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Abstract:  Research is a design activity whose decisions involve the ways in which
research is carried out and its results interpret. These activities comprise what is referred
to as research methodology. This paper brings the concepts of capturing design rationale
and machine learning to bear on the design of research itself. Therefore, design decisions
concerning research must be recorded to allow for understanding feedback and updating of
research strategies. In addition, successes as well as failures of research decisions must be
reported to facilitate learning about research. This requires a shift in the way research is

carried out and reported. This paper illustrates this shift in the context of a specific project
on machine learning in design.




1 Introduction

There are two senses of science according to McMullin [1]. In thefirst sense, denoted by Si, scienceis
a collection of hypotheses, theories, observations, data, etc. that are the end products of a long process.
The extent to which detailsrelating to these end products are discussed isto allow fellow scientiststo
evaluate and replicate results. In this sense, science does not contain failures such as fruitless research
paths pursued by scientists, albeit some argue (e.g., Popper[2]) that scienceisall about conjecturesand
refutations.

I nthesecond sense, denoted by S2e sciencecontainsasmany mor edetailsaspossibleabout scientists
activities. In effect, science is a historical description of research. Scienceis broader and vaguer than
Si, and sometimesmay even beembarrassng. Decisionsabout research are made not necessarily based
on profound reasons but may be responses to circumstances such as proximity to a required source.
Research decisions embedded in the actual exercise of research have significant impact on scientific
progress. According to Kuhn [3] and Feyerabend [4], it iswhat scientistsdo that accountsfor scientific
progress, rather than, the use of any principled, universal methodology (see also [5] for an daborate
philosophical discussion on thistopic, [6,7] for two rare examples of historical descriptionsof research
in Al, and [8] for a demongtration of the same ideas in mathematics).

In arguing for adopting S2.1 will apply terms borrowed from two topicsin design research: the
capture of design rationale (CDR) and machine learning (ML), to the research activities researchers
pursue Therearethree reasons for adopting S2: methodological, moral, and substantive.

Methodological reason. Research is about the identification of needs, creation of ideas, their
formalization, testing, dissemination, and refinement. Research isa design activity. Assuch, research
can benefit from ideas developed in design research such as CDR. The rational of the design of a
resear ch activity containsprecisely what S2 includes: all the contextual information about the research
activity. Moreover, as argued by researcherson CDR, it isthisrationalethat allows other researchers
10 "replay" research, thereby testing the foundations of a scientific work and extend it while avoiding
previous pitfalls. It isin this sense, that as a community, researchers can build principles, tools, and
under ganding about a particular scientific subject matter.

This underganding directly relatesto the second concept of design research mentioned and to the
focusof thisspecial issue: machinelearning. In studyingthe effectiveness of different ML techniquesin
design, we undergand the importance of accurate infor mation that allow learningto oper ate effectively.
Smilarly, if we expect that learning of concepts will guide meaningful scientific progress through the
accumulation of knowledge, we mug detail all aspects involved in any resear ch activity, including, of
course, " positive” (i.e., successful) and " negative' (i.e., failure) examplesof research.

In summary, principlesfrom both CDR and ML demand that we adopt S2, thus leading to a better
methodology for design research.

Moral reason. In design research, weresear chersinvent many concepts and expect othersto use
them in practice. It is a moral obligation to use the concepts we develop in our own work where
applicable. The capture of design rational of research and thereporting of accurate data for learning
about resear ch projects must ther efore take place to set example for prospective user s of these concepts
indesign.




Substantivereason. If S2 is practiced, research results can come closer to practice. The information
gathered about design choices in research can inform the selection of the research products in practice.
The accumul ation of knowledgethrough learning is particularly relevant to one of the end products of this
research: amethod for selecting ML techniques for executing specific learning tasks called M2LTD. The
substantive reason for choosing S2 in this research project is that M2LTD relies on knowledge gathered
from detailed feedback from using it to assign ML techniguesto learning problems. Thisfeedback must
include the reasons for sel ecting particular ML techniques and their (un)successful operation. Thisstudy
shows that in Si, often the true reasons are hidden behind careful re-constructions that may render the
use of M?LTD fruitless in practice.

After detailing the methodol ogical, moral, and substantive reasons for using S2, it is time to demon-
strate the first and last reasons. Therefore, this study focuses, on the processes involved in the research
reported (methodological reason) including its end products (substantive reason). ‘

This paper discusses the history of a research project including: the issues and circumstances
involved in the conception, design, testing, and redesign of BRIDGER, a system that may assist in the
design of cable-stayed bridges. This paper also discusses some of the fruitless paths explored. While
the latter rarely appear in publications, being a testimony of partial failures, they are, in fact, crucia
facilitators of progress and learning.

This paper also details the products of the research and their partial evaluation; it does so following
Si, as it would be reported according to practiced conventions. The description of the end products has
two methodological functions. First, it demonstrates what | view as a minimal evaluation of an end
product. Second, acomparison of this description with the historical description of the project (i.e.9 S2)
shows that Si hides important data that is inaccessible by fellow researchers for future reference. This
comparison provides a data point in favor of choosing S2.

One note before starting thejourney. This paper does not present the design rational e as coded while
doing the research, nor is it reported by an unbiased researcher. Rather, the design rationale reported is
a subjective rational reconstruction of the events that took place. Furthermore, the description does not
escape the goal of prescribing how decisions should have been made or should be made in the future.

They were two reasons for not recording the design rational e during the course of the project reported.
The one that will probably be used more often by researchers states that the lack of tools appropriate for
recording and organizing design decisions prevented serious effort of coding. This reason, while stating
acorrect fact: the lack of tools, is inaccurate. The second and true reason is that this rational was not
considered important at the beginning of the project. Since then, | have changed my views to arguing
that the process of research is no less significant than its end products.

Plan of the paper. The remainder of this paper is organized as follows. Section 2 provides a detailed
description of two end products of this research as reported following Si. Section 3 discusses another
end product of the research that triggered much of the shift from Si to S2. Section 4 puts sections 2
and 3 into a historical perspective. Section 5 discusses the methodological lessons extracted from the
research project and Section 6 summarizes the contribution of this paper.
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2 Si: Theend productsof the research

This section provides a description of ECOBWEB and BRIDGER as it would appear following the per-
spective of Si. Thisdescription isnot comprehensive. It is meant only to provide details sufficient to
contragt it with S2 and to demonstrate sever al methodological aspectsin carryingresearchin Si aswell.

21 ECOBWEB

ECOBWEB is a system for learning synthesis knowledge for a type of routine design problems. This
section presents a rational recongruction of the assumptions and the implementation and testing of
ECOBWEB'Smechanisms. '

211 Assumptionsabout design

Thisresear ch made the following assumptions about design.

ASSUMPTION 1 (Artifact representation): Artifactsand their specificationsaredescribed by (finite)
lists of property-value pairs.

A property-value pair may specify the length of abridge or itsparticular type (e.g., arch or suspen-
sion). Thisassumptionrestrictsthe scopeof designstothosewith fixed structures. Ther efore, thedesign
of artifactsthat are described via graphs, such aslayouts, cannot be supported under this assumption. |f
therestriction on thefinite number of propertiesisremoved, ther epr esentationbecomes general, but of
cour se, unreasonable to implement computationally. :

ASSUMPTION 2 (Structur eof design knowledge): Knowledgeabout typesof designsis represented
asahierarchical classfication tree.

This assumption does not impose any restrictionson the potential application.* In Section 2.1.3 we
show that such structuredoesnotrestrict design to the selection from existing designs; rather, it can give
rise to different processes depending on how it isused.

ASSUMPTION 3 (Quality of design knowledge): The quality? of design knowledge is determined
by the quality of the hierarchical classfication treerepresentingit. The quality of a hierarchical
classification tree is determined based on whether it classifies (dis)similar designs (dis)similariy.
Theterms” dmilar” and " classfy” areleft vague.

'Note that a hierarchical classification treeis not adecision tree. One signmcantdiffcreiK » is that a decision tree tpecific«
aprocess. an ordered sequenceof design chokes, whereas a hierarchical classification specifies how concepts are or ganized
in aclass/sub-classstructure.

?|n thispapa; we areusing thetermsdesign knowledge and its quality rather loosely; elsewhere, wetry to addressthese
issuesin more detail while pointing at someof thedifficultiesin being precise about them [9].
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The knowledge quality assumption approximates the more desired quality measure stating that a
classification is 'good' if the description of a design can be guessed with high accuracy, given that it
belongs to a specific class, or even the better measure, that a classification is *good* if it resultsin good
design performance.

ASSUMPTION 4 (Design process): Designis a (direct) mapping from a specification to an artifact
description.

Defining design as a mapping is very general unless the nature of the mapping is restricted to be
direct asitisin the above assumption. This assumption almost excludes the use of explicit knowledge
in design. On the other hand, infonnation can be compiled into implicit knowledge embedded in the

mapping.

ASSUMPTION 5 (Nature of design knowledge): The structure of design knowledgeis static. Itis
atered incrementaly if new design knowledge warrant this operation.

This assumption states that knowledge is assumed to be correct, unless additional information be-
comesavailable. Inthisresearch, thenatureof theadditional informationisrestricted to thedescriptionof
new designsor proceduresthat eval uate the knowledge quality. Another consequence of thisassumption
isthat knowledgeis built incrementally and continuously sinceit is always incomplete.

Assumption 5 requires that a system supporting design be able to learn and modify its knowledge
incrementally. Assumption 2 specifies the structure of the knowledge that needs to be generated and
Assumption 3 determines how this knowledge should be evaluated and therefore hints at how it may
be built. Assumption 1 restricts the scope of artifacts discussed, thereby allowing available learning
techniques to be used for the knowledge generation.

All these assumptionslead to the selection of COBWEB [10] as apotential tool. Since COBWEB has
severa limitations in the context of design [11], anew system was devel oped, called ECOBWEB, that
supportsthe five assumptions.

Reflections. Asarationalereconstruction, it isevident that the above assumptionswere geared towards
the solution proposed. Thiswill probably be the case for most re-constructionsof assumptions. Never-
theless, such acknowledgment is outside the scope of Si, which only requires that the implementation
is consistent with the assumptions. Whilethis criticism downplays the significance of the assumptions,
they dtill have arole in Si. The listing of the assumptions states explicitly the foundations of the
implementation, thus providing a concrete basis for a dialogue, rather than discussing over lengthy,
detailed text.® In any case, it istheresponsibility of astudy to show that the implementation followsthe
assumptions and that the study validates them, even if partialy.

The next two subsections describe the realization of these assumptions in ECOBWEB learning and
synthesisprocesses.*

Thiscan becontrasted by thelengthy, detailed description in S,. It isalmost certain thatS, cannot be compressed to alist
of assumptions although its style may take different shapes after some experienceis accumulated.

“Many properties of ECOBWEB discussed here are inherited from its predecessor COBWEB. Since the purpose of this
paper is not the evaluation of ECOBWEB contribution but the methodological aspects of the resear ch, we do not emphasizethe
digtinctions between the two lear ning systems. Such evaluations appear elsewhere[12,11,13].
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212 ECOBWEB'S learning algorithm

ECOBWEB learns design knowledge incrementally (based on Assumption 5). It creates a classification
hierarchy (based on Assumption 2) from design examples represented by lists of property-value pairs
(based on Assumption 1). ECOBWEB uses several operatorsto build the hierarchy. Itsaim istoimprove
theknowledgequality continually (based on Assumption 3). Therefore, learning oper atorsareselected to
maximize theknowledgequality. A statistical function, called category utility, approximates knowledge
quality by evaluating a classification of a set of designs into mutually-exclusive classes.

When anew design is introduced, ECOBWEB triesto accommodate it into the existing classfication
hierarchy garting at theroot by performing one of five operators (see [10] for a detailed description of
these operators) that maximizes the value of the category utility function. The process terminates when
the new design hasreached aleaf node.

2.1J ECOBWEB'S synthesis process (based on Assumption 4)

ECOBWEB'S synthesismethods can bedescribed along two dimensions: ther efinement dimension which
can be extensional or intensional; and the generation dimension which can be case-based or prototype-
based. Figure 1 illugtratesthese dimensions. In the extensional approach, refinement classifies anew
gpecification with a new subclass sarting from the top class (class 1 in Figure 1) until the process
terminates at class 3 when the property values of the specification have been matched by characterigtic
property values in the classes traversed (classes 1, 2, and 3 in Figure 1). Intuitively, characterigtic
property values of a class are those property values that are very common in the class and rarely
appear in the other classes of the same level. In the intensional approach, while classifying the new
specification, characterigtic property-values of the classes traversed are assigned to the new design.
Therefore, at thetimether efinement terminates, the new specification would be augmented with sever al
design description properties.

Inthe generation stage, the case-based approach views a class asrepresentingthe set of all itsleaves.
Therefore, leaves4, 5, and 6 are selected as candidates in conjunction with the extensional refinement
approach, or are used to complete the properties missing in the new design description in conjunction
with the intensional refinement approach. The prototype-based generation approach takes the current
class (class 3 in the example) asthe prototypewhose description is composed of all the property values
of its leaf nodes with their associated frequencies. In conjunction with the extensional refinement, a
sequence of candidates can be generated from the prototype, starting with the best candidate having
property valuesthat arethemost frequent. In conjunction with the intensional refinement, the property
values assigned in therefinement are maintained by all the candidates.

There aretwo observationsemer ging from experiments with ECOBWEB. First, ECOBWEB generates
several alternativesthat not always satisfy all therequirementsand it gener ates alter natives that did not
existin the original set of potential designs (when using any but the extensional/case-based approach).
Second, in deep hierarchies generated by many examples, it is observed that the path traversed by the
guidance of the category utility function can beinterpret as a progr essive matching of the specifications
or even asadesign derivation. It isimportant to acknowledgethat thisobservation doesnot approximate
in any way the explicit intent and domain knowledge on the order in which design derivations are to
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proceed. Such concerns may be supported when domain knowledge is incorporated in the learning or
synthesisprocesses. Such knowledge will alter Assumption 4.

2.1.4 Evaluation

ECOBWEB satisfiestheassumptionslaid outin section 2.1.1; therefore, itsevaluation istheir validation. In
any research, it isthe systematic testing of the consequences of assumptionsthat establishes confidence
about them until some evidence arises that renders them inappropriate. It is unfortunate that many
research projects in ML in design do not exercise serious testing, thereby leaving their assumptions
lar gely unsupported.

This section illustrates one type of quantitative evaluation that was performed with ECOBWEB.
Additional quantitative and qualitative evaluations are detailed esawhere [12, 11, 13, 9]. In generadl,
ECOBWEB demonstrated performance compar able to and sometimes better than other lear ning programs
in classfication tasks. But more important, it demongrated good performance in design domains.
To illugrate this performance, we review some results of ECOBWEB's evaluation in the domain of
cable-stayed bridgedesign.

Table 1 illustrates the performance of ECOBWEB by providing the mean values of one performance
measure generated from 48 test problems. The measure, called scaling, calculates how close was the

7




length of a bridge synthesized by the case-based/extensional method to the length required by the new
specification, i.e., scaling equals the ratio between the new length requirement and the length of the
retrieved bridge; thecloser thevalueto 1, the better isthe match between the new requirement and the
retrieved design. The scaling measure was selected sinceit hasa sgnificant influence on thedesign. In
thetable, themeasureisprovided for four knowledge hierar chies generated by learning: K\>KiyK” and
K4. Hierarchy K\ wasgenerated from theoriginal set of 96 bridgeexamplescreated in astudy on bridge
design. Hierarchy £2 wasgenerated from the 96 examples after their analysisand redesign; thereforeit
contained higher quality examples. Hierarchies£3 and £4 were generated from 144 (48 in addition to
the 96in £2) and 192 (48 in addition to the 148 in £3) good quality examples, respectively. Since£l
wasbuilt from lower -quality examplesit did not participatein thestatistical analyzesperformed.® From
looking at the table, one may beinclined to infer that indeed the more examples ECOBWEB learns, the
better it performs. Such satement isnot yet warranted. One hasto demongratethat the results cannot
be aresult of chance, and moreover, onemust seek for (competing) patternsin the behavior to uncover
someinsight about it.

Two competing models, besidethe chancehypothesis, wer e hypothesized for explainingthe change
inthe scaling measure: (1) the scaling measur e dependslinearly on the number of exampleslear ned, or
(2) the logarithm of scaling depends on the logarithm of the number of examples. The former is rather
ad hoc, whilethelatter relieson the power law of practice so prominent in human learning [14].

Table 1: Scaling statisticsof candidates. Average scaling value from 48 test cases
Knowledge Scaling

£1 3.07
£2 2.15
£3 2.09
£4 132

A Geneal Linear Modd (GLM) procedure with a MANOVA® [1 S] analysiswas performed to assess
the differences between the scaling values observed according to the two models. In both models, the
scaling values satisfied: £2,£3 >0.0i £4; wherethe >0.0i indicatesthat £2 and £3 are greater than £4
with gatistical significance at thep < 0.01 level and that the difference between £2 and £3 was not
gatigtically significant Note that the second model was better than the first, although the statistical
significance of this statement was not assessed. In conclusion, the more knowledge ECOBWEB has,
the more relevant are the synthesized candidates to a new problem.” In addition, ECOBWEB learning
behavior seemsto obey the power law of practice.

The tests performed support the claim that if a design domain can be approximated with the
assumptions detailed in Section 2.1.1, then, its knowledge can be learned and used by the kind of
techniquesimplemented in ECOBWEB. :

®Seealso [9] for an elaborate explanation based on measurement theory.

® AMANOVA wasused instead of an ANOVA analysisbecause (1) ther ewer etwo dependent variablesanalyzed at thesame
time: thescaling measure and thequality measure (seeTable 2); and (2) theindependent variable had morethan two values.

7 Actually; these candidates are existing designs since the case-based/extensional method was used. Additional tests must
beexecutedtogeneralizetotheother ssynthesisstrategiesECOBWEB has.

8




12 BRIDGER

BRIDGER is a system built for assgting in the conceptual design of cable-stayed bridges. This sec-
tion presents a rational recongtruction of the assumptions underlying the design of BRIDGER and its
implementation and testing.

221 Assumptions

Sincethe major component of BRIDGER iSECOBWEB, thefollowingremarkholds.
REMARK: BRIDGER inheritsthe assumptionsof ECOBWEB discussed in Section 2.1.1

ASSUMPTION 6 (Structureof design process): Design isasequence of fivetasks, problem analysis,
synthesis, analysis, redesign, and evaluation, executed sequentially with one feedback loop [16].

Thisassumption admits Assumption 4 asreferringto the synthesis, rather than the wholedesign process.

222 BRIDGER's architecture

BRIDGER'S architecture is based on assumption 6. BRIDGER's main emphasis is on mechanisms for
synthesisknowledge acquisition and ther efor e, the complete ar chitectureisintended to support thistask.
Figure 2 shows an overall view of BRIDGER's architecture which consists of two main sub-systems.
synthesisand redesign.

Thesynthesissub-system isresponsiblefor synthesizing several candidatesfrom agiven specification
(branch 5). Synthesis knowledge is generated by learning from existing designs (branch 1) and from
successful design examples that are selected by the user (branch 11). The synthesis module contains
two ingtantiationsof ECOBWERB.

Thefird instantiation cr eates a classification hierarchy (branch 2) from theoriginal bridge examples.
Thishierarchy is subsequently used to synthesize bridges (branch 4) as discussed in Section 2.1. When
dealing with specifications that are expressed by real numbers, rardy will a synthesized design match
the specification. This problem can be remedied by performing various scaling operations to fit the
synthesized design to the specification. In order for performing sensible scaling, relevant scaling values
areretrieved from asecondinstantiationof ECOBWEB. T hisingtantiation buildsa classification hierarchy
by learning from proportionsof various components of bridges. The process of retrievingscaling values
and using them to modify the design is called adaptation (see [17, 12] for additional details). Since
the creation of candidate designsrelies on heuristic synthesis processes, candidate designs are usually
inadequate in some aspects even after the adaptation process. The redesign sub-system resolves this
problem.

Candidate designs are tranderred to a module that analyzes them and submits them to a redesign
module, if necessary (branch 6). Theredesign module is responsible for modifying designs after their
analysis (branch 7). On receiving theanalysisresults, thismoduleretrievesthe best design modification
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Figure 2. Overview of BRIDGER's ar chitecture

for the bridge. The user can override the redesign modifications and supply explanationsthat enhance
redesign knowledge (branch 9). The results of the redesign sub-system are acceptable designs (branch
10). The designer evaluatesthe results and can submit a subset of them to the synthesis sub-system for
further training (branch 11) and subsequent modification of the synthesisknowledge (branch 2).

123  Evaluation

BRIDGER was partially evaluated qualitatively and quantitatively [12, 9]. This section details the
quantitative evaluation only. The quantitative evaluation was mainly concerned with the ability to
acquiresynthesisknowledge. Thefirst pan of the evaluation was demonstrated by ECOBWEB in Section
2.1.4 and isnot discussed further. The adaptation part was tested by calculating the quality of bridges
gener ated by the synthesismoduleof BRIDGER, wherethequality of abridgeisa function of theweighted
summation of the squares of the functional congraints that a candidate bridge violates; lower values
mean higher quality. Theseviolationswere calculated by the analysismodule.

Theredesign part was not assessed quantitatively. At thetime the project ended, it was ready for
demonstration purposesonly. Therefore, no conclusion can be drawn about the appropriateness of the
approachtolearningredesign knowledge, or itslack thereof. Thisisan unfortunatebut correct statement
It isbased on the premise that a simple demongration isnot a test, although this has become common
practicein Al ressarch in design.

Table 2 illustr atesthe performance of BRIDGER by providing the mean values of the quality measure
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Table 2: Quality statistics of candidates. Average quality measured from 48 test cases
Knowledge Quality

tfi 278.36
K> 50.19
Kz 2.89
Ko 120

generated from 48 test problems. The same models and statistical test that were used to test the
scaling measure in Section 2.1.4 were used again: (1) a linear model, and (2) a power law model.
Accordingto the firs model, the quality values satisfy: K% >o.0i #3,"4; but according to the second:
£2 >0.0i 3 >0.0i K4. The second model was better in term of explaining the data, but no statistical
test was performed to differentiate between the two models. Both results say that the more knowledge
BRIDGER has, the better the quality of candidates it generates. The second model describes the behavior
more conclusively and more favorably. Furthermore, the reduction of quality values when additional
examples arc learned shows that BRIDGER converges to good design competence in absolute terms.
Future evaluations may include the assessment of the redesign and the evaluation of the complete
system.

The testing of data through the use of two models changed the results slightly. One could state that
thiswas a redundant effort. In contrast, we maintain that the testing of alternative inter pretationsof data
isaprerequisite for getting plausibleresults. Often, in Al work, no significant testingis performed, and
when oneisperformed, it often consists of testing a single model.

Reflections. There are additional avenues for conducting evaluations beside testing the perfor mance of
the computational model. In particular, the relevance of the work to the practice of engineering, a topic
that is almost never assessed in design research, including the study reported in this paper (see [18] for
a good positive example), can be assessed by deploying a program in a workplace and analyzing its
usability. Such studiesmust be informed by methodologiesdeveloped in the human and social sciences
to be considered adequate.

3 MAZTD: Theroad from S1to S,

The third product of this research isM2LTD, amethod for selecting ML techniquesto perform learning
tasks [19]. MZLTD consists of knowledge describing the issues and tradeoffs that inform the selection
and a sequenceof 5 stepsthat usesthisknowledge (see Figure 3).

Theevaluationof ML TD ispresently limited. Inincludesthereconstruction ofitsuseto design, test,
and evaluate BRIDGER and few other usessuch as[20], where ML TD wasused toselect STAGGER [21]
for building a system that learns evaluation knowledge for circuit design. Thediscussion in [20] about
the use of M2LTD and the evaluation of the system created enhances the knowledge used in executing
M2LTD. That discussion, however, does not convey many subtleissuessuch as those discussed in this
paper; itmay bea" filtered" or arational reconstruction of the decision processinvolved in usingM L TD.
Therefore, it may provide partial feedback on the usefulness of M2LTD.
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ML TD isintended to be revised continually and incrementally by adding infor mation from experi-
ences. Amgjor revision, intheform of changingthestructureof the selection processpresented in Figure
3 can alsotakeplace. The further development of ML TD requiresits use for selecting ML techniques
in many projects and the incor por ation of the feedback from itsuse back into itsrecommendations.

ML TD serves asthe substantive reason for adopting S2. Asatool for advancing the research and
practice of ML in design, it assumes the responsbility for recording and analyzing the rationale for
selecting between different ML techniques for specific tasks. This rationale can then inform future
choicesby researchersand practitioners.

4 2. A historical overview of the project

This section provides a historical overview of the learning project by reviewing the events leading to
the creation of the end products discussed in Sections 2 and 3. Since the purpose of this paper is
methodological, this section provides only some details that arc needed to support S2 rather than a
comprehensiveoverview.

41 SOAR

The first experiment with ML techniques |2 performed involved studying the suitability of SOAR as
avehicle for design knowledge acquisition. SOAR is a problem solving architecture with an integral
learning capability [22]. The decision to select SOAR was simple, SOAR was developed in-house at
Carnegie Mdllon University and seemed a natural fird candidate. The reconsgtructed reason | offered
later was that a successful implementation in SOAR will be powerful because SOAR allows for less
degrees of freedom to be exercised in design choices of any system implemented. The tight coupling
of learning and performance would force taking an approach that is more constrained and hopefully

*Notice the changefrom "we" to "L" Firg, the use of T conveys less authority than the use of "we." Second, the use
of T does not remove the contribution of Steven Fenves who acted as my advisor in this PhD research project, it is smply
meant 10 put the burden of all thepitfalls on me.
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"natural" to any domain of interest

A smpleproblem of design by parameters selection was chosen and experimented with [23]. It was
observed that SOAR was an excellent problem solving ar chitecture that enforced a specific disciplineon
the sructuring of domain knowledge, but that itslearning mechanism, when used, was too demanding of
this sructuring. The design of problem sructuresthat resulted in learned rulesthat transferred between
problemswasdifficult Thisdifficulty, aswell asother limitations, were discouraging. After conducting
a few additional experiments, the use of SOAR was suspended.

Reflections. Theassumption that after structuring domain knowledgelearning " will takeon from there®
wasmistaken. When lear ningwasexpected to wor k, thenatur alnessof sructuringthedomain knowledge
had to be distorted. Also, the assumption (and a major reason for using SOAR) that mechanisms can be
shared across projects was premature. For example, mechanisms for abgractions or analogy that were
developed, were incompatible and their userequired changing therepresentation and problem sructure
tofit their design. Only recently, were several high level mechanisms such as data-chunking [24] made
availablefor sharing among different SOAR prgjects.

4.2 Thegoal of learning

After theinitial experimentswith SOAR, it wastimeto formulatean attainablegoal for thelear ningpr oj ect
| then decided to explore prototype systems that could ssimulate the functionality | was expecting to get
from SOAR. | approached such simulationswhilewaiting for a new version of SOAR to be released.

Thelearning task as posed after theinitial sudieswith SOAR was asfollows. Given examples of de-
signs, including their specifications, derivations, and final descriptions, create three concept hierarchies:
specifications, design derivations, and design descriptions (see Figure 4). In addition, learning had to
create indices between the hierar chies such that anode in the specifications hierarchy was connected to
anodein thederivationshierarchy that heurigtically could create an appropriatedesign (the dashed line
in thefigure), and connected to the design descriptionshierarchy for heurigtically selecting designsthat
may satisfy therequirements(the dotted line). After learning, design could be executed in one of two
ways. One way would be to take a new specification and classify it with the specifications hierarchy
(node 1). The (generalized) node in the specifications hierarchy would be connected to a node in the
derivationshierarchy that reflects, in a general sense of cour se, the actions needed to design an artifact
for the specification given (node2). Thisderivation would be adjusted to the new situation and replayed
toresult in a design (node 3 in the design description hierarchy). Another possibility for designing
would be to move directly from the specifications hierarchy to the design descriptions hierarchy (node
4). Notethat there wasno guarantee that these two methodswould result in the same candidatedesigns.

Reflections. The functionality discussed above drove the development of a prototype system. This
functionality wasareconciliation of what may be needed to support real design and what ML techniques
could offer. Whilethe goal wasinformed by both, it smplified design and sretched the capabilities of
lear ning techniques.
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43  FOCUSSING

The second attempt of this research involved atest of the FOCUSING algorithm [25]. FOCUSENG isa
symbolic supervised concept learning algorithm comparable to the version spaces algorithm [26], but
onethat operates on conceptsdescribed by hierarchies. The FOCUSING algorithm contained extensions
that solved several problems, such as the emergence of contradictions during the cour se of learning
[27,28]. Theseextensionsdealt with changing the hier ar chiesrepresenting concepts and examples, and
ther efore, appealed tothe functionality sought from thelearningtask in thisresearch. Thealgorithm and
some of its extensions wer e implemented and experimented with. |t was apparent that two significant
problems were manifested. Firg, the (symbolic) nature of the process led to fas learning that assumed
more than warranted from the evidence presented in the design examples (this is a problem with all
purdy symboalic learning), leading to contradictions between learned concepts and subsequent training
examples. Second, themechanismsavailableto solveor prevent thesecontradictionspresented multiple
choices that could not be resolved easlly. These resolutions required having knowledge about the
functionality of the lear ning mechanisms involved in the conflicts. The need to collect such information
hasled to the inception of the concept of generic learning task [29].

Reflections. In retrospect, the path that was selected later in theresearch attempted to address the two
issuesraised by the FOCUSING algorithm. In reality, the first issue seemed more fundamental and its
solution was per ceived to answer partially the second issue.

44 Genericlearningtasks

Intheuseof any learning program it isnecessary to know (1) what isthe input and output of thelearning
program, (2) what is therepresentation of knowledge used and learned, and (3) how are operational
parameters for runningtheprogram selected. Thisinformation may be used to select alearning program
for performing aspecific learningtask. Similar information regquirementsemer gefrom Chandrasekaran's
work on generic tasks as high level building blocks for expert systems design [30].  The concept of
generic learning tasks is the application of the generic task idea to ML except that now the task is
lear ning a specific type of knowledgethat will be used by some generic (problem-solving) task. Generic
learning tasks can be used as building blocksin the creation of complex learning programs.
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Reflections. At that time, and till today, the concept of generic learning tasks remains only partially
understood and complex to implement. Primarily, this results from the fact that the functionality of a
learning task must be deteimined experimentally and evolve continually through feedback from itsuse.
Thisrequiresfollowing S2. The number of learning tasks that have been formulated in a preiminary
fashion issmall and no experiments are available that shed light on the respective functionality of these
tasks, certainly not in a way that can be used to select between them automatically. Some projectsare
underway to improvethissituation [31].

The concept of generic learning task can also force useful report of ML techniques since it contains
necessary information required to select a particular program for particular uses. As such, this concept
is the foundation of ML TD.

4.5 ECOBWEB

Asdiscussed in Section 4.3, thefirg attempt at solvingthe questionsraised by the FOCUSING algorithm
was to change the purely symbolic nature of FOCUSING. In involved the exploration of a probabilistic
representation of learned knowledge. The coBweB algorithm [10] supported thisrequirement,in
addition to being incremental. Whilethelatter wasviewed initiallyjust asagood featureit later became
a fundamental requirement for supporting design.

Another characterigtic of coBwEB that initially did not seem necessary but proved useful was its
ability to perform flexible prediction. This ability eiminates the need to specify apriori what are the
specification or the design description properties. Rather, a design problem could be defined by any
partial description of propertiesand the solution would bethecomplete description. Oncetheimportance
of this characterigtic was observed, it also became a fundamental requirement. It was conjectured that
unsupervised concept lear ning could support such prediction, wher eas super vised concept lear ning could
not [ 11]. Onedeficiency of supervised concept learning isthat one property must be selected apriori as
the predicted property (i.e., theclassproperty). Thisobservation waslater adopted asaguidingprinciple
by other projects[32,33].

COBWEB was re-implemented and its functionality tested using a historical data set of examples of
bridges congructed in Pittsburgh, a personal choice directed by the expertise of Steven Fenves in the
subject The reaults demongrated that COBWEB learned gradually from examples and recongructed
(i.e., design) the bridges, given ther specificationsonly [12,13].

The promising results from the initial experiment and from others that followed were analyzed,
tryingto reate the behavior of COBWVEB to char acteristics of real design. The characterigticsput forward
were: design isamultiple-objectiveand congrained process, design makesuseof a variety of knowledge
sour ces and oper ates in different levels of abstraction, and design employs multiple strategies. Finally,
the nature of everything relating to design may change over time. These characterigtics informed the
extensionsto COBWEB, but wereonly addressed partially [12].

Reflections. The hypothesisthat concept formation (unsupervised incremental concept lear ning) tech-
niquesare more suitablethan supervised concept lear ning for theacquisition of synthesisknowledgewas
articulated at length [11], but an experimental support for it still sought. The adoption ofthlshypothws
by othersand itstesting may provide the necessary experimental support.
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The flexible prediction ability of COBAVEB resulted in a change in the research plan. Ingead of
lear ning three hierar chiesand the réationshipsbetween different nodesin these hierar chies asdiscussed
in Section 4.2, a single hierarchy seemed sufficient to capture design knowledge [11]. Thiswas an
experimental observation coupled by the paramony principle: if a desired result can be obtained with
a ample system, do not attempt to build a more complex one for the same purpose. This change
demondratesthe evolutionary nature of problem definition in response to insight from experience.

At thistime, afirm decision was made to follow this path of research instead of using SOAR. The
investment in thispath and theinteresting and promising results wer e too encouraging to risk them for
the difficult path of using SOAR.

4.6 General Design Theory

Duringthat time, | accidentally came acraoss Y oshikawa's paper on General Design Theory (GDT) [341.
It was an accident, because although Yoshikawa's initial work and its later extensions [35, 36] are
insightful, its complex mathematical foundations prevented researchersin the West from paying any
attention toitsassumptionsand their consequencesfor design. Therefore, GDT ishardly ever referenced
intheliterature,

Fromfirst glanceit was clear that GDT and coBwEB had many similarities. A prdiminary analysis
detailed someof thesesimilarities[37]. While COBWVEB was ableto approximatetheinitial formulation
of GDT, it lacked the ability to address the issues raised in its extensions. The extensions presented
difficultiesthat wer e also manifested in the study of the domain discussed in the next section.

Reflections. It took several years, a comprehensive study of GDT, and a reflection on the complete
project to arrive at a detailed comparison between GDT and the end products of this research [38,
39]. Thiscomparison illuminated several aspects. (1) GDT assumes that knowledge about designsis
represented by mathematical topology[40], wher eas ECOBWEB r epr esentsit by aclassification hierarchy,
a very degenerate approximation of a topology. (2) Based on the gructure of design knowledge,
GDT guarantees perfect convergence to design solutions, wher eas ECOBWEB can never be perfect and
performs depending on the examplesit has learned and its synthesis mechanisms. Nevertheless, even
when usingaconsiderably lessexpr essiveknowledge sructur ethan atopology, ECOBWEB demonstrated
an increasingly competent design ability in variousevaluations.

This comparison has two implications. First, ECOBWEB's performance might be improved, if its
knowledger epresentationis made closer to atopology. (A step towards this end is the generation of
dynamic graph sructures of knowledge that is currently under development.) Second, if GDT isto be
morerelevant toreal domains, the topological structure of knowledgeit assumes must berdaxed. This
may cause proving less precise satements about design, but still gatementsthat can guidethe design of
ML programsand their evaluations.

Thiscomparison between atheory and the predictionsit makes and an implemented system with its
performance evaluation is fundamental to scientific progress. It can be perceived as atest of thetheory.
On theone hand, the positiveresults of thistest in the form of good design performance of ECOBWVEB
provide support for the theory, and on the other hand, the theory helps guiding the future development
of the implementation (see also Section 5.1).
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4.7 Bridgedesign

Paralld to observing the smilarity between GDT and COBWEB, there was the need to dart addressng
design problems that were more complex than those experimented with to that point. A domain was
selected based on personal preference, approval of Steven Fenves, and preiminary observation that it
will lead to successful results’: thedesign of cable-stayed bridges. The study of the domain, including
the search and congtruction of bridge data was time consuming. The study sarted with reviewing old
textson bridgedesign [41] and ended with recent booksand publicationson thesubject [42,43,44,45].

The study revealed that the process of bridge design can be roughly decomposed into three phases:
conceptual, preliminary, and detailed. Thefirst phase was adopted as the focus of the study because
of its difficulty and importance. The conceptual design could be roughly decomposed into five tasks:
problem analysis, synthesis, analysis, redesign, and evaluation. '

It was clear from this study that COBWEB alone could not support the complete conceptual design
process. It was clear that additional components had to be incorporated and integrated into a larger
program. This surfaced again the concept of generic learning tasks and triggered the inception of
M2LTD[16].

Reflections. Whilethe study made many pieces of knowledgeexplicit and identified the phasesand tasks
discussed, it did not include any observation of actual designersin their work. Thiswas rationalized
as though the goal of the research was to identify the limits of building a support system with ML
techniques without engaging in the time consuming process of " knowledge engineering.” The study
obviously smplified the actual design praoblem.

It isclear from the evaluation of the work that building a system for automating bridge design isa
flawed goal; rather, the development of a support system, where designers can interact with, monitor,
and, if so dedired, override system operations, isamore important and attainable goal.

It isnot clear at all that the generic task approach will succeed in supporting the implementation
of a truly practical design support system because such a system must incor por ate significant detailed
domain knowledge that was mostly abgracted in this sudy. Furthermore, it is not guaranteed that an
assembly of generic tasks created a priori can accommodate the peculiar features of a new domain
knowledge as it unfolds during the accumulation of large amounts of knowledge. In fact, experience
with the development of lar ge systems demondrate that substantial evolution often takes place in such
projects (see [7] for a description of the evolution of a system in response to the collection of sgnificant
domain knowledge over several years).

4.8 BRJDGER

After identifyingthevarioustasksthat needed to beimplemented, the ML techniquesthat could support
their congtructionhad tobeidentified. Thesearch for lear ningprogramsthat could support theconceptual
design was limited to the redesign task. Thefirst task, problem analysis, was performed a priori in
a amplified form, the analysis involved coding a finite element procedure, the evaluation remained

°It most not be forgotten that thework wasin the context of a PhD thesis, perceived as basic resear ch, but onethat had to
resultin athesisin alimited time frame.
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unsupported computationally; and synthesisremained based on ECOBWEB, although it now included two
ingtantiationswith a candidate adaptation module (Figure 2).

At that time, | reviewed the book by Bareiss on PROTOS [46] for Machine Learning Journal [47].
During thereview, | also experimented with a newer version of FROTOS [48]. It seemed that PROTOS
had the necessary ingredients for supporting the acquisition of redesign knowledge. First, it supported
adiagnosistas; therefore, it could identify the cause of a problem in the bridge behavior revealed by
analysis. Second, it could accommodate domain knowledge in the form of causal reations that could
enhancebridgeredesign. Third, it wasincremental.

Several extensionswer e made to PROTOS leading to a new system called EFROTOS Theimportant
extension allowed EPROTOS to handlecontinuousvalues. Other necessary extensionstothe mechanisms
that manipulate domain knowledge wer e not performed dueto lack of time. The limited effort spent on
EPROTOS directly influenced the functionality of the resulting redesign sub-system. No serioustesting
was possible. By thetimethe research terminated, BFROTOS was capable only of demonstrating simple
redesigns.

The choice of PROTOS remains a hypothesis. It isclear that the reason for its selection was based
on partial information only. The redesign task was found to be more complex than envisioned initially
and PROTOS was missing functionality, such as handling numerical reationships, that could not be
incor por ated without significant changesto theoriginal mechanisms. Since, PROTOS mechanismswere
more complex than those employed by COBNMEB and since significantly less effort was available for
extending it compared to that spent on COBWEB, the required modifications were implemented only
partially.

Reflections. Theavailability of thewell written PROTOS code had an impact on itsselection for thetask
of implementing the redesign sub-system. Again, as the results show, proximity to a resource isnot a
success-guar anteeing heurigtic.

In the review of PROTOS | dtated that its evaluation, as appeared in publications, was insufficient.
Thisistruealso for most large Al programs. No serioustesting could be performed to examine various
agpects of the program. The only way remaining for testing was to digribute the system and expect
additional researcherstotest in on their problems. Theuseof PROTOS in this research providessuch an
additional test, albeit onethat outlines significant limitations.

The design of BRIDGER was definitely biased by a reductionist approach. This bias simplified the
original design problem. One could no longer anticipate to solve the original, real design problem
automatically with BRIDGER. Rather, BRIDGER was assumed to be controlled by a user that over saw its
operations.

5 Methodological ramifications

Thissection daborates on the methodological issuesraised in this paper. Thefirst part discussesthese
issuesin rdation to Si whilethe second rdatestheissuesto S2.*°

19 n this emphasis, the paper does not deal with other methodological issuesreevant to Al, such astherole of programs as
theoriesor experiments. For an extensive discussion on theseissues see [49].
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51 Closng onescientific cycle

The " gory" of this research can bereconstructed as follows. GDT, a formal theory of design, proved
properties of design following some assumptions, mainly the one gtating that knowledge sructureis a
mathematical topology. GDT was missing a crucial aspect: an explanation of how design knowledge
arises or, how can one create such knowledge sructure to benefit from its proven ability to generate
designs. Thisstudy attempted to provide an answer to thisquestion, thereby serving asa test of GDT's
assumptions. Someof GDT*sassumptionswerereaxed, in particular, theknowledgestructurebecamea
hierarchical classfication rather than atopology, leading to the development of ECOBWEB and BRIDGER.

Theevaluation of these systems demonsgtrated that there was some discr epancy between the predic-
tions of GDT and the performance of these systems, but that this difference was not significant given
the dgnificant relaxation of the assumptions.

Thisled to the formulation of futureresearch consisting of two paralld activities. Thefirst activity
would aim at relaxing GDT'sassumptionsand attemptingto provetheoremssimilar to theoriginal ones,
thereby refining GDT in response of the experimental results. The second activity would attempt to
account for thediscrepancy between the experimental resultsand the prediction of thetheory by building
a system that leams graph sructuresinstead of a hierarchy, the former better approximating a topology.
This" gory" completesa single scientific cycle asillustrated in Figure 5.

(4) Evaluate experiments N (1) Generate hypathesess (GDT)/
(comparethe evaluation ~ y* AN modify hypotheses
to the hypotheses) / \ ‘ (revise GDT and the sysems)
1
3) Pafam experiments \ I (2) Dedgn expeiments
® (implemenI? and evaluate \. y @ (des?gn of ECOBWEB
thesysems) N— AN and BRIDGER)

Figure 5: The scientific method cycle

Most resear chersaccept Si. To fully adhere to its methodology, the end product of their research
mug include: the theory that served as the hypothesis of the ressarch, the detailed description of the
implementation of the theory, the precise description of the testing set-up, itsresultsand their analysis,
the conclusionsof theresearch, and how they guided therefinement of the theory. The omission of any
of these parts casts doubts about the credibility of the research.

Thisresearch had several end products. Thefirst is a theory of learning, appropriate for a class
of routine design problems consisting of: (1) A theory of learning in design which accepts GDT's
formulation of design and adds the hypothesisthat concept formation is the means for creating design
knowledge. (2) An experimental set-up, sarting from the six assumptions approximating the theory,
leading through the detailed implementation of ECOBWEB and BRIDGER, to the description of the
experiments to be conducted with these systems. (3) Experiments execution and (4) results analysis*
includingther impact on theoriginal theory. All theseparts collectively congtitutethetheory developed
inthisresear ch.
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, Given the information provided for this theory, one can easily challengeit. For example, one can
argue that one of the assumptionsisincorrect. This may render the theory inappropriate for a domain
whose properties are different than assumed by the theory. In contrad, if a domain can accept the
assumptions, it is subjected to the predictions of the theory until they are proven wrong. Consequently,
adiscussion on these theoriescan focuson the assumptions, rather than on irrdevant details.

52 From theory to practice

We have seen that even areconstructedhistorical description of aresear ch (S,, Section 4) deviates from
itsreconstructedreportin thefir st sense of science (Si, Section 5.1). Areconstructiontendsto be an
analysis process, namdly, given the existing implementation, what could be a set of assumptionsthat is
consistent with it and still makes some sense. In contrast, design rationale capturesthe synthesisof the
development with all the subtleand crucial issues.

Two waysexist for advancing therecommendation of subscribingto S2. Thispaper exemplifiesthe
first way; it putsforward amoral, methodological and substantivereasonsfor selecting S2.

The second way attempts to demonstrate experimentally that S2 leads to better practice of design.
Thedevelopment of ML TD (which wasthe substantiver eason) is astep in thisdirection. It isbased on
oneprinciple: evolutionary development through user participation [SO]. M2LTD can only bedeveloped
through itsuse by engineers for synthesizing lear ning systemsto solve engineering problems and from
the accumulation of its users® feedback. Each feedback loop involves making hypotheses about ML
techniques by using ML TD and testing them-continually in fine grained " scientific cycles,™ similar to
those discussed before (see Figure 6). In order that this feedback be comprehensiveit must follow S2.
If ML TD will lead to better implementations of learning systems it will serve as a test supporting the
theory that S2 is superior to Si. We can observe that these tests involve a shift from resear ch-based o
prototypetoolsto practical tools. ’

One " scientific cycle**
CJOOO

time

Figure 6: Evolutionary development of theories and artifacts

S3 Theingght from S;
After detailingthetwo sensesof science one can ask what does S2 tell usthat S1 could not? or how does
S2 help usundersand the limitationsof Si? Firg, it isclear that S2 ismore verbose, lessrigid, more

personal, and more comprehensivethan S\. S2 presentsa story, rather than a concise set of hypotheses,

20




testsand evaluations* although it containsthem asan integral part, that is, S2 containsS1. Therefore, one
doesnot compromisethe" quality” of resultsoneobtainsby S1, onesimply attributesthem to their proper
cause. For example, in S2, arecondructed set of assumptionsor hypotheseswill be stated as a valid set
of assumptions that can be supported by the tests, instead of the product of profound observations—a
belief that the report of Si would like usto accept. If a researcher is imaginative, the assumptions will
be the maximal set of assumptions supported by the tests.

There are someobser vation that can be drawn from the comparison between S and S2.

1. Richnessofinformation. S2 isperfect for detailing shiftsin thinking. For instance, S2 illustrated
the shift from design as a mapping between three hierar chies (Figure4) to design as a refinement
and generation (Figure 1). By no meansis this shift a conclusive evidence that the latter view is
better than the former; but it congtitutes some support for this argument. This argument can be
contrasted or augmented with future argumentsto result in aricher context for making choicesin
future implementations.

Note that part of the reason for the above shift was the inability to provide rich knowledge for
the automatic selection of generic learning tasks. Later, while facing the complex problem of
preliminary design of cable-stayed bridges, the necessity for integrating techniques arose. 1t was
past experiencethat enforced a two-level treatment of this integration: macro, a manual selection
of ML programs, and micro, a collection of techniques with pre-defined control. In both levels,
the control was defined apriori dueto lack of knowledge about generic learning tasks.

2. Inevitability of failures. S2 makes us less optimistic about fast and easy progress. There are
fruitless paths to be explored, and they will be visited again unlessreported as such and learned
from.

Failures are probably the best source of progress [51]. Failures will be those that are acknowl-
edged as such after researcherstried to salvage whatever " positive" resultsthey could for their
publications. Therefore, failuresreported will be close to "near misses' which are excellent
triggersof learning [52]. Therefore, beyond subscribingto S,, the documentation of failures must
be legitimized asa servicecritical for progress.

3. Mundane aspects of research. S2 makes us aware of the rudimentary but unavoidable issues
influencingresear ch (e.g., context of research is thesis or the availability of cheap resour ces).

4. Value of longitudinal studies. Long and integrative studies are critical for accumulating infor-
mation about research questions. Such studies allow filtering intermediate conclusions by the
resear cher, rather than by peers. Such studies provide rich context required to understand the
problem addressed, the solution paths attempted, and the reasonsfor thereported successes.

5. Difficulty of reporting. It isdifficult toreport studiesin S2. It requiresrevealing unsuccesstul
activitiesand exer cising congtant reflection on the research activity. S, reportsare more difficult
to read; they require paying attention to a long description of events, some of which are less
technical than others.

6. Role of experiments. Experiments are critical for progress; to illustrate, without them EPROTOS
would have been pronounced a success in this study when such satement was not warranted
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Scaling up to practical applicationsprovidesthebest test of research questions. In fact, practiceis
theexperimental set-up for resear chquestionssuch as. " what doesit taketo select ML techniques
for design applications?®*—aquestion which ML TD attemptsto answer .

There are also some heuristicsthat can be extracted from the reconstruction of S2.

1. Theinitial stepsof the sudy wer e rather unconstrained, with relatively no theoretical grounding.
Part of these steps were meant to understand the capability of ML techniques. Such method
may bejustified in the beginning of an exploratory research but may betoo costly when ressarch
progresses. The adoption of S2 can lead to learning within the cour se of research (e.g., seeitem 1
inthepreviouslist).

2. Itishard or rather impossibleto formulate tight research hypothesesapriori, but if one follows
a sensible S2, such hypotheses can be constructed and evolve in subsequent cycles which benefit
sgnificantly from the feedback on thefirst cycle.

3. Thecheapest resource (e.g., an available program) is not necessarily the best oneto select asthe
cor e of a research project.

4. S2 suggeststhat research results should be interpret with great care. In particular, there may be
other sets of assumptions that are supported by the experimental evidence, and one can never
provethat thehypothesesare correct

6 Summary

In this paper | have argued for improving the methodology of doing research on ML applications for
design in general. | have presented two ways of looking at science that are prevalent in philosophy and
argued that S2 is the only one acceptable from the particular per spective of researchers on design, in
general, and researchersworkingon ML in design, in particular.

In the cour se of the argument, | presented a research project whose end productsare atheory of
learning in aclass of design problems, a set of computer tools, and amethod for selecting ML programs
for executing specific learning tasks. In doing so, | have discussed the evaluation of the computer tools
and argued that smilar evaluations must be carried out by researchers even if they choose to remain
subscribed to Si.
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