NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Behavior Moddingin Design System Development
R Coyne, U. Hemming, P. Piela, R Woodbury
EDRC05"8-93

Toappear: Proceedingsofthe CAAD Futures‘93 Conference, CMU, July 1993.

Behavior Modeling in Design System Development

R.F.Coyne
U.Flemming
P.Piela

R. Woodbury

Carnegie Mdlon/Building Indusry Computer-Aided Design Consortium
Department of Architecture and Engineering Design Research Center
Carnegie Mdlon Universty

Pittsourgh, PA 15213

We describe the devel opment approachfor a software environment to support the
earlyphasesin building design called SEED. The combination of capabilities
offered by SEED to designersisnovel and includestheintegrated handling of solu-
tion prototypes. Wegivethereasonsfor using an object-oriented softwareengineer-
ing approach in the development of the system, which startswith a comprehensive
behavioral model of the systemfrom the user' sperspective based on actorsand use
cases. Weillustrate resultsfrom thefirst devel opment phase and sketch the next
phases. Atthetimeof the CAAD FUTURES'93 conference, wewill beabletoreport
our experiencein developing afirst system prototype and to demonstrate theproto-
type.

Keywords. Object-oriented softwareengineering, integrated design systems, archi-
tectural programming, schematic layout design

1 Introduction

This paper reports work in progressin the development of a design support system
with a broad range of generative capabilities® The system is intended to bring research
results closer to practice In developing the system, we use a particular software
engineering approach in order to communicate our intentions to prospective users and to
assurethe system's functionalities through all development phases and over a digtributed
development environment. We believe that the process we are engaged in and our initial
experiences with it will be of value and interest to otherswho find themselves in a smilar
Stuation.

We call the sysem we are developing SEED - an acronym for Software
Environment to Support the Early Phasesin Building Design. SEED isintended to support
the prdiminary design of buildings comprehensively. It represents the confluence of two

1. A generative capability allows a system to take an active part in the generation of a
design. In the system under consideration, the designer and the system can become
truepartnersin the synthesisprocess.

Thiswork hasbeen supported in part by the Engineering Design Resear ch Center, a NSF Engineering Center.

multi-generational research efforts on grammar-based design systems, which includes
experiencewith a series of softwareprototypes. LOOSABLOOS (Hemming et al., 1988)
(Coyne and Hemming, 1990) (Coyne, 1991) and GENESIS (Heisserman, 1992)
(Heisserman and Woodbury, 1992); these systems have developed to the point where the
underlying formalisms are mature. We have a grong interest in finding out how useful the
capabilities developed through these prototypes can be for actual design practice.

In a very general sense, SEED is intended to complement designers by (1)
reminding them of thingsthey may have forgotten; and (2) suggesting to them possibilities
they might not have considered. In particular, we plan to use spatial grammars and
extensive evaluation tools to achieve these objectives. The intended capabilities have no
direct equivalent in existing practice as we undergand it That is, we are not planning to
support a mature and well-understood process, and the use of the proposed system is
highly speculative. In making " our best guess* in prototyping the system'scapabilities, we
plan to use behavior modeling' to communicate the intended uses of the system to our
sponsors, to potential users, and to syssem developers. We then plan to engage in an
extended process of continued design, testing, and evaluation with users.

The approach taken by usmay be of general interest for two reasons. (1) thenovel
combination of capabilitiesenvisioned for SEED may beinteresting in their own right; (2)
the development of the sysem may be representative of the challenges faced by other
developersof research softwar e approaching tasks in non-traditional ways that are outside
the experience of the envisoned user community. Due to condraints on time and
resources, current system- building efforts in design research typically do not follow a
dructured development process and do not employ integrated methods for analysis,
design, and implementation. However, thissituation may be changing® asresearch centers
such asthe Engineering Design Resear ch Center (EDRC) at Carnegie M ellon are moving
toward developing multi-generational research sysems® built in close cooperation with
sponsors and potential usersin indugry. Thesetypes of efforts are becoming increasingly
important as higher- and deeper-leve issues, such astheevaluation and validation of new
design paradigmsin practice, come under investigation (Coyne and Hemming, 1990),
(Pidaet al., 1992). I n this context, under standability, maintainability, and extensibility of
systems become critical to the continuity and viability of the development effort. To
achieve these objectives requires, in general, sophisticated mechanisms, processes, and
methods for systems and software engineering - mechanisms such as abgraction,
information hiding, and encapsulation; process models such as spiral models of software
production; and integrated methods for analysis, design, and implementation based on a
mode of the real world domain.

A variety of analysis, design, and implementation technologies accommodate

1. Behavior modding of a system results in a high-level description of the system's
functionality from a user's point of view.

2. Infall 1992, the EDRC first introduced arequired softwar e engineering cour sefor its
MSand Ph.D. sudentsin designresearch: 18-869: Special Topicsin CAD - Software
Engineering for Engineering Design.

3. By multi-generational research systems we mean systems that outlast a given
resear ch project and possibly its personne and are used as the basis of, extended, or
built on top of for subsequent projects and systems

smaller or larger subsets of these mechanisms or methods. Object-oriented (00)
technologies are particularly attractive in this connection because among the potential
benefits most often associated with them are precisdly the critical requirements listed
above (Graham, 1992):*
* " Object-oriented programming, and inheritance in particular, makes it possible to
define clearly and use modules which are functionally incomplete and then allow
their extension without upsetting the operation of other modules or ther clients.”

« " Sygem evolution and maintenance problems [where maintenanceis under sood as
adaptation to a changing problem, not just correcting errorg are mitigated by the
grong partitioning resulting from encapsulation and uniform object interfaces."

* "Object-oriented systems are potentially capable of capturing far more of the
meaning of an application - its semantics."

While object-oriented analysis, design, and programming methods are neither
necessary nor sufficient to achieve the sysem development objectives outlined above
(Rumbaugh et al., 1991) (Booch, 1991) (Graham, 1992) (Jacobson etal., 1992), they have
evolved precisdly to support those objectives more effectively if inteligently employed.?

In thispaper, wedescribe our initial experimentswith the 00 development process
and method used in the development of thefirst SEED prototype. These are based on a
behavior modeling concept called a use case, which is used throughout to enforce
under sandability, extensibility, and maintainability in the face of evolving requirements.
Section 2 describes the general objectives of the SEED project and the decompaosition of
the intended capabilities into the modules of a prototype system. Section 3 discusses
behavior modding of systems as an increasingly important component of many (object-
oriented) softwar e engineering methods and processes; it then relates SEED development
issues to the potential benefits of behavior modeling techniques. Section 4 outlines the
particular software engineering process experimentally employed by usand describes our
experience in applying the first step in the process, requirements modeling. Section S
summarizestheresultsof our development process so far and concludeswith our plansand
expectations for the continued development of SEED.

At the time of this writing, the SEED development process is less than half
complete. However, the work continues, and we will be able to make a more complete
report of our experience at the CAAD FUTURES '93 conference. By then, we plan to
demondrate a prototype of the system and will have obtained feedback from prospective
users. We expect that further experience will enable us to determine more clearly those

1. It should benoted that Graham in not one of many current authorswhose books extol
the promise of OO approaches while marketing their own particular OO method. He
presents a balanced and thorough analysis of OO methods including their potential
disadvantages and the conditionsrequired to realize their benefits.

2. 00 technologies do not enforce the appropriate use of mechanisms and methods.
Their effective use is dependent on many factors including experience, training,
appropriate or ganization and management contexts, and the careful choiceof projects
in which they areintroduced (Goldberg, 1992).

parts of the syssem and phases of development for which the selected process appears to
be most ussful - that is, when is it worth the overhead/resources connected with its
application.

2 Overview of SEED

Thissection givesabrief introduction to SEED, itsoverall ar chitecture, and the first
prototype.

21 Overdl Goal

SEED is a software environment to support the early phases in the design of
buildings. It isintended to support, in particular, the design of recurring building types,
that is, building types dealt with frequently in afirm or ingtitution. Such organizations -
from housng manufacturers to government agencies - accumulate considerable
experience with recurring building types. But capturing this experience and itsreuse are
supported only marginally by present CAD systems. The goal of the system isto support,
in principle, the preliminary design of such buildings in all aspects that can benefit from
computer support. Thisincludes using the computer not only for analysis and evaluation,
but also moreactively for the generation of designs, a capability that remains under utilized
in present CAD systems. Theintent isto develop a collection of generic capabilities that
can be easily adapted to different building types.

2.2 Approach

Our approach for thefirst version of the prototype sarts with the assumption that
the preiminary design process can be divided into phases, each of which addresses a
particular subtask of the overall design problem and leads to a particular set of decisions.
For example, the prdiminary gructural design phase may deal with the task of finding an
appropriatesructural system for an overall building configuration. Thereisno assumption
that phases have to occur in a strict sequence. A partial ordering between them may,
however, exist because the infor mation needs of one phase may depend on decisions made
in another phase.

Weplan to develop for each phase an individual support module based on ashared
logic and architecture. This will allow us, on the one hand, to utilize various pieces of
existing and possibly heterogeneous software and to digtribute the development efforts
among individual modules. The shared logic and architecture assure, on the other hand,
that the modules appear to the user as parts of a unified whole, which includes a common
style for the interfaces. They also allow us to develop generic protocols for phase
transitions, they make any sequence of phaseslogically extensibleand should facilitatethe
"plugging in" and " pulling out" of individual module versions. Theresults generated in
any phase are sored in adatabase for reuse, ether in the context of the sameproject or a
different project

The architecture proposed for a module assumes that the task to be accomplished
in any module can be divided into five generic subtasks. Each of theseis supported by a

specific module component.

» The input component is the general read interface between a module and the
database. Thiscomponent makes, in principle, everything specified or generated by
another module or by a previous invocation of the same module available to a
designer. Thismay involvetrandationsbetween dataformats, or the sripping away
of information. For example, if a module dealing with two-dimensional layouts
reads a three-dimensional configuration of components, information about thethird
dimension may haveto be deleted.

* The problem specification component allows designers to specify or modify the
task to be performed in the current module. For example, if the task of the current
module is to develop a schematic floor plan generated in another module into a
three-dimensional configuration of building elements, thisfloor plan must be made
available to the current module (this is the function of the input module); but the
module may need additional information about the desred roof shape, wall
congruction etc. Thisisdonein the problem specification component

» The generation component supports the generation of solutions to the problem
specified for the current module. In each module, weintend to makea broad range
of phase-specific support options available, from complete automation to
interactive congtructions that are completely under thedesigner's control.

*The evaluation component evaluates solutions for compliance with the
specifications. Iterations at this stage may occur, where the evaluation results
influence further generator action.

* The output component allows a designer to write any result generated or specified
in a module into the database. Examples are a solution gored for re-use in a
different project, or an intermediate solution for the current project that is to be
elaborated in another module

Figure 1 showsthedataflow between these components, theuser, and the database.
This overall architecture reflects a bias on the part of the developers of the system.
However, thebiasisnot that ar chitectural design can be equated with problem-solving, not
even that problem-solving is the most important aspect of architectural design. Thebiasis
that theproblem-solving aspectsare the easiest to support with computers, at least if tools
such as LOOS/ABLOOS or GENESIS are to be employed in the process. Thus, we
provide a specification component that supports the explicit specification of congraints
and criteria, and an evaluation component that is able to tes if these congraints are
satisfied or if thecriteriaaretaken into consderation. Thereisnoassumption that theseare
the only or most important design considerations. The generation component therefore
allows designersto control the process of form generation to any extent desirable, and the
output component allows them to save any result, no matter how many explicit congraints
areviolated.

In the context of SEED, these premises give us a basisfrom which we areableto
conceive and develop a common logic and style of interface for the individual system
modulesthat make them appear to the user as part of a unified system in the desired way.

They alow usalso tofind an integrated way of handling the broad range of capabilitieswe
plan to provide through the system, from the reuse of past solutions to the construction of
customized solutions under the designer's control, and from problem specification to
generation and evaluation through all modules. We stress, in particular, the way in which
past solutions are handled: they are stored in the database as problem-solution pairs, where
the problem part serves as index for retrieval when the designer faces a problem with
similar characteristics. After retrieval, the associated solution isimmediately available for
editing and adaptation using the full capabilities of the system. Conversely, any solution
generated with the system can be saved in the database with the corresponding problem
statement for reuse.

Figur e |: Daaflowin generic SEED module

23 First Prototype
How this works concretely is illustrated by the three modules planned for the first
prototype of SEED:

1 Architectural Programming. A problem is posed in this module by a statement of
the client's overall goals, a description of the site, etc. The module supports the
generation of an architectural program for a building that realizes the client's goal;
thisis asolution in the context of the module. A solution that could be reused and
adapted would be a program that has been developed in the past for a similar
building type and site.

2Schematic Layout Design. In this module, a problem is posed by an architectural
program, and the solution generated is a schematic layout of the functiona

components of the program. A layout that has been developed in the past for a
similar architectural program can be reused. The generative capabilities in this
module are based on the representation and operators developed for the LOOS/
ABLOOS systems (Hemming et aL, 1988) (Hemming et al., 1989) (Coyne and
Hemming, 1990) (Coyne, 1991).

3Schematic Configuration Design. The problem is posed by a schematic layout,
and a solution devel opsthis layout into a 3-dimensional configuration of spacesand
building components. Solutions can be used asin the other modules. The generative
capabilities in this modul e are based on the representation and operators devel oped
for the GENESIS system (Heisserman, 1992) (Heisserman and Woodbury, 1992).

A more detailed functional specification of the first three SEED modules from a
high-level user perspective can be found in (Hemming and Woodbury, 1992).

3 Behavior Modeling in System Design

A full discussion of the rationale and state of the art of behavior modeling as a
concept and practice in software engineering is beyond the scope of this paper. Many
related and overlapping concepts and techniques have been proposed to produce a high-
level desription of a system whose behavior is being modeled. In this section, we give an
overview of some of these concepts and their potential in the SEED development context

31 AUse CasebyAny Other Name - Is What?

Use Cases: A use case describes a specific way to use a proposed system (Jacobson
etal., 1992). A use case-driven approach to development is based on the assumption that
a system can be described in a number of different views or perspectives, each of which
corresponds to a set of related functiona requirements. The first task in describing a
systemisthusto identify all of the different views of the system of interest - taken together,
they comprise a complete picture of the functiona requirements of the system. The use
case approach differs from other view-oriented methods such as functional decomposition
because it attempts to look at the system from the outside, from the point of view of its
users. Thefirst step in development isto identify the possible users of the system, and for
every user, al different ways he/she must be able to use the system. Theresult is a set of
use cases which, taken together, represent everything the users can do with the system.

The use cases guide devel opment through all phases. They make complex systems
understandable, but do not require that the system be structured into modules or objects
with well-defined interfaces from the outset Such structuring creates very technical
descriptions that tend to shift the focus from system requirements to implementation-level
descriptions. Use cases are identified during requirements analysis and thereafter serve
many roles. They are used to structure the different models produced (analysis, design,
implementation, testing, etc.) into manageable views and to relate these models to one
another.

Scripts: Rubin and Goldberg describe a method for object-oriented analysis called
Object Behavior Analysis (OBA) (Rubin and Goldberg, 1992). The approach relies on

scriptsthat record the use of the (proposed) system. OBA ispart of alarger process model
incorporating the specific engineering opportunities introduced by 00 technology. The
motivation for OBA is that a more effective way for finding objects in OO system
devdlopment is needed. The approach emphasizes first an undersanding of what takes
placein the system, which leadsto the system behaviors. Theapproach next assignsthese
behavior sto parts of the system and tries to undergand who initiatesand who participates
in these behaviors Initiators and participants that play dgnificant system roles are
recognized as obj ects, and are assigned the behavioral responsibilities for theseroles.

Scripts appear to share many properties with use cases and to be used in Smilar
ways. They describe the intended system behavior from an external per spective . They
help conduct the analysis of a problem situation, and they acknowledge that the outcomes
of analysis must be captured in some explicit notation for purposes of communication.
They also help identify the objectsin the system. However, scripts have not been widely
known nor have they been publicly available until very recently. Currently, specialized,
integrated tools to support OBA are under development.

Scenarios: A scenario is a sequence of events that occurs during one particular
execution of a system (Rumbaugh et al., 1991)(p. 86). The scope of a scenario can vary; it
may includeall eventsin the system, or only eventsimpinging on or generated by certain
objects in the system. A scenario can be the historical record of executing a system or a
thought-experiment of executing a proposed system. Rumbaugh et al's method (OMT)
uses scenarios first in the context of congructing a dynamic mode of the system (this
comes after the gandard object-modeling process). The following steps congruct a
dynamic modd: (1) prepare scenarios of typical interaction sequences, (2) identify events
between objects; (3) preparean event tracefor each scenario; (4) build astatediagram; (S)
match events between objectsto verify consistency (p. 170).

The scenarios in the OMT method have a more limited scope of application than
use cases. They are used primarily for constructing the dynamic model (of object
interaction) and are moretechnically defined in terms of an already existing object modd;
they arenot used to help identify theinitial model. It isnot clear whether they will be used
in the future morecomprehensively through all phases of the development asare use cases.

Mechanisms: Mechanisms are a structure whereby objects work together to
provide some behavior that satisfies a requirement of the problem (Booch, 1991, p. 17,
149). They specify means or patterns of interactions, whereby objects collaborate to
provide some higher level behavior. A mechanism represents a srategic design decision
about how collections of objects cooperate. Booch's approach first identifies the key
abgtractions (classes and objects that form the vocabulary of the problem domain) to form
a modd of reality; only then does it add behavior to these abgtractions to derive the
observable behaviors of the system (p. 148). (How the behavior realized by a mechanism
comes about is absolutely immaterial to the system user.) These strategic decisions must
bemadeexplicitly; the most elegant, lean, and fast programsembody car efully engineered
mechanisms (p. 132). | dentifyingcommonality in mechanismscan lead toSmpler designs.

M echanisms are a moretechnical interpretation of behavior modeling and are used
in amorenarrow scope of the OO development process. They areidentified after theobject
model is created in order to relate and Sructure collections of objects to perform the
system'srequired functionality. It is not clear what role, if any, they are intended to play

in more upstream phases (requirements analysis) or downstream phases (testing) of the
development process.

Walk-throughs: In the object-oriented design method of Wirfs-Brock et al, walk-
throughs are used to flesh out and check a model of a system in terms of what happens
when a user interacts with the syssem (Wirfs-Brock et al., 1990)(p. 32). They involve
testing various scenarios to help determine what behavior needs to be distributed among
classes and subsystems, and how those classes and subsystems will work together to
providethat behavior. A walk-through consists of the following steps. 1. Postulate a state
for the system. 2. Propose an action by the user. 3. Note each class responsible for
performing an action and the classes with which it interacts. It is suggested that walk-
throughs can be used to help identify classes, subsystems, responsibilities, collabor ations,
and contracts. According to the authors, "they encourage designers to imagine how the
system will be invoked, and go through a variety of scenarios using as many system
capabilities aspossble*® (p. 63).

Walk-throughs are not used explicitly to help createan initial system model nor to
identify objects, but to verify and refine these models. They are used only from the design
phaseon - it isassumed that therequirementsfor aparticular program aregiven. However,
the author s sate that " a good requirements specification describes what the software can
do and what it cannot do" (p. 9) and that a walk-through "isa view of the operation of the
system as we have thus far conceived it Walking through our design at this stage allows
us to determine if we have left any responsbilities undiscovered or misassigned.” They
encouragethat various (use-caselike) questionsare posed in terms of what happensin the
system when theuser doesthisand that, etc. (p. 80).

Other concepts: Many other concepts relate to behavior modeling such as event
partitioning (Martin and O'Dell, 1991), and threads (of execution), a notation that is
specialized for modding behavior of concurrent and real time systems (Buhr and
Casselman, 1992). Discussions and presentation at the OOPL SA '92 Confer ence suggest
that there is a trend toward the more widespread use of behavior modeling through the
entire OO development process - requirements, analysis, design, implementation, testing,
upport and maintenance; see, for example, the summary from the conference workshop
Experiences Use Cases and Similar Concepts' [forthcoming in the Addendum to the
Proceedings] (OOPSLA '92).

Discussion: Nearly every OO method consider s behavior modeling in some form
and at some stage of the development process. Most methods also agree that behavior
modeling must be informed by a more or less compr ehensive view of the functionality of
the system from an external point of view, although at present, it isused in thisway only
implicitly in most softwar edevelopment methods. Jacobson etal. d (Jacobson et al., 1992),
Rubin and Goldberg (Rubin and Goldberg, 1992), and, it appears, a growing number of
other OO methodologists and practitioners, believe that it should be doneexplicitly at the
very gart of a software development project because in every such project, something
intuitively similar to use cases must be identified if the project is to be successful.
Congructs smilar to use cases are identified at the latest when integration testing is
performed and documentation (user's manuals) is written because these activities are by
nature case-based. |dentifying them early can help to guide and manage (by partitioning)

the whole development work.

To date, use cases reflect the most explicit and comprehensive use of behavior
modeling throughout the system development process. They are motivated ultimately by
the view that the most essential property of a system is a stable structure (architecture)
during itslifetime. The best way to insurethisisto model the system functionality on the
basis of the organization in which it will be used and itsusers, and to expect change - by
viewing new system development as only a special case of further system evolution,
development, and maintenance.

32 SEED Development | ssues and Behavioral Modeling

'"The requirements for a system will always be in a sate of flux. Man-
agement or clients may impose an artificial freezing of requirements at
aparticular point in time. But thetruerequirements, the needed system,
will continue to evolve. Many forces affect this ever-changing require-
mentsset: clients, competition, regulator s, approvers, and technologists.
AsGerhard Fischer pointsout (Fisher, 1990),* Wehavetoaccept chang-
ing requirementsasa fact of life, and not condemn them asaproduct of
doppy thinking.' " (Coad and Yourdin, 1991)

Our emphasis on up-front analysis and design of capabilities may give the
impresson that we advocate "big-gtick" computing - the imposition of rigidly
predetermined functionality on users. The opposite is true because we are aware that this
approach usually fails, especially with capabilities as novel as those we propose. Many
software engineers agree that innovative development should proceed cautioudy and
incrementally by eliciting guidance and feedback from end-users through a series of
prototypes. Our up-front analysisand design efforts are intended to make thefirst version
of our system as sound as possible. Once a system is in the hands of users, initial
suggestions tend to respect the basic assumptions of the garting point because it ishard to
imagine whether a radically different system would have been a better garting point On
the other hand, many small improvements are often immediately obvious and need to be
implemented in order to give the basic idea afair trial. Thus, a new system will tend to
evolve conservatively at fird. If, after a while, this sarts to seem futile, more radical
changeswill be suggested and accepted. We expect to work with the basic assumptions of
thefirst version of our system for some time. That is onereason why we are considering
those basic assumptions car efully.

Furthermore, we are proposing new computational capabilities that might be useful
and plan torespond pragmatically to the suggestionsand wishes of end-users. To gart this
dialog, weneed to describethesecapabilitiesto practitioners, and weneed tocommunicate
to them the comprehensive scope of the system, lest they misunderstand the necessarily
limited part of the sysem shown to them initially. They can tell us then how we might
movethecapabilitiestowar dspracticality. We have decided to put forward atangible CAD
tool asa gtarting point.

Wearealsooptimistic that with careful consideration, we will get many of thebasic
assumptionscorrect After all, the gener ative capabilities of SEED arebased on the earlier
prototypes of ABLOOS and GENESIS. Thisisnot to say that weexpect to have apractical

10

system in the first verson. We expect to have a basically correct, but incomplete
functionality. We can predetermine some parts of a practical syssem without end-user
participation, but not a sufficient number of parts.

To summarize, we areintroducing in this project a technology which implies that
practicewill change. With thisin mind, our processinvolvesthefollowing complementary
steps: (i) use of explicit behavior modeling for requirements modeling/specification; (ii)
controlled introduction into the work place; and (iii) evolutionary prototyping with
incremental adaptation.

Initially, we expect to gain the most from using behavioral modeling in its most
generic sense, for the purpose of amplifying communication among people involved in
complex problem solving and decision making activities. Asdescribed in section (2), the
design capabilities embodied in SEED are decomposed into independent but cooper ating
modules, and there must be a clear line of communication between those modules. In
general, such aloosely coupled design supports ease of change and reflects the desirable
condition (and apragmatic necessity for our effort) that the development team should also
beloosely coupled (Goldberg, 1992).

4 SEED Development Process

In thedevelopment of SEED, we areexperimentally following the Object-Oriented
Software Engineering (OOSE) process and method developed by Jacobson et al.
(Jacobson et al, 1992). The present section describes some details of the approach and its
relevance for the SEED effort

4.1 Object-Oriented Software Engineering

OOSE is distinguished from other current 00 approaches primarily through its
reliance on behavior modeling to identify and classify the objects in the system. Most
obj ect-oriented analysisand design techniques claim that the best and most stable systems
arebuilt by using obj ectsthat corregpond toreal-lifeentities. OOSE augmentsthispractice
by an object mode based on three object types - entity, interface, and control objects. The
expectation is that the three object types provide greater sability for the model because
changes will be localized. For example, behavior that is placed in control objectswill in
other methodsbedigributed over several domain objects, which makesit harder to change
thisbehavior.

INOOSE, thebehavioral description isbased on actorsand use cases. Actorsmodel
prospective users - everything external that isto communicate with the system, including
other systems. Actorsrepresent acertain role, or class description of behavior, rather than
an actual person who usesthe system. Actorsarethe main tool for finding use cases, and
together actors and use cases define the complete functionality of the system. Each use
caseisacomplete cour se of eventsin the system from the user'sper spective. The use cases
arethecentral thread running through the whole of OOSE. '

OOSE views sysem development as model building. It includes three main
development processes. analysis, congruction, and testing. Each of these processes
produces one or more associated models: the analysis process produces the requirements
mode and the analysis model®; the construction process produces the design and the

implementation model; and the testing process produces the testing model.

Thus, OOSE specifies a series of models as products (milestones) in the system

building process. The production of each of these models constitutes a phase within the
overall iterative process:

Requirements M odel. The requirements model aims at delimiting the system and
defining what functionality the system should offer. Actors and use cases are
defined in this model. It serves as a means of communication between the
developers and orderer the system. It thus describes the developers' view of what
the customer wants and should be readable for non-OOSE practictioners.

Analysis Model. When theinitial requirements model has stabilized and has been
approved by the users or orderers of the system, the actual system development
starts by developing the analysis model. This model aims at structuring the system
independently of the actual implementation environment In this model, the aim is
to capture information, behavior and presentation in these respective object types:
entity (i.e. domain) objects, interface objects, and control objects. The analysis
model derives from the requirements model and forms the basis of the system
architecture.

Design Model. The design model refines and formalizes the analysis model. It is
thefirst model that takes into account the actual implementation environment of the
system. It defines explicitly the interfaces of objects and the semantics of their
operations. Other important system environment issues are also handled such as
DBM Ss, programming language features, distribution, and so on. Thefirst attempt
at adesign model can be made mechanically based on the analysis model in order
to ensure a clear traceability in the models.

Implementation Model. The implementation model consists of the actual source
code composed or written for the system. It implements each specific object
specified in the above models.

Test Model. The test model is developed to support the verification of the system
developed. This involves mainly documentation of test specifications and test
results. Testing starts with the lower levels (unit testing), in order later to cover the
use cases and finally the whole system (integration testing). Thus the requirements
model supports and is verified by the testing process.

Intheactual development process, these modelswill undergo many changes before

they become stable. Generally, work on a successive modeling phase is not initiated until
results from the previous phase have stabilized. However, the sketching of models in
subsequent phases and the revisiting and refinement of the models of previous phases will

1

This model appears to have a poorly chosen name because it is only part of the
overall analysis process, which also includes the requirements modeling phase. The
analyssmoded isin fact amorerobust and refined ver sion of therequirements model
defined in terms of initial descriptions of domain, interface, and control objects. A
better name perhaps would be the analysis-object model.

sometimesbeindicated by thework on acurrent phase. Each of these modeling phases has
amethod associated with it, which iscomprised of certain stepsto betaken in building and
refining the model. The steps have a certain ordering based on experience and pragmatic
concerns. But the process within each phase is not grictly linear, and the method for
eachmodeling phaseisalso applied in an iterative fashion.

Totheextent that timeand resour cesallow, the SEED project will follow the OOSE
process through its various modeling phases and methods. We believe that the most
important part of theprocessistheinitial high-level behavior modeling that establishesthe
requirements of the system. Thisistrue - perhaps especially so - for the development of
research-based design systems. As articulated in section (3.2), we are exploring the
hypothesisthat for such systems, their functionality and the expectationsand interactions
of userscan and must be car efully hypothesized, conjectured and prototyped - and that an
obj ect-oriented, use case-driven approach effectively supportsthat process.

42 Use Casesin the Development of SEED

An integral part of the development of use cases is a glossary of key terms and
concepts, which forms the basis for communication between developers, sponsors, and
potential users, both within and across any of these groups. Later, the glossary of concepts
becomes arich basisfor the identification of objectsin the system. In the present section,
we present selections from the glossary developed for SEED and examples of use cases
that represent a dice of the anticipated functionality of the system, taken from the
regquirements model developed for one of its modules, SEED-L OOS, which supports the
schematic layout design phase. These selections include necessarily concepts that have
significancefor theoverall system and other modules. The Appendix listsall use casesthat
we have modeled thusfar for SEED-L OOS.

42.1 Selected Entriesfromthe Glossary of Key Terms and Concepts
This section presents entries from the current glossary that are needed for an
under ganding of the following use case descriptions.

Client Program
A client program specifiesthe client's goal in terms of what isto be built where,
when, at which cost, and under which expectations. An explicit program should
date at least the following:
» dteand dterelated redtrictions, specifications etc.

* building type and overall indication of size (e.g., total squarefootage of rent-
able space for an office building, total no. of sudentsfor a school, or no. of
bedroomsfor aresidence)

* budget

« referencesto applicable codes, sandards, and regulations.

Architectural Program
An architectural program daborates the client program in terms of the
following major parts
» ecification of context (e.g. Site characterigtics)

 gpecification of main functional units needed to achieve the client's goal
* references to the applicable building codes, sandards, and regulations

Functional Unit
A functional unit is an identifiable object intended to perform a specific
function or combination of functionsin a building (e.g., aliving room, awall).
A functional unit has associated congraints and criteria on its shape, size,
placement, relations with other functional units etc.

Design Unit
A design unit isa part of the atial or physical sructure of a building with an
identifiable spatial boundary. In a formally complete schematic layout or 3-
dimensional configuration, each design unit has a functional unit associated
with it

Phase
A phase is a subprocess in the overall design process that addresses a specific
task. It is characterized by the type of problem it addresses and the type of
solution it produces, eg. the schematic layout phase trandforms an
architectural program (which describes the problem to be solved) into a
schematic layout (the solution to the problem). Phases are partially ordered
based on the information they generate.

System Module
A module of the SEED system provides softwar e support for an entire phase.

Module Session
A module session is a specific invocation of a SEED module. It hasa gart and
an end, and operates on run-time memory that is separate from the database.
Data in run-time memory are called available, and available data on which the
designer can operate are called active.

Database
The database is a collection of information that supports modules and their
components. Thisinformation falls into two categories:

* project-independent information stored for reuseacr ossprojects (e.g., cases)

 project-specific information for reuse across sessions (e.g., design versions,
design histories)

Unless otherwise noted, the term database refer sto both types of information.

Problem
In thecontext of a module session, theterm problem refersto theproblem to be

14

solved in the session.

Problem statement
A problem statement is the representation of a problem in a module session.

Design Space

In general, a design spaceis the set of all (partial or complete) solutionsto a
design problem together with some gructurethat allows usto navigate through
the set In the context of the present module (as well as other modules such as
SEED-GENESS), adesign spaceisimplicitly defined by the combination of a
problem satement, a garting state, and a collection of operators that derive
gatesfrom states, wherethe statesrepresent partial or complete solutionsof the
problem given in the problem statement The spaceisthecollection of all states
that can be derived by applying the operators to the garting gate under the
problem statement A (part of a) design space is explicitly defined by a
collection of explicit states.

State
A gtatein adesign spaceisa garting state or theresult of applying operatorsto
adarting Sate, whereeach saterepresentsapartial or complete solution tothe
given problem.

Solution
In the context of a module session, the term solution refers to a solution to a
problem to be solved in the session. The solution of one phase may become
(part of) the problem statement of another phase.

Partial Solution
A partial solution is an incomplete solution in terms of the problem statement
of a session.

Problem-Solution Pair
A problem-solution pair is a problem satement and onereated solution.

Problem-Solution Tuple
A problem-solution tuple is an ordered set, or "chain", of problem-solution
pairs, where the solution of one pair defines (part of) the problem of the next
pair.

Case
A caseisa problem-solution tuple that is gored in the database for reuse. It is
minimally indexed by the problem part of thefirst pair of the tuple and may
contain natural language annotation. In phase 1, a client program (problem)
stored with an architectural program (solution) may be a case. In phase 2, an
architectural program (problem) stored with a schematic layout (solution) may

beacase. A related client program, architectural program, and schematic layout
may be a case that extends across phases.

Layout

A layout is acollection of non-overlapping rectangles with sides parallel to the

axes of an orthogonal system of Cartesian coordinates (see Figure 2), where

each rectangle represents a design unit SEED-LOQOS is restricted to this type
of layout. In SEED-LOOS, the internal representation of a layout of rectangles
comprises the following parts:

» aset of realizable above/below and left/right relations between the given
rectangles so that exactly onerelation is defined for any pair of rectanglesin
the layout (see (Hemming et al., 1988) for details); realizable means that
there exists at |east one layout of rectangles with exactly these spatial rela-
tions

» upper and lower bounds on the dimensions of each rectangle asimplied by
its spatial relations with the other rectangles in the layout

« the functiona units associated with each rectangle.

Figure2; Alajou

Note that this representation does not depend on an underlying grid and does
not depend on exact coordinates. It is thus able to support the rough and
tentative dimensioning characteristic of the early layout stagesin design.

Score
A score records the result of evaluating alayout

Target
A target is a predicate consisting of logically connected conditions that stops

the automatic generation of layouts when the conditions are satisfied The
conditions that can be used are the following:

 alist of the functional units to be alocated and the order of allocation (this
implicitly bounds the depth of generation)

» eapsed clock time

16

* score (theresult of an evaluation)
e maximum number of sates generated

» maximum number of alternativesthat meet the other conditions.

The system supportsthe flexible combination of these conditionsin any logical

gsatement consisting of conjuncts and diguncts. The target is intended to

support operations such as the following:

» generatenext layout; thiswould be specified by atarget with only one func-
tional unit in itslist and a maximum number of states equal to one

« generateall layoutsof a given set of functional unitswith scor e better /wor se
than specified score

* generate asmany complete layouts of a given set of functional unit asispos-
sible within the specified clock time and maximum number of states

» generatea specified number of alter native layouts of a given set of functional
units.

Execution Parameters
The execution parameters define the form of user interaction with the system
during various oper ations. For example,
 theform and frequency of the display of results
* thedegtination of display; i.e., what screensareto be used for display
 thetypeof user interaction desired by thedesigner, for example, the system

may stop after each state and wait for the designer'sresponse before gener -
ating the next state, or proceed immediately.

Evaluation Parameters
The evaluation parameters define how and when evaluations are performed
during generation; for example, if evaluations are to be performed for each
partial or only for complete solutions; or if only basic congraints are to be
considered or computationally moreexpensivesimulationsareto beperformed.
Theresults of an evaluation are recorded in the scor e of the layout

422 ExampleUseCases

The following use cases make use of these concepts. They are redricted to the
actions taken by the designer as opposed to other actors, e.g. the experimenter or system
configurer. At thistime, we have found no meaningful way of dividing the designer'srole
into different parts.

The examplesareall taken from the generation component of module 2 and givea
good overview of the range of gener ative capabilities envisioned for all modules of SEED.

The following descriptions are much shorter than those in the requirements analysis
document

Select Next Generation Event

Generation takes place through a sequence of events selected by the designer.
The system's participation in the generative process varies widdly with the

17

event sdlected. The designer selects the event from an opertaions menu and
requestsits execution from the system.

Select Active State
Thedesigner consider sthe statesthat are currently availableand selectsadate.
The system supports navigation through the states by displaying a generation
tree showing all gatesthat arecurrently available and the parent/child relations
between them. It also provides some gandard oper ationsto movefrom stateto
gate, for example, " move to parent of active sate' .

Add Design Unit Under Designer Control

The designer selects a functional unit in the active problem statement that has
not yet been allocated and indicates where the unit is to be added to the active
state. The system provides several mechanisms for doing this. dragging, or
pickinga"wall" and unitsto be pushed away from thewall. The system addsa
design unit in the indicated location and assigns to it the selected functional
unit It updates the positions of all other design unitsin the sate in response to
this operation; that is, the units are moved out of the way automatically. This
featureisan important difference between SEED-L OOS and commercial CAD
systems. The newly generated state becomes the active stateThe system
displaysthe active state.

Change Spatial Relations Between Design Units
The designer selects two units that face each other across awall in the active
gate in order to change thereation to one orthogonal to it; that is, an above/
below reation is changed into a left/right relation and vice-ver sa. Restrictions
apply, and ambiguities have to beresolved. For example, changing the spatial
relation between the two units may change, by transtivity, the patial relations
between other unitsin the state; the dimensional attributes of all of these units,
or theconcurrentsassociated with them, must permit thesechanges. The system
evaluates these possible conflicts. It makes the changesin the sructure if they
are consisent with the configuration and active problem statement. The
designer may be given the option of forcing the changes if conflicts exist. The
changed layout becomes the active state. The system evaluates the active state
according to thecurrent evaluation parameters.

Change Function of Design Unit
Thedesgner selectsadesign unit in theactive ateand a functional unit in the
active problem statement. The system replaces the function associated with the
design unit with the sdlected function. The newly generated state is evaluated
as indicated by the current evaluation parametersThe newly generated date

becomesthe active gate. The system displaystheactive state.

Edit Dimensional Attributes of Design Unit
The system provides several meansto select an attribute and to changeit:

* The sysem displaysdirectly the numerical attribute values, e.g., an x-coor -
dinate, so that the designer can overwrite them.

» Thedesigner may pick asideand drag it to adesired coor dinate, thus chang-
ing the length of the adjacent sides along with the area and the aspect ratio
of the unit.

» Thedesigner may pick thecenter point and drag theentireunit to a different
location without changing its dimensions.

In each case, the desred change mus be compatible with the gructure
underlying the layout; for example, a unit that is above another unit cannot be
dragged to a position where it would be below that unit [However, it can be
removed and then be reinserted below the other unit] The system assures
dructural consistency by preventing updates that are inconsistent with this
gructure. These changesdo not have to be permanent For example, a designer
may wish to extend the side of unit a temporarily to align with another unit b,
but be perfectly willing to abandon this alignment when another unit is added
that requires a contraction of a. We plan to handle thisby a " freezelunfreeze'
mechaniam that is under the designer's control. Note that all of this leaves the
congraints associated with thefunctional unit allocated by a unchanged. The
changed configuration becomes the active state. The syssem evaluates the
active gate according to the current evaluation parameters.

Remove Design Unit
Thedesigner selectsaunit in the active gate for removal. The system removes
the unit The newly generated state becomes the active sate. The system
displaystheactive state.

Edit Target
The designer requests display of the current target, selects one or several
componentsin thetarget, and changes ther value.

Edit Execution Parameters
Thedesigner requests display of the current execution parameters and changes
ther value.

Generateto Target
Thedesigner initiates the automatic addition of unitsfrom theactive state until
thecurrent target is satisfied. Attributes of the environment including specified
execution parameters control the designer's view and interaction with the

generation process and results (both intermediate and final).

Delete Sate
The designer selects a state to be deleted. The system del etes the selected state
and all states derived from it

Copy State
Thedesigner selectsa state, and the system makes acopy of the state. The copy
becomes the active state. This may be useful when the designer wants to
generate an dternative that can be easily derived from the copy (in the
designer'sjudgment).

5 Conclusion: Plansand Expectations

As we stated in the introduction, by the time of the conference we will have
accumulated more experience with this approach and will be able to demonstrate a first
system prototype. The following statements are therefore tentative.

Our experience so far supports the general value of the selected approach in the
development of design systems (even or especialy in research contexts involving multi-
generational research software systems). The documentation of objects alone does not
yield an understanding of a system. We have found that explicit behavior modeling
constructs such as use cases promote an understanding among the system devel opers about
the behavior of the proposed system. The modeling process draws out early on multiple
views of the system, which enable us to build flexibility into the system architecture for
evolution and avoids the worst drawbacks of tight coupling among components due to data
and control dependencies. The approach leads to communication and negotiation with
respect to terminology, functionality, etc. among developers with different backgrounds
and responsihilities. These activities must and do occur in any kind of development.
However, the value of an explicit behavior modeling approach is in delineating a
structured iterative process for these activities and in providing a shared external memory
of the process.

The high-level behavior specification provides a basis for adialogue with users; in
our case, the initial use cases are not developed with end-users, but will serve as a means
of communication with sponsors (who have specific end-users in mind).

We also believe that other developers may gain insights from or be able to reuse
portions of the body of use cases produced for our system. Many issues cut across different
generative CAD systems, and other system designers may take our model as a start. For
example, the use cases developed for layout might apply to any system involving
interactive geometric construction. Their decomposition may also be useful for devel oping
systems with broad functionalities that may be used in tandem or independently.

At the time of this writing, our next step is to engage in an iterative process of
review and revision of the use case model that we have produced with our sponsors. As
time and resources alow, we plan to continue with the OOSE through the subsequent
phases of forming the analysis object model, design, implementation, and testing. In any

20

case, we will continue to apply the process at least on a substantial vertical slice of the
overall SEED system. For that portion of SEED, work on the initial analysis object model
has started - identification of classes and objects.

References

Booch, G.,1991. Object Oriented Design With Applications, The Benjamin Cummins
Publishing Company, Inc., New York.

Buhr, J. A., and Casselman, R. S., 1992. "Architectures with pictures’, in Proceedings of
the OOPSLA '92 Conference on Object-Oriented Programming Systems,
Languages, and Applications, 18-22 October 1992, Vancouver, British Columbia,
Canada, Edited by Andreas Pagpcke, Published by the Association for Computing
Machinery, NY 10036, pages 466-483.

Coad, P., and Yourdon, E., 1991. Object-Oriented Analysis, Yourdon Press, Prentice Hall
Building, Englewood Cliffs NJ 07631.

Coyne, R. R, 1991. ABLOOS: An Evolving Hierarchical Design Framework, Ph.D.
dissertation, Department of Architecture, Carnegie Mellon University, Pittsburgh,
PA; also, available as technical report EDRC-02-15-91.

Coyne, R. E, and Hemming, U., 1990. "Planning in Design Synthesis - Abstraction-based
LOOS" Artificial Intelligence in Engineering. Vol. 1 - Design (Proc. Fifth
I nternational Conference, Boston, MA), J. Gero, ed., New York: Springer.pp. 91-
111,

Fischer, G., 1990. "Human-Computer Interaction in Software: Lessons Learned,
Challenges Ahead," |EEE Software, January.

Hemming, U., Coyne, R., Glavin, T., and Rychener, M., 1988. "A Generative Expert
System for the Design of Building Layouts - Version 2," Artificial Intelligence in
Engineering; Design (Proc. Third International Conference, Palo Alto, CA), J.
Gero, ed., New York: Elsevier pp. 445-464.

Hemming, U., Coyne, R. R, Glavin, T.,Hs, H., Rychener, M. D., 1989. A Generative
Expert Systemfor the Design of Building Layouts(Final Report), Report EDRC48-
15-89, Engineering Design Research Center, Carnegie Mellon University,
Pittsburgh, PA.

Hemming, U., andWoodbury, R., 1992. High-Level Specification of a Software
Environmentto Support theEarly Phasesin Building Design, Report EDRC48-31-
92, Engineering Design Research Center, Carnegie Mellon University, Pittsburgh,
PA.

Goldberg, A., 1992. "Wishful thinking", Object Magazine, 2(4) Nov-Dec 1992, pages
102-104.

Graham, 1., 1992. Object Oriented Methods, Addison-Wedley Publishing Company, NY.

Heisserman, J., 1992. Generative Geometric Design and Boundary Solid Grammars,
Ph.D. dissertation, Department of Architecture, Carnegie Melon University,
Pittsburgh, PA.

Heisserman, J., and Woodbury, R., 1993."Generating Languages of Solids Models",

21

submitted to SolidsModeling

Jacobson, 1., Chrigerson, M., Jonsson, P., and Overgaaid, G., 1992. Object-Oriented
Software Engineering: A Use Case Driven Approach, Addison-Wedey Publishing
Company, NY.

Martin, J., and O'Ddll, J., 1991. Object-Oriented Analysis and Design, Prentice Hall,
Englewood Cliffs NJ.

Peter Piela, P., Katzenberg, B., and McK dvey, R., 1992. " Integrating theuser intoresearch
on engineering design syssems," Research in Engineering Design, (1992) 3:211-
221.

Proceedings of the OOP SLA '92 Conference on Object-Oriented Programming Systems,
Languages, and Applications, 1992. 18-22 October 1992, Vancouver, British
Columbia, Canada, Edited by Andreas Paepcke, Published by the Association for
Computing Machinery, NY 10036.

Rubin, K. S,, and Goldberg, A., 1992. " Object behavior analysis', Communicationsof the
ACM, September 1992, Volume 35, Number 9, pages 48-62.

Rumbaugh, J., Blaha, M., Premeriani, W., Eddy, E, and Lorensen, W., 1991. Object-
Oriented Modeling and Design, Prentice Hall, Englewood Cliffs NJ.

WirfsBrock, R., Wilkerson, B., and Wiener, L., 1990. Designing Object-Oriented

22

Software, Prentice Hall, Englewood Cliffs NJ.

Appendix: Current Catalogue of Use Cases for SEED-LOOS

System Level
Operate SEED

Input Component
Read Architectural Program from Database
Read Layout from Database
Read Problem Statement-Layout Pair from Database
Retrieve Case from Database

Problem Specification Component
Select Active Problem Statement
Add Functiona Unit
Delete Functiona Unit
Edit Attributes of Functional Unit
Aggregate Functional Units in Problem Statement
Disaggregate Functional Units in Problem Statement
Copy Problem Statement
Delete Problem Statement

Generation Component
Select Next Generation Event
Select Active State
Add Design Unit Under Designer Control
Change Spatial Relations Between Design Units
Change Function of Design Unit
Edit Dimensional Attributes of Design Unit
Remove Design Unit
Edit Target
Edit Execution Parameters
Generate to Target
Copy State
Delete State

Evaluation Component
Evaluate Layout
Edit Evaluation Parameters

Output Component
Save Problem Statement
Save Layout

Save Problem Statement-L ayout Pair
Save Case

24

