
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Shape Annealing: A New Approach
for Controlling Shape Generation

J. Cagan, W. Mitchell

EDRC 24-68-91

Shape Annealing:
A New Approach for Controlling Shape Generation

by

Jonathan Cagan

Department of Mechanical Engineering

Carnegie Mellon University

Pittsburgh, PA 15213

and

William J.Mitchell

Graduate School of Design

Harvard University

Cambridge, MA 02138

0. Abstract

The new design paradigm of shape annealing is introduced. Shape annealing is a variation

of the simulated annealing stochastic optimization technique. It produces optimally directed

shapes within the language specified by a shape grammar. It does so by controlling the

selection and application of shape rules such that superior shapes evolve as the algorithm

progresses.

University Libraries
Carnegie Mellon University
Pittsburgh PA 15213-3390

Cagan and Mitchell Shape Annealing

1. Introduction

Shape grammars, as defined by Stiny (1980), have successfully been employed to generate

designs for many different types of artifacts - villas in the style of Palladio (Stiny and

Mitchell, 1978), Mughul gardens (Stiny and Mitchell, 1980), prairie houses in the style of

Frank Lloyd Wright (Koning and Eizenberg, 1981), Greek meander patterns (Knight,

1986), and suburban Queen Anne Houses (Flemming, 1987), to name just a few. A shape

grammar derives designs in the language which it specifies by recursive application of

shape transformation rules to some starting shape. In general, at any step in the derivation

of a design, there is a choice to be made among different possibilities for rule application.

A particular design in the language results from a particular sequence of choices: it is

derived by taking a distinctive path through the state-action tree of the grammar, from the

starting shape to one of the terminal nodes.

The literature of shape grammars and their applications contains little discussion of how

these choices among alternative rule applications might appropriately be made. Indeed, the

issue is usually avoided, and grammars are routinely demonstrated by exhaustively

enumerating possible derivations or by randomly sampling them. Here we propose a

different approach — specifically, the use of optimization criteria to control the derivation of

shapes. We formulate the design problem as an optimization problem with a quantifiable

objective function and a set of design constraints. We then utilize a variation of the

stochastic optimization technique known as simulated annealing, which we call shape

annealing, to control choice among alternative rule applications as shapes are derived. The

result is an optimally directed design solution.

Cagan and Agogino (1991) define optimally directed design as an approach to design

which attempts to determine optimal regions of the design space by directing search toward

improving the objectives and eliminating suboptimal or dominated regions. The result is

not necessarily a globally optimal numerical solution, but rather insight into how the design

might be improved relative to the objectives, and a superior -- that is, optimally directed --

design solution.

Simulated annealing procedures for production of such optimally directed designs

generate random perturbations of a given solution state. They absolutely accept the new

Cagan and Mitchell * Shape Annealing

solution if it is better, or accept it with a certain probability if it is worse. Past applications

of simulated annealing have been to determine the optimal solution of continuous or

ordered discrete design variables within a fixed design configuration: the form of the

solution was known but specific values needed to be determined. Our shape annealing

procedure, by contrast, uses a variation of simulated annealing not to determine the values

of variables in a given design configuration, but rather to generate the configuration itself.

Application of this procedure results in evolution of designs: the fittest (most optimal)

configurations survive. It requires one or more design criteria (objective functions) with a

set of design constraints, a starting shape, and a set of shape transformation rules.

The next section summarizes the principles of simulated annealing. Our shape

annealing procedure is then described. Finally, shape annealing is demonstrated with a

simple shape grammar which can generate a countably infinite set of different shapes.

2. Simulated Annealing

Simulated annealing is a stochastic optimization technique which has been demonstrated to

solve continuous (e.g., Jain, et ai, 1990; van Laarhoven and Aarts, 1987, Cagan and

Kurfess, 1991) or ordered discrete (e.g., Kirkpatrich, et aly 1983; Jain and Agogino,

1990) optimization problems of fixed structure. Kirkpatrich, et al.y (1983) developed the

simulating annealing algorithm based on Metropolis1 Monte-Carlo technique (Metropolis, ex

ai, 1953). The idea is analogous to the annealing of metals. A cooling schedule is defined

giving a temperature reduction over a certain number of iterations. Temperature is a

gradient variable with no physicalmeaning; the variable is called temperature to maintain

the analogy with metal annealing. At high temperatures selection of a solution point is quite

random while at lower temperatures the solution is more stable; the metal annealing analogy

is that at high temperatures the molecules are at a highly random state while at lower

temperatures they reach a stable minimum energy state.

With simulated annealing, a feasible state, si, is randomly selected and the energy at

that state, Esl> is evaluated. A different feasible state, S2, is then selected and evaluated to

Es2. If E$2 > ESj, then S2 becomes the new solution state. If E J 2 - £$/» ^ e n l ^ e r e *s a

probability, based on the temperature, that the new state will be accepted anyhow.

Cagan and Mitchell Shape Annealing

Acceptance is determined by the probability calculation:

where Z(T) is a normalization factor. A random number, r, between 0 and 1 is generated

and compared with Pr{E52}. If r < PT[ES2} then the new state is accepted anyhow;

otherwise the old state is retained. The temperature is reduced and the process continues

until convergence is reached or the temperature reaches 0. Generally, the size of the

mutation space is also reduced and asymptotes to zero. In this case, it can be proven

(Lundy and Meese, 1986) that if equilibrium (i.e., convergence) is reached at each

temperature and if the temperature is reduced slowly enough, then the algorithm is

guaranteed to determine the global optimum. Because sufficient time cannot be guaranteed

for large problems, simulated annealing is used to search only for a good solution and the

exact globally optimal solution is often sacrificed for computation time.

Generally, the algorithm is run for several iterations at a given temperature until

equilibrium is reached or until a certain number of iterations has occurred. The temperature

is then reduced by a fixed amount and the algorithm is again run until convergence or an

iteration limit is achieved. When there is no accepted new solution at a given temperature

the minimum has been found.

Simulated annealing has only been used to evaluate a solution for a fixed design

configuration. In the next section we extend the algorithm to actually generate the design

configuration based on optimization criteria.

3. Shape Annealing

In our shape annealing algorithm, simulated annealing is used to determine whether a

randomly selected shape rule should be applied at a given design state. Given a current

design state, an eligible rule is selected and applied to the design. If the new design does

not violate any constraints then it is sent to the Metropolis algorithm which compares the

Cagan and Mitchell Shape Annealing

new state to the old state and, based on the temperature profile, it determines whether to

accept it or not. If the rule violates a constraint then the old state is maintained as the

current. Note that a rule may not be eligible for application. The current algorithm actually

selects any possible rule and then checks to verify that the rule is eligible.

By only applying additive rules, the design may rapidly converge on an inferior

solution because it can work itself into a state where no rule can be applied without a

constraint violation. Our algorithm can back itself out of these local solutions by reversing

the previous rule. For every additive rule, there exists a subtractive opposite; if the

subtractive rule is fired immediately following its companion additive rule then the effect of

the additive rule is removed.

The result of modeling a subtractive rule for every additive rule is an evolutionary

design generation system. As the shape evolves, if it starts to converge on an inferior

solution, the shape can backtrack and perturbate to a superior design configuration. This

perturbation occurs from generating new design shapes and does not require maintaining a

trail of all design decisions; the current state is all that is known about the design rather than

all the mutations which had tried and failed during its evolution.

The shape annealing algorithm is given in Figure 1. The number of outer loop

iterations (i.e., the determination of reduction_factor) and the the number of inner loop

iterations, n, need to be determined for the specific problem based on convergence of good

solutions. Note that the size of the mutation space is not reduced at each iteration; this

deviates from the normal simulated annealing approach but is required because there is no

metric from which to evaluate a given configuration relative to another except through the

objective function. In actuality, the size of the design space increases while the algorithm

runs; however, the increase is controlled and the algorithm finds a way to generate an

optimally directed design from a countably infinite number of possible configurations.

Shape grammars may be able to generate an infinite number of potential solutions.

Given design constraints the number may be constrained to a finite but huge number. It

may be impossible for a human or computer to generate all possible shapes in a reasonable

period of time. With the shape annealing algorithm, a good solution evolves in polynomial

time. It is not guaranteed to be the global minimum; however, by letting the algorithm run

Cagan and Mitchell Shape Annealing

a sufficient time, our experience shows the solutions to be quite good. An example is
presented in die next section.

4. Example

As an example application of the shape annealing algorithm, consider the shape grammar of

half-hexagons shown in Figure 2 from Mitchell (1990). Given this language, a countably

infinite number of shapes can be generated. As a designer, we desire to place as many

half-hexagons as possible into a given space, without overlap, while satisfying the

grammar of Figure 2. For purposes of illustration, we consider all spaces to be of a

constant area (25 units) and the half hexagon has a long base of one unit and a short base

of one half unit Rule 4 is given for completeness but is actually only applied after the final

solution is found.

We pose this problem as an optimization problem as:

maximize: number of pieces

subject to: pieces are assembled based on shape grammar,

no pieces can overlap;

shape must fit in bounds of defined space.

For this discussion, we limit the defined space to be rectangular and implement the

grammar based on the center line of the half-hexagon (thus the actual rectangle will be

slightly larger than 25 square units).

For implementation, the design state is stored by a trace of rule numbers; thus the

detailed design is not stored but only a string of rules which create the design is stored. A

new rule number is added by storing it at the end of the string. Implementation of the rule

reversal occurs by randomly generating both positive and negative rule numbers. If a

negative rule number is generated and the previously applied rule is the analogous positive

number, then the positive rule is removed from the rule* string.

Figures 3-6 show shapes generated with shape annealing for a square boundary space,

and Figures 7-9 for rectangular spaces. The fill pattern indicates which rule was applied:

Cagan and Mitchell Shape Annealing

the light fill indicates rule 1, the medium fill indicates rule 2, and the dense fill indicates

rule 3. Each Figure starts with a piece in the bottom left comer. Figures 5 and 6 are of

particular note. As discussed in section 3, as a shape is being generated it can work its

way into a poor solution which, without rule reversal, has no further improvement.

Because of the rule reversal, the shape can work its way out of the inferior state and then

progress toward a better, optimally directed design. Figures 5a and 6a demonstrate

solution states generated on the way to creating the final states of Figures 5b and 6b,

respectively. Note that in Figures 5a and 6a there are no other valid additive rules which

can be applied from the end state; obviously these solutions are inferior designs. As the

shape annealing algorithm progressed, the reversal rules became dominant and eventually

the shape was able to work out of the "corner" and found a better route with which to

progress.

5. Discussion

Examining the shapes of Figures 3-9, a few observations are relevant:

• The final configuration is quite sensitive to the initial path generated. At the very

beginning of the annealing process, any shapes generated will be better, based on the

objective function, than the previous states. The shape quickly goes off in the initial

directions generated and has no reason to backtrack to improve the beginning part of the

shape. Thus, if a smart initial path is not chosen, the algorithm may not be able to densely

pack portions of the space.

• Initially there are a countably infinite number of shapes which can be generated; for 3

possible generative shapes at each state with a half-hexagon of .325 square units area and a

25 square units specified space, the worst case could be 37 5 possible paths since up to 75

pieces could potentially fit in the space. Because there are constraints which prevent

overlap and define bounds on the shape, and because the grammar is designed to prevent

complete packing, this number is considerably reduced; however, the number of possible

designs is combinatoric and quite large. Shape annealing is able to determine very good

solutions in polynomial time.

Cagan and Mitchell Shape Annealing

• The variance of the shape at a given temperature is sensitive to the number of possible

states which remain feasible. Because there are so many available shapes at the start, there

is a great variance in the shape after each initial temperature step. However, after much of

the shape is generated, it is harder to generate a shape which does not violate a constraint;

thus the rate of change of the shape is smaller. The result is a shape which is more likely to

be sparse near the start and dense near the end.

• The grammar of Figure 2 can be extended as shown in Figure 10. This results in much

denser configurations (and thus higher objective functions). The more rules which are

available and the less constraints on the design space, the more creative the configuration

which can be generated.

• The algorithm is computationally efficient There is no need to maintain a trace of design

decisions; only the current state and proposed mutation at each step need be stored. The

algorithm itself will backtrack out of a configuration if required.

• We emphasize that the designs generated by shape annealing are not guaranteed to be

globally optimal. Rather, the resulting designs are generally very good solutions to an

otherwise intractable problem.

• The shapes generated by shape annealing evolve into their final configuration, stimulating

an analogy to the natural process of evolution. Although mutations may be pursued even if

initially they do not improve the design, the survival of only the fittest designs remain.

6. Conclusions

We have introduced a powerful method called shape annealing to control the generation of

shapes with shape grammars based on optimally directed solutions to functional needs.

The application of the shape annealing algorithm to a simple shape grammar has led to the

evolution of a large variety of shapes which satisfy the given design requirements. Shape

annealing introduces a new way of applying shape grammars to the design process.

Cagan and Mitchell Shape Annealing

7. Acknowledgements

The authors would like to thank John Corson-Rikert for providing the graphical interface to

draw the figures in this paper. This work was partially sponsored by the Engineering

Design Research Center at Carnegie Mellon University, an NSF sponsored research center.

Cagan and Mitchell Shape Annealing

8. References

Cagan, J.f and A.M. Agogino (1991), "Inducing Constraint Activity in Innovative Design", in press: AI
EDAM: Artificial Intelligence in Engineering, Design, Analysis and Manufacturing, 5(1).

Cagan, J., and T.R. Kurfess (1991), "Optimal Design for Tolerance and Manufacturing Allocation", EDRC
Report 24-67-91, Engineering Design Research Center, Carnegie Mellon University, Pittsburgh PA
15213.

Hemming, U. (1987), "More than the Sum of the Parts: the grammar of Queen Anne Houses",
Environment and Planning £, 14:323-350.

Jain, P., and A.M. Agogino (1990), "Theory of Design: An Optimization Perspective", Mech. Mack
Theory, 25(3):287-303.

Jain, P., P. Fenyes, and R. Richter (1990), "Optimal Blank Nesting Using Simulated Annealing",
Proceedings of: ASME Design Automation Conference: Advances in Design Automation -1988 (Ravani,
ed.), 2:109-116.

Kirkpatrick, S., CD. Gelatt, Jr., and M.P. Vecchi (1983), "Optimization by Simulated Annealing",
Science, 220(4598):671-279.

Knight, T.W. (1986), "Transformations of the Meander Motif on Greek Geometric Pottery", Design
Computing, 1:29-67.

Koning, H., and J. Eizenberg (1981), "The Language of the Prairie: Frank Lloyd Wright's Prairie Houses",
Environment and Planning fl, 8:295-323.

Lundy, and Mees (1986), "Convergence of an Annealing algorithm", Mathematical Programming, 34:111-
124.

Mitchell, W.J. (1990), The Logic of Architecture, MIT Press, Cambridge, MA, p.143.

Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller (1953), J. Chem Phys., 21:
1087-1091.

Stiny, G. (1980), "Introduction to Shape and Shape Grammars", Environment and Planning B, 7:343-351

Stiny, G., and WJ. Mitchell (1978), "The Palladian Grammar", Environment and Planning B, 5:5-18.

Stiny, G., and W.J. Mitchell (1980), "The Grammar of Paradise: on the Generation of Mughul Gardens',
Environment and Planning B, 7:209-226.

van Laarhoven, PJ.M., and E.H.L.Aarts (1987), Simulated Annealing: Theory and Applications, D.Reidel
Publishing Co.

10

Cagan and Mitchell Shape Annealing

Begin ANNEAL
T - l .
Define initial state;
Evaluate state;
WhileT>Odo

success = 0;
For mutations = 1 to n do

Let temp_state = state;
Generate rule;
If rule is applicable
Then Begin

apply rule to temp_state;
if verify constraints of temp_state
Then Begin

Evaluate temp_state;
Test temp_state with Metropolis;
If acceptable
Then

state = temp_state;
success = success + 1;

End
End

End
If success > limit then break;

End
If success = 0 then break;

/* at each temperature mutate n times
until convergence or limit reached */

T = T*reduction_factor,

/* no improvement...
solution found */

| End

Figure 1 Shape Annealing Algorithm

11

Cagan and Mitchell Shape Annealing

\
Rulel

Rule 2

\ Rule 3

Rule 4

Figure 2 Example Shape Grammar (from Mitchell, 1990)

12

Cagan and Mitchell Shape Annealing

Figure 3 5X5 box with 48 half-hexagons

13

Cagan and Mitchell Shape Annealing

Figure 4 5X5 box with 45 half-hexagons

14

i
3

I

E

Cagan and Mitchell Shape Annealing

:;:;:;:;:i:i: :;::;:;>: :;:;:^;:;:I::;::?: : f i l III 1:1:1

Figure 5b 5X5 box with 44 half-hexagons

16

Cagan and Mitchell Shape Annealing

Figure 6a Transient solution with 16 half-hexagons evolving to Figure 5b

17

Cagan and Mitchell Shape Annealing

Figure 6b 5X5 box with 29 half-hexagons

18

Cagan and Mitchell Shape Annealing

Figure 7 2X12.5 rectangle with 39 half-hexagons

19

Cagan and Mitchell Shape Annealing

Figure 8 10X2.5 rectangle with 33 half-hexagons

20

Cagan and Mitchell Shape Annealing

Figure 9 16.67X1.5 rectangle with 55 half-hexagons

21

Cagan and Mitchell Shape Annealing

\ — / \ • /
Rulel

Rule 2

^ Rule 3

\ .

^

Rule 4

Rule 5

^ Rule 6

Figure 10 Extended Shape Grammar

22

