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Abstract. We consider the problem of the interaction of a stationary viscous fluid with an elastic solid
that undergoes large deformation. The fluid is modeled by the stationary incompressible Navier-Stokes
equations in an Eulerian frame of reference, while a Lagrangian reference frame and large deformation-
small strain theory is used for the solid. A variational formulation of the problem is developed that insures
satisfaction of continuity of interface tractions and velocities. The variational formulation is approximated
by a Galerkin finite element method, yielding a system of nonlinear algebraic equations in unknown fluid
velocities and pressures and solid displacements. A Newton-like method is introduced for solution of the
discrete system. The method employs a modified Jacobian that enables decomposition into separate fluid
and solid subdomains. This domain decomposition avoids possible ill-conditioning of the Jacobian, as well as
the need to compute and store geometric coupling terms between fluid and interface shape. The capability
of the methodology is illustrated by solution of a problem of the flow-induced large deformation of an elastic
infinite cylinder.
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1. Introduction

Despite its importance, the problem of modeling the nonlinear interaction of a viscous fluid
with a solid undergoing large deformation has remained a challenging problems in mechanics.
Its resolution is of significant practical importance to such disciplines as aerospace, marine,
automotive, and wind engineering. Such problems may arise, for instance, in the large-
amplitude vibration of flexible aerodynamic components such as high aspect ratio wings and
turbine blades, in wind-induced deformation of towers, antennas, and lightweight bridges, in
hydrodynamic flows around offshore structures, and in blood flow through the heart. The
basic difficulty here lies when two-way coupling occurs between fluid and solid: viscous flow
produces tractions which deform the solid, while deformation of the solid influences the flow
physics and thus fluid tractions. Solid deformation influences the flow both by altering the
fluid domain as well as by creating solid tractions that must be in equilibrium with the fluid
tractions.

Because of its critical importance in aerospace applications, the problem of fluid-structure
interaction has received considerable attention within the aerospace literature, where it is
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known as aeroelasticity. Classical approaches based on linear theory are well established [1],
[4]. Certain nonlinear aeroelasticity phenomena have been amenable to analytical and semi-
analytical study, and significant understanding of the physics of these problems has been
elucidated in recent years [5]. Recently, interest has increased in computational aeroelasticity,
i.e. in developing methods for direct numerical approximation of the governing nonlinear
partial differential equations of the fluid-solid system [9], [10], [11], [12], [6]. This interest has
been motivated by advances in computational fluid dynamics and computational structural
mechanics, and in the rapid growth in computational power.

Two approaches to computational aeroelasticity have emerged. Both approaches employ
different numerical approximations in fluid and solid domains, typically finite difference or
volume methods for the fluid and finite elements for the solid. Both approaches couple fluid
and structural behavior after discretization.

The first approach iterates between 1) assuming a rigid solid about which to compute fluid
flow, and 2) applying the resulting increment in fluid boundary tractions to deform the solid,
thereby presenting a new flow domain to the fluid. Since each step of the above process is a
nonlinear problem, a linearization is typically made. We refer to such techniques as iterated
physics methods. In addition to their lack of rigor in enforcing traction continuity across the
interface, iterated physics methods can be very time-consuming, due to their back-and-forth
nature. On the other hand, these methods readily incorporate existing CFD and structural
analysis codes, with the addition of a mechanism to transmit interface tractions between the
two codes. Examples of this approach include [9], [10], [11], and [12].

The second approach to computational aeroelasticity couples the fluid and solid governing
equations together into a single set of nonlinear algebraic equations. Again, since coupling is
achieved after numerical approximation, continuity of interface tractions is not rigorously en-
forced. We refer to such methods as algebraic coupling methods. Such a method is reported
in [6], with application to two-dimensional steady Navier-Stokes flow and a linearly-behaving
structure. These methods have been criticized for resulting in possibly ill-conditioned Jaco-
bian matrices of the coupled system, due to the disparity in solid and fluid behavior [12].
However, one ought to be able to apply various numerical linear algebraic devices to overcome
this problem.

The lack of a unified framework for coupling viscous flow with large deformation elas-
ticity has prompted us to develop a variational approach to the problem, which couples
the two governing sets of equations before numerical approximation. We model the fluid
by the stationary incompressible Navier-Stokes equations in an Eulerian frame of reference,
while a Lagrangian reference frame and large deformation-small strain theory is used for
the solid. Extensions to time-dependent and compressible problems and to non-Newtonian
flows are discussed in the final section. Once coupled, we can systematically apply a numer-
ical approximation—a Galerkin finite element method—to obtain a single set of nonlinear
algebraic equations. This system of equations can be solved to simultaneously yield fluid
velocities and pressures and solid displacements. If we are faced with ill-conditioning of
the Jacobians of these equations, we can then perform algebraic decomposition into fluid
and solid subproblems. Thus, we regard the issue of coupling as a continuum mechanics
problem, to be established prior to discretization. Once coupled and discretized, we may



then seek appropriate numerical methods for solution, which may include linear algebraic
devices such as domain decomposition to avoid ill-conditioning. Advantages of our method
include: continuity of interface tractions and displacements is automatically enforced by the
variational formulation; the weak form of the problem can be systematically translated into
a unified finite element approximation; and, solvers that best treat the coupled problem can
be devised.

The rest of this paper is organized as follows. In §2, we develop the variational form
of the viscous flow-finite elasticity interaction problem. A finite element approximation is
constructed in §3, while §4 introduces a modified Newton method for solution of the resulting
discrete system. The method is illustrated in §5 through the solution of a problem of flow-
induced deformation of an infinite, elastic cylinder. We conclude with some remarks in
§6.

2. Variational formulation

In this section we develop a variational formulation of the fluid-solid interaction problem
in the context of a stationary, viscous, incompressible, Newtonian fluid, modeled by the
Navier-Stokes equations, interacting with an elastic solid in a Lagrangian frame of reference.
We assume that the solid is capable of large deformations, but that strains are small—
a reasonable assumption for problems arising in aerospace and civil engineering. Small
deformation theory breaks down for problems in which deformations are on the order of the
smallest solid dimension, e.g. shell thickness. Since many aeroelasticity problems fall into
this category, we have incorporated large deformation theory into our model.

The finite nature of solid deformations implies a geometric dependence of the flow field on
the solid deformation. Consider a solid of finite extent surrounded by an infinite fluid. Define
Q.F as the fluid domain, Us as the undeformed solid domain, Tl

F as a boundary approximating
the fluid far-field on which tractions are prescribed, FF as the portion of the far-field fluid
boundary over which velocity is prescribed, Fl

s as the undeformed solid boundary on which
tractions are prescribed, F| as the undeformed solid boundary on which displacements are
prescribed, and F/ as the interface between solid and fluid. The fluid unknowns are the
pressure p, the velocity vector v, the stress tensor ap, and the rate of strain tensor d. In
the solid, the unknowns are the displacement vector u, the Kirchhoff stress tensor S, and
the Green strain tensor E. We shall have occasion to refer to the solid Eulerian stress tensor,
which we denote <r$. Material constants are the fluid viscosity fijr and density /?, and the
Lame and shear moduli of the solid, A and (is- We take v as the prescribed far-field fluid
velocity, tp as the prescribed fluid traction, u as the prescribed solid displacement, and is as
the prescribed solid traction. The fluid and solid body forces are denoted fp and fs. Define
FF = Tl

Furjp and Fs = F^UFl. We also define n as the unit outward normal to a deformed
surface, and no as the unit outward normal to an undeformed surface.

The conservation of momentum, conservation of mass, constitutive law, and strain rate-
velocity equations of the fluid are:

/9F(v- V ) v - V-<r F = fF in ftF (1)



V • v = 0 in ftF (2)

<rF = - p i + 2/zFd in Clf (3)

d = - (Vv + VvT) in n F (4)

The constitutive law, equilibrium equations, and strain-displacement relations of the solid
are given by:

S = A tr(E)I + 2(isE in ft5 (5)

V-[(I + Vu)-S] = fs mils (6)

E = i [Vu + VuT + Vu • Vur] in n 5 (7)

At the interface, coupling between fluid and solid requires that tractions and velocity be
continuous:

(Tj? • nF + as • ns = 0 on F/ (8)

v = 0 on T/ (9)

Finally, the boundary conditions take the form

<rF • n = t F on FF (10)

[(I + Vu).S].no = t5 o n ^ (11)
v = v on F^ (12)

u = u on T | (13)

See for example [8] for derivations of the governing equations of fluid and solid. Notice that
the consequence of the small strain assumption is to allow the use of Hooke's law for the
solid constitutive relation (5).

We now proceed to establish the variational form of the problem. Let us assume, for
simplicity of presentation, that the fluid and solid do not experience body forces, and that
the fluid and solid prescribed tractions are zero, i.e. fF, fs, tF , and ts are all zero. First, we
substitute the strain rate-velocity relationship (4) into the fluid constitutive law (3), which
is in turn substituted into the conservation of momentum equation (1). Then, multiplying
the residual of the resulting equation by the test function w, integrating over the fluid
domain, and applying the divergence theorem, we obtain the weak form of the conservation
of momentum equation:

a(v, w) + 6(p, w) + c(v, v, w) = / w • crF • n dF/(u) + / w • <rF • n dFF(u) (14)

where
a(v,w) = / — ( V v + Vv j : (Vw + Vw 1 dftF(u) (15)

6(p, w) = - / pV • w </ftF(u) (16)
JOF

c(v,v,w) = / /)W • (v • V) v dHF(u) (17)



Since we wish to consider problems in which the deformation may be large enough to influence
the flow, we indicate the dependence of the fluid domain on the solid deformation in the
definition of the domains of integration of the the bilinear functional a(-, •) and &(•, •) and
the trilinear functional c(«, •, •). The second term on the right side of (14) can be rewritten
as:

/ w-<rF-ndTF(u) = / w • <rF • n dTl
F(u) + / w • <rF • n dT2

F(u) (18)
JrF Jr),, Jr],,

We shall require that the test function w satisfy the homogeneous essential boundary condi-
tion v = 0 on FF, implying that that the second term on the right of (18) is zero. Further-
more, since iF is zero, and in light of (10), the first term on the right side of (18) vanishes.
Therefore,

/ w .<r F -ncn>(u) =0 (19)
JrF

Next, we write the conservation of mass equation in weak form by multiplying (2) by the
test function q and integrating over the domain of the fluid:

L v cfftF(u) = -6( g , v) = 0 (20)

Again, note the dependence of the fluid domain, and thus weak form, on the solid deforma-
tion.

The weak form of the solid equilibrium equation is established by first substituting the ex-
pression for the Green's strain tensor (7) into the constitutive law (5), and then substituting
the resulting expression for the Kirchhoff stress into the equilibrium equation. Multiplying
the residual of the resulting equation by the test function r, integrating over the domain,
and applying the divergence theorem, we obtain the weak form of the displacement form of
the equilibrium equations:

V r : [ ( I + V u ) . S ( u ) ] d f i 5 =

f r • [(I + Vu) • S(u)] • n0 dTh + j r • [(I + Vu) • S(u)] • n0 dTs (21)

where the relationship between Kirchhoff stress and displacement is given by:

S(u) = Â tr [Vu + VuT + Vu • VuT] I + /x5 [Vu + VuT + Vu • VuT] (22)

Notice that, since we are in a Lagrangian frame of reference, the unit normal is with respect
to the undeformed geometry, and the interface is between fluid and undeformed solid, denoted
F/o. The solid boundary Fs consists of the portion on which displacements are specified, F| ,
and the portion on which tractions are specified, F^. Thus, the second term on the right of
(21) can be rewritten as:

• [(I + Vu) • S(u)] • n0 dT\ + jf f r. [(I + Vu) • S(u)] • n0 X* (23)



Since is is zero, and in light of (11), the first term on the right of this equation is zero.
Furthermore, we shall require that the test function r satisfy the homogeneous essential
boundary condition u = 0 on F | . Therefore, the second term vanishes over F | . Thus,

/ r • [(I + Vu) • S(u)] • n0 dTs = 0 (24)

The first term on the right of (21) can be transformed to the deformed geometry by noting
that (I + Vu) • S = T, the Lagrangian stress tensor. The resultant surface traction acting
on an element of undeformed geometry, 5o, in terms of the Lagrangian stress, is related to
the resultant surface traction acting on an element of the deformed geometry, 5, in terms of
the Eulerian stress, by the identity:

T • n0 dTIo = as • n dTi (25)

Thus, provided
r(r /o)=w(r7) (26)

i.e. the restrictions of the test functions r to the undeformed interface is equal to the restric-
tion of w to the deformed boundary, the first term on the right side of (21) can be rewritten
as

/ r • [(I + Vu) • S(u)] • n0 dTIo = / w • <rs • n dTr (27)

To simplify the right side of (21), we separate S into SL, a tensor that depends linearly on
displacement, and S^, one whose dependence is nonlinear, in fact quadratic:

SL = A tr (Vu) I+IAS (Vu + Vu T ) (28)

SN = ^A tr (Vu • VuT) I + /x5 (Vu • Vu T ) (29)

so that (22) can be rewritten as S = SL + SN. Thus, the domain integral on the left side of
(21) can be rewritten as the sum of terms that depend linearly, quadratically, and cubically
on the derivatives of u:

/ Vr : [(I + Vu) • S(u)] dSls = <i(u, r) + e(u, u, r) + /(u, u, u, r) (30)
Jn,

where we define the bilinear form

<f(u,r)= / Vr : SL(u) dtis (31)

the trilinear form
e(u, u, r) = / Vr : [sN(u) + Vu • SL(u)l dQ, (32)

Jtts L J

and the quadrilinear form

/(u, u, u, r) = J Vr : [Vu • S*(u)] dils (33)



We are in a position now to write the interface condition. Adding equations (14) and
(21), and making use of (19), (24), and (27), gives:

a(u, v, w) + fc(u,p, w) + c(u, v, v, w) + d(u, r) + e(u, u, r) + /(u, u, u, r) =

/ w - ( < r F - n + <r<j-n) </T/(u) (34)

The right side of this equation is just zero, in view of the continuity of traction condition
(8).

We now state the unified variational form of the viscous flow-finite elasticity interaction
problem: Find v G Hj (ft), p G L2 (ft), and u G HJ (ft) such that:

a(v, w) + 6(p, w) + c(v, v, w) + d(u, r) + e(u, u, r) + / ( u , u, u, r) = 0

for all w G H j (ftF) and r G H* (ft5) (35)

6 (q, v) = 0 for all q e L2 (ftF) (36)

where the functional a(-, •, •), &(•, •, •), c(«, •, •, •), d(-, •), e(-, •, •), and / ( • , •, •, •) are defined by
expressions (15), (16), (17), (31), (32), and (33), respectively. Here, Hj(f tF) is the Sobolev
subspace of all functions having one square integrable derivative over ftp and that vanish on
F F , L2 (ftF) is the space of functions that are square integrable over ft/r, and HJ (fts) is the
Sobolev subspace of all functions having one square integrable derivative over fts and that
vanish on T%. The essential boundary conditions v = v and u = u must be enforced on Y2

F

and F | , respectively.

3. Finite element approximation

Let us define the finite element approximations v^, p^, and u^:

V* = I>,(x)v,- (37)
t = l

n p

PA = Exi(x)P i (38)

uh. = X^ ^*(XW (39)

where vt, pj, and Uk are approximations of velocity, pressure, and displacement at nodes i.
j, and A:, respectively. The basis function families <f>{, Xjj a^d rj)k define finite element spaces
V/t, Vh* and Uh for velocity, pressure, and displacement, respectively:

V*= spanj^,...,^} (40)

Pfc= span{xi,...,Xnp} (41)



Uk= span^t,...,^} (42)

Let Vh C H£(ftF), Vh C LftSlF), and Uh C Hj (n 5 ) , i.e. the finite element spaces V*,
Vhi and Z4 are subspaces of the infinite dimensional spaces in (35) and (36). In order
to satisfy the condition (26), we require that fluid velocity and solid displacement shape
functions be identical, when restricted to the interface between solid and fluid. An example
of this is given by combining quadratic triangles in the solid with the Taylor-Hood element
in the fluid. The Taylor-Hood element employs a quadratic approximation of velocity in
conjunction with a linear approximation of pressure; thus, displacement and velocity shape
functions are identical on the interface.

Applying the Galerkin method to the problem (35)-(36) yields the discrete problem: Find
V* e Vh, Ph 6 Vh, and 11̂  G Uh such that

, rh)+e(uh, uh, r^)+/(u / l , u^, u^, rk) = 0

for all Wfc e Vh and rh € Sk (43)

and
6(g,V/l) = 0 for all q eVh (44)

The discrete problem (43)-(44) is a system of nonlinear algebraic equations. To show the
explicit form of these equations, let us first distinguish between nodes lying in the interior
and those on the interface. Let

nv =nv
F + nvj

nv =np
F + npj (45)

ft* =^s + n /

where the subscript F indicates the number of nodes belonging strictly to the fluid domain,
S the number of nodes belonging strictly to the solid domain, and / the number of nodes
belonging to the interface. So, for example, the nv velocity nodes are composed of nv

F fluid
domain nodes as well as n) interface nodes. Notice that the satisfaction of condition (26)
implies that the number of velocity and displacement interface nodes are equal. Let us call
this number n/:

nj = nvp = n£ (46)

We can now elucidate the structure of the discrete problem (43)-(44): In the fluid, we
have the nv

F discrete conservation of momentum equations

c ( < k , < / > r , 4 > , ) V , - t , r = 0 * = l , . . . , n £ ( 4 7 )
t=l j = l t>=l

and the np
F discrete conservation of mass equations

0 m = l , . . . , n j . (48)
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In the solid, the n£ discrete equilibrium equations are given by

n u

n = l , . . . , n £ (49)

Finally, on the interface, we have the n/ discrete traction continuity equations:

»=1 j= l t,r=l

y O y = l , . . . , n 7 (50)

and the n^ discrete conservation of mass equations

,>,• = 0 * = l , . . . , n j (51)
t = l

Let us define vectors of unknown nodal quantities: let V/r G ^^ represent the fluid
nodal velocities, pjr 6 3£n^ the fluid pressures, V/ € 9fn/ the interface velocities, p/ G 3ftn?
the interface pressures, us G 3ftn^ the solid displacements, and u/ G 3in/ the interface
displacements. We can rewrite the discrete equations (47)-(51) symbolically as

hMv F , p F , v / ,p / ,u / ) = 0

hjp(vF ,v/,u/) = 0

h 5 ( u 5 , u / ) = 0 (52)

h/ (vF, pF , v7, p/, u5 , u7) = 0

h/ (v F , v / ,u / ) = 0

where hF G 3ftn^ represents conservation of momentum in the fluid, hF G 3£n^ conservation
of mass in the fluid, h£ G 3?n^ equilibrium in the solid, h/ G 5Rn/ continuity of interface
tractions, and h/ G 3?n/ conservation of mass on the interface. It appears that we have
nv + np + nu — nj equations in nv + np + nu unknowns. However, the continuity of interface
velocity condition (9) implies that v/ = 0, and we are thus left with an equal number of
equations and unknowns upon enforcing this condition in (52).

Note that, in addition to h^, the fluid and interface equations h£, hF , h ,̂ and h/ depend
on the interface displacements u/. This is implied in the domain of integration of the
functionals a(«, •) (15), &(•, •) (16), and c(-, •, •) (17), i.e. in the dependence of the flow on the
interface geometry.



4. Solution of the discrete system

We discuss in this section a Newton-like method for solving the system of nonlinear algebraic
equations (52). Our discussion will be kept brief; a more extensive discussion of this and
other solution methods for finite element approximations of viscous flow-finite elasticity
interaction will be presented in the future.

Let us first begin by rewriting (52) as

hF(xF ,X/) =0

h 5 ( x 5 , x / ) = 0 (53)

h/(xF,x$,x/) =0

where

f h M f V F 1
h F = < hp

F > x/r = < p F V xs = us x/ = us (54)

I M J I P / J
Note that the fluid equations hp include the equations for conservation of mass on the
interface, h/, and the fluid variables xp include the interface pressures p/ . Accordingly, the
interface variables consist only of the interface displacements. The reason for this choice of
partitioning will become apparent.

Newton's method for the nonlinear system h(x) = 0 consists of iterating on solution of
the linear system:

J(x*)(x*+1 - x*) = -h(x*) (55)

until convergence, given an initial iterate x°. Here, J is the Jacobian of h with respect to x.
A Newton step for the discrete system (53) takes the form:

Jk
FF 0 JFJ 1 f &*F ) [ hk

F }
0 J*s J*, \ Axs = - \ h* (56)

X k Tfc Tfc I Tfc A « I I Vft/c I
IF J / S J / /F"T" J /7S J V ^ X / ) I n/ )

where
Z\X — X - X (Ol)

Here, the superscript k indicates evaluation of the residual h and the Jacobian J at the point
x*, and the interface-interface coupling matrix J// includes contributions from both solid
and fluid:

J// = J//F + J//5 (58)

The Newton iteration (56) entails two difficulties. First, the Jacobian matrix, because of
the disparity between fluid and solid behavior, can be very ill-conditioned. Second, the
coupling terms between fluid and interface variables in general render the matrices JFI
and J//F dense. The density of these matrices is a consequence of the dependence of the
domains of integration of a(-,-), &(-,•)> and c(-,-,«) on the interface displacements. In the
case of Jjr/, all fluid nodal velocities and pressures may be coupled to all interface nodal
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displacements, since a change in any interface displacement potentially moves the fluid mesh
everywhere. The matrix J//F derives its density from the fact that the interface traction
continuity equation (50) includes contributions from the first layer of fluid elements, which
change with a movement in the interface. Thus, the potential exists for coupling between
all interface variables. J//5 contains nonzeroes contributed by the solid terms in (50), i.e.
the terms involving c?(«, •), e(-, •, •), and /(•,-,-,•)• These are just the standard solid stiffness
coupling terms, so the coupling is local in nature.

The exact sparsity pattern depends on the moving mesh scheme employed, but in general,
the storage requirements and arithmetic complexity associated with J/rj and J//F can be
quite severe. Therefore, we consider a modified Newton's method obtained by ignoring the
fluid-interface coupling matrix J/r/ and the contribution of the fluid to the interface-interface
coupling matrix, J/ /F . The resulting Jacobian in (56) becomes block-lower triangular. Thus,
the fluid variables can be found by solving the linear system

3k
FFAxF = - h £ (59)

for Axjr. The change in the displacements (both interior and interface) can then be found
by solving:

J l J - \ / (60)

This method avoids the ill-conditioning associated with the coupled problem by employing
a "domain decomposition" into separate fluid and solid subdomains. Large storage require-
ments associated with geometric coupling matrices are avoided by ignoring these terms while
constructing the Jacobian. However, since the residual in (56) is calculated correctly, we are
guaranteed that, if the method converges, it must converge to the correct solution. This can
be seen from (55): the only way that Ax can be zero is for h to be zero, provided only that
J is nonsingular, regardless of whether or not it represents the true Jacobian. The price
we pay for this modified Jacobian is that we must give up the Newton guarantee of local
quadratic convergence.

We now establish that the modified Jacobian is indeed nonsingular. First, the fluid
step (59) can be seen to be just a Newton step for the Navier-Stokes equations, with a rigid
boundary given by the current deformed interface, and a no-slip boundary condition imposed
on the interface. Thus, the linear system (59) has a unique solution (provided of course that
we are away from singular bifurcation or turning points). Second, the solid step (60) can
also be regarded as a Newton step for the solid equilibrium equations, with imposed traction
boundary conditions on the interface given by the current estimate of the fluid tractions. It
too must have a unique solution (provided again we are away from buckling points). Thus,
the solution of (56) is unique, and the approximate Jacobian is nonsingular.

5. Example: flow-induced deformation of an infinite elastic cylinder

We have built a code that implements the finite element approximation of §3 in two-
dimensions, and solves the resulting nonlinear algebraic system using the modified Newton
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method described in §4. We employ a continuation strategy to help globalize the solu-
tion. Our code discretizes both solid and fluid with triangular elements, and uses quadratic
shape functions for velocity and displacement, and linear shape functions to interpolate pres-
sure. The Taylor-Hood element pair is known to satisfy the Ladyzhenskaya-Babuska-Brezzi
stability condition, e.g. [2], and the choice of quadratic triangles for the solid insures the
satisfaction of the interface compatibility condition (26). The Taylor-Hood element produces
errors of order h3 for velocity and h2 for pressure [7], while quadratic triangles for elasticity
problems are third-order accurate for displacements [3] (provided the solution is sufficiently
smooth). Currently, we keep the mesh topology fixed throughout the iterations, moving the
fluid mesh in response to solid deformations according to a known mapping function. We
plan to incorporate adaptive refinement strategies in the future; these may be necessary for
very large deformation problems.

In order to illustrate our methodology, we now present results of a physical problem solved
by our code. The problem is viscous flow about an infinite elastic cylinder. The problem
thus is two-dimensional. Symmetry is exploited, so the computational domain consists of
only the upper half of the cylinder and surrounding fluid. Flow is from left to right. The
upstream support is free to translate horizontally, while the downstream support is fixed
both horizontally and vertically. The Reynolds number of the fluid flow is 200, while the
solid has v = 0.3. Two elements are used in the thickness direction of the cylinder. The
(undeformed) mesh is shown in Figure 1. Figure 2 shows a portion of the converged flow
field near the cylinder, assuming a nearly rigid cylinder (E = 100000, thickness of 0.1). The
resulting deformation is negligible and does not affect the flow field.

Figure 3 shows the resulting deformation and a portion of the flow field when the cylinder
is more flexible (E = 7500, thickness of 0.022) and thus undergoes large deformation. The
initial shape of the cylinder is shown in addition to the deformed shape. The flow field
depicted corresponds to the converged solution, i.e. to the deformed shape. Clearly, the flow
fields are quite different. Convergence was obtained in a total of 12 continuation steps, each
requiring on average 6 iterations. The continuation strategy employed is quite conservative,
first increasing Reynolds number to the desired value, then decreasing elastic modulus and
thickness. We will be incorporating some fixed-point type methods in the future to make
the globalization more automatic.

6. Concluding remarks

We have developed a methodology for numerical approximation of the interaction of a sta-
tionary viscous fluid with a elastic solid that undergoes large deformation. The fluid is
modeled with respect to an Eulerian frame of reference by the stationary incompressible
Navier-Stokes equations, while a Lagrangian reference frame and large deformation-small
strain theory is used for the solid. A variational formulation of the problem is developed
that insures satisfaction of continuity of interface tractions and velocities. The variational
formulation is approximated by a Galerkin finite element method, yielding a system of non-
linear algebraic equations in unknown fluid velocities and pressures and solid displacements.
A Newton-like method is introduced for solution of the discrete system. The method employs
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a modified Jacobian that enables decomposition into separate fluid and solid subdomains.
This domain decomposition avoids possible ill-conditioning of the Jacobian, as well as the
need to compute and store geometric coupling terms between fluid and interface shape. The
method is illustrated by solution of a problem of flow-induced deformation of an elastic
cylinder.

In addition to providing a unified framework for solving nonlinear fluid-structure interac-
tion problems, the methodology we have presented allows sensitivity analysis to be performed
in a straightforward manner, by expressing system behavior as a single set of algebraic equa-
tions. Sensitivity analysis is essential for efficient design optimization, which is the ultimate
objective of our work. For this reason, we have focused on a steady-state model of the
system. However, the extension of our variational formulation and finite element method
to time-dependent problems can be straightforwardly achieved by adding the appropriate
inertial force terms. Spatial discretization by finite elements then yields a system of ordinary
differential equations, which can be integrated in time given appropriate initial conditions.

We have also assumed the fluid to be incompressible. Given the importance of aeroelastic
effects in aircraft in the transonic flow regime, a useful extension of our work would be to
relax this incompressibility assumption. This entails the addition of conservation of energy
and state equations, as well as temperature and density variables, which complicate the
numerical approximation. However, we remark that the coupling mechanism is independent
of compressibility—continuity of interface tractions is affected through a weak formulation of
the stress divergence terms in the conservation of momentum equations. Thus, our fluid-solid
coupling for the compressible problem goes through in the same fashion.

Another point worth mentioning is that fluid-solid coupling is independent of the fluid
constitutive law; thus non-Newtonian fluid models (important for cardiac blood flows, for
example) can be readily accommodated in the variational formulation. An additional conse-
quence is that algebraic turbulence models that modify the viscosity coefficient to include a
term that depends on strain rate, thus rendering the constitutive relations nonlinear, permit
incorporation into our model quite readily.
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Figure 1: Geometry and mesh.

Figure 2: Viscous flow about rigid cylinder.

Figure 3: Viscous flow about elastic cylinder.
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