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Abstract
Input Variable Expansion, IVE, is a new domain independent formal methodology for creat-
ing innovative designs. These designs are based on a known design which is cast as an opti-
mization problem described by its first principle equations. IVE performs design space ex-
pansion by replicating the topology of the initial design, assigning independent properties to
each region and distributing a selected input to the newly created regions. Optimization infor-
mation is employed in the selection of the distributed input.

The resulting design is optimized, using symbolic optimization techniques when possible. In
more complex and industrially relevant problems where symbolic methods are more difficult,
numerical methods are used to optimize the resulting designs. Trends over generations of de-
signs are observed and the limiting designs are induced. The innovated designs may exhibit ei-
ther an improved objective or a feasible design space replacing an infeasible one.

IVE is a complementary expansion technique to Dimensional Variable Expansion, DVE, de-
veloped by Cagan and Agogino (1991a). Together, IVE and DVE initiate a library of design
space expansion techniques which, in some cases, eliminate the need for prepostulated super-
structures for finding the optimal solution. IVE is demonstrated in applications to the innova-
tive designs of a catalyst bed, a set of columns under axial load and a chemical reactor network.
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1. Introduction
Traditionally, design concepts are optimized by improving the performance of an initial

design over its continuous variables (Reklaitis et. al.9 1983; Papalambros and Wilde, 1988).

Alternatively, innovative designs often result from expanding the design space by generating

alternative features for achieving the design concept. For example, in the design of a chemical

reactor system to convert a feed stream into a desired product, the optimal feed composition,

flowrate and reactor volume could be determined by optimizing over these variables.

Innovation in this design space might involve multiple reactors in serial and/or parallel configu-

rations, different types of reactors, etc. The generation and selection of alternative design

structures is a limiting step in design innovation and optimization (Westerberg, 1989).

Design alternatives are often synthesized by modifying and improving known designs of

related functionality. This design transformation is frequently accomplished by applying do-

main specific heuristic knowledge which embodies the designers1 understanding of the sensi-

tivities and interactions of the design variables and parameters (Lenat, 1983; Murthy and

Addanki, 1987; Ulrich and Seering, 1988; Joskowitz and Addanki, 1988). Other design trans-

formations can be achieved through the application of genetic algorithms (Androulakis and

Venkatasubramanian, 1991). This paper advocates that known designs can be improved by di-

rectly applying optimally directed design space expansion techniques on first principle infor-

mation (i.e. the algebraic equalities and inequalities developed from the fundamental physics,

chemistry, manufacturing and safety constraints of a system).

Input Variable Expansion, IVE, is a formal technique capable of generating new designs

by expanding the input variables of an initial design in an optimally directed manner.

Optimally directed design is an approach to design which attempts to determine optimal re-

gions of the design space by directing the search toward improving the objectives and eliminat-

ing suboptimal regions. This approach reduces the size of the search space and generates in-

sight as to the desirable directions for improving the design variables (Cagan and Agogino,

1991a). The initial design is described by its first principle equations. Application of IVE re-

sults in an expanded design space, a requirement for producing innovative designs. Cagan and

Agogino define innovative designs as those which involve new design variables or features

based on variables or features of an existing design prototype. The basis of this technique is an

initial design cast as an optimization problem, rendering IVE domain independent. The extent

of required domain information is limited to specifying the nature of the variables involved.

IVE innovates by either producing designs which outperformthe objective of the initial design,

or by creating a feasible design space starting from an initially infeasible design.

IVE expands the design space by identifying critical input design variables (defined in

subsection 2.3), dividing the design space across those variables, and making the properties

1
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within each newly-formed region independent from those of other regions. This manipulation
frequently increases the degrees-of-freedom of the design space, which indicates potential inno-
vation in the new designs. Optimization information is used in selecting the critical input vari-
ables, and at every iteration of the design expansion the resulting design is optimized. If trends
of improvement appear when iteratively expanding an input variable with IVE, induction is
used to generalize these trends, thus achieving the limit of improvement with respect to that
particular variable. New designs are generated from the fundamental equations that describe a
previously known design, so the need for prepostulated superstructures (i.e. domain descrip-
tions that imbed several design alternatives, as described in Duran and Grossmann, 1986) for
representing the design space is reduced.

Cagan and Agogino (1991a) have presented Dimensional Variable Expansion, DVE, an-
other formal technique for design space expansion. DVE focuses its attention on variables that
describe the physical dimensions of a design. DVE differs from IVE in that critical dimen-
sional variables are selected for expansion instead of input variables. In so doing, DVE creates
discontinuities in the initial design topology and permits property independence across these
discontinuities. In contrast, IVE creates replicates of the initial design topology in which the
selected input is distributed. The result is a unique, domain independent, formal approach to
design space expansion. Because IVE and DVE are complementary processes with different
design effects, their application may each be superior in different problems. Together DVE
and IVE initiate a library of formal techniques for design space expansion. Both techniques
are used within the general framework of the lstPRINCE design methodology, initially pre-
sented in Cagan and Agogino (1987).

In this paper, the formal theory of IVE will be presented. The theory will be illustrated in
a sequence of examples, followed by a discussion indicating reasons for its success and antici-
pated limitations.

2. Input Variable Expansion (IVE)
IVE is a formal technique for expanding the design space of a known design, called a

primitive-prototype, in an effort to produce better designs. Conceptually IVE proposes the
parallel processing of an input into design regions whose topologies are replicates of an initial
design, as shown in Figure 1. The next subsection describes the concept of & primitive-proto-

type.
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Primitive-Prototype

Input 2 Input m

IVE
over Input 1
to n Regions

Input 2 Input m

H
Input 1 ^

Region 1

Jfc«foi.n

- ^ - [Oulpate]

Figure 1. Conceptual illustration of IVE

2.1. Definition of a Primitive-Prototype
A primitive-prototype is defined by an objective function, /(x), and a set of variables, x,

bounded by a set of equality and inequality constraints, h(x) = 0 and g(x) £ 0:

Minimize /(x)
Subject to h(x) = 0

g(x)<0.

The primitive-prototype can be subdivided into a number of design regions, each of which is

independently modelled with variables and constraints (Cagan and Agogino, 1991a).

We define five types of variables which characterize the way the variables are used to

model the design. The first two, namely the extensive and intensive variables, designate

whether these variables depend on the physical size of the system. The remaining three vari-

ables are subsets of these types which describe how IVE and DVE expand the design space.

Extensive variables, x?, express quantities that depend on a characteristic size of a sys-

tem. Examples of such variables include weight, reactor volume, capacitor charge and mass

flowrate. Extensive variables are replicated when new regions appear in the design. These

variables have been defined previously by Cagan and Agogino as system variables.

Intensive variables, xx, express quantities that describe a property of a design region.

Such quantities are independent of all the region characteristic sizes. Intensive variables include

temperature, pressure, density, Young's modulus and thermal conductivity. Intensive variables

are replicated when new regions appear in the design. These variables were defined by Cagan

and Agogino as region variables. The definitions of extensive and intensive variables have

been adopted from the field of thermodynamics; for example see Sandier (1977).

Assignment variables, x*, express quantities that have contributions from multiple design

regions. Examples include total mass of an object, total sales and total cost. Assignment vari-

ables are not expanded with the creation of new design regions. Rather, the new regions con-



Input Variable Expansion Aelion, Cagan and Powers

tribute a part to the value of an assignment variable specified by a global constraint (defined
below).

Dimensional variables, ***, constitute a special subclass of extensive variables that de-
notes the physical dimensions of a design. Such variables have been the focus of DVE, as
discussed in subsection 2.4.

Input variables* xmv^\ form another subclass of extensive variables which describes
quantities to be processed by a design. Examples of input variables include molar flows in
chemical reactor designs and loads in structural designs. Input variables are the main focus of
IVE where the design expansion is based on a designated input which is distributed to each
individual design region. Independent extensive variables are selected as input variables. For
example, in a reactor design, from the variable set {volumetric flowrate, mass flowrate, molar
flowrate} only one can become an input variable because all these flowrates depend on the rate
of material flow.

These variables appear in the design objective or constraints. Constraints are classified as
global, c&, and local, cl (previously defined as serial and parallel, respectively, by Cagan and
Agogino). Global constraints apply across all design regions. They are each modified to in-
clude contributions from each newly created region, according to a problem specific update

formula. Update formulae usually designate a summation of a quantity across the various re-
gions and may depend on the expansion technique. All the remaining constraints are local and
apply to individual design regions. These local constraints are replicated with the creation of
new design regions.

Based on these definitions, the primitive-prototype becomes:

primitive-prototype = f bounded by [c&] u {c1} over [x?] u {JC1} u

Dimensional and input variables are included in the set of extensive variables. A related defini-
tion from Cagan and Agogino is that of & prototype, a class of designs that result from an op-
timization analysis of a primitive-prototype and can be instantiated to at least one feasible de-
sign solution.

The next subsection addresses constraint activity, an instrumental concept for choosing
candidate inputs for IVE.
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2.2. Constraint Activity
Design space expansion techniques interact with optimization in two ways: (a) optimiza-

tion information is used to select target variables for expansion, and (b) the resulting primitive-
prototype is optimized. A further description of this interaction appears in section 3.

Constraint activity is a form of optimization information which supports the selection of
critical variables, discussed in the next subsection. An active constraint is defined by
Papalambros and Wilde (1988) as one which, if removed, would alter the location of the opti-
mum. If the problem is monotonic, active constraints are satisfied as equalities, allowing for a
degree-of-freedom analysis of the IVE strategy. The IVE algorithm is described next.

2.3. IVE Algorithm
IVE, illustrated in Figure 1, expands the design space along a critical input variable, i.e.

one which influences the objective function and which, when expanded, will create new vari-
ables which will also influence the expanded objective function (Cagan and Agogino, 1991a).
All variables which appear in the objective and the possible sets of active constraints are poten-
tially critical. Among those, the variables which represent inputs are candidates for expansion.
IVE is realized by the algorithm shown in Figure 2.

BEGIN (*INPUT*)
1. Formulate design problem as an optimization problem.
2. Specify the input, extensive, intensive, and assignment

variables.
3. Present constraints in global and local form.
4. Specify an update formula for the objective and each

global constraint.
END
BEGIN (*IVE*)

5. Identify a critical input variable.
6. FOR each existing region:

BEGIN
6a. Choose a number of replicate regions (default = 2).
6b. Replicate extensive variables, intensive variables

and local constraints to each new region.
END

7. Modify objective and global constraints according to
their update formulas.

END

Figure 2. The IVE algorithm

Most frequently in designs, multiple critical dimensional and input variables exist, each
of which is a candidate for DVE and IVE respectively. IVE can be repeated for every input
variable separately, it can be superimposed on top of designs which have resulted from other
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IVEs, or it can be applied to designs which have resulted from the application of DVE. The

result of all these possibilities depends on the coupling of the critical variables.

2.4. DVE Versus IVE
The DVE algorithm is described in Cagan and Agogino (1991a). The main differences

between DVE and IVE are: (a) DVE focuses on a critical dimensional variable, as opposed to

IVE which focuses on a critical input variable, and (b) in DVE the expanded regions are seri-

ally related to each other via imposed boundary conditions, whereas in IVE the expanded re-

gions are parallel and no similar boundary conditions are imposed.

2.5. Degree-of-Freedom (DOF) Expansion in IVE
An increase in the degree-of-freedom, DOF, of a problem is an indication of potential in-

novation. IVE expands the design into multiple parallel regions, each of which exhibits the

same topology as the initial design, and the resulting design is optimized. IVE creates new

regions which involve new constraints and variables and support the possibility of realizing a

superior design. At optimality a subset of the constraints is active, meaning that their position

constrains the location of the optimum.

Consider the DOF analysis of a design described by a monotonic objective and

monotonic constraints. In this case the active constraints are satisfied as equalities and the

DOF is defined to be:

DOF = V - A , (1)

where A is the number of non-redundant active constraints and V is the number of variables

found in these constraints. Applying this to a primitive-prototype we get:

= v e + v* + va - u8 - u1 , (2)

where DOFP.P is the DOF of the primitive-prototype, ve, v1 and va are the numbers of exten-

sive, intensive and assignment variables, and u£ and u1 are the numbers of active global and lo-

cal constraints, respectively, in the primitive-prototype. Application of IVE expands the primi-

tive-prototype to n regions. The extensive and intensive variables and the local constraints are

replicated in each of these regions. The global constraints are not replicated but are modified

via their update formulae. The assignment variables are not expanded at all. In general, IVE

may form a new primitive-prototype with a higher or lower DOF than the previous primitive-

prototype, because each could be bounded by a different set of constraints. However, if after

expansion the same dominant constraint activity is maintained as before the expansion, then the

following results apply. Dominant constraint activity means that a constraint in a new proto-

type has the same activity as the analogous constraint from which it was derived in the old
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primitive-prototype (Cagan, 1990). For single-input designs, the resulting primitive-prototype
exhibits the following DOF:

DOFn = n (v1 + ve) + va - u« - n ul=DOFo + (n -1) (v* + ve - u1), (3)

where DOFO and DOFn are the DOFs of the old and the new primitive-prototypes.
Equation (3) indicates that the new DOF increases as long as the sum of the intensive

and extensive variables exceeds the number of active local constraints in the old primitive-
prototype. If some or all of the regions of the new primitive-prototype are further expanded to
multiple regions and dominant constraint activity is maintained, the DOF increases further, as
indicated by applying the results indicated above for each region.

The DOF increase in DVE, £>0FDVE> is smaller than in IVE, DOFIVE, because in
DVE the expanded regions are related through specified boundary conditions, as indicated in
equation (4), which is derived by Cagan (1990):

= ve + v* + va - u« - u1 - {n -1). (4)

Therefore if we attempt DVE and IVE on the same primitive-prototype, it follows that:

= DOFDVE + 0*" !)• (5)

This analysis is valid for designs with monotonic objective and constraints, and a single
input variable. In general, IVE is applicable to designs with non-monotonic objective and con-
straints, as well as multiple input variables. However, a different DOF analysis applies in
these cases. The next section describes the interaction of IVE and optimization techniques.

3. IVE and Optimization
The design expansion performed by IVE is followed by the optimization of the resulting

primitive-prototype. The overall design strategy is shown in Figure 3.

Induce Trends
if Possible

Satisfactory
Design?

[PerformIVE \

JET
Progress
Made?

Stop with Solution
of Previous Iteration

Figure 3. Overall Design Strategy
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The initial primitive-prototype is optimized. If the resulting prototype meets the de-
signer's requirements a satisfactory solution is found and the design is completed. Alterna-
tively, IVE expands the design space and the resulting primitive-prototype is again subjected to
optimization and the design loop is repeated. Two points ate of particular interest:

(a) If specific design trends appear after a certain number of iterations, then the corre-
sponding limit is induced to obtain the maximum benefit of that expansion. A further discus-
sion on induction appears in the next section.

(b) If the application of IVE does not improve performance, the design iteration is
stopped. Design performance can be increased either by improving the design objective or by
satisfying previously violated constraints.

The design is carried out at the conceptual stage where detailed parametric information
may not be available. Symbolic optimization is preferable when possible for addressing this
lack of detailed information and also for gaining a better qualitative understanding of the de-
sign. However, numerical optimization may be required.

Monotonicity analysis, presented by Papalambros and Wilde (1988), is a methodology
which can aid in obtaining symbolic solutions by analyzing the boundedness of the problem,
i.e. whether the problem is well-constrained. A detailed application of monotonicity analysis in
a design problem appears in Aelion et. al. (1991).

4. Induction of Constraint Activity in IVE
The repeated application of IVE and the subsequent optimization of the resulting primi-

tive-prototype sometimes reveals patterns of constraint activity worth investigating. After each
IVE application, monotonicity analysis derives sets of active constraints and a new optimiza-
tion analysis is performed. This sequence of actions is termed a design generation. If the ac-
tivity of the analogous constraints remains the same across several design generations, then we
can induce that this pattern will hold for an infinite number of IVE applications, and take the
limit of this expansion activity. More formally, Cagan and Agogino (1991b) define:

Inductively active (inactive) constraint: If a constraint is active (inactive) for n

consecutive generations of expansion then it is induced to be active (inactive)
for infinite such generations.

The number of consecutive design generations, n, required before attempting induction in IVE
is specified by the user. Its default value is 3.

Induction is not a required step, rather it is an additional analysis step capable of produc-
ing certain designs which would otherwise require infinite time. The act of induction is funda-
mentally an aggressive design policy, which risks the possibility that some constraint be vio-
lated at the limit. Therefore it is imperative that the result of induction be checked against the

8
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design constraints to ensure that they have not been violated. In addition, when taking limits a

designer should always determine whether or not the prototype remains a valid representation

of the underlying physics, chemistry and economics of the design.

The following examples have been selected to reveal the key features of IVE. For clarity,

they represent only partial statements of industrially relevant design problems.

5. Example: Catalyst Weight Minimization
Consider the design of a catalyst whose total weight must be kept to a minimum, subject

to a minimum total surface area constraint, which is required for supporting the reaction of in-

terest. Step 1 of the IVE algorithm, shown in Figure 2, requires that the design be stated as an

optimization problem. Assuming the primitive-prototype of a single spherical catalyst pellet,

this design becomes:

Minimize Wtot = P not

w.r.t. (Atot> ^i> ^l> rl)

Subject to Vtot = Vi

2

Atot^Amin

(hi)

(h2)

(h3)

(h4)

(gl)

Wm>0
Am>0

VtZO

Ai>0

ri^O

(g2)

(g3)

(g4)

(g5)

(g6)

where p is the density of the catalyst and Amin is the required lower limit of total surface area.

Step 2 of the algorithm is the specification of the extensive, intensive, assignment and input

variables. They are defined below with the variable type inside parentheses:

Wtot = total weight (assignment), Vi = region volume (extensive),

Vtot = total volume (assignment), Ai = region surface area (extensive and input),

Atot = total surface area (assignment), r\ = region radius (extensive).

Constraints (hi) and (I12) specify that the total volume and total surface area be equal to

those of the catalyst sphere; (I13) and (I14) define the volume and surface area of a catalyst

sphere; (gi) specifies a lower bound on the total surface area; and (g2) - (ge) are the variable

positivity constraints. Step 3 of the IVE algorithm is the specification of the constraint types.

Constraints (hi), (h2) and (gi) - (g3) are global and the remaining are local.

Step 4 of the algorithm is the specification of the update formulae. The objective and

constraints (gi) - (g3) are to remain completely unchanged across design generations.
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Constraints (hi) and (h2) are the definitions of the assignment variables Vtot and AtOt. If more

than one design regions become available, the update formula for (hi) and (I12) is the sum of

the particle volume and surface area of each region respectively. This concludes the input to

IVE.

Monotonicity analysis indicates that this problem is well-constrained and constraint-

bound, i.e. it has a finite solution with zero DOF. Only the positivity constraints are inactive.

Ai is picked as an input variable. Note that V\ and r\ depend on A1, so only one of these three

variables can be treated as an input. It is determined by backsubstitution that:

(6)

The designer is faced with the decision of either accepting the above solution or searching

for a better one which lies outside the boundaries of this design prototype. One way to search

beyond these boundaries is through the application of IVE. In the solution prototype there are

three extensive variables, no intensive variables, and two active local constraints. If constraint

activity is maintained after expansion then, according to equation (3), IVE is guaranteed to in-

crease the DOF of the prototype, indicating a greater possibility of finding a superior design.

Step 5 of the algorithm has been completed by choosing A1 as the critical input variable

because it appears in active constraints. The initial design has one region which is expanded to

two regions, the default number in step 6a, as illustrated in Figure 4. Replication of the design

topology, step 6b, yields the following primitive-prototype:

Minimize vrtot = P •'tot
w.r.t. (AIQI,V\\,V\2,A\

Subject to Vtot = V\ i + V12

Am=An+Au

- - 3

V l 2 = 4 r 3 2

2
An = 4nrn

2
^12 = 4 * r 1 2

"tot ^ y»min

l,Ai2,rn,r12)

(hi) Vtot;>i

(h2) ^tot^1

(h3i) ^ n ^<

(h32) Vl2*{

> 4 1 1 ^̂  I

(h42)
 A l 2 ^ (

/~ \ n i ^ ((gi)
ri2^C

0 (g2)

0 (g3)

3 (g4l)

3 (g42)

3 (g5i)

3 (g52)

» (g6l)

) (g62)

The notation \m...no denotes a variable or constraint, x, in region o, which is derived from re-
gion n,..., which is derived from region m. Note that the global constraints are not replicated.

10
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Instead they are modified according to their respective update formulae, as specified by step 7

of the algorithm.

Figure 4. Application of IVE to the initial catalyst primitive-prototype

This primitive-prototype is also well-constrained and the resulting prototype exhibits one

DOF9 an increase as expected. Again the positivity constraints are inactive and the remaining

ones are active. Backsubstitution gives:

(7)
r " / J

and subsequent optimization produces:

= 0

ropt,2 is the value of the optimal diameters for the two-sphere design and WOpt,2 is the corre-

sponding optimal total weight. Comparison with the one-sphere design indicates a decrease in

total weight by a factor of ̂ 2. IVE is responsible for this improvement. Further application

of IVE to both regions of the existing design proposes a four-sphere design. Constraint domi-

nance is maintained and optimization gives:

d'12

(9)

which constitutes a further improvement to the objective.
Responding to the trends of three consecutive design generations, we induce dominant

constraint activity, where constraints (hi) - 0u) and (gi) of the initial primitive-prototype are
inductively active and the positivity constraints, (g2) - (g6), are inductively inactive. IVE ex-
tended to N regions and optimization analysis produce the following result:

11
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The induction is successful because no constraints are violated by taking the limit of in-

finitely many independent spherical design regions. This solution indicates a decrease in total

weight by a factor of yN9 effectively proposing the design of a catalyst in powder form (many

small spheres).

Other considerations, such as pressure drop, manufacturing difficulties of creating a large

surface area or unpredictable catalytic behavior in very fine form may render other designs

preferable, but the motivating factors for such a preference have not been included in this

model. This example has served to demonstrate the power of IVE to support innovative de-

sign by finding solutions which lie beyond the design space of the initial primitive-prototype

and outperform the initial design objective.

6. Example: Column Design
In this section an application of IVE is shown which produces a feasible design starting

from an infeasible primitive-prototype. Consider the design of a clamped-clamped column un-

der axial load (Figure 5a). The weight of the column is to be minimized subject to buckling

criteria. In addition, manufacturing considerations limit the design of an individual column to a

maximum acceptable weight (and effectively a maximum acceptable radius).

The primitive-prototype becomes:

Minimize

w.r.t.

Subject to

(W

Wu

Wi

Pi

1, r\9 P\)

oj = W\

2 r— pit r^L

= ^applied

(hi)

(h2)

(h3)

, 2 p , 11/4

1/2
Cft)pn L

The variables of this design are the radius, n, the applied load, P\, which is a design input, the

total weight of the design, Wiot and the weight of a column, W\. The parameters are the modu-

lus of elasticity, E9 the length of the column, L, the maximum allowable weight of a single col-

umn, Ŵ max* the density of the material of construction, p, and the specified value of the ap-

plied load, /'applied-

Constraint (hi) defines the total weight; (I12) defines the weight of one column; (gi) lim-

its the radius from buckling considerations; (g2) limits the radius from weight considerations;

and (I13) specifies the desired load. Constraints (hi) and (113) are global, while (I12), (gi) and

12
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(g2> are local. The update formulae for both (hi) and (I13) are the sum of each column weight

and axial load respectively.

Since r is constrained both from above and from below, a prototype exists only if there

are feasible values for the radius:

^max
pnL

1/2 n/4

(ID

In this primitive-prototype P = ^applied* therefore a feasible design exists only if:

W2 nF
^applied ^ TTI~' (12)

(a) (b)

Figure 5. Column under axial load during the first and second design generations

Consider the situation where constraint (12) is violated, and no prototype exists. Ap-

plication of IVE creates two columns and distributes the load by producing the design topol-

ogy shown in Figure 5b. IVE introduces new design variables: each column can be modeled

with an independent radius, load and material. Considering two columns of the same material,

the new primitive-prototype becomes:

Minimize

w.r.t.

Subject to

Wtot

(^li.W

In"!
hi^WyTxi^Pw^Pxi)

V11 + W12 (hi) r ^

J f f ^ L (h2i)

2 rn ^
•>n rnL (h22)

*12 = ^applied (h3) 1 2 ~

L2J»i:

pnL

pnL

1/2

1/2

ton)

ton)

Cfea)

L2Pi
£ J

1/4

13



Input Variable Expansion Aelion, Cagan and Powers

If different properties were allowed, IVE could produce different load distributions and radii;
however, for the same material, at optimality the two columns have equal radii and equally di-
vided loads. With a single material, each column carries half the load and:

' . I - ' W - & f B 4 * J ^ - (13)

Constraint (13) is easier to satisfy than constraint (12), so, depending on the actual values of
the design parameters, FVE can produce a feasible design starting from an infeasible primitive-
prototype. Repeated IVE generations produce at optimality:

(14)N p2L*

where N is the number of columns in the design. IVE will only produce a feasible prototype if
at least N columns exist to satisfy constraint (14). The radius of each column and the total
weight are:

11/4

r =
^applied

L Nn3E J
and Wm = pL2^3&. (15)

Equation (15) shows that the total weight increases with the number of columns. In conclu-
sion, enough columns are needed to distribute the load in an acceptable fashion, as specified by
constraint (14), but not more, because it works against the minimizing total weight objective,
as indicated by equation (15). Application of induction produces an inferior solution in this
problem. In this case IVE has innovated by producing a feasible design space which lies be-
yond the null design space of the initial primitive-prototype.

Note the difference between IVE and DVE. DVE would have expanded the column into
a single column of different regions. IVE replicates the topology of the prototype column and
relates the new columns through the total applied load.

7. Example: Competing Reactions in a Mixed-Reactor Network
In complex and industrially relevant applications symbolic solutions frequently cannot be

found. This example demonstrates IVE in conjunction with numerical analysis.

Consider the reaction shown in Figure 6. R reacts to produce P via zero order kinetics.
An unwanted side reaction produces SP via first order kinetics. The process objective is to
maximize profit, as defined by equation (16).
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k C R =ReactantiR
^ m SP
X " SP = Side product

^^ p P = Product
Figure 6. Reaction kinetics

_iSales) [Disposal] [Capital]- \ f P ) - \ ofSP J - \ Cost }

Profit = A Af G CP - B Af G CSp - D V3/2 (16)

where
ko = zero order rate constant [gmol/(/min)], Q = volumetric flowrate [//min],
ki = first order rate constant [min-1], A = sale price of TP[$/gmolP],

C\ = concentration of species i [gmol/fl, B = disposal cost of UB [$/gmol SP],
V = individual reactor volume [/], D = capital cost [S//3^],

M = time of operation [min].
A more complete evaluation function would involve the cost of P, operating costs, etc.

The process is to be carried out by a well-mixed reactor (CSTR). The primitive-prototype
takes the following form:

Maximize Profit^ AMQ C P -BMQC S p-D
w.r.t.

V>0
(2^0
O S C R S C R O

0<SCP<SCRO

0 <. CSP £ CRo

(gl)

(g2)

(g3)
(g4)
(g5)

Subject t o f
C R V ^ =£J k + k i C R Q

j
Q

Q

Constraints (hi) - (I13) represent the CSTR mass balances for R, P and SP respectively;
(gl) and (g2) are positivity constraints; (g3) - (gs) specify the realizable concentration bounds;
and (I14) sets the volumetric flowrate equal to its input value. With the exception of (I14), all
constraints are local. The update formulae for IVE are: the sum of the input flowrates to each
reactor for (h4) and {A M I (Qi CPi) - B M I (Qi CSPi) - D YV\ } for the objective.
Different update formulae and additional boundary conditions apply for DVE; the initial
primitive-prototype is the same for both techniques, but the re-combination of the flows de-
pends on the expansion technique.
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A specific design is defined by the following parameters:

CRo=20gmoV/,
Cp0 =Cspo = 0gmol//,

ko =0.1 gmol/(/min),
ki =0.05min-1,

2 = 5 //min,

A = 5 $/gmol P,

B = 0.5 $/gmol SP,

D = 25,000 $//3/2,

M= 10^min(-2yrs).

At optimality it is found numerically that the CSTR volume is 153 liters, producing a

profit of $ 3.6 million over a period of two years. Better designs can be sought by applying

DVE and IVE. The corresponding design topologies are shown in Figure 7 and the results are

summarized in Table 1.

Table 1. Comparison of the primitive prototype and the designs of DVE and IVE

Single CSTR

Serial CSTRs (DVE)

Parallel CSTRs (IVE)

Optimal vol-
ume, [/]

153

2@199

2@198

Net Profit,
[106$]

3.577

29.690

34.583

P Sales,
[106$]

76.635

199.376

197.976

SP Disposal,

25.621

28.926

24.112

Capital cost,
[100$]

47.438

140.760

139.280

Figure 7. Design topologies produced by IVE and by DVE
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At optimality both the serial solution, produced by DVE, and the parallel solution, pro-

duced by IVE, have two reactors of equal volumes. The parallel solution also calls for an

equal split in volumetric flowrates into the two reactors. The best performance is exhibited by

the parallel configuration, innovated through the application of IVE. The results of further

application of DVE and IVE are shown in Tables 2 and 3 respectively. In both cases, at opti-

mality the individual reactors are sized equally.

When employing a large number of reactors in series (the result of DVE, shown Table

2), the total volume of the system approaches a constant value. Inducing constraint activity,

with the mass balance and flowrate equality constraints active and the positivity and concentra-

tion inequality constraints inactive, produces the limit of infinite reactors in series with total

volume of about 240 liters. At this limit the capital cost vanishes, indicating that the economic

model used in the process objective is no longer valid. Nevertheless the analysis shows the

trend that smaller reactors in series produce a larger profit than a single reactor, because of dis-

economies of scale (capital cost dependence to the 3/2 power).

Serial CSTRs
(DVE)

1

2

3

4

5

10

100

1000

Table 2.

Total vol-
ume, [/]

153

399

367

328

308

271

243

240

Performance

Net Profit,

3.577

29.690

50.397

56.244

58.889

63.774

74.027

79.102

of reactors in

P Sales,

76.635

199.376

183597

164.232

153.849

135.491

121.344

120.039

series (DVE)

SP Disposal,

[!&$]

25.621

28.926

31.640

33.577

34.615

36.451

37.866

37.996

Capital cost,
[l&$]

47.438

140.760

101360

74.412

60.345

35.266

9.452

2.941

Similarly, diseconomies of scale make the parallel operation with smaller reactors more

profitable than that of a single reactor (the result of IVE, shown Table 3). Again the economic

model breaks down at the limit of infinite reactors. This limit is only accessible with induction

of constraint activity if at least five parallel reactors are present before the induction limit is

considered because the active set of constraints changes. At this point all of R has reacted to

produce P, while the mass balance of SP becomes inductively inactive and the positivity con-

straint on Cp becomes inductively active. In this example if we had induced constraint activity

of the wrong constraint set, we would have produced an invalid solution; see Cagan and

Agogino (1991b) for a discussion on the limitations of heuristic-based induction techniques.
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Parallel
CSTRs(TVE)

1

2

3

4

5

10

100

1000

Table 3.

Total vol-
ume,!/]

153

396

621

841

1,000

1,000

1,000

1,000

Performance of reactors in

Net Profit,

[lO^]

3377

34383

70.812

108.532

146.447

250.000

420.943

475.000

P Sales,

[l(fi$]

76.635

197.976

310.363

420562

500.000

500.000

500.000

500.000

parallel (IVE)

SP Disposal,

[lOH]

25.621

24.113

16.333

7.100

0

0

0

0

Capital cost,
[lO^S]

47.438

139.280

223.218

304.930

353553

250.000

79.057

25.000

8. Discussion
These examples illustrate the fundamental features of IVE. The main idea is parallel

processing of an input by replicating the design topology and distributing the input to the indi-

vidual regions. The introduction of new variables supports design innovation.

In some cases, the trend towards parallelism is caused by the form of the objective func-

tion. For example, when the objective reflects diseconomies of scale then parallel designs are

favored over single-region designs and IVE continues dividing the space until other features

dominate the objective function. In the reactor example, the capital cost was proportional to

the individual reactor volume raised to the 3/2 power, which promoted parallel processing

through the diseconomies of scale.

In other cases the trend towards parallel systems generated by IVE was controlled by the

design constraints. For example, in the column problem the radius limitation on each column

constraint due to buckling criteria is satisfied through the repeated application of IVE.

In more complex examples there will be more interplay between other economic issues.

For example, in the catalyst powder problem the costs associated with generating small parti-

cles were not included in the optimization model. As more of these features are included, di-

rect numerical searches for performance will be preferred over symbolic methods. The reactor

synthesis problem illustrates how IVE can still be used to guide the development of system

structures in this more complex environment.

IVE and DVE are two main tools for expanding the design space in an optimally di-

rected manner. We expect that other methods which are hybrids of these two will prove useful

in certain problems. In addition, other expansion techniques may also be possible.
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This research has not resolved the issue of how to control the application of a library of

design space expansion tools, such as IVE and DVE. There may be problem characteristics

and improvement trajectories which can suggest when each technique is applicable.

The IVE algorithm has not been automated. Except for the treatment of the boundary

conditions, its automation would be analogous to that of DVE.

9. Conclusions
Input Variable Expansion, IVE, is a new formal domain independent technique for the

generation of innovative designs. IVE, along with the complementary DVE, form the begin-

nings of a library of formal approaches for design space expansion. We expect that other com-

plementary techniques, as well as hybrid techniques, can be invented and added to this library.

IVE has been shown to improve designs either by producing better objectives or by ex-

panding an initially infeasible design space to create one which is feasible. The methodology

has done so by employing both symbolic and numerical solutions, as needed.

IVE provides a way of formally structuring the search for alternative design concepts, be

it automated or directly applied by the designer. Although symbolic analysis lends intuitive

understanding to the design problem, numerical solutions are capable of addressing problems

of higher complexity which may permit the application of this method to industrially relevant

problems.
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