 4 2 2 3
2 7 4 4 5
5 16 10 10 11
10 31 20 20 21
15 46 30 30 - 31
20 61 40 40 41

(t) Referstoequation and inequality constantseratadmg simplebounds
(b) Referstoequation, inequality congtraintsand simplebounds
(©) Defined asthe total number of variables minusthe number of equations

TableHL Problem sizesfor different number of periodsin examplemodel B (E.1 and E.2)
Number of Total number Number(@  Total number $) Degrees<)

periods of variables ofcongraints ofconstraints offreedom
1 4 2 10 3
2 7 4 18 5
5 16 10 42 11
10 31 20 82 21
15 46 30 122 31
20 61 40 162 41

() Refersto equation and inequality constraints excluding smple bounds
(b) Referstoequation, inequality congraints and simplebounds
(c) Defined asthetotal number of variables minusthe number of equations




24

Table V. Computational results for example problem A (E.1).

Number of MINOS SQP SQP/MPD
periods  FuncL(a) - CPU (90>) Functfo) - CPU (s)) Funct.(a) - CPU (90>)
1 108 16 17 0.9 11 0.3
2 130 2.1 22 15 12 0.4
5 160 34 43 5.7 16 0.8
10 199 6.2 49 18.4 25 18
15 222 9.1 51 50.8 23 2.0
20 237 12.5 © © 22 2.4

<) Refersto total number of function evaluations
fa) CPU timeresults on a VAX station 3200
<% SQPfailed to converge as the limit of 250 mgjor iterations was exceeded

TableV, Computational results for exampleproblem B (E.1 and E.2).

Number of MINOS QP SQP/MPD
periods  Funct(a) - CPU (90>) Funct(a)-CPU(s)O>) FunctXa) - CPU (9)(b)
1 40 10 11 0.7 11 04
2 78 14 12 0.8 17 0.6
5 123 2.6 18 2.2 16 0.8
10 143 4.2 29 85 15 12
15 146 58 35 21.7 16 16
20 175 8.4 40 57.2 25 3.1

(8} Refers to total number of function evaluations
®) CPU timeresults on a VAX station 3200
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Table VL Datafor some of the periods for the flowsheet example problem (E3).

Period 1 5 10 15 20 Units

(EVR) 555.6 500.0 555.6 -583.3 542.0 K)

AHrnt 23,2600 186040 23,2600 25581.0 27,907.0 (KJ/Kmol)

‘~d 10 8 10 105 12 (h-1)

Foi 45.36 54.43 45.36 40.82 36.29  (Kmal/h)

CAO 32.04 32.04 28.80 10.05 48.06 (Kmal/m3)

cl,i 167.4 125.6 1694 188.4 209.7 (KJ/Kmol K)

Tymax’ 389.0 400.0 389.0 383.0 378.0 (K)
Additional Data: To=333(K), Tl =300(K), ATmin = 11.1 (K),

U= 1,635.34 (KJ/m2Kh)

Table VII. Problem sizes for different number of periods in the flowsheet example (E.3)

Number of Total number Number <) Total number 0>) Degrees<)
~_periods of variables of congraints of constraints of freedom

1 n 9 23 5

2 20 18 44 8

5 47 45 107 17

10 92 90 212 32

15 137 135 317 47

20 182 180 422 62

() Referstoequation and inequality constraintsexcluding smple bounds
(b) Referstoequation, inequality congtraintsand smple bounds
(c) Defined asthetotal number of variables minus the number of equations
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Table VIII. Computational results for the flowsheet exampleproblem (E.3).

Number of MINOS SQP<Y) SQP/MPD
periods Funct.(a) - CPU (s)») Funct.fr) - CPU (90>> Funct.00 - CPU (5)0>)
1 441 6.6 16 18 25 17
2 486 9.7 16 29 17 17
5 355 13.6 10 6.2 24 4.5
10 588 37.7 20 32.9 23 8.1
15 767 61.8 45 165.8 38 195
20 © (© 44 302.1 30 21.8

(*) Referstototal number of function evaluations

< CPU timeresultson a VAX station 3200

(°) MINOS failed to converge from the initia starting point and a set of points in its neighborhood
(<) A different starting point closer to the solution was required

TableX. Optimal solution for the flowsheet example problem (E.3) considering different
numbers of periods.

Number of Reactor Volume  Heat Exchanger Area Total Cost
periods (m3) (m2) ($lyr.)
1 5.315 ) 7.544 9,731
2 5.315 8.517 10,071
5 7.927 8.614 10,689
10 7.927 8.163 10,573
15 7.927 8.518 10,715
20 7.927 8.949 10,907

Table X, Datafor some of the periods for the HEN example problem (E.4).

Period 1 5 10 15 20 Range

Ti(K) 620 620 620 630 635 [620-670]
T3(K) 388 388 373 370 375 [370-390]
T5(K) 583 583 583 570 585 [570-593]
Tg(K) 313 308 313 312 312 [308-314]

Additional Data: AT min = 10 (K) U =0.4 (KIm2K 9
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TableXL Problem sizesfor different number of periodsin the HEN example (E.4)
Number of Total number Numberd  Tota number0>) Degrees<)

periods of variables of constraints of constraints of freedom
1 12 12 25 5
2 20 24 46 6
5 44 60 109 9
10 84 120 214 14
15 124 180 319 19
20 164 240 424 24

(@ Rererstoeauation and Inequality cocBtraintsexcluding sinrolebounds
(b) Referstoequation, inequality congraintsand smplebounds
(c) Defined asthetotal number of variables minusthe number of equations

TableXIL Computational resultsfor theHEN exampleproblem (E.4).

Number of MINOS SQP SQP/MPD
periods  Functfr) - CPU (90>> Functfe) - CPU (s)») Functfe) - CPU (0>)
1 78 2.1 5 13 8 0.7
2 120 3.7 7 2.2 9 11
5 215 10.0 10 6.0 23 4.8
10 168 15.3 5 144 18 6.5
12 259 24.3 7 20.1 17 7.3
15 © © 7 30.0 23 129
20 © (© 7 46.2 24 174

(*) Referstototal number of function evaluations
(> CPU timeresultson a VAX gation 3200
() MINOS failed to converge from theinitial sarting point and a set of points in its neighbor hood
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Table XI1L Optimal solution for theHEN example problem (E.4) considering different

numbers of periods.

Number of HE-A| HE-A, HE-A3 HE-A4  TotalCost
periods (m?) (m2) (m2) <m?) ($lyr.)
1 26.052 3.467 11.218 2.938 15,618
2 26.052 3.467 11.218 2.938 15,840
5 31.750 3.467 13.953 3.127 17,007
10 38.068 6.962 14.212 3.533 18,951
15 39.933 6.962 14.212 4.206 19,560

20 39.933 6.962 14.212 4.206 19,500
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Figure 3. Flowsheet diagram in example problem (E3)
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Figure 4. Heat exchange network in example problem (E.4)
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Figure 8. Comparison of the computational requirements for the HEN problem
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