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Abstract

This paper presents a new decomposition method for solving large scale

multiperiod design problems. These problems are formulated as nonlinear optimization

problems with a special block angular structure and linking variables. The proposed

method, based on Successive Quadratic Programming, uses a decoupling scheme and

projects the original problem into a quadratic subproblem involving only the complicating

variables. Using this subproblem as the main coordination step, the problem in the full

space is solved as a stream of independent single period problems.

The key property of this method is that the computational effort scales linearly to the

number of periods compared to a quadratic and cubic increase for general purpose reduced

gradient and SQP methods, respectively. To illustrate this property, the method is applied

to four example problems including two in multiperiod chemical process design. Its

performance is superior to both MINOS and SQP in terms of computational demands,

number of function evaluations and solution robustness.



1. Introduction

In this work we address the problem of designing multiperiod chemical plants, a

special class of the more general problem of design for flexibility. The advantage of a

formal approach to the design of multiperiod plants is that operation is guaranteed to be

feasible and optimal over the specified set of operating conditions. The importance of

developing systematic methods for designing multiperiod plants as well as the difficulty

associated with this approach was discussed in our previous work (Varvarezos,

Grossmann and Biegler, 1992),

Difficulties in formulating and solving multiperiod design models stem from the

large scale size of the problem. As the number of periods increases, there is a

disproportionate increase in the computational demand and a corresponding decrease in the

robustness for standard optimization methods. This behavior prohibits the solution of even

moderately sized multiperiod models with standard general purpose nonlinear optimization

methods. It is therefore the objective of this paper to develop an efficient method for

solving nonlinear multiperiod problems.

In this work we propose a decomposition scheme based on Successive Quadratic

Programming (SQP) principles for solving general nonlinear multiperiod models that

guarantees global convergence to a local optimum. The theoretical properties and the

conceptually simple Newton-based framework are the main reasons for choosing to base

our decomposition on successive quadratic programming. On the other hand, by using the

special structure of the multiperiod problem we can avoid the shortcomings usually

associated with SQP methods. With this decomposition method (MPD/SQP) the issue of

computational efficiency and robustness with increasing the number of periods is

effectively addressed.

The rest of the paper is organized as follows. Section 2 describes the mathematical

form of the problem and gives a brief review of decomposition methods for this particular

problem structure. In Section 3 we present the development of our decomposition method

starting with a decoupling scheme, a range and null space decomposition and finally a

projection scheme on the small subspace of complicating variables. The problem of

explicitly dealing with inequality constraints is addressed in Section 3.4 as an integral part

of this work. Section 4 demonstrates the theoretical and algorithmic properties of the

method. The performance characteristics are illustrated in Section 5 with two small

multiperiod problems and through two multiperiod process design problems involving a

Heat Exchanger Network (HEN) design and a small flowsheet problem. Comparisons are



drawn to general purpose optimization algorithms where it is shown that the computational

effort for the proposed method scales linearly to the number of periods. Finally,

conclusions are discussed in Section 6.

2. Problem Statement

The multiperiod design problem in steady state operation for a given topology can

be represented in a mathematical programming form by a nonlinear programming problem

(NLP). A structural characteristic of the multiperiod problem is that it involves two distinct

classes of variables, the design and the state-control variables. The design variables, d,

represent equipment parameters such as reactor and vessel volumes or heat exchanger

areas, and remain the same in all periods of operation. The state and control variables, Xj,

represent operating conditions such as temperatures, flowrates or concentrations, and are

different for each period of operation i. The general NLP formulation for the multiperiod

problem involves the minimization of a cost based objective function consisting of fixed

costs (%) and operating costs (fj) for each period subject to a set of equality and inequality

constraints for each period (hj, gj), as well as constraints on the design variables and

bounds on all the variables. The resulting problem (P.I) is:

minimize * =fo(d) + £/,(<*,*,) (P.I)

subject to /*. (d, xi) = 0 1

r(d)<0

i<XiU}, i = l , . . . N

In the above formulation the order of the periods can be arbitrary since the operation of

each period is independent of its relative position in the sequence. An important

characteristic of this problem lies in its block diagonal structure as shown in Figure la.

The design variables, d, are the complicating variables interconnecting all periods of

operation, whereas the overall matrix remains sparse but structured.

There are two major difficulties associated with the solution of the multiperiod

problem that relate to the computational efficiency and robustness. Firstly, the

computational requirements for solving (P.I) using general purpose optimization methods,



such as reduced gradient or successive quadratic programming, increase quadratically or

even cubically as a function of the number of periods considered. Secondly, as a rcsult of

the large problem size these methods are likely to fail to find a solution, especially as the

number of periods becomes larger. Based on the above arguments, the need for a special

solution method to efficiently address this problem becomes apparent A promising

direction is one that exploits the block diagonal structure of the problem (in xO through a

decomposition strategy. Once the design variables are fixed, the subproblems for each

period become decoupled, and hence they can be optimized independently for x\9 i=l, N.

For the case of multiperiod Linear Programming (UP) problems, special block

angular structured problems have been addressed through special solution procedures

ranging from primal-dual decompositions to forward simplex methods (see Aronson, 1980

for a review). However, few methods have addressed the NLP problem through

decomposition schemes. The main characteristic of these methods is a two phase solution

procedure. In the first phase design variables are fixed and the decoupled problems are

solved. In the second phase, the design variables are updated The basic idea behind the

NLP decomposition strategy by Grossmann and Halcmane (1982), is based on a projection

restriction procedure (Grigoriadis, 1979) by which the problem at the level of design

variables is reduced into one in which variables are eliminated by using the active

constraints at each time period An important limitation with these decomposition

techniques lies in the definition of the restricted problem which requires the dynamic

elimination of state variables from the equation and active inequalities which change at each

major iteration.

The most recent work in multiperiod optimization addressed the problem in both

NLP and MINLP formulations (Varvarezos, Grossmann and Biegler, 1992) for convex

problems. An outer-approximation based method was developed in which the original

problem was approximated by accumulating linearized versions through a two phase

procedure. This method was successfully applied to the solution of convex problems and

in particular to the design of multiproduct batch plants with future capacity expansions.

However, since the method was developed for convex fonnulations there are limitations of

applicability to non-convex problems.

3. Proposed MPD/SQP Method

This new method is motivated from the ideas of Successive Quadratic Programming

(Han, 1977). These methods are known to have global convergence properties under mild
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conditions to a local solution. The main reason for using SQP as the framework of this

decomposition comes from a dual view of the method with respect to different modeling

environments. From an equation based modeling standpoint, in which the linear algebra

dominates the overall computational effort, function evaluations are not particularly

expensive to obtain. In a modular process simulation environment, however, in which one

function evaluation corresponds to a full simulation, the number of function evaluations is

critical for a successful method It is also known that SQP-like methods are in general

favored in such modeling environments due to the fewer function evaluations required.

Therefore, the need for developing a method that can be successful in both modeling

frameworks suggests an SQP-based approach to the decomposition.

The idea behind this method comes from a decomposition scheme for a special class

of parameter estimation problems (Tjoa and Biegler, 1991) with a similar block diagonal

structure involving equality constraints only. Here, a Quadratic Programming (QP)

subproblem is solved only in the design variable space and the state and control variables at

each period are calculated separately. The advantage of such a scheme is that the

computational effort for obtaining the state and control variables increases only linearly

with the number of periods.

One way to exploit the structure of the NLP problem (P.I) is by introducing

additional period dependent pseudo-design variables 6j to replace the design variables in the

equations for each period Since all of these have to be equal to the design variable vector

d, we also add one set of equations for each period:

$ -d = 0 i = l f . . . N (3.1)

and initialize 5} to d This transformation provides a special structure for the coupling

variables d, although it does not completely decouple the different periods. In this structure

the complicating variables, d, appear in a small subset of linear equations as seen in (P.2).

The new structure of the problem after the decoupling can be seen in Figure lb. This

structure is further utilized through a range and null decomposition scheme for each period

In order to transform all the inequality constraints into equations and simple

bounds, we introduce additional non-negative slack variables si. With all of the additional

variables and constraints (P-l) becomes:

minimize 0 =/</<*) + X / , ^ , xj (P.2)



subject to h-^S^xJ = 0

S,-d = 0

r(d)<0

i = 1....N

Si e Si = {si e Rm I Si ̂  0},

d e D = { d e R < n d L £ d £ d u } ,

i = l , . . . N

i = 1,... N

i = 1,... N

Applying an SQP scheme we can solve the above problem (P.2) iteratively by detennining

a search direction at each iteration k from die following quadratic programming problem:

minimize <p - Vd/O
r M + -MT M. +

N

I
i~l

(P.3)

subject to i = 1, ... iV

r + Vdr
T Ad £ 0

Pi =

x r - xf

Sf*1 - 5*
h = 8t +**

-Ad
v,K =

1 10

1 1 I

i = 1? .„ N

Here, LQ and L, are the Lagrangian functions based on (P.2) defined as:

- /.GO +

4=1

where r includes r and the bounds on Ad, XQ and X; are the Lagrange multipliers

corresponding to F and ^ respectively. Matrix Rj is a diagonal matrix with its elements

representing whether the bound on a state or control variable is active or not based on the

current active set Aj = {j I py = pjjB } (for simplicity of notation superscript B denotes

either lower or upper bound), so that:



R? = (3.2)

and m are the Lagrange multipliers corresponding to the active bounds on the expanded

state and control variables step pj.

Problem (P.3) is the full space QP that has to be solved at each iteration. In order

to exploit the special structure of the above problem we will consider the first order Kuhn-

Tucker optimality conditions for the state and control variable step vector pj

A •' i

= 0

k + Vph?Pi = 0

. (Pi -pf)-0

tf ip, ~ pf) = 0

(3.3)

3.1 Range and Null Space Decomposition

In order to reduce the dimensionality of the problem and exploit its special structure

we will introduce a range and null space decomposition scheme. The idea is to partition the

full space of the state and control variables Pj at each period into two subspaces. The null

space Zj will be tangent to the equality constraints of the quadratic problem (P.3), whereas

the range space Yj will be orthogonal to Zj so that the following relations hold:

zj v,/% = o
ZjY, = 0

Accordingly the step direction for the state and control variables p, becomes:

A = z .Pz , + YiPr,

(3.4)

(3.5)

By pre-multiplying the first equation in (3.3) by ZT, using (3.4) and (3.5) the following

system of equations gives the new direction for the variables p,. A standard assumption

with reduced Hessian methods, that will be used here, is that ZiV2LjYipyj is negligible.

Note also from the definition of /i, in (P.3) that pZ{ and pYi are implicit functions of Ad.



+ZfV2
pL,ZiPzi

?r,.Prj = o
= 0

(3.6)

Here Zgj and YSj are given by:

YSi =
(3.7)

Since the range and null spaces based on (3.5) are not uniquely defined, the exact forms
used in this work are based on partitioning x; into (n-m) independent (control) and m
dependent (state) variables, z, and y-v respectively. This allows the following definitions of
Z; and Yj (Tjoa and Biegler, 1992):

Z =

/

o
and Y: =

0

0
0

(3.8)

3.2 Projection Step
System (3.6) is now decoupled into two square systems that can be solved successively.
First pYi is found by:

Pr, = - <?* YJl h

and then pzj is given by the solution of the following system:

(3.9)

0 ft]- rRiPf
(3.10)

In the above system ZS^YS_ and/?, are matrices defined by the collection of the nonzero

rows of the corresponding matrices. Similarly, /Z, is defined by the nonzero elements of

/*,-. Note that in (3.9) and (3.10) the vectors Pzj and pyj are linearly related to Ad through

k, (see P.3). For simplicity of notation we will express pzi and pyi in terms of Ad as

follows:

Pzt = Ad

Ad
and
and

ZtPz,

YiPr,

- z \ + ZB(Ad

YB.Ad
(3.11)



where Azj, BZi, AYi and BYi are obtained through the solution of (3.9) and (3.10). Now

if we substitute (3.11) into the original QP in (P.3) we get a projected QP expressed only in

terms of Ad.

minimize 0 =

subject to r + VdrM < 0 (P.4)

Since all the variables Pi are expressed in terms of Ad the solution of the above QP is the

main coordination step in this method since it provides all the information necessary to

construct the next search direction for the state and control variables at each period.

Formulating this projected QP in the space of d makes it much more convenient to solve for

two reasons. Firstly, for process design problems we have dim(d) « N- dim(xj) and

secondly we note the size of the projected QP (P.4) is independent of the number of

periods N.

3.3 Quasi-Newton Updates to the Hessians

The need for an approximation to the exact Hessian is the main idea behind quasi-

Newton methods. This approximation is obtained by using the known curvature along the

search direction. A commonly used approximation is given by the BFGS formula given

by:

M k HkssTHk yyT

sTHks yTs

where: * x

s = JC*+1 - xk

and Hk is the approximation to the Hessian at the k* iteration.

In this problem there are two Hessian matrices to approximate. The first is the
reduced Hessian of the Lagrangianfor each period Z]yV\L*Li that appears in (3.10). In the

reduced Hessian update definitions of s and y in the BFGS update formula (3.11) are not

unique and a number of different choices have been proposed (Nocedal and Overton,

1985). In this work we have:

— *yk-\\ 7*T7 ^*ik+l 7^"^\7 f^"
y~ J J (3.12)
s= a(xk+l -xk)



where a is the steplength from the linesearch (which is used in each major iteration to

reduce the merit function). Note that based on the above definitions no Lagrangian

multiplier estimates are required for evaluating y.

The second Hessian that has to be evaluated is the projected Hessian for d, that

appears in (P.4) and has the form [Vfc, + £{ (ZBi + YBi)
T VjL. (ZBt + YBi) }J. A

BFGS update scheme will be used here too. The choice of y and s for this update based on

the gradient in (P.4) should be:

[ N 1* + 1

VJS + S( V f (Z* + YBt) + (Z* + Y^f V% (ZBt + YBi) )
i«l J

JJ (ZBi + YBi) + (Z^ + Y^f V% (ZBi + YB()

However, since some of the terms in the above formulas are not explicitly known and also

based on the fact that their contribution vanishes as py approaches zero, these tenns will be

ignored leading to:

y = k / o
r + f {vp/f YBI + z\

L

/f YBi + Zj VJE,Z^ }J (3.13)f

Here we note that V^fJ ZBi was ignored in (3.13) because it involves terms that reflect on

the active set that are redundant Since the second order information regarding the bounds

is zero this term is only affected by changes in the active set and its contribution does not

reflect on the true Hessian. Hence it deteriorates the approximation. An alternative to the

update for evaluating the projected Hessian in d is an exact evaluation directly from (P.4).

This, however, requires information on the full Hessian for each period that is not

available. In order to resolve this, a direct update on the full Hessian, as opposed to the

reduced Hessian, could be employed. The main problem with this approach, though, apart

from the increased computational demands, is that the full Hessian updates can become

singular, which leads to stability problems for the method.

In order to guarantee a descent direction for this method we need to ensure that both
the reduced Hessian for each period (Zĵ BjZ}) as well as the projected Hessian in d are
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positive definite. The necessary conditions for a positive definite BFGS update is an initial

positive definite matrix (the identity matrix is usually chosen in the absence of any

additional information) and sTy > 0. Normally, when sTy < 0 it is necessary to skip the

BFGS updates to avoid indefiniteness or singularity in the new approximation (Nocedal

and Overton, 1985). An alternative to this (Powell, 1978) attempts to perform an

approximate update under these conditions. As a result of testing we recommend updating

the reduced Hessian for each period Z ^ B ^ using Powell damping when sTy :£ 0, whereas

for the projected Hessian in d we simply skip the updates. The reasons behind this

selection come from the different role of the two Hessians in this method. For the

projected Hessian in d we are being conservative by skipping in order to keep the matrix

positive definite and well conditioned, since the actual projected Hessian in d is expected to

remain positive definite. For the reduced Hessian for each period ZJTBJZJ, however, this is

only necessary if none of the degrees of freedom are consumed.

Finally, in the case where llsll —> 0 and llyll » llsll the updates may become

singular even if sTy > 0 and the true matrix is not singular. In that case it is also advisable

to skip the updates in order to maintain the superlinear convergence characteristics of the

method.

3.4 Active Set Method

As described in the decomposition part of the method, all the inequality constraints

involving state and control variables are transformed into equations by adding new slack

variables. Therefore all the inequality constraints that remain have the form of simple

bounds on the state and control variables.

The most important consideration in developing an active set scheme for the given

decomposition comes from the need to preserve the simplicity and uniformity of the

decomposition. The main idea is to develop the bounding scheme preserving at the same

time the structure of the method. As already presented in the development of the method

(in (3.1) through (3.10)), the null space Z is defined only in terms of the equality

constraints and is completely independent of the changes in the active bounds. This allows

a uniform representation of all the periods. Also in the context of the reduced Hessian

updates, Zk and Zk+1 have the same size and therefore s and y are always well defined.

The handling of the active bounds is done through the solution of system (3.10).

In a standard SQP method each QP subproblem (P.3) is solved to optimality at each

iteration. This is equivalent in our case to solving (P.4) to optimality and determining the

correct active set for the state and control variable bounds at each iteration. This is not a
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very attractive option, however, since it would require the solution of (P.4) and (3.10)

several times, adding and deleting bounds in each major iteration. On the other hand, the

solution of (P.3) for the correct active set at each iteration does not necessarily reflect upon

the correct active set at the optimum, especially in the early iterations where the information

built up in the problem is insufficient and the predicted steps are inaccurate. Although there

are proposals in the literature to terminate the solution of the QP early, the great majority of

SQP algorithms solve the QP subproblem to optimality. It can be shown, however, that

under mild conditions (Prieto, 1989) the incomplete solution of the quadratic subproblem

does not affect the convergence properties of SQP methods.

Here, we will introduce an adaptive scheme with an early termination criterion for

the QP subproblem (P.3), that has a guaranteed bound on the effort necessary to satisfy it

In particular, the projected subproblem in d (P.4) will always be solved to optimality for a

given active set. The termination criteria are naturally connected to the decomposition

method and are defined in terms of the active set and the bounds encountered along the

predicted search direction.

In this method we attempt to follow a feasible path with respect to the state and

control variable bounds. We start with a point Xj° within the bounds and we add bounds as

they are encountered on the course of each new direction pjk. By solving (3.10) and (P.4)

we have a new direction for all the state and control variables. For this direction we find

the largest steplength CXQ (0 £ OLQ £ 1) for which no bound is violated. The bound that

corresponds to this feasible OQ (in case of course OQ < 1) is added to the active set If this

OCQ is less than a certain threshold value related to the progress of the method (e.g. k/30,

where k is the major iterations counter) a minor iteration is performed; L e., the projected

QP (P.4) is solved with the new active set at the same point of linearization. In addition to

that, no more than lx bounds are allowed to be added to any period in a single minor

iteration cycle. The value of 1; should be a small number (between 1 and n-m) to avoid

overloading periods with bounds in the early stages of the method. From the above

arguments there is a tradeoff between adding many constraints early which may require

more iterations to remove, and using a lower threshold value on <XQ (and /j) which may

require more iterations to add all the necessary constraints. In this work a value of k/30

was used as a cutoff point for the minor iterations. The constant used as a denominator

(30) is arbitrary but it reflects on an average maximum number of expected iterations. Also

for the value of the maximum number of added bounds for a full minor iterations cycle, tv
we used (n - m)/2.

Another important characteristic of this active set method stems from our

decomposition procedure. Since we have effectively decoupled all different periods, only n
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- m active bounds can be set at each period. The total number of degrees of freedom for

the multiperiod problem is N-(n-m)+dim(d) and therefore there is an additional number of

dim(d) possible active bounds that should be accounted for. As is often the case in

multiperiod problems, some or even all of the possible active bounds are active at a single

period. Since, the maximum possible number for active bounds per period is actually n -

m + dim(d), some of the degrees of freedom corresponding to the design variables have to

be consumed in some of the periods. In order to deal with this problem some of the active

bounds on state and control variables have to be added to the projected QP (P.4) so that

they are explicitly enforced. This number, however, should not exceed (dim(d) - dim(r*))

since this is the maximum number of degrees of freedom in the projected QP.

3.5 Model SQP/MPD Algorithm

Based on the above discussion the algorithm for the proposed SQP/MPD method

can be summarized as follows:

Step 1. Choose starting point for dfi and xfi. Initialize the reduced Hessian for each period

and the projected Hessian in d to identity. Set major iteration counter k = 0. Set

active set

Step 2. Check for convergence. If the Kuhn-Tucker error is less than the desired tolerance

e, STOP. Evaluate the objective function and constraints and all the gradients <J>, h,

V<ifo> p̂̂ i* ^phiat (xik» dk)- Set minor iteration counter m = 0 and t\ = 0. Set up

a loop for all periods i:

a. Update active set Am
k by removing at most one inactive constraint with the

most negative \L Construct Rj.

b. Set up auxiliary matrices to store the function and the gradients partitioned into

dependent and independent variables and use LU decomposition scheme to obtain

Zi.

c. Update the inverse of the reduced Hessian (ZjT Vp
2Li Zi)-1.

d. Solve (3.9) and (3.10) to get matrices ZAI, ZBJ,
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Step 3. Calculate the gradient y in (3.13) for the projected QP. If m = 0 update the

reduced Hessian for the projected QP. Solve the QP subproblem to get a new

direction Adk for the design variables.

Step 4. Calculate the new directions Z* p2i, Yi py i and Axfc for each period i. Test for

feasibility with respect to state and control variable bounds in the new direction

based on a full step ((XQ = 1). If feasible proceed to Step 5.

a. If (XQ = 1 results in bound violation, then find the maximum OQ without bound

violation. Add the corresponding bound (i*» j*) to Am
k . If Oo>k/30 proceed to

Step 5.

b. Ifcco<k/3Othen: Set 4 < — 4 + 1 . If l\ > (n - m)/2 proceed to Step 5. Set

m<—m+1. For period i*:
b.l. Solve (3.9) and (3.10) to get the new matrices ZAi*, ZBI*.

b.2. Goto Step 3.

Step 5. Perform a line search using an augmented Lagrangian based merit function

(Biegler and Cuthrell, 1985) to get a step size a starting from OCQ (0 £ a £ OQ).

Set xjk+l = x£ + a Axi* and d*+l = d* + a Ad*. Set k <— k+1 and return to

Step 2.

The above steps can be schematically seen in Figure 2. This algorithm was implemented in

FORTRAN and was used to solve several multiperiod problems. The code used for

solving the quadratic subproblems was QPSOL (Gill et al.91983).

4. Method Remarks

From a theoretical standpoint the SQP/MPD method described above has a global

convergence property under mild conditions. This is the result of the local convergence

properties associated with Newton-based methods combined with the minimization of an

appropriate merit function through a line search that ensures global convergence to a local

optimum. Note that although the proposed decomposition method greatly affects the

computational characteristics of the solution process, it does not affect the convergence

properties associated with the underlying SQP method.

One important characteristic of this method is the use of an incomplete solution to

the QP subproblem (P.3) as the search direction for the merit function. Here each
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subproblem is solved to optimality assuming that the current active set is correct. This

early termination of the QP subproblems, regardless of the possible inefficiency that it may

introduce, is needed to enforce a strict bound on the number of QP subproblems that need

to be solved at each SQP iteration. This bound is important in practice, since the number of

solutions of the QP subproblem (P.4) and (3.10) needed to solve (P.3) may be very high.

From a complexity standpoint, the computational demands for this method have a

linear relation to the number of periods considered. Given a correct active set, the main

computational effort is linear to the number of periods, as can be seen from the structure of

the algorithm in Section 3.5. However, this property cannot be proved due to the NP-

hardness associated with the general NLP formulation of the problem (Bellare and

Rogaway, 1992). The complexity of the problem before the decomposition is NP-hard in

N-n variables, C(N-n), where n can be any measure of the input variables. Through the

decomposition we solve N problems with NP-hard complexity in n variables, C(n). If the

structure of C is similar to C* then the complexity of the new problem is N-C(n). Hence, if

the above assumption holds, there is a reduction in complexity for the proposed method.

Another important characteristic of the SQP/MPD method is its embedded

parallelism. As a matter of fact, the only non-parallel step in this algorithm is the solution

of the projected QP which is the common coordination step for all the periods. This

property can be utilized in a parallel computing environment to further decrease

computational demands.

A drawback in the way this method is implemented is the approximation of the first

term in the objective function of the projected QP in (P.4). This approximation affects the

accuracy of the Hessian estimate and therefore is expected to increase the number of

iterations of the method. One way to avoid this problem is by constructing or

approximating the full Hessian for each period provided that the stability issue of this

approximation is also addressed.

In this work the handling of bounds was done through an active set scheme

described earlier. However, this is not the only alternative. A different approach includes

the use of penalty or barrier methods. An exact penalty method was investigated in this

work but the results were not satisfactory especially for large problems mainly due to the

singularity in the Hessians introduced by the penalty related terms in the objective function.

Another potentially promising approach, that was not investigated in this work, is the use

of barrier methods which became very popular lately; it is not clear, though, whether the

problems related to numerical stability as well as the choice of the barrier parameter have

been successfully addressed.
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5. Example Problems

In order to illustrate the proposed method we consider four example problems. The

first two problems are general mathematical formulations of multiperiod models and are

considered for examining the general trends of the method The other two are problems

related to multiperiod process design in chemical engineering. The first is a small

multiperiod flowsheet design problem involving a CSTR and a heat exchanger (Grossmann

and Halemane, 1982) as seen in Figure 3. The goal is to decide on the volume of the

reactor and the area of the heat exchanger, providing feasible and optimal operation for all

periods. The other process design example addresses the optimal design of a heat

exchanger network with fixed topology consisting of four units (Floudas and Grossmann,

1986) as seen in Figure 4.

5.1 Multiperiod Example Models A and B

In order to investigate the generality of this method on problems with different

numbers of degrees of freedom as well as problems that are tightly or lightly constrained,

we consider two small nonlinear multiperiod example problems. Although chemical

process design problems have typically few degrees of freedom at the optimum, we

constructed these two problems for the purpose of testing the method in a more general

multiperiod NLP frameworic The model of problem A is:

(a) objective function

minimize/ = d2 + ^(a'e'4 - 5xl
2 + * f ) (E.I)

(b) equality constraints

A + P%2 - 2JC' - 5d - 2 = 0

(c) inequality constraints
0.1<*2 < 0

1 <; d <£ 50

Model B is a constrained version of (A). It is formed by the addition of upper and lower

bounds to all the state and control variables:

(d) state and control variable bounds
0 <, x\ < 3

0< x\ <3 (E.2)
0 < 4 < 3
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The data for the parameters in this model (a1, (31,7*) for some of the periods are listed in

Table I. The maximum number of periods examined in this problem was 20. The total

number of design and state and control variables for this problem are 1 + 3N (1 and 3N

respectively) into 2N equality and inequality constrains (N and N respectively, excluding

simple bounds on the variables)- The total number of the degrees of freedom for this

problem based on the equality constraints is 1 + 2N. The problem sizes for models A and

B for different number of periods are presented in Tables II and HI, respectively.

Using the above models A and B solving up to 20 period problems, the

performance of the proposed MPD/SQP method is compared to a reduced gradient method

(MINOS 5.2, Murtagh and Saunders, (1985)) and a reduced Hessian successive quadratic

programming method (SQP, (Vasantharajan, Viswanathan and Biegler, 1990)). The

results for models A and B, summarized in Tables IV and V respectively, show that the

proposed method is superior to both methods in terms of computational efficiency. The

SQP/MPD method, as anticipated from its algorithmic properties, presents a linear increase

of the CPU time requirements with respect to the number of periods. In both models the

performance pattern shows a linear increase for MPD/SQP, a quadratic for MINOS and a

cubic for SQP, as shown in Figures 5 and 6.

5.2 Flowsheet Example
In this example a chemical plant is to be designed to produce different products in N

different time periods. The reaction for all products is assumed to be first order exothermic

of the type A —> B. The reactor temperature is controlled by a recycle stream through the

heat exchanger using cooling water. The objective is to minimize the total annualized cost

consisting of the fixed and operating costs. The mathematical model describing this system

will form the constraint space of our optimization problem (E.3):

(a) net cost (annualized investment cost + operating cost)

minimize C = 0.3 (2304 V01 + 2912 A06) + £(2.2 10" W + 8.82 10" F\)
i- l

(E.3)

(b) reactor material balance

C - C -^

(c) reactor heat balance
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(-AH)^ F; ^c". A| = F' c; (r; - r0) + Q

(d, e) heat exchanger heat balance

(0 heat exchanger design

Q = A UAVn

(?! - I t ) - ( J i -
AT'm = - ^ - "* 2W 2 '

(g) reactor design

V - V* ^ 0

(h) bounds on conversion

0.9

(i) minimum approach temperature for heat exchange

(j) maximum reactor temperature, minimum water temperature, logical conditions

r ; < r ; < 356

In addition, all the variables involved in this design are positive. The values of all the

parameters for some of the periods considered are given in Table VI. This problem

involves a total of 2 + 9N design and state and control variables (2 and 9N respectively)

and 9N equality and inequality constraints (6N and 3N respectively, excluding simple

bounds on the variables or inequality constraints that can be expressed as simple bounds).
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Including the bounds we have 2 + 9N + 12N = 2 + 2 IN total constraints. The total

number of the degrees of freedom for this problem based on the equality constraints are 2 +

3N. A list of the problem size for different number of periods is presented in Table VIL

The results, summarized in Table VIII, show that the proposed method is superior

to both methods in terms of computational efficiency, robustness and potential for large

multiperiod problems. The SQP/MPD method, as anticipated from its algorithmic

properties and shown in the two previous examples, preserves the linear behavior of the

CPU time requirements with respect to the number of periods. The computational trends as

a function of the number of periods for all the methods are presented in Figure 1.

Regarding the issue of robustness, for problems with more than 5 or 10 periods MINOS

failed to reach the optimum from the given starting point and required a starting point

within 20% of the optimum to succeed. However, for larger size problems with 15 or 20

periods even this starting point was not sufficient for converging to a solution. The

proposed method on the other hand, appears to be far less sensitive to the selection of the

starting point. The optimal solution of this problem in terms of the total annualized cost

and the design variables is presented in Table DC for different numbers of periods.

5.3 Heat Exchanger Network Example

In this example a heat exchanger network (HEN) is to be designed that includes

three heat exchangers (Ah A2, A3), one utility unit (A4) and four process streams, two hot

and two cold. The additional cooling load in this network is provided through water in the

fourth heat exchanger (A4). The objective is to minimize the annual cost of this network

consisting of the investment plus the operating (utility) cost The mathematical formulation

of this multiperiod problem (E.4) is given below:

(a) net cost (annualized investment cost 4- operating cost)
N

minimize C = 900 ( < * + /%*+*£*+ A4
06) + ^^ £(310-3<£) (E.4)

(b) energy balances

1.5 (r; - r2) = Q;

2.0 (r; - rj) = Q;

r5 - r6 = Q2

2.0 (563 - TA) = Q2

Ti-Ti, = Qi
3.0 (393 - T's) = <2s

1.5 (T'2 - 350) = Qi
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(c) design equations

< UA,

(d) feasibility inequalities

r2 - r; ;>
r6 - r; >
^ - n ̂
I t . - 393

r ; < 323

The term ATin represents the mean logarithmic temperature and is approximated by the
formula given in the previous model (E.1-Q, (Chen, 1987). The data for the parameters in

this model (Tj, T3, T5, Tg) for some of the periods are listed in Table X. The temperature

range for the cooling water is 300-320 (K). The maximum number of periods examined

in this problem is 20. The total number of design and state and control variables for this

problem are 4 + 8N (4 and 8N respectively) into 12N equality and inequality constrains

(7N and 5N respectively, excluding simple bounds on the variables or inequality
constraints that can be expressed as simple bounds). Including the bounds we have 4 +
12N + 9N = 4 + 21N total constraints. The total number of the degrees of freedom for this
problem based on the equality constraints are 4 + N. A list of the problem size for different
number of periods is presented in Table XL

The proposed method was applied to the solution of this problem with up to 20
period problems. The results along with comparisons with MINOS and SQP are presented

in Table XII. In a manner similar to the flowsheet example the proposed method
outperforms the above methods retaining the linear increase of computational demands with
the number of periods. The computational requirements are plotted for all three methods in
Figure 8, attesting to the trends observed in all the previous examples. As shown in
Figures 5 through 8 for all the examples considered, the computational requirements for
MINOS and SQP increase quadratically and cubically, respectively, with the number of
periods, while the increase is linear for the proposed method. From the robustness
standpoint MINOS failed to solve problems with more than 12 periods from the given
starting point For 15 and 20 period problems it was necessary to provide a starting point
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very close to the optimal solution in order for MINOS to find the optimum. However, for

this problem the results for SQP regarding function evaluations were better than

MPD/SQP. This can be attributed to the very few degrees of freedom that this problem has

in combination with the fact that at the optimum there are no degrees of freedom for the

design variables. On the other hand, for the proposed method since all the degrees of

freedom in the projected QP in d are consumed it takes more iterations to find the correct set

of projected bounds. In general though, even at the level of function evaluations,

SQP/MPD outperforms the reduced space SQP method, as can be seen from the rest of the

example problems. The optimal solution of this problem in terms of the total annualized

cost and the optimal sizes of the heat exchangers is presented in Table XIII for different

numbers of periods.

6. Conclusions

We have proposed a new decomposition method for solving multiperiod design

optimization problems, based on successive quadratic programming. Our approach differs

from previous approaches because it scales linearly to the number of time periods. This

property allows the solution of large multiperiod problems considering a realistically high

number of periods. Its performance is superior to general purpose optimization methods

and overcomes the rapid increase in computational demands and convergence difficulties as

a function of the time periods. Based on the algorithmic properties and some preliminary

results, this method is more efficient in terms of function evaluations, computational time

requirements and robustness compared to both a general purpose SQP method and the

reduced gradient method MINOS.

The theoretical convergence properties for this method are in principle the same as

for a standard reduced Hessian SQP method. Unlike standard SQP, however, the

performance of this method is not affected by the total number of degrees of freedom which

in turn depends on the number of periods. This comes as a natural result of the

decomposition since the problem is addressed for the most part as a stream of parallel

single period problems. Although the method's behavior regarding computational demands

can be explained based on the decomposition arguments, the efficiency with respect to the

function evaluations is not self evident The main reason for this efficiency comes from the

fact that the Hessian estimates are independent for each period, and therefore more

accurate, as opposed to uniform estimates for the (full or reduced) Hessian of the full

multiperiod problem.
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Directions for further improvement of this method should point towards a better

Hessian approximation at the level of the projected QP that would decrease the number of

major iterations. At the algorithmic level, addressing the issue of an efficient initialization

of the Hessian would further increase the efficiency of the method
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List of Tables

Table I. Data for some of the periods for the example problems A and B (E.1), (E.2).

Period 1 5 10 15 20 Range

a 1.0 5.0 10.0

p 1.0 7.0 8.0

y L0 6J) 1.0

Table H Problem sizes for different number of periods in example model A (E. 1)

Number of Total number Number (*) Total number 0>) Degrees <c>

periods of variables of constraints ofconstraints of freedom

1 4 2 2 3

2 7 4 4 5

5 16 10 10 11

10 31 20 20 21

15 46 30 30 31

20 61 40 40 41
(t) Refers to equation and inequality constants eratadmg simple bounds
(b) Refers to equation, inequality constraints and simple bounds
(c) Defined as the total number of variables minus the number of equations

Table BDL Problem sizes for different number of periods in example model B (E. 1 and E.2)

Number of

periods

1
2
5
10
15
20

Total number

of variables

4
7
16
31
46
61

Number (a)

ofconstraints

2
4
10
20
30
40

Total number $)

ofconstraints

10
18
42
82
122
162

Degrees <c)

of freedom

3
5
11
21
31
41

(a) Refers to equation and inequality constraints excluding simple bounds
(b) Refers to equation, inequality constraints and simple bounds
(c) Defined as the total number of variables minus the number of equations
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Table IV. Computational results for example problem A (E.1).

Number of MINOS SQP SQP/MPD

periods FuncL(a) - CPU (s)0>) Functfo) - CPU (s)^) Funct.(a) - CPU (s)0>)

1
2

5

10

15

20

108
130

160

199

222

237

1.6
2.1

3.4

6.2

9.1
12.5

17
22

43

49

51
(c)

0.9
1.5

5.7

18.4

50.8
(c)

11
12

16

25

23

22

0.3
0.4

0.8

1.8

2.0

2.4
<*) Refers to total number of function evaluations
fa) CPU time results on a VAX station 3200
<c) SQP failed to converge as the limit of 250 major iterations was exceeded

Table V, Computational results for example problem B (E. 1 and E.2).

Number of

periods

1

2

5

10

15

20

MINOS

Funct(a)

40

78

123

143

146
175

- CPU (s)0>)

1.0

1.4

2.6

4.2

5.8
8.4

SQP
Funct(a)-CPU(s)O>)

11

12

18

29

35

40

0.7
0.8
2.2

8.5

21.7

57.2

SQP/MPD

FunctXa) -

11

17

16

15

16

25

CPU (s)(b)

0.4
0.6

0.8

1.2

1.6
3.1

Refers to total number of function evaluations
CPU time results on a VAX station 3200
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Table VL Data for some of the periods for the flowsheet example problem (E3).

Period

(EVR)

-AHrxn1

-̂ 0

CAO1

1

555.6
23,260.0

10
45.36
32.04

167.4
389.0

Additional Data:

5
500.0

18,604.0
8

54.43
32.04

125.6
400.0

TO = 333(K),

10
555.6

23,260.0
10
45.36
28.80

169.4
389.0

T wl

U= 1,635.34 (KJ/m2Kh

15
583.3

25,581.0
10.5
40.82
10.05

188.4
383.0

= 300(K),

)

20

542.0
27,907.0

12
36.29
48.06

209.7
378.0

ATmin

Units

(K)
(KJ/Kmol)

(h-1)

(Kmol/h)

(Kmol/m3)

(KJ/Kmol K)

(K)

= 11.1 (K),

Number of

periods
1
2
5
10
15
20

Total number

of variables
11
20
47
92
137
182

Number <a)

of constraints

9
18
45
90
135
180

Total number 0>)

of constraints

23
44
107
212
317
422

Degrees <c)
of freedom

5
8
17
32
47
62

(a) Refers to equation and inequality constraints excluding simple bounds
(b) Refers to equation, inequality constraints and simple bounds
(c) Defined as the total number of variables minus the number of equations
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Table VIII. Computational results for the flowsheet example problem (E.3).

Number of MINOS SQP<d) SQP/MPD

periods Funct.(a) - CPU (s)») Funct.fr) - CPU (s)0>> Funct.00 - CPU (s)0>)

1
2

5

10

15

20

441
486

355

588

767
(c)

6.6
9.7

13.6

37.7

61.8
(c)

16
16

10

20

45

44

1.8
2.9

6.2

32.9

165.8

302.1

25
17

24

23

38

30

1.7
1.7

4.5

8.1

19.5

21.8
(*) Refers to total number of function evaluations
<*>) CPU time results on a VAX station 3200
(°) MINOS failed to converge from the initial starting point and a set of points in its neighborhood
(<•) A different starting point closer to the solution was required

Table IX. Optimal solution for the flowsheet example problem (E.3) considering different

numbers of periods.

Number of

periods

1

2

5

10

15

20

Reactor Volume

(m3)

5.315

5.315

7.927

7.927

7.927

7.927

Heat Exchanger Area

(m2)

7.544

8.517

8.614

8.163

8.518

8.949

Total Cost

($/yr.)

9,731

10,071

10,689

10,573

10,715

10,907

Table X, Data for some of the periods for the HEN example problem (E.4).

Period 1 5 10 15 20 Range

Ti(K)
T3(K)

T5(K)

T8(K)

620
388

583

313

620
388

583

308

620
373

583

313

630
370

570

312

635
375

585

312

[620 - 670]
[370 - 390]

[570 - 593]

[308 - 314]

Additional Data: ATmin = 10 (K) U = 0.4 (KJ/m2 K s)
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Table XL Problem sizes for different number of periods in the HEN example (E.4)

Number of
periods

1
2
5
10
15
20

(a) Refers to eau

Total number
of variables

12
20
44
84
124
164

ation and inequality coc

Number <a>
of constraints

12
24
60
120
180
240

Btraints excluding sin

Total number 0>)
of constraints

25
46
109
214

319
424

role bounds

Degrees <c)
of freedom

5
6
9
14

19
24

(b) Refers to equation, inequality constraints and simple bounds
(c) Defined as the total number of variables minus the number of equations

Table XIL Computational results for the HEN example problem (E.4).

Number of MINOS SQP SQP/MPD
periods Functfr) - CPU (s)0>> Functfe) - CPU (s)») Functfe) - CPU (s)0>)

1 78 2.1
2 120 3.7
5 215 10.0

10 168 15.3
12 259 24.3
15 (c) (c)
20 (c) (c)

(*) Refers to total number of function evaluations
(*>) CPU time results on a VAX station 3200
(c) MINOS failed to converge from the initial starting point and a set of points in its neighborhood

5
7

10
5
7
7

7

1.3
2.2

6.0
14.4

20.1
30.0
46.2

8
9

23
18
17

23
24

0.7
1.1
4.8
6.5

7.3
12.9
17.4
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Table XIIL Optimal solution for the HEN example problem (E.4) considering different

numbers of periods.

Number of

periods

1

2
5
10
15
20

HE-Ai
(m2)

26.052
26.052
31.750
38.068
39.933
39.933

HE-A2

(m2)

3.467

3.467

3.467

6.962

6.962

6.962

HE-A3
(m2)

11.218
11.218
13.953
14.212
14.212
14.212

HE-A4
<m2)

2.938
2.938
3.127
3.533
4.206
4.206

Total Cost

($/yr.)

15,618
15,840
17,007
18,951
19,560
19,500
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List of Figures

a.

b.

HI

ii
Figure 1. Structure of the multipenod models: a. before any decomposition, b.

after the proposed decoupling scheme
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Figure 2. Schematic diagram of the MPD/SQP Algorithm
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Figure 3. Flowsheet diagram in example problem (E3)
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Figure 4. Heat exchange network in example problem (E.4)
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SQP(0
MINOS 0)
MPD/SQP(T>

10 20
Periods

Figure 5. Comparison of the computational requirements for model A (E. 1) as a

function of different number of periods
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10 20
Periods

a SQPCO
• MINOS (T)
o MPD/SQPO)

30

Figure 6. Comparison of the computational requiiements for model B (E2) as a

function of different number of periods
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Figure 7. Comparison of the computational requirements for the flowsheet

example problem as a function of different number of periods
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10 20
Periods

a SQPCD
• MINOS 0)
o MPD/SQPCT)
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Figure 8. Comparison of the computational requirements for the HEN problem

as a function of different number of periods


