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Abstract: Research is a design activity whose decisions involve the ways in which
research is carried out and its results interpret. These activities comprise what is referred
to as research methodology. This paper brings the concepts of capturing design rationale
and machine learning to bear on the design of research itself. Therefore, design decisions
concerning research must be recorded to allow for understanding feedback and updating of
research strategies. In addition, successes as well as failures of research decisions must be
reported to facilitate learning about research. This requires a shift in the way research is
carried out and reported. This paper illustrates this shift in the context of a specific project
on machine learning in design.



1 Introduction

There are two senses of science according to McMullin [1]. In the first sense, denoted by Si, science is
a collection of hypotheses, theories, observations, data, etc. that are the end products of a long process.
The extent to which details relating to these end products are discussed is to allow fellow scientists to
evaluate and replicate results. In this sense, science does not contain failures such as fruitless research
paths pursued by scientists, albeit some argue (e.g., Popper[2]) that science is all about conjectures and
refutations.

In the second sense, denoted by S2 • science contains as many more details as possible about scientists'
activities. In effect, science is a historical description of research. Science is broader and vaguer than
Si, and sometimes may even be embarrassing. Decisions about research are made not necessarily based
on profound reasons but may be responses to circumstances such as proximity to a required source.
Research decisions embedded in the actual exercise of research have significant impact on scientific
progress. According to Kuhn [3] and Feyerabend [4], it is what scientists do that accounts for scientific
progress, rather than, the use of any principled, universal methodology (see also [5] for an elaborate
philosophical discussion on this topic, [6,7] for two rare examples of historical descriptions of research
in AI, and [8] for a demonstration of the same ideas in mathematics).

In arguing for adopting S2.1 will apply terms borrowed from two topics in design research: the
capture of design rationale (CDR) and machine learning (ML), to the research activities researchers
pursue. There are three reasons for adopting S2: methodological, moral, and substantive.

Methodological reason. Research is about the identification of needs, creation of ideas, their
formalization, testing, dissemination, and refinement. Research is a design activity. As such, research
can benefit from ideas developed in design research such as CDR. The rational of the design of a
research activity contains precisely what S2 includes: all the contextual information about the research
activity. Moreover, as argued by researchers on CDR, it is this rationale that allows other researchers
10 "replay" research, thereby testing the foundations of a scientific work and extend it while avoiding
previous pitfalls. It is in this sense, that as a community, researchers can build principles, tools, and
understanding about a particular scientific subject matter.

This understanding directly relates to the second concept of design research mentioned and to the
focus of this special issue: machine learning. In studying the effectiveness of different ML techniques in
design, we understand the importance of accurate information that allow learning to operate effectively.
Similarly, if we expect that learning of concepts will guide meaningful scientific progress through the
accumulation of knowledge, we must detail all aspects involved in any research activity, including, of
course, "positive" (i.e., successful) and "negative" (i.e., failure) examples of research.

In summary, principles from both CDR and ML demand that we adopt S2, thus leading to a better
methodology for design research.

Moral reason. In design research, we researchers invent many concepts and expect others to use
them in practice. It is a moral obligation to use the concepts we develop in our own work where
applicable. The capture of design rational of research and the reporting of accurate data for learning
about research projects must therefore take place to set example for prospective users of these concepts
in design.



Substantive reason. If S2 is practiced, research results can come closer to practice. The information
gathered about design choices in research can inform the selection of the research products in practice.
The accumulation of knowledge through learning is particularly relevant to one of the end products of this
research: a method for selecting ML techniques for executing specific learning tasks called M2LTD. The
substantive reason for choosing S2 in this research project is that M2LTD relies on knowledge gathered
from detailed feedback from using it to assign ML techniques to learning problems. This feedback must
include the reasons for selecting particular ML techniques and their (un)successful operation. This study
shows that in Si, often the true reasons are hidden behind careful re-constructions that may render the
use of M2LTD fruitless in practice.

After detailing the methodological, moral, and substantive reasons for using S2, it is time to demon-
strate the first and last reasons. Therefore, this study focuses, on the processes involved in the research
reported (methodological reason) including its end products (substantive reason).

This paper discusses the history of a research project including: the issues and circumstances
involved in the conception, design, testing, and redesign of BRIDGER, a system that may assist in the
design of cable-stayed bridges. This paper also discusses some of the fruitless paths explored. While
the latter rarely appear in publications, being a testimony of partial failures, they are, in fact, crucial
facilitators of progress and learning.

This paper also details the products of the research and their partial evaluation; it does so following
Si, as it would be reported according to practiced conventions. The description of the end products has
two methodological functions. First, it demonstrates what I view as a minimal evaluation of an end
product. Second, a comparison of this description with the historical description of the project (i.e.9 S2)
shows that Si hides important data that is inaccessible by fellow researchers for future reference. This
comparison provides a data point in favor of choosing S2.

One note before starting the journey. This paper does not present the design rationale as coded while
doing the research, nor is it reported by an unbiased researcher. Rather, the design rationale reported is
a subjective rational reconstruction of the events that took place. Furthermore, the description does not
escape the goal of prescribing how decisions should have been made or should be made in the future.

They were two reasons for not recording the design rationale during the course of the project reported.
The one that will probably be used more often by researchers states that the lack of tools appropriate for
recording and organizing design decisions prevented serious effort of coding. This reason, while stating
a correct fact: the lack of tools, is inaccurate. The second and true reason is that this rational was not
considered important at the beginning of the project. Since then, I have changed my views to arguing
that the process of research is no less significant than its end products.

Plan of the paper. The remainder of this paper is organized as follows. Section 2 provides a detailed
description of two end products of this research as reported following Si. Section 3 discusses another
end product of the research that triggered much of the shift from Si to S2. Section 4 puts sections 2
and 3 into a historical perspective. Section 5 discusses the methodological lessons extracted from the
research project and Section 6 summarizes the contribution of this paper.



2 St: The end products of the research

This section provides a description of ECOBWEB and BRIDGER as it would appear following the per-
spective of Si. This description is not comprehensive. It is meant only to provide details sufficient to
contrast it with S2 and to demonstrate several methodological aspects in carrying research in Si as well.

2.1 ECOBWEB

ECOBWEB is a system for learning synthesis knowledge for a type of routine design problems. This
section presents a rational reconstruction of the assumptions and the implementation and testing of
ECOBWEB'S mechanisms.

2.1.1 Assumptions about design

This research made the following assumptions about design.

ASSUMPTION 1 (Artifact representation): Artifacts and their specifications are described by (finite)
lists of property-value pairs.

A property-value pair may specify the length of a bridge or its particular type (e.g., arch or suspen-
sion). This assumption restricts the scope of designs to those with fixed structures. Therefore, the design
of artifacts that are described via graphs, such as layouts, cannot be supported under this assumption. If
the restriction on the finite number of properties is removed, the representation becomes general, but of
course, unreasonable to implement computationally.

ASSUMPTION 2 (Structure of design knowledge): Knowledge about types of designs is represented
as a hierarchical classification tree.

This assumption does not impose any restrictions on the potential application.1 In Section 2.1.3 we
show that such structure does not restrict design to the selection from existing designs; rather, it can give
rise to different processes depending on how it is used.

ASSUMPTION 3 (Quality of design knowledge): The quality2 of design knowledge is determined
by the quality of the hierarchical classification tree representing it. The quality of a hierarchical
classification tree is determined based on whether it classifies (dis)similar designs (dis)similariy.
The terms "similar" and "classify" are left vague.

lNote that a hierarchical classification tree is not a decision tree. One signmcantdiffcreiK» is that a decision tree tpccific«
a process: an ordered sequence of design chokes, whereas a hierarchical classification specifies how concepts are organized
in a class/sub-class structure.

2In this papa; we are using the terms design knowledge and its quality rather loosely; elsewhere, we try to address these
issues in more detail while pointing at some of the difficulties in being precise about them [9].



The knowledge quality assumption approximates the more desired quality measure stating that a
classification is 'good' if the description of a design can be guessed with high accuracy, given that it
belongs to a specific class, or even the better measure, that a classification is 4good* if it results in good
design performance.

ASSUMPTION 4 (Design process): Design is a (direct) mapping from a specification to an artifact
description.

Defining design as a mapping is very general unless the nature of the mapping is restricted to be
direct as it is in the above assumption. This assumption almost excludes the use of explicit knowledge
in design. On the other hand, infonnation can be compiled into implicit knowledge embedded in the
mapping.

ASSUMPTION 5 (Nature of design knowledge): The structure of design knowledge is static. It is
altered incrementally if new design knowledge warrant this operation.

This assumption states that knowledge is assumed to be correct, unless additional information be-
comes available. In this research, the nature of the additional information is restricted to the description of
new designs or procedures that evaluate the knowledge quality. Another consequence of this assumption
is that knowledge is built incrementally and continuously since it is always incomplete.

Assumption 5 requires that a system supporting design be able to learn and modify its knowledge
incrementally. Assumption 2 specifies the structure of the knowledge that needs to be generated and
Assumption 3 determines how this knowledge should be evaluated and therefore hints at how it may
be built. Assumption 1 restricts the scope of artifacts discussed, thereby allowing available learning
techniques to be used for the knowledge generation.

All these assumptions lead to the selection of COBWEB [10] as a potential tool. Since COBWEB has
several limitations in the context of design [11], a new system was developed, called ECOBWEB, that
supports the five assumptions.

Reflections. As a rationale reconstruction, it is evident that the above assumptions were geared towards
the solution proposed. This will probably be the case for most re-constructions of assumptions. Never-
theless, such acknowledgment is outside the scope of Si, which only requires that the implementation
is consistent with the assumptions. While this criticism downplays the significance of the assumptions,
they still have a role in Si. The listing of the assumptions states explicitly the foundations of the
implementation, thus providing a concrete basis for a dialogue, rather than discussing over lengthy,
detailed text.3 In any case, it is the responsibility of a study to show that the implementation follows the
assumptions and that the study validates them, even if partially.

The next two subsections describe the realization of these assumptions in ECOBWEB learning and
synthesis processes.4

3This can be contrasted by the lengthy, detailed description in S2. It is almost certain thatS2 cannot be compressed to a list
of assumptions although its style may take different shapes after some experience is accumulated.

4Many properties of ECOBWEB discussed here are inherited from its predecessor COBWEB. Since the purpose of this
paper is not the evaluation of ECOBWEB contribution but the methodological aspects of the research, we do not emphasize the
distinctions between the two learning systems. Such evaluations appear elsewhere [12,11,13].



2.12 ECOBWEB'S learning algorithm

ECOBWEB learns design knowledge incrementally (based on Assumption 5). It creates a classification
hierarchy (based on Assumption 2) from design examples represented by lists of property-value pairs
(based on Assumption 1). ECOBWEB uses several operators to build the hierarchy. Its aim is to improve
the knowledge quality continually (based on Assumption 3). Therefore, learning operators are selected to
maximize the knowledge quality. A statistical function, called category utility, approximates knowledge
quality by evaluating a classification of a set of designs into mutually-exclusive classes.

When a new design is introduced, ECOBWEB tries to accommodate it into the existing classification
hierarchy starting at the root by performing one of five operators (see [10] for a detailed description of
these operators) that maximizes the value of the category utility function. The process terminates when
the new design has reached a leaf node.

2.1 J ECOBWEB'S synthesis process (based on Assumption 4)

ECOBWEB'S synthesis methods can be described along two dimensions: the refinement dimension which
can be extensional or intensional; and the generation dimension which can be case-based or prototype-
based. Figure 1 illustrates these dimensions. In the extensional approach, refinement classifies a new
specification with a new subclass starting from the top class (class 1 in Figure 1) until the process
terminates at class 3 when the property values of the specification have been matched by characteristic
property values in the classes traversed (classes 1, 2, and 3 in Figure 1). Intuitively, characteristic
property values of a class are those property values that are very common in the class and rarely
appear in the other classes of the same level. In the intensional approach, while classifying the new
specification, characteristic property-values of the classes traversed are assigned to the new design.
Therefore, at the time the refinement terminates, the new specification would be augmented with several
design description properties.

In the generation stage, the case-based approach views a class as representing the set of all its leaves.
Therefore, leaves 4, 5, and 6 are selected as candidates in conjunction with the extensional refinement
approach, or are used to complete the properties missing in the new design description in conjunction
with the intensional refinement approach. The prototype-based generation approach takes the current
class (class 3 in the example) as the prototype whose description is composed of all the property values
of its leaf nodes with their associated frequencies. In conjunction with the extensional refinement, a
sequence of candidates can be generated from the prototype, starting with the best candidate having
property values that are the most frequent. In conjunction with the intensional refinement, the property
values assigned in the refinement are maintained by all the candidates.

There are two observations emerging from experiments with ECOBWEB. First, ECOBWEB generates
several alternatives that not always satisfy all the requirements and it generates alternatives that did not
exist in the original set of potential designs (when using any but the extensional/case-based approach).
Second, in deep hierarchies generated by many examples, it is observed that the path traversed by the
guidance of the category utility function can be interpret as a progressive matching of the specifications
or even as a design derivation. It is important to acknowledge that this observation does not approximate
in any way the explicit intent and domain knowledge on the order in which design derivations are to
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proceed. Such concerns may be supported when domain knowledge is incorporated in the learning or
synthesis processes. Such knowledge will alter Assumption 4.

2.1.4 Evaluation

ECOBWEB satisfies the assumptions laid out in section 2.1.1; therefore, its evaluation is their validation. In
any research, it is the systematic testing of the consequences of assumptions that establishes confidence
about them until some evidence arises that renders them inappropriate. It is unfortunate that many
research projects in ML in design do not exercise serious testing, thereby leaving their assumptions
largely unsupported.

This section illustrates one type of quantitative evaluation that was performed with ECOBWEB.
Additional quantitative and qualitative evaluations are detailed elsewhere [12, 11, 13, 9]. In general,
ECOBWEB demonstrated performance comparable to and sometimes better than other learning programs
in classification tasks. But more important, it demonstrated good performance in design domains.
To illustrate this performance, we review some results of EcoBWEB's evaluation in the domain of
cable-stayed bridge design.

Table 1 illustrates the performance of ECOBWEB by providing the mean values of one performance
measure generated from 48 test problems. The measure, called scaling, calculates how close was the



length of a bridge synthesized by the case-based/extensional method to the length required by the new
specification, i.e., scaling equals the ratio between the new length requirement and the length of the
retrieved bridge; the closer the value to 1, the better is the match between the new requirement and the
retrieved design. The scaling measure was selected since it has a significant influence on the design. In
the table, the measure is provided for four knowledge hierarchies generated by learning: K\>Ki%K^ and
K4. Hierarchy K\ was generated from the original set of 96 bridge examples created in a study on bridge
design. Hierarchy £2 was generated from the 96 examples after their analysis and redesign; therefore it
contained higher quality examples. Hierarchies £3 and £4 were generated from 144 (48 in addition to
the 96 in £2) and 192 (48 in addition to the 148 in £3) good quality examples, respectively. Since £1
was built from lower-quality examples it did not participate in the statistical analyzes performed.5 From
looking at the table, one may be inclined to infer that indeed the more examples ECOBWEB learns, the
better it performs. Such statement is not yet warranted. One has to demonstrate that the results cannot
be a result of chance, and moreover, one must seek for (competing) patterns in the behavior to uncover
some insight about it.

Two competing models, beside the chance hypothesis, were hypothesized for explaining the change
in the scaling measure: (1) the scaling measure depends linearly on the number of examples learned, or
(2) the logarithm of scaling depends on the logarithm of the number of examples. The former is rather
ad hoc, while the latter relies on the power law of practice so prominent in human learning [14].

Table 1: Scaling statistics of candidates: Average scaling value from 48 test cases
Knowledge Scaling

£1 3.07
£2 2.15
£3 2.09
£4 1.32

A General Linear Model (GLM) procedure with a MANOVA6 [IS] analysis was performed to assess
the differences between the scaling values observed according to the two models. In both models, the
scaling values satisfied: £2,£3 >o.oi £4; where the >o.oi indicates that £2 and £3 are greater than £4
with statistical significance at the p < 0.01 level and that the difference between £2 and £3 was not
statistically significant Note that the second model was better than the first, although the statistical
significance of this statement was not assessed. In conclusion, the more knowledge ECOBWEB has,
the more relevant are the synthesized candidates to a new problem.7 In addition, ECOBWEB learning
behavior seems to obey the power law of practice.

The tests performed support the claim that if a design domain can be approximated with the
assumptions detailed in Section 2.1.1, then, its knowledge can be learned and used by the kind of
techniques implemented in ECOBWEB.

5See also [9] for an elaborate explanation based on measurement theory.
6 A MANOVA was used instead of an ANOVA analysis because (1) there were two dependent variables analyzed at the same

time: the scaling measure and the quality measure (see Table 2); and (2) the independent variable had more than two values.
7 Actually; these candidates are existing designs since the case-based/extensional method was used. Additional tests must

be executed to generalize to the others synthesis strategies ECOBWEB has.
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12 BRIDGER

BRIDGER is a system built for assisting in the conceptual design of cable-stayed bridges. This sec-
tion presents a rational reconstruction of the assumptions underlying the design of BRIDGER and its
implementation and testing.

2.2.1 Assumptions

Since the major component of BRIDGER is ECOBWEB, the following remark holds.

REMARK: BRIDGER inherits the assumptions of ECOBWEB discussed in Section 2.1.1

ASSUMPTION 6 (Structure of design process): Design is a sequence of five tasks, problem analysis,
synthesis, analysis, redesign, and evaluation, executed sequentially with one feedback loop [16].

This assumption admits Assumption 4 as referring to the synthesis, rather than the whole design process.

222 BRIDGER's architecture

BRIDGER'S architecture is based on assumption 6. BRlDGER's main emphasis is on mechanisms for
synthesis knowledge acquisition and therefore, the complete architecture is intended to support this task.
Figure 2 shows an overall view of BRlDGER's architecture which consists of two main sub-systems:
synthesis and redesign.

The synthesis sub-system is responsible for synthesizing several candidates from a given specification
(branch 5). Synthesis knowledge is generated by learning from existing designs (branch 1) and from
successful design examples that are selected by the user (branch 11). The synthesis module contains
two instantiations of ECOBWEB.

The first instantiation creates a classification hierarchy (branch 2) from the original bridge examples.
This hierarchy is subsequently used to synthesize bridges (branch 4) as discussed in Section 2.1. When
dealing with specifications that are expressed by real numbers, rarely will a synthesized design match
the specification. This problem can be remedied by performing various scaling operations to fit the
synthesized design to the specification. In order for performing sensible scaling, relevant scaling values
are retrieved from a second instantiationof ECOBWEB. This instantiation builds a classification hierarchy
by learning from proportions of various components of bridges. The process of retrieving scaling values
and using them to modify the design is called adaptation (see [17, 12] for additional details). Since
the creation of candidate designs relies on heuristic synthesis processes, candidate designs are usually
inadequate in some aspects even after the adaptation process. The redesign sub-system resolves this
problem.

Candidate designs are transferred to a module that analyzes them and submits them to a redesign
module, if necessary (branch 6). The redesign module is responsible for modifying designs after their
analysis (branch 7). On receiving the analysis results, this module retrieves the best design modification



User
(1) | examples of designs (3) | specification of j

2 instantiations
f £ COB WEB

creation and use

synthesis
knowledge
learning
module

knowledge

ECOBWEB

syntbes^hterarchy:*" I
creation and use I |

synthesis module

Synthesis Sub-System I candidate adaptation modulel

Redesign Sub-System

Figure 2: Overview of BRIDGER's architecture

for the bridge. The user can override the redesign modifications and supply explanations that enhance
redesign knowledge (branch 9). The results of the redesign sub-system are acceptable designs (branch
10). The designer evaluates the results and can submit a subset of them to the synthesis sub-system for
further training (branch 11) and subsequent modification of the synthesis knowledge (branch 2).

123 Evaluation

BRIDGER was partially evaluated qualitatively and quantitatively [12, 9]. This section details the
quantitative evaluation only. The quantitative evaluation was mainly concerned with the ability to
acquire synthesis knowledge. The first pan of the evaluation was demonstrated by ECOBWEB in Section
2.1.4 and is not discussed further. The adaptation part was tested by calculating the quality of bridges
generated by the synthesis module of BRIDGER, where the quality of a bridge is a function of the weighted
summation of the squares of the functional constraints that a candidate bridge violates; lower values
mean higher quality. These violations were calculated by the analysis module.

The redesign part was not assessed quantitatively. At the time the project ended, it was ready for
demonstration purposes only. Therefore, no conclusion can be drawn about the appropriateness of the
approach to learning redesign knowledge, or its lack thereof. This is an unfortunate but correct statement
It is based on the premise that a simple demonstration is not a test, although this has become common
practice in AI research in design.

Table 2 illustrates the performance of BRIDGER by providing the mean values of the quality measure

10



Table 2: Quality statistics of candidates: Average quality measured from 48 test cases
Knowledge Quality

tfi 278.36
K2 50.19
K3 2.89
KA 1.20

generated from 48 test problems. The same models and statistical test that were used to test the
scaling measure in Section 2.1.4 were used again: (1) a linear model, and (2) a power law model.
According to the first model, the quality values satisfy: K% >o.oi #3 ,^4; but according to the second:
£2 >o.oi ^3 >o.oi K4. The second model was better in term of explaining the data, but no statistical
test was performed to differentiate between the two models. Both results say that the more knowledge
BRIDGER has, the better the quality of candidates it generates. The second model describes the behavior
more conclusively and more favorably. Furthermore, the reduction of quality values when additional
examples arc learned shows that BRIDGER converges to good design competence in absolute terms.
Future evaluations may include the assessment of the redesign and the evaluation of the complete
system.

The testing of data through the use of two models changed the results slightly. One could state that
this was a redundant effort. In contrast, we maintain that the testing of alternative interpretations of data
is a prerequisite for getting plausible results. Often, in AI work, no significant testing is performed, and
when one is performed, it often consists of testing a single model.

Reflections. There are additional avenues for conducting evaluations beside testing the performance of
the computational model. In particular, the relevance of the work to the practice of engineering, a topic
that is almost never assessed in design research, including the study reported in this paper (see [18] for
a good positive example), can be assessed by deploying a program in a workplace and analyzing its
usability. Such studies must be informed by methodologies developed in the human and social sciences
to be considered adequate.

3 M2LTD: The road from S1 to S2

The third product of this research is M2LTD, a method for selecting ML techniques to perform learning
tasks [19]. M2LTD consists of knowledge describing the issues and tradeoffs that inform the selection
and a sequence of 5 steps that uses this knowledge (see Figure 3).

The evaluation of M2LTD is presently limited. In includes the reconstruction of its use to design, test,
and evaluate BRIDGER and few other uses such as [20], where M2LTD was used to select STAGGER [21]
for building a system that learns evaluation knowledge for circuit design. The discussion in [20] about
the use of M2LTD and the evaluation of the system created enhances the knowledge used in executing
M2LTD. That discussion, however, does not convey many subtle issues such as those discussed in this
paper; it may be a "filtered" or a rational reconstruction of the decision process involved in using M2LTD.
Therefore, it may provide partial feedback on the usefulness of M2LTD.

11
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M2LTD is intended to be revised continually and incrementally by adding information from experi-
ences. A major revision, in the form of changing the structure of the selection process presented in Figure
3 can also take place. The further development of M2LTD requires its use for selecting ML techniques
in many projects and the incorporation of the feedback from its use back into its recommendations.

M2LTD serves as the substantive reason for adopting S2. As a tool for advancing the research and
practice of ML in design, it assumes the responsibility for recording and analyzing the rationale for
selecting between different ML techniques for specific tasks. This rationale can then inform future
choices by researchers and practitioners.

4 S2: A historical overview of the project

This section provides a historical overview of the learning project by reviewing the events leading to
the creation of the end products discussed in Sections 2 and 3. Since the purpose of this paper is
methodological, this section provides only some details that arc needed to support S2 rather than a
comprehensive overview.

4.1 SOAR

The first experiment with ML techniques I8 performed involved studying the suitability of SOAR as
a vehicle for design knowledge acquisition. SOAR is a problem solving architecture with an integral
learning capability [22]. The decision to select SOAR was simple, SOAR was developed in-house at
Carnegie Mellon University and seemed a natural first candidate. The reconstructed reason I offered
later was that a successful implementation in SOAR will be powerful because SOAR allows for less
degrees of freedom to be exercised in design choices of any system implemented. The tight coupling
of learning and performance would force taking an approach that is more constrained and hopefully

•Notice the change from "we" to "L" First, the use of T conveys less authority than the use of "we." Second, the use
of T does not remove the contribution of Steven Fenves who acted as my advisor in this PhD research project, it is simply
meant 10 put the burden of all the pitfalls on me.

12



"natural" to any domain of interest

A simple problem of design by parameters selection was chosen and experimented with [23]. It was
observed that SOAR was an excellent problem solving architecture that enforced a specific discipline on
the structuring of domain knowledge, but that its learning mechanism, when used, was too demanding of
this structuring. The design of problem structures that resulted in learned rules that transferred between
problems was difficult This difficulty, as well as other limitations, were discouraging. After conducting
a few additional experiments, the use of SOAR was suspended.

Reflections. The assumption that after structuring domain knowledge learning "will take on from there'9

was mistaken. When learning was expected to work, the naturalness of structuring the domain knowledge
had to be distorted. Also, the assumption (and a major reason for using SOAR) that mechanisms can be
shared across projects was premature. For example, mechanisms for abstractions or analogy that were
developed, were incompatible and their use required changing the representation and problem structure
to fit their design. Only recently, were several high level mechanisms such as data-chunking [24] made
available for sharing among different SOAR projects.

4.2 The goal of learning

After the initial experiments with SOAR, it was time to formulate an attainable goal for the learning project
I then decided to explore prototype systems that could simulate the functionality I was expecting to get
from SOAR. I approached such simulations while waiting for a new version of SOAR to be released.

The learning task as posed after the initial studies with SOAR was as follows. Given examples of de-
signs, including their specifications, derivations, and final descriptions, create three concept hierarchies:
specifications, design derivations, and design descriptions (see Figure 4). In addition, learning had to
create indices between the hierarchies such that a node in the specifications hierarchy was connected to
a node in the derivations hierarchy that heuristically could create an appropriate design (the dashed line
in the figure), and connected to the design descriptions hierarchy for heuristically selecting designs that
may satisfy the requirements (the dotted line). After learning, design could be executed in one of two
ways. One way would be to take a new specification and classify it with the specifications hierarchy
(node 1). The (generalized) node in the specifications hierarchy would be connected to a node in the
derivations hierarchy that reflects, in a general sense of course, the actions needed to design an artifact
for the specification given (node 2). This derivation would be adjusted to the new situation and replayed
to result in a design (node 3 in the design description hierarchy). Another possibility for designing
would be to move directly from the specifications hierarchy to the design descriptions hierarchy (node
4). Note that there was no guarantee that these two methods would result in the same candidate designs.

Reflections. The functionality discussed above drove the development of a prototype system. This
functionality was a reconciliation of what may be needed to support real design and what ML techniques
could offer. While the goal was informed by both, it simplified design and stretched the capabilities of
learning techniques.

13
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43 FOCUSSING

The second attempt of this research involved a test of the FOCUSSING algorithm [25]. FOCUSSING is a
symbolic supervised concept learning algorithm comparable to the version spaces algorithm [26], but
one that operates on concepts described by hierarchies. The FOCUSSING algorithm contained extensions
that solved several problems, such as the emergence of contradictions during the course of learning
[27,28]. These extensions dealt with changing the hierarchies representing concepts and examples, and
therefore, appealed to the functionality sought from the learning task in this research. The algorithm and
some of its extensions were implemented and experimented with. It was apparent that two significant
problems were manifested. First, the (symbolic) nature of the process led to fast learning that assumed
more than warranted from the evidence presented in the design examples (this is a problem with all
purely symbolic learning), leading to contradictions between learned concepts and subsequent training
examples. Second, the mechanisms available to solve or prevent these contradictions presented multiple
choices that could not be resolved easily. These resolutions required having knowledge about the
functionality of the learning mechanisms involved in the conflicts. The need to collect such information
has led to the inception of the concept of generic learning task [29].

Reflections. In retrospect, the path that was selected later in the research attempted to address the two
issues raised by the FOCUSSING algorithm. In reality, the first issue seemed more fundamental and its
solution was perceived to answer partially the second issue.

4.4 Generic learning tasks

In the use of any learning program it is necessary to know (1) what is the input and output of the learning
program, (2) what is the representation of knowledge used and learned, and (3) how are operational
parameters for running the program selected. This information may be used to select a learning program
for performing a specific learning task. Similar information requirements emerge from Chandrasekaran's
work on generic tasks as high level building blocks for expert systems design [30]. The concept of
generic learning tasks is the application of the generic task idea to ML except that now the task is
learning a specific type of knowledge that will be used by some generic (problem-solving) task. Generic
learning tasks can be used as building blocks in the creation of complex learning programs.
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Reflections. At that time, and still today, the concept of generic learning tasks remains only partially
understood and complex to implement. Primarily, this results from the fact that the functionality of a
learning task must be deteimined experimentally and evolve continually through feedback from its use.
This requires following S2. The number of learning tasks that have been formulated in a preliminary
fashion is small and no experiments are available that shed light on the respective functionality of these
tasks, certainly not in a way that can be used to select between them automatically. Some projects are
underway to improve this situation [31].

The concept of generic learning task can also force useful report of ML techniques since it contains
necessary information required to select a particular program for particular uses. As such, this concept
is the foundation of M2LTD.

4.5 ECOBWEB

As discussed in Section 4.3, the first attempt at solving the questions raised by the FOCUSSING algorithm
was to change the purely symbolic nature of FOCUSSING. In involved the exploration of a probabilistic
representation of learned knowledge. The COBWEB algorithm [10] supported this requirement, in
addition to being incremental. While the latter was viewed initially just as a good feature it later became
a fundamental requirement for supporting design.

Another characteristic of COBWEB that initially did not seem necessary but proved useful was its
ability to perform flexible prediction. This ability eliminates the need to specify a priori what are the
specification or the design description properties. Rather, a design problem could be defined by any
partial description of properties and the solution would be the complete description. Once the importance
of this characteristic was observed, it also became a fundamental requirement. It was conjectured that
unsupervised concept learning could support such prediction, whereas supervised concept learning could
not [ 11 ]. One deficiency of supervised concept learning is that one property must be selected a priori as
the predicted property (i.e., the class property). This observation was later adopted as a guiding principle
by other projects [32,33].

COBWEB was re-implemented and its functionality tested using a historical data set of examples of
bridges constructed in Pittsburgh, a personal choice directed by the expertise of Steven Fenves in the
subject The results demonstrated that COBWEB learned gradually from examples and reconstructed
(i.e., design) the bridges, given their specifications only [12,13].

The promising results from the initial experiment and from others that followed were analyzed,
trying to relate the behavior of COBWEB to characteristics of real design. The characteristics put forward
were: design is a multiple-objective and constrained process, design makes use of a variety of knowledge
sources and operates in different levels of abstraction, and design employs multiple strategies. Finally,
the nature of everything relating to design may change over time. These characteristics informed the
extensions to COBWEB, but were only addressed partially [12].

Reflections. The hypothesis that concept formation (unsupervised incremental concept learning) tech-
niques are more suitable than supervised concept learning for the acquisition of synthesis knowledge was
articulated at length [11], but an experimental support for it still sought. The adoption of this hypothesis
by others and its testing may provide the necessary experimental support.
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The flexible prediction ability of COBWEB resulted in a change in the research plan. Instead of
learning three hierarchies and the relationships between different nodes in these hierarchies as discussed
in Section 4.2, a single hierarchy seemed sufficient to capture design knowledge [11]. This was an
experimental observation coupled by the parsimony principle: if a desired result can be obtained with
a simple system, do not attempt to build a more complex one for the same purpose. This change
demonstrates the evolutionary nature of problem definition in response to insight from experience.

At this time, a firm decision was made to follow this path of research instead of using SOAR. The
investment in this path and the interesting and promising results were too encouraging to risk them for
the difficult path of using SOAR.

4.6 General Design Theory

During that time, I accidentally came across Yoshikawa's paper on General Design Theory (GDT) [341.
It was an accident, because although Yoshikawa's initial work and its later extensions [35, 36] are
insightful, its complex mathematical foundations prevented researchers in the West from paying any
attention to its assumptions and their consequences for design. Therefore, GDT is hardly ever referenced
in the literature.

From first glance it was clear that GDT and COBWEB had many similarities. A preliminary analysis
detailed some of these similarities [37]. While COBWEB was able to approximate the initial formulation
of GDT, it lacked the ability to address the issues raised in its extensions. The extensions presented
difficulties that were also manifested in the study of the domain discussed in the next section.

Reflections. It took several years, a comprehensive study of GDT, and a reflection on the complete
project to arrive at a detailed comparison between GDT and the end products of this research [38,
39]. This comparison illuminated several aspects. (1) GDT assumes that knowledge about designs is
represented by mathematical topology[40], whereas ECOBWEB represents it by a classification hierarchy,
a very degenerate approximation of a topology. (2) Based on the structure of design knowledge,
GDT guarantees perfect convergence to design solutions, whereas ECOBWEB can never be perfect and
performs depending on the examples it has learned and its synthesis mechanisms. Nevertheless, even
when using a considerably less expressive knowledge structure than a topology, ECOBWEB demonstrated
an increasingly competent design ability in various evaluations.

This comparison has two implications. First, ECOBWEB's performance might be improved, if its
knowledge representation is made closer to a topology. (A step towards this end is the generation of
dynamic graph structures of knowledge that is currently under development.) Second, if GDT is to be
more relevant to real domains, the topological structure of knowledge it assumes must be relaxed. This
may cause proving less precise statements about design, but still statements that can guide the design of
ML programs and their evaluations.

This comparison between a theory and the predictions it makes and an implemented system with its
performance evaluation is fundamental to scientific progress. It can be perceived as a test of the theory.
On the one hand, the positive results of this test in the form of good design performance of ECOBWEB
provide support for the theory, and on the other hand, the theory helps guiding the future development
of the implementation (see also Section 5.1).
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4.7 Bridge design

Parallel to observing the similarity between GDT and COBWEB, there was the need to start addressing
design problems that were more complex than those experimented with to that point. A domain was
selected based on personal preference, approval of Steven Fenves, and preliminary observation that it
will lead to successful results9: the design of cable-stayed bridges. The study of the domain, including
the search and construction of bridge data was time consuming. The study started with reviewing old
texts on bridge design [41] and ended with recent books and publications on the subject [42,43,44,45].

The study revealed that the process of bridge design can be roughly decomposed into three phases:
conceptual, preliminary, and detailed. The first phase was adopted as the focus of the study because
of its difficulty and importance. The conceptual design could be roughly decomposed into five tasks:
problem analysis, synthesis, analysis, redesign, and evaluation.

It was clear from this study that COBWEB alone could not support the complete conceptual design
process. It was clear that additional components had to be incorporated and integrated into a larger
program. This surfaced again the concept of generic learning tasks and triggered the inception of
M2LTD [16].

Reflections. While the study made many pieces of knowledge explicit and identified the phases and tasks
discussed, it did not include any observation of actual designers in their work. This was rationalized
as though the goal of the research was to identify the limits of building a support system with ML
techniques without engaging in the time consuming process of "knowledge engineering." The study
obviously simplified the actual design problem.

It is clear from the evaluation of the work that building a system for automating bridge design is a
flawed goal; rather, the development of a support system, where designers can interact with, monitor,
and, if so desired, override system operations, is a more important and attainable goal.

It is not clear at all that the generic task approach will succeed in supporting the implementation
of a truly practical design support system because such a system must incorporate significant detailed
domain knowledge that was mostly abstracted in this study. Furthermore, it is not guaranteed that an
assembly of generic tasks created a priori can accommodate the peculiar features of a new domain
knowledge as it unfolds during the accumulation of large amounts of knowledge. In fact, experience
with the development of large systems demonstrate that substantial evolution often takes place in such
projects (see [7] for a description of the evolution of a system in response to the collection of significant
domain knowledge over several years).

4.8 BRJDGER

After identifying the various tasks that needed to be implemented, the ML techniques that could support
their construction had to be identified. The search for learning programs that could support the conceptual
design was limited to the redesign task. The first task, problem analysis, was performed a priori in
a simplified form, the analysis involved coding a finite element procedure, the evaluation remained

9It most not be forgotten that the work was in the context of a PhD thesis, perceived as basic research, but one that had to
result in a thesis in a limited time frame.
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unsupported computationally; and synthesis remained based on ECOBWEB, although it now included two
instantiations with a candidate adaptation module (Figure 2).

At that time, I reviewed the book by Bareiss on PROTOS [46] for Machine Learning Journal [47].
During the review, I also experimented with a newer version of PROTOS [48]. It seemed that PROTOS

had the necessary ingredients for supporting the acquisition of redesign knowledge. First, it supported
a diagnosis task; therefore, it could identify the cause of a problem in the bridge behavior revealed by
analysis. Second, it could accommodate domain knowledge in the form of causal relations that could
enhance bridge redesign. Third, it was incremental.

Several extensions were made to PROTOS, leading to a new system called EPROTOS. The important
extension allowed EPROTOS to handle continuous values. Other necessary extensions to the mechanisms
that manipulate domain knowledge were not performed due to lack of time. The limited effort spent on
EPROTOS directly influenced the functionality of the resulting redesign sub-system. No serious testing
was possible. By the time the research terminated, EPROTOS was capable only of demonstrating simple
redesigns.

The choice of PROTOS remains a hypothesis. It is clear that the reason for its selection was based
on partial information only. The redesign task was found to be more complex than envisioned initially
and PROTOS was missing functionality, such as handling numerical relationships, that could not be
incorporated without significant changes to the original mechanisms. Since, PROTOS' mechanisms were
more complex than those employed by COBWEB and since significantly less effort was available for
extending it compared to that spent on COBWEB, the required modifications were implemented only
partially.

Reflections. The availability of the well written PROTOS code had an impact on its selection for the task
of implementing the redesign sub-system. Again, as the results show, proximity to a resource is not a
success-guaranteeing heuristic.

In the review of PROTOS, I stated that its evaluation, as appeared in publications, was insufficient.
This is true also for most large AI programs. No serious testing could be performed to examine various
aspects of the program. The only way remaining for testing was to distribute the system and expect
additional researchers to test in on their problems. The use of PROTOS in this research provides such an
additional test, albeit one that outlines significant limitations.

The design of BRIDGER was definitely biased by a reductionist approach. This bias simplified the
original design problem. One could no longer anticipate to solve the original, real design problem
automatically with BRIDGER. Rather, BRIDGER was assumed to be controlled by a user that oversaw its
operations.

5 Methodological ramifications

This section elaborates on the methodological issues raised in this paper. The first part discusses these
issues in relation to Si while the second relates the issues to S2.10

10In this emphasis, the paper does not deal with other methodological issues relevant to AI, such as the role of programs as
theories or experiments. For an extensive discussion on these issues see [49].
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5.1 Closing one scientific cycle

The "story" of this research can be reconstructed as follows. GDT, a formal theory of design, proved
properties of design following some assumptions, mainly the one stating that knowledge structure is a
mathematical topology. GDT was missing a crucial aspect: an explanation of how design knowledge
arises or, how can one create such knowledge structure to benefit from its proven ability to generate
designs. This study attempted to provide an answer to this question, thereby serving as a test of GDT's
assumptions. Some of GDT*s assumptions were relaxed, in particular, the knowledge structure became a
hierarchical classification rather than a topology, leading to the development of ECOBWEB and BRIDGER.

The evaluation of these systems demonstrated that there was some discrepancy between the predic-
tions of GDT and the performance of these systems, but that this difference was not significant given
the significant relaxation of the assumptions.

This led to the formulation of future research consisting of two parallel activities. The first activity
would aim at relaxing GDT's assumptions and attempting to prove theorems similar to the original ones,
thereby refining GDT in response of the experimental results. The second activity would attempt to
account for the discrepancy between the experimental results and the prediction of the theory by building
a system that leams graph structures instead of a hierarchy, the former better approximating a topology.
This "story" completes a single scientific cycle as illustrated in Figure 5.

(4) Evaluate experiments ^. (1) Generate hypotheses (GDT)/
(compare the evaluation y^^^^\ modify hypotheses
to the hypotheses) / \ (revise GDT and the systems)

(3) Perform experiments \ I (2) Design experiments
(implement and evaluate \ . y (design of ECOBWEB
the systems) ^ — - ^ - ^ and BRIDGER)

Figure 5: The scientific method cycle

Most researchers accept Si. To fully adhere to its methodology, the end product of their research
must include: the theory that served as the hypothesis of the research, the detailed description of the
implementation of the theory, the precise description of the testing set-up, its results and their analysis,
the conclusions of the research, and how they guided the refinement of the theory. The omission of any
of these parts casts doubts about the credibility of the research.

This research had several end products. The first is a theory of learning, appropriate for a class
of routine design problems consisting of: (I) A theory of learning in design which accepts GDT's
formulation of design and adds the hypothesis that concept formation is the means for creating design
knowledge. (2) An experimental set-up, starting from the six assumptions approximating the theory,
leading through the detailed implementation of ECOBWEB and BRIDGER, to the description of the
experiments to be conducted with these systems. (3) Experiments execution and (4) results analysis*
including their impact on the original theory. All these parts collectively constitute the theory developed
in this research.
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Given the information provided for this theory, one can easily challenge it. For example, one can
argue that one of the assumptions is incorrect. This may render the theory inappropriate for a domain
whose properties are different than assumed by the theory. In contrast, if a domain can accept the
assumptions, it is subjected to the predictions of the theory until they are proven wrong. Consequently,
a discussion on these theories can focus on the assumptions, rather than on irrelevant details.

5.2 From theory to practice

We have seen that even a reconstructed historical description of a research (S2, Section 4) deviates from
its reconstructed report in the first sense of science (Si, Section 5.1). A reconstruction tends to be an
analysis process, namely, given the existing implementation, what could be a set of assumptions that is
consistent with it and still makes some sense. In contrast, design rationale captures the synthesis of the
development with all the subtle and crucial issues.

Two ways exist for advancing the recommendation of subscribing to S2. This paper exemplifies the
first way; it puts forward a moral, methodological and substantive reasons for selecting S2.

The second way attempts to demonstrate experimentally that S2 leads to better practice of design.
The development of M2LTD (which was the substantive reason) is a step in this direction. It is based on
one principle: evolutionary development through user participation [SO]. M2LTD can only be developed
through its use by engineers for synthesizing learning systems to solve engineering problems and from
the accumulation of its users* feedback. Each feedback loop involves making hypotheses about ML
techniques by using M2LTD and testing them continually in fine grained "scientific cycles,1' similar to
those discussed before (see Figure 6). In order that this feedback be comprehensive it must follow S2.
If M2LTD will lead to better implementations of learning systems it will serve as a test supporting the
theory that S2 is superior to Si. We can observe that these tests involve a shift from research-based or
prototype tools to practical tools.

One "scientific cycle**

CJOOO
time

Figure 6: Evolutionary development of theories and artifacts

S3 The insight from S2

After detailing the two senses of science one can ask what does S2 tell us that S1 could not? or how does
S2 help us understand the limitations of Si? First, it is clear that S2 is more verbose, less rigid, more
personal, and more comprehensive than S\. S2 presents a story, rather than a concise set of hypotheses,
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tests and evaluations* although it contains them as an integral part, that is, S2 contains S1. Therefore, one
does not compromise the "quality" of results one obtains by S1, one simply attributes them to their proper
cause. For example, in S2, a reconstructed set of assumptions or hypotheses will be stated as a valid set
of assumptions that can be supported by the tests, instead of the product of profound observations—a
belief that the report of Si would like us to accept. If a researcher is imaginative, the assumptions will
be the maximal set of assumptions supported by the tests.

There are some observation that can be drawn from the comparison between Si and S2.

1. Richness of information. S2 is perfect for detailing shifts in thinking. For instance, S2 illustrated
the shift from design as a mapping between three hierarchies (Figure 4) to design as a refinement
and generation (Figure 1). By no means is this shift a conclusive evidence that the latter view is
better than the former; but it constitutes some support for this argument. This argument can be
contrasted or augmented with future arguments to result in a richer context for making choices in
future implementations.

Note that part of the reason for the above shift was the inability to provide rich knowledge for
the automatic selection of generic learning tasks. Later, while facing the complex problem of
preliminary design of cable-stayed bridges, the necessity for integrating techniques arose. It was
past experience that enforced a two-level treatment of this integration: macro, a manual selection
of ML programs, and micro, a collection of techniques with pre-defined control. In both levels,
the control was defined a priori due to lack of knowledge about generic learning tasks.

2. Inevitability of failures. S2 makes us less optimistic about fast and easy progress. There are
fruitless paths to be explored, and they will be visited again unless reported as such and learned
from.

Failures are probably the best source of progress [51]. Failures will be those that are acknowl-
edged as such after researchers tried to salvage whatever "positive" results they could for their
publications. Therefore, failures reported will be close to "near misses" which are excellent
triggers of learning [52]. Therefore, beyond subscribing to S2, the documentation of failures must
be legitimized as a service critical for progress.

3. Mundane aspects of research. S2 makes us aware of the rudimentary but unavoidable issues
influencing research (e.g., context of research is thesis or the availability of cheap resources).

4. Value of longitudinal studies. Long and integrative studies are critical for accumulating infor-
mation about research questions. Such studies allow filtering intermediate conclusions by the
researcher, rather than by peers. Such studies provide rich context required to understand the
problem addressed, the solution paths attempted, and the reasons for the reported successes.

5. Difficulty of reporting. It is difficult to report studies in S2. It requires revealing unsuccessful
activities and exercising constant reflection on the research activity. S2 reports are more difficult
to read; they require paying attention to a long description of events, some of which are less
technical than others.

6. Role of experiments. Experiments are critical for progress; to illustrate, without them EPROTOS

would have been pronounced a success in this study when such statement was not warranted
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Scaling up to practical applications provides the best test of research questions. In fact, practice is
the experimental set-up for research questions such as: "what does it take to select ML techniques
for design applications?9'—a question which M2LTD attempts to answer.

There are also some heuristics that can be extracted from the reconstruction of S2.

1. The initial steps of the study were rather unconstrained, with relatively no theoretical grounding.
Part of these steps were meant to understand the capability of ML techniques. Such method
may be justified in the beginning of an exploratory research but may be too costly when research
progresses. The adoption of S2 can lead to learning within the course of research (e.g., see item 1
in the previous list).

2. It is hard or rather impossible to formulate tight research hypotheses a priori, but if one follows
a sensible S2, such hypotheses can be constructed and evolve in subsequent cycles which benefit
significantly from the feedback on the first cycle.

3. The cheapest resource (e.g., an available program) is not necessarily the best one to select as the
core of a research project.

4. S2 suggests that research results should be interpret with great care. In particular, there may be
other sets of assumptions that are supported by the experimental evidence, and one can never
prove that the hypotheses are correct

6 Summary

In this paper I have argued for improving the methodology of doing research on ML applications for
design in general. I have presented two ways of looking at science that are prevalent in philosophy and
argued that S2 is the only one acceptable from the particular perspective of researchers on design, in
general, and researchers working on ML in design, in particular.

In the course of the argument, I presented a research project whose end products are: a theory of
learning in a class of design problems, a set of computer tools, and a method for selecting ML programs
for executing specific learning tasks. In doing so, I have discussed the evaluation of the computer tools
and argued that similar evaluations must be carried out by researchers even if they choose to remain
subscribed to Si.
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