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ABSTRACT
This paper has three purposes: first, to define a
space of organizations for computer-based agents;
second, to identify a fuzzy subset (called A3<t>) of this
space that contains organizations that are open,
parallel and effective; and third, to illustrate how
members (called asynchronous teams) of this subset
can be realized. These teams are characterized by
autonomous agents that work in parallel on
populations of solutions. As such, they have
features in common with a number of well known
organizations. Blackboards, parallel implementations
of genetic algorithms and certain recurrent neural
nets are examples. But these examples occur at the
very outermost fringes of the A3<t> subset. Its interior
remains unexplored. We begin that exploration here.

Key-words: multiple agents, machine cooperation,
distributed artificial intelligence, organizations.

1. INTRODUCTION
Loosely speaking, an organization is a scheme by
which objects, such as birds, fish and humans, com-
bine to form super-objects, such as flocks of birds,
schools of fish and corporations. Functionally, an
organization determines the manner in which its
objects cooperate; whether they help or hinder one
another in their work. Structurally, an organization
can be thought of in terms of certain flows and con-
straints whose description is the first purpose of this
paper. The second purpose is to identify a class of
organizations that is well suited to software objects,
such as simulation and optimization programs. Until
recently, it was so horribly difficult to interconnect
large programs that the builders of software systems
had little time to bother with organization issues.
Instead, programs were usually connected in series
with the output of one becoming the input of an-

other. Such serial organizations tend to be inflexible,
difficult to maintain, and expensive to update.

The technology of non-serial organizations is in a
primitive state: there are few widely accepted terms
for describing their structures, even fewer models for
visualizing these structures and virtually no system-
atic techniques for designing them. It will be several
years before these deficits can be made good. The
material in this paper is a modest start.

2. SOME ATTRIBUTES OF MACHINE
COOPERATION
Our concern here is with mechanisms by which soft-
ware objects can cooperate. Structurally, a software
object is a body of code that has been encapsulated
to distinguish it from other objects. Functionally, a
software object may serve the purposes of storing
data of processing (transforming) data. Most actual
objects do some of each. Nevertheless, we will
divide them into two fuzzy categories: data-objects
and agents. A data-object is one whose primary
function is to store data. All other objects are agents.
Thus, data-objects appear from the outside to be
passive, but may contain many procedures to store,
retrieve, or even generate data; agents are outwardly
active, though they may contain vast databases.

A super-object composed from software objects, is
said to be distributable if it fits well in a network of
computers, that is, if it allows its agents to work in
parallel, if each agent uses only locally available data,
and if the super-object's performance is relatively
insensitive to communication delays.

2.1 Scale Efficiency
Consider for a moment a natural organization: any
one of the 10,000 or so species of fish that form
schools, say Silversides. Such schools grow easily;
any Silverside that wishes can join. One of the bene-



nents: operators and controllers. The operators
make transformations, the controllers decide: (a)
what the operators will transform (select inputs), (b)
when they will transform these inputs (schedule ac-
tivities), and (c) what computers will be used (allocate
resources).

Think of an agent as an aggregation of processes,
one being an operator and the others being con*
trollers for itself or other agents. If the agent contains
controllers sufficient for making all its own decisions
(for input selection, scheduling and resource alloca-
tion), then it is "autonomous." Otherwise, it is
"supervised" and its supervisors are indicated by
broken arrows in a directed graph whose nodes are
agents and whose edges are supervisory relations.
Such a graph will be called a Cf or control flow.

Let S(Df) be the space of all control flows. As before,
we recognize two fuzzy subsets of this space: 4>(Cf),
the subset of near-null control flows, and A(Cf), the
subset of strongly cyclic control flows. A near-null
control flow means there are virtually no supervisors;
most, if not all, the agents are autonomous. Strongly
cyclic control flows are, at the very least, unusual; I
cannot think of an organization that uses them. But
their complements, strongly acyclic control flows, are
the hierarchical arrangements so common in human
organizations.

3.4 State Spaces and Markings
Usually, a state space is defined so that each of its
points represents one state of the system under
consideration. Changes in state (dynamics) trace
trajectories through such spaces. Here, we will also
use a different and less condensed version of a state
space-instead of a single point, each state will be
denoted by a set or population of points, called a
marking. More specifically, each shared memory is
assigned its own state space. Each point in this
space represents one data-object while the space as
a whole represents all the objects allowed into the
memory. Let Sj be such a space for the i-th memory
and let Mj(t) be the subset of Sj that represents the
data-objects that are actually in the i-th memory at
time t. Then changes in state (dynamics) will cause
changes in the shape of this marking. We will call the
trace of such changes a state flow.

3.5 Activity Constraints
Consider the j-th agent. It, like every other agent, is
capable of three types of action: reading, writing and
computing. In general, it cannot take these actions
whenever it wishes, but only when its supervisors
and the contents (markings) of its input memories
allow them. Thus, even an autonomous agent is not
without external constraints on its actions. For
instance, it may have to wait till certain information
appears before it can start computing, and may have
to stop when some essential piece of information is
removed. The set of all such constraints for all the

agents in a super-object will be called an Ac or set of
activity constraints.

Let S(Ac) be the space of all Ac. We recognize one
fuzzy subset of this space: <$>(Ac), the subset of
"near-empty" Ac. An Ac is near-empty if its con-
straints are so loose or so few that they have little in-
fluence on when the associated agents read, write or
compute. More specifically, if an Ac allows virtually all
communications to be asynchronous (so no agent
ever needs to interrupt its computing in order to wait
for a communication) and if virtually all the agents
compute when they wish (so they can work in parallel
all the time if they so choose), then the Ac is near-
empty.

3.6 Modification Constraints
Consider a super-object. If the structural changes
required to insert or delete an object are confined to
the object itself, then the effort involved is likely to be
relatively low. In contrast, if the entire super-object
has to be modified, the effort can be expected to be
high.

Let Me be a set of constraints that must be satisfied in
order to insert or delete an object from some super-
object. An Me will be called near-empty if it requires
only modifications to the object being added or
deleted, and moreover, this object uses only locally
available information. Let S(Mc) be the space of all Me
and <(>(Mc) be a fuzzy subset of this space that
contains Me that are near-empty.

3.7 A Structural Model
The upshot of the preceding material is that the
structure of an organization can be thought of as a
quadruple: 9 = (Df, Cf, Ac, Me) where Df is the orga-
nization's data flow, Cf is its control flow, Ac is its set
of activity constraints, and Me is its set of modification
constraints.

4. AN ORGANIZATION SPACE: S(6)
Let S(0) be the space of all 6. In other words:

S(9) = S(Df) X S(Cf) X S(Ae) X S(Mc).
One use for S(8) is in designing organizations.
Suppose that the specifications of an organization
are given. Then, one could search S(0) for entries
that meet these specifications. Of course, it would be
reasonable to first ask: for what sorts of problems
does S(8) contain good solutions? are there some
regions of S(9) that contain better solutions than
others?

4.1 Limitations
Recall that 6, our model of an organization, repre-
sents communication systems by sets of shared
memories. While this representation is adequate for
computer-based organizations, it is probably inade-
quate for human organizations. Also, 6 is a static
model; it provides a snapshot of an organization's



iteration are possible) and autonomous agents (that
is, an organization with no supervisors, and more im-
portant, no hierarchy through which the errors and
limitations of supervisors can be magnified). The
subsequent material deals with members of the [A, $,
<l>t<|>] region which, for the purposes of brevity, will
sometimes be called the A3<t> region.

5.1 Definition
An A-Team (asynchronous team) is any member of
the region: [A, 4, <|>, $]. In other words, an A-Team is
an organization whose structure is as follows:

• Df, its data flow is strongly cyclic, meaning that
its agents can use feedback and iteration in de-
veloping solutions.

• Cf, its control flow, is near-null, meaning that vir-
tually all its agents are autonomous.

• Ac, its set of activity constraints, is near-empty,
meaning that its agents are free to act and inter-
act when they wish. In particular, all of them can
work in parallel all the time. Further, there is no
predetermined schedule for exchanges of in-
formation; rather, exchanges are allowed to oc-
cur asynchronously (spontaneously).

• Me, its set of modification constraints, is near-
empty, meaning that the addition of an agent
requires only modifications to the agent, not to
the rest of the organization. Also, all agents use
only locally available data. Therefore, the addi-
tion of an agent requires relatively little effort
and the organization is comparatively open.

5.2 Two Population Control Strategies
Clearly, the structure of an A-Team allows for anarchic
behavior. Autonomous agents, each choosing what
to do and when, if ever, to communicate with its team
mates, can act at cross purposes. Surprisingly, there
are simple strategies, not only to prevent this from
happening, but to produce forms of cooperation so
effective that they approach synergy. Two of these
strategies are "herding" and "consensus-seeking."
Both are essentially strategies for controlling the
populations of data-objects produced by the agents
in an A-Team. These agents can be divided into four
categories:
• construction agents that produce new data-objects
from old ones by adding information (the old objects
may or may not be erased),
• modification agents that produce new data-objects
by changing the information in old ones (the old ob-
jects may or may not be erased),
• deconstruction agents that produce new data-ob-
jects by deleting information in old ones (the old ob-
jects may or may not be erased), and
• destruction agents or destroyers that erase data-
objects.

Consider an A-Team of construction, modification
and deconstruction agents that do not erase any
data-objects. If these agents work continuously and
in parallel, as the A-Team structure allows them to do,
the population of data-objects would explode. There

are two ways to keep this from happening. The first is
introduce a set of destroyers; the second, is to
change the agents so they do their own erasing.
"Herding" is a strategy of the first type. The destroy-
ers are designed so they keep the population in
check and also cause it to move along paths that
eventually lead to profitable conclusions.
"Consensus-seeking" is a strategy of the second
type. When the population of data-objects has be-
come large, most of the agents change mode from
producing objects to erasing them till only a few ob-
jects remain.

Recall that the data-objects in each memory are rep-
resented by a set of points in a state space, and this
set is called a marking. In "herding," the size of the
marking usually expands until it reaches an upper
limit after which it remains more or less constant as
the marking moves about in the state space. In
"consensus-seeking" the dynamics are quite differ-
ent: the marking expands and then contracts rapidly.

Some natural and synthetic examples of herding and
consensus-seeking are given below.

6. TWO NATURAL A-TEAMS

6.1 Lamellar Bone Growth: An Example Of
Herding
Osteoblasts and osteoclasts are simple cells that
work on long bones [3], [4]. They react to the
stresses in the bones, averaged over the last few
weeks. The osteoclasts converge on faces that have
been under low stress or in tension and proceed to
dissolve the bone there. The osteoblasts add bone
to faces that have been under high compressive
stress. The net effect is to optimize the shape and
mass of the bone for the average load to which it has
been exposed [3].

Clearly, the osteoblasts and osteoclasts form an A-
Team: they work iteratively, are autonomous, decide
for themselves when and what they will do, base
these decisions on locally available information, carry
out the decisions in parallel, communicate asyn-
chronously through the results of their work, and fi-
nally, can join or leave the team at will.

Think of each potential addition or deletion of a piece
of bone as an object and the set of all these objects
as the state space for the osteoblasts and osteo-
clasts. Recall that a marking is the subset of the ob-
jects that actually exists at time t (that is, the actual
bone). Under the object-creating actions of the os-
teoblasts and the object-destroying actions of the
osteoclasts, the marking changes to adapt to its av-
erage historical load. It is as if the marking were being
herded through state space by the osteoblasts and
osteoclasts. When they achieve optimal results it is
through the addition of bone exactly where it was
most needed and the deletion of bone from where it
was least used. If the balance between these pro-
cesses is disturbed, as would happen if there were



full-fledged membership by their agents which are
seldom autonomous in the sense used here. Neural
nets are disqualified unless they are self-training, that
is, unless they require little retraining when neurons
are added or removed.

In 1983, Sam Pyo, Nino Vidovic and I developed an
A-Team for solving sets of nonlinear algebraic equa-
tions [16]. This team used consensus-seeking as its
method of cooperation. Since then teams have been
built that rely more heavily on the herding strategy
and solve six important and difficult types of problem:
large travelling salesman problems [15], configuring
task-specific robots [3], high-rise building design
[17], the real-time control of electric networks [18],
the diagnosis of faults in power systems [19], and
multi-objective train scheduling. The teams for the
first two types of problem are fairly mature and have
been extensively tested. In both speed and solution
quality they are clearly superior to standard
techniques. The teams for the the other problem
types are less mature and have, as yet, only been
tested on small problems. However, it seems that
they will also out perform standard methods.

In the succeeding material, I will briefly describe the
two mature teams.

7.1 The Travelling Salesman Problem
(TSP): An Example of Scale Efficiency
Given the locations of a number of cities, the TSP is
to find a closed tour of minimum length that passes
through every city once. Because this problem is NP-
hard, algorithms that find optimal solutions in
polynomial time are unlikely to exist. However, there
are many polynomial-time heuristics that can find near
optimal solutions. These heuristics are of two types:
construction heuristics that transform partial tours
(including the null tour) into complete tours, and
modification heuristics that make changes in
complete tours. By adding heuristics for deconstruc-
tion (breaking complete tours into partial tours) and
destruction (eliminating complete and partial tours)
one obtains the basis for a set of agents from which
A-Teams can be assembled. More specifically, each
heuristic is encoded to form an autonomous agent
able to read from, and write to, memories containing
partial and complete tours, as appropriate. All the
agents work in parallel. The construction and modifi-
cation agents add new tours to the complete-tour-
memory. The deconstructors add new partial tours to
the partial-tour-memory. The destroyers limit the
populations in both memories by eliminating their
weakest members. The other agents select their in-
puts randomly from their input populations. Souza
has shown [15] that such teams can be scale effi-
cient. Specifically, the speed and quality of the re-
sults produced by the team increases as more con-
struction and modification agents are added. For in-
stance, with a difficult 532 city problem and random
starting points, the team usually finds the optimal
solution in an hour or two. Working alone from the
same starting points, its construction and modifica-

tion agents take much longer, virtually never finding
the optimal solution, and often finding quite inferior
solutions. Further details can be found in [16].

7.2 Robots-on-Demand (ROD): An Example
of Synergy
The ROD problem is: given a bin of robot parts, a
robot task expressed as a set of kinematic and dy-
namic constraints, and a set of objectives (such as
minimizing robot weight and deflection), find a good,
if not optimal, robot design. The intent is to assemble
a robot that is specialized for the task to be per-
formed, and to disassemble this robot when the task
is completed so the parts can be reused in another
robot for the next task.

Sesh Murthy [3] has built an A-Team for designing
three-segment robots for certain ROD problems.
Each design specifies the values of twelve variables.
Three of these variables are continuous and locate
the base of the robot. The other nine are discrete
and identify the motors, joints and links that consti-
tute the robot's segments. Besides meeting the
task-specific kinematic and dynamic constraints,
three criteria are taken into account: minimizing
weight, minimizing deflection and maximizing dexter-
ity.

The team contains a single memory, 55 very simple
and fairly dumb modification agents, and about 12
equally simple ancl dumb destroyers. The objects
stored in the memory are robot designs. Each modi-
fication agent acts on one of the twelve variables that
constitute a design and takes into account only one
criterion. As a result, its actions usually produce im-
provements in this criterion but, as often as not, are
accompanied by large degradations in other criteria.
For instance, one of the agents attempts to reduce
kinematic constraint violations by replacing the link in
the robot's third segment with the next longer link
from the bin of parts. Invariably, this replacement
causes large degradations in deflection and dynamic
constraint violations.

The little intelligence in each modification operator is
concentrated in its input controller. This controller
selects the next design for the agent to modify by
performing a qualitative match of the design's needs
and the agent's capabilities. In essence, the design
is selected if it needs the improvement the agent of-
fers and can afford the price (the accompanying
degradations in other criteria).

Each destroyer also considers only a single criterion
and its intelligence is also concentrated in its input
controller. The selection process involves two steps.
First the candidate design is tested with respect to
the destroyer's criterion. If it fails, then the destroyer
proceeds to the second step: flipping a coin that is
biased so "tails" is more likely for designs that have
failed badly. If the coin comes up "tails," the design is
eliminated, most of the destroyer use obvious crite-
ria, such as kinematic-constraint-violations. However,
one of them uses an interesting criterion: distance



X|<+1 requires the application of every 0n to every
point in X|<. The result is a state flow that expands
quickly to a considerable width before it begins to
narrow as points are repeated. The reason for using
destroyers and mechanisms such "consensus-
seeking" is to narrow the state flow of (P3) at its
widest part without significantly changing its
termination.

9. SUMMARY
The space of computer-based organizations, S(<t>),
can be partitioned into a number of fuzzy regions.
One of these regions, A3<|>t is notable for containing
organizations which are open, parallel and dis-
tributable. These organizations, called A-Teams, use
only autonomous agents.

Applications of A-Teams in a variety of domains have
demonstrated that they can be extremely effective in
solving very difficult problems. Moreover, this effec-
tiveness can be achieved by fairly simple strategies.
Two of these strategies are called herding and con-
sensus-seeking. The former relies on a balance be-
tween agents that create solutions and agents that
destroy them. The latter relies on social instincts
(rules) implanted in each agent that cause it to align
its approach with that of its most successful neigh-
bor.

No doubt, there are many other strategies by which
A-Teams can be made effective at problem solving.
Rather than search for these strategies, my col-
leagues and I have been concentrating on the
herding strategy and in particular, on technologies
for deconstruction and destruction. I believe that in
tackling difficult problems, the deconstruction of bad
alternatives to recover their reusable parts and the
destruction of hopeless alternatives to prevent their
further consideration, are at least as important as the
creation of new alternatives through construction
and modification processes. However, much more is
known about construction and modification pro-
cesses than deconstruction and destruction pro-
cesses. Therefore, deconstruction and destruction
would seem to be fertile areas for research.
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