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Abstract

I nput Variable Expansion, IVE, is anew domain independent formal methodology for creat-
ing innovative designs. These designs are based on aknown design which iscag as an opti-
mization problem described by itsfirst principle equations. 1VE performs design space ex-
panson by replicating the topology of the initial design, assigning independent properties to
each region and digributing a selected input to the newly created regions. Optimization infor -
mation isemployed in the sdlection of the digributed input.

Theresulting design is optimized, usng symbolic optimization techniques when possible. In
more complex and indugrially reevant problems where symbolic methods are more difficult,
numerical methods are used to optimize theresulting designs. Trends over generations of de-
sgnsare observed and the limiting designs are induced. The innovated designs may exhibit ei-
ther an improved objective or afeasble design spacereplacing an infeasble one.

IVE isacomplementary expansion techniqueto Dimensional Variable Expansion, DVE, de-
veloped by Cagan and Agogino (1991a). Together, IVE and DVE initiate alibrary of design
pace expansion techniques which, in some cases, diminate the need for prepogtulated super-
dructuresfor finding the optimal solution. 1VE isdemondrated in applicationsto theinnova-
tive desgns of acatalyst bed, a set of columns under axial load and a chemical reactor network.
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1. Introduction

Traditionally, design concepts are optimized by improving the performance of an initial
design over its continuous variables (Reklaitis et. al.g 1983; Papalambros and Wilde, 1988).
Alternatively, innovative designs often result from expanding the design space by generating
alternative features for achieving the design concept. For example, in the design of achemical
reactor system to convert a feed sream into a desired product, the optimal feed composition,
flowrate and reactor volume could be determined by optimizing over these variables.
Innovation in thisdesign space might involve multiple reactorsin serial and/or parallel configu-
ratidns, different types of reactors, etc. The generation and selection of alternative design
gructuresisalimiting step in design innovation and optimization (Westerberg, 1989).

Design alternatives are often synthesized by modifying and improving known designs of
related functionality. This design transformation is frequently accomplished by applying do-
main specific heuristic knowledge which embodies the designers' understanding of the sensi-
tivities and interactions of the design variables and parameters (Lenat, 1983; Murthy and
Addanki, 1987; Ulrich and Seering, 1988; Joskowitz and Addanki, 1988). Other design trans-
formations can be achieved through the application of genetic algorithms (Androulakis and
Venkatasubramanian, 1991). Thispaper advocates that known designs can be improved by di-
rectly applying optimally directed design space expansion techniques on first principle infor-
mation (i.e. the algebraic equalities and inequalities developed from the fundamental physics,
chemistry; manufacturing and safety constraints of a system).

Input Variable Expansion, IVE, is a formal technique capable of generating new designs
by expanding the input variables of an initial design in an optimally directed manner.
Optimally directed design is an approach to design which attempts to determine optimal re-
gions of the design space by directing the search toward improving the objectives and eliminat-
ing suboptimal regions. This approach reduces the size of the search space and generatesin-
sight as to the desirable directions for improving the design variables (Cagan and Agogino,
1991a). Theinitial design isdescribed by itsfirst principle equations. Application of IVE re-
sultsin an expanded design space, arequirement for producing innovative designs. Cagan and
Agogino define innovative designs as those which involve new design variables or features
based on variables or features of an existing design prototype. The basis of thistechniqueis an
initial design cast as an optimization problem, rendering | VE domain independent. The extent
of reguired domain information is limited to specifying the nature of the variables involved.
IVE innovates by either producing designs which outper formthe objective of the initial design,
or by creating afeasible desigh gpace garting from an initially infeasible design.

IVE expands the design space by identifying critical input design variables (defined in
subsection 2.3), dividing the design space across those variables, and making the properties




I nputVariableExpansion Ae€lion, Cagan and Powers

within each newly-formed region independent from those of other regions. This manipulation
frequently increasesthedegr ees-of -freedom of thedesign space, which indicatespotential inno-
vation in thenew designs. Optimization information isused in selecting the critical input vari-
ables, and at every iteration of the design expanson theresulting desgn is optimized. If trends
of improvement appear when iteratively expanding an input variable with 1VE, induction is
usd to generalize these trends, thus achieving the limit of improvement with respect to that
particular variable. New designs are generated from the fundamental equationsthat describe a
previoudy known design, so the need for prepogtulated supergructures (i.e. domain descrip-
tionsthat imbed several design alternatives, asdescribed in Duran and Grossmann, 1986) for
representing the design space isreduced.

Cagan and Agogino(1991a) havepresented Dimensional VariableExpansion, DVE, an-
other formal technique for design space expanson. DVE focusesits attention on variablesthat
describe the physical dimensions of adesign. DVE differsfrom IVE in that critical dimen-
gonal variables are selected for expandon ingead of input variables. In sodoing, DVE creates
discontinuities in the initial design topology and permits property independence acr oss these
discontinuities. In contradt, IVE createsreplicates of theinitial design topology in which the
selected input isdigributed. Theresult is aunique, domain independent, formal approach to
design space expanson. Because IVE and DVE are complementary processeswith'differmt
design effects, their application may each be superior in different problems. Together DVE
and IVE initiate a library of formal techniques for design space expanson. Both techniques
are used within the general framework of the I"PRINCE design methodology, initially pre-
sented in Cagan and Agogino (1987).

In thispaper, the formal theory of IVE will be presented. Thetheory will beillugrated in
a sequence of examples, followed by a discusson indicating reasons for its success and antici-
pated limitations.

2. Input Variable Expansion (IVE)

IVE is aformal technique for expanding the design space of a known design, called a
primitive-prototype, in an effort to produce better designs. Conceptually IVE proposes the
parallel processing of an input into design regions whose topologies arereplicates of an initial
design, asshown in Figure 1. The next subsection describesthe concept of & primitive-proto-
type.
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Figure 1. Conceptud illustration of IVE

2.1. Definition of a Primitive-Prototype
A primitive-prototype is defined by an objective function, /(x), and a set of variables, X,
bounded by a set of equality and inequality constraints, h(x) = 0 and g(x) £ O:
Minimize /(x)
Subjectto h(x)=0
g(x)=<0.
The primitive-prototype can be subdivided into anumber of design regions, each of whichis
independently modelled with variables and constraints (Cagan and Agogino, 19914).

We define five types of variables which characterize the way the variables are used to
model the design. The first two, namely the extensive and intensive variabl es, designate
whether these variables depend on the physical size of the system. The remaining three vari-
ables are subsets of these types which describe how 1VE and DV E expand the design space.

Extensive variables, x?, express quantities that depend on a characteristic size of asys-
tem. Examples of such variables include weight, reactor volume, capacitor charge and mass
flowrate. Extensive variables are replicated when new regions appear in the design. These
variables have been defined previoudy by Cagan and Agogino as system variables.

Intensive variables, X", express quantities that describe a property of a design region.
Such quantities are independent of all the region characteristic sizes. Intensive variablesinclude
temperature, pressure, density, Y oung's modulus and thermal conductivity. Intensive variables
are replicated when new regions appear in the design. These variables were defined by Cagan
and Agogino as region variables. The definitions of extensive and intensive variables have
been adopted from the field of thermodynamics; for example see Sandier (1977). '

Assignment variables, x*, express quantities that have contributions from multi ple design
regions. Examples include total mass of an object, total sales and total cost. Assignment vari-
ables are not expanded with the creation of new design regions. Rather, the new regions con-
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tribute a part to the value of an assgnment variable specified by a global congraint (defined
below).

Dimensional variables, ***, congtitute a special subclass of extensive variables that de-
notes the physical dimensons of a design. Such variables have been the focus of DVE, as
discussed in subsection 2.4.

Input variablest xX™v*\ form another subclass of extensive variables which describes
quantities to be processed by a design. Examples of input variables include molar flowsin
chemical reactor designs and loadsin gructural designs. Input variables are the main focus of
IVE wherethe design expanson is based on a designated input which is disributed to each
individual design region. | ndependent extensve variables are selected asinput variables. For
example, in areactor design, from the variable set {volumetric flowrate, mass flowrate, molar
flowrate} only one can become an input variable because all these flowr ates depend on therate
of material flow.

These variables appear in thedesign objective or condraints. Condraintsare classified as
global, c&, and local, ¢ (previoudy defined asserial and parallel, respectively, by Cagan and
Agogino). Global congraints apply across all design regions. They are each modified to in-
clude contributions from each newly created region, according to a problem specific update
formula. Update formulae usually designate a summation of a quantity acrossthe variousre-
gions and may depend on the expanson technique. All theremaining congraints arelocal and
appvly toindividual design regions. These local congraints arereplicated with the creation of
new design regions.

Basad on these definitions, the primitive-pr ototype becomes:

primitive-prototype = f bounded by [c&] u {c'} over [x?] u {IC} u {x8} .

Dimensional and input variables are induded in the set of extensve variables. A related defini-
tion from Cagan and Agogino isthat of & prototype, a class of designsthat result from an op-
timization analyss of a primitive-prototype and can be ingantiated to at least one feasible de-
sign solution.

The next subsection addresses constraint activity, an indrumental concept for choosing
candidateinputsfor IVE. |
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2.2. Constraint Activity

Design space expangon techniquesinteract with optimization in two ways. (a) optimiza-
tion information isused to select target variablesfor expanson, and (b) theresulting primitive-
prototypeis optimized. A further decription of thisinteraction appearsin section 3.

Condraint activity is aform of optimization information which supportsthe sdlection of
critical variables, discussed in the next subsection. An active condraint is defined by
Papalambros and Wilde (1988) as one which, if removed, would alter the location of the opti-
mum. |fthe problem ismonatonic, active condraints are satisfied as equalities, allowing for a
degree-of-freedom analyssof the IVE drategy. ThelVE algorithm isdescribed next.

2.3. IVEAlgorithm
IVE, illugrated in Figure 1, expandsthe design space along a critical input variable, i.e.
one which influences the objective function and which, when expanded, will create new vari-
ableswhich will also influence the expanded objective function (Cagan and Agogino, 1991a).
All variableswhich gppear in the objective and the possible sets of active condraints are poten-
tially critical. Among those, the variables which represent inputs are candidates for expanson.
IVE isrealized by the algorithm shown in Figure 2.

BEGIN (*INPUT*)
1. Formulate design problem as an optimization problem.
2. Specify the input, extensive, intensive, and assignment
variables.
3. Present constraints in global and local form.
4. Specify an update formula for the ohjective and each
globa constraint.
END
BEGIN (*IVE¥)
5. Identify acritical input variable.
6. FOR each existing region:
BEGIN )
6a. Choose a number of replicate regions (default = 2).
6b. Replicate extensive variables, intensive variables
and local constraints to each new region.
END
7. Modify objective and global constraints according to
their update formulas.
END

Figure2. ThelVE agorithm

Mos frequently in designs, multiple critical dimensional and input variables exist, each
of which is a candidate for DVE and IVE respectively. IVE ¢an be repeated for every input
variable separately, it can be superimposed on top of designs which have resulted from cther
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IVES, or it can be applied to designs which have resulted from the application of DVE. The
result of all these possibilities depends on the coupling of the critical variables.

2.4. DVEVersusIVE

The DVE algorithm is described in Cagan and Agogino (1991a). The main differences
between DVE and IVE are (a) DVE focuses on acritical dimensional variable, as opposed to
IVE which focuses on acritical input variable, and (b) in DVE the expanded regions are seri-
ally related to each other viaimposed boundary conditions, whereasin |VE the expanded re-
gions are paralle and no similar boundary conditions areimposed.

2.5. Degree-of-Freedom (DOF) Expansion in IVE

An increase in the degree-of-freedom, DOF, of a problem is an indication of potential in-
novation. IVE expands the design into multiple paralld regions, each of which exhibits the
same topology as the initial design, and the resulting design is optimized. |VE creates new
regions which involve new constraints and variables and support the possibility of realizing a
superior design. At optimality a subset of the congraints is active, meaning that their position
congtrains the location of the optimum.

Consider the DOF analysis of a design described by a monotonic objective and
monotonic constraints. In this case the active constraints are satisfied as equalities and the
DOF is defined to be:

DOF =V - A, (1)

where A is the number of non-redundant active consgtraints and V is the number of variables
found in these congtraints. Applying thisto a primitive-prototype we get:

DOFp,=ve+ v +v*-u8-u’, (2)

where DOFp.p is the DOF of the primitive-prototype, v&, v! and v? are the numbers of exten-
sive, intensive and assignment variables, and uf£ and u' are the numbers of active global and lo-
cal constraints, respectively, in the primitive-prototype. Application of I VE expands the primi-
tive-prototypeto n regions. The extensive and intensive variables and the local constraints are
replicated in each of these regions. The global constraints are not replicated but are modified
viatheir update formulae. The assignment variables are not expanded at all. In general, IVE
may form anew primitive-prototype with a higher or lower DOF than the previous primitive-
prototype, because each could be bounded by a different Set of congtraints. However, if after
expansion the same dominant constraint activity is maintained as before the expans on, then the -
following results apply. Dominant constraint activity means that a constraint in a new proto-
type has the same activity as the analogous constraint from which it was derived in the old
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primitive-pratotype (Cagan, 1990). For sngle-input designs, theresulting primitive-prototype
exhibitsthefollowing DOF:

DOF,=n (V! +Vv®) + V- u« - n u'=DOF, + (n -1) (** +v°-u"), (3)

whereDOF o and DOF, arethe DOF s of the old and the new primitive-prototypes.

Equation (3) indicatesthat the new DOF increases aslong asthe sum of the intensive
and extensive variables exceeds the number of active local constraintsin the old primitive-
prototype. 1f someor all of theregions of the new primitive-prototype are further expanded to
multiple regions and dominant congraint activity is maintained, the DOF increasesfurther, as
indicated by applying theresultsindicated abovefor each region.

The DOF increase in DVE, £>0FDVE> is gnaller than in IVE, DOFIVE, because in
DVE the expanded regions are rdated through specified boundary conditions, asindicated in
equation (4), which isderived by Cagan (1990):

DOFpyE =Ve+V* +Vv?-u«-u*-{n-1). ey

Thereforeif we attempt DVE and | VE on the same primitive-prototype, it followsthat:

DOFIVE = DOFDVE + 0*" 1)s )
Thisanalyssisvalid for desgns with monatonic objective and condraints, and asingle
input variable. In general, IVE is applicable to designs with non-monotonic objective and con-
graints, as well as multiple input variables. However, a different DOF analysis appliesin
these cases. Thenext section describestheinteraction of 1'VE and optimization techniques.

3. IVE and Optimization
The design expanson performed by IVE isfollowed by the optimization of the resulting
primitive-prototype. The overall design srategy is shown in Figure 3.

Induce Trends |uag—— Optimization Initial
if Possible z Design
[Performl VE
Solution Y | Satisactory |2 Progress |0 gy 'Stop with Solution
Found Design? Made? of Previous Iteration

Figure 3. Overall Design Strategy

~1
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The initial primitive-prototype is optimized. |f the resulting prototype meets the de-
dgner's requirements a satisfactory solution is found and the design is completed. Alterna-
tively, IVE expandsthe design space and theresulting primitive-prototypeis again subjected to
optimization and thedesign loop isrepeated. Two points ate of particular intered:

(@) If specific dedign trends appear after a certain number of iterations, then the corre-
gponding limit isinduced to obtain the maximum benefit of that expanson. A further discus-
son on induction appearsin thenext section. |

(b) If the application of IVE does not improve performance, the design iteration is
stopped. Design performance can be increased ether by improving the design objective or by
satisfying previoudy violated condraints

Thedesign iscarried out at the conceptual sage where detailed parametric information
may not be available. Symbolic optimization is preferable when possible for addressng this
lack of detailed information and also for gaining a better qualitative under ganding of the de-
sgn. However, numerical optimization may berequired.

Monotonicity analyss, presented by Papalambraos and Wilde (1988), is a methodology
which can aid in obtaining symbolic solutions by analyzing the boundedness of the problem,
i.e. whether the problem iswel-congrained. A detailed application of monotonicity analyssin
adesgn problem gppearsin Adion et. al. (1991).

4. Induction of Constraint Activity in IVE

The repeated application of IVE and the subsequent optimization of the resulting primi-
tive-prototype sometimesr eveals patterns of condraint activity worth investigating. After each
IVE application, monotonicity analyss derives sets of active condraints and a new optimiza-
tion analyssisperformed. This sequence of actionsistermed adesign generation. Ifthe ac-
tivity of the analogous congraints remains the same acr oss saveral design gener ations, then we
can induce that this pattern will hold for an infinite number of IVE applications, and take the
limit of thisexpanson activity. Moreformally, Cagan and Agogino (1991b) define:

I nductively active (inactive) constraint: |f acongraint isactive (inactive) for n
consecutive generations of expandon then it isinduced to be active (inactive)
for infinite such generations.
The number of consecutive design generations, n, required before attempting induction in IVE
isspecified by theuser. Itsdefault valueis 3.

Induction isnot arequired step, rather it is an additional analyss sep capable of produc-
ing certain designs which would otherwise require infinitetime. The act of induction is funda-
mentally an aggressve design policy, which risksthe possibility that some congraint be vio-
lated at the limit. Thereforeit isimperative that the result of induction be checked againg the
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design constraintsto ensurethat they have not been violated. In addition, when taking limitsa
designer should always determine whether or not the prototype remains avalid representation
of the underlying physics, chemistry and economics of the design.

The following examples have been selected to reveal the key features of IVE. For clarity,
they represent only partial satements of indugtrially relevant design praoblems.

5. Example: Catalyst Weight Minimization
Consider the design of a catalyst whose total weight must be kept to a minimum, subject
to aminimum total surface area constraint, which isrequired for supporting the reaction of in-
terest. Step 1 of the IVE algorithm, shown in Figure 2, requiresthat the design be stated asan
optimization problem. Assuming the primitive-prototype of a single spherical catalyst pellet,
this design becomes:

Minimize Wtot = P not

w.r.t. (Atot> ~i> A 1> )

Subjectto Vgt = Vi (hi) W20 (92)
A = A1 3 (h2) An>0 (%)
Vi=3@ 1y (ha) VtZO (94
Ai=4n r% (h4) Ai=0 (95)
Atot*Amin (gh) riro (g6)

where p is the density of the catalyst and Anin isthe required lower limit of total surface area.
Step 2 of the algorithm is the specification of the extensive, intensive, assignment and input
variables. They are defined below with the variable type inside par entheses:

Wiat = total weight (assignment), Vi =region volume (extensive),
Vot =total volume (assignment), Ai =region surface area (extensive and input),
Atot = total surface area (assignment), r\ =region radius (extensive).

Congraints (hi) and (112) specify that the total volume and total surface area be equal to
those of the catalyst sphere; (113) and (114) define the volume and surface area of écatalyst
sphere; (gi) specifies alower bound on the total surface area; and (g2) - (ge) are the variable
positivity constraints. Step 3 of the IVE algorithm is the specification of the congtraint types.
Congraints (hi), (h2) and (gi) - (g3) are global and the remaining are local. :

Step 4 of the algorithm is the specification of the update formulae. The objective and
constraints (gi) - (g3) are to remain completely unchanged across design generations.
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Congraints (hi) and (h2) are the definitions of the assignment variables Vtat and Aot. |f more
than one design regions become available, the update formula for (hi) and (112) isthe sum of
the particle volume and surface area of each region respectively. This concludesthe input to
IVE.

Monotonicity analysis indicates that this problem is well-constrained and constraint-
bound, i.e. it has a finite solution with zero DOF. Only the positivity constraints are inactive.
Ai ispicked as an input variable. Notethat V\ and r\ depend on A1, so only one of these three
variables can betreated asan input. It isdetermined by backsubgtitution that:

r= éf:land Wm[=§ﬂp(éin:1 . (6)

The designer isfaced with the decision of either accepting the above solution or searching
for a better one which lies outside the boundaries of this design prototype. One way to search
beyond these boundariesis through the application of IVE. In the solution prototype there are
three extensive variables, no intensive variables, and two active local constraints. |f constraint
activity is maintained after expansion then, according to equation (3), | VE isguaranteed to in-
crease the DOF of the prototype, indicating a greater possibility of finding a superior design.

Step 5 of the algorithm has been completed by choosingAl asthe critical input variable
because it appearsin active constraints. Theinitial design has oneregion which is expanded to
two regions, the default number in step 6a, asillustrated in Figure 4. Reblication of the design
topology, step 6b, yieldsthe following primitive-prototype:

Minimize Vrtot = P %tot

W.r.t. C (AIRVWW2ALAI2,rNnr 1))

Subjectto Viat = Wi + V12 (hi) Viot; 210 (92)
An=An+A, (h2) Atot™ 0 (93)
Vi -_-; mry (hsi) A A<3 (g4l
Viz= % P 3i2 (hs2) | V2 {3 (942)
An = 4nr5 0 =13 (950)
N2 =4, (hdy) Al2a (3 (952)
4ot A Y8min {ﬁl)\ ni™ G (g6l)

| _ - ri2nc) (g62)
The _notaIion \m...NO denotes a variable or congraint, X, in region o, which isderived fromre-
gion n,..., which isderived from region m. Notethat theglobal congtraints arenot replicated.

10
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Instead they are modified according to their respective update formulae, as specified by step 7
of the agorithm.

IVEto
2 regions

Figure 4. Application of IVE to the initid catalyst primitive-prototype

This primitive-prototype is a so well-constrained and the resulting prototype exhibits one
DOF4 an increase as expected. Again the positivity constraints are inactive and the rémaining
ones are active. Backsubstitution gives:

/2 _ '
Wwﬁiﬂp["ll (é_mm "121)3 ]' (7
J
and subsequent optimization produces:
Wior _
Br“ =0=
(A_." (Ao P2

r11=r12=rop,’2= —Sm;tn'a.lld szg'ﬁp('sﬂl';n' . (8)

Iopt,2 is the value of the optimal diameters for the two-sphere design and Wqt.2 is the corre-
sponding optimal total weight. Comparison with the one-sphere design indicates adecrease in
total weight by afactor of "2 IVE s responsible for this improvement. Further application
of IVE to both regions of the existing design proposes afour-sphere design. Constraint domi-
nance is maintained and optimization gives:
Wit _ ant an
ori1  d12  dra

ru=r12=r21=r22=r°p(‘4=4\/‘;g" and w_mﬂpl]ﬁx , (9)

=0 =

which congtitutes a further improvement to the obj ective.

Responding to the trends of three consecutive design generations, we induce dominant
condraint activity, where congraints (hi) - Ou) and (gi) of the initial primitive-prototype are
inductively active and the positivity constraints, (g) - (96), areinductively inactive. IVE ex-
tended to N regions and optimization analyss produce the foIIowmg result:
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ropw:q/f-%i: and WOPLN:-‘;-an(m ’Q=Nu_1:1“ww=o. (10)

The induction is successful because no constraints are violated by taking the limit of in-
finitely many independent spherical design regions. This solution indicates a decreasein total
weight by afactor of yf\Tg effectively proposing the design of a catalyst in powder form (many
small spheres).

Other considerations, such as pressure drop, manufacturing difficulties of creating a large
surface area or unpredictable catalytic behavior in very fine form may render other designs
preferable, but the motivating factors for such a preference have not been included in this
model. This example has served to demonstrate the power of IVE to support innovative de-
sign by finding solutions which lie beyond the design space of the initial primitive-prototype
and outperform theinitial design objective.

6. Example: Column Design
In this section an application of IVE is shown which produces a feasible design starting
from an infeasible primitive-prototype. Consider the design of a clamped-clamped column un-
der axial load (Figure 5a). The weight of the column is to be minimized subject to buckling
criteria. In addition, manufacturing consider ations limit the design of an individual columntoa
maximum acceptable weight (and effectively a maximum acceptable radius).
The primitive-prototype becomes:

Minimize Wiot
W.I.t. (W1, r\¢ P\)

Subjectto W = WA (hi) . Z|:,2 p, 11/4
Wi = pit L (hy) x'-"EJ]j2
] rls[‘_m“ ] ch)
Pi = ~applied  (hs) bn L

The variables of this design are the radius, n, the applied load, P\, which is a design input, the
total weight of thedesign, Wi and the weight of acolumn, WA. The parameters are the modu-
lus of elasticity, Eg the length of the column, L, the maximum allowable weight of a single col-
umn, WYre¢ the density of the material of construction, p; and the specified value of the ap-
plied load, /applied- ' ' . |

Congraint (hi) defines the total weight; (112) definastheWeight of one column; (gi) lim-
its the radius from buckling considerations; (g2) limits the radius from weight consider ations;
and (113) specifiesthe desired load. Congtraints (hi) and (113) are global, while (112), (gi) and

12
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(2> areloca. The update formulae for both (hi) and (113) are the sum of each column weight
and axial load respectively.

Since r is congtrained both from above and from below, a prototype exists only if there
are feasble valuesfor theradius:

[ﬁmax-] 2,-12|:§'._P_L = plsmg..
pnL w3 E p2L4 (ID
In this primitive-prototype P = "goplied* therefore afeasible design exists only if:

W2 _nF
Aapplied 17 (12)

()

Figure 5. Column under axial load during the first and second design generations

Consider the situation where constraint (12) is violated, and no prototype exists. Ap-
plication of IVE creates two columns and distributes the load by producing the design topol-
ogy shown in Figure5b. IVE introduces new design variables: each column can be modeled
with an independent radius, load and material. Considering two columns of the same material,
the new primitive-prototype becomes:

Minimize Wrtot
W.r.t. “.WhiM"WYTxiN Pw™ Pxi)
Subjectto | oq, VIL+WR  (hi) o M2
' 12 ton
|n=,JffAL (ha) L PE )
F A Ema
Wi=gsn Ll () " “lpnL ton)
; g ‘ o <[ Wma]¥?
P11+ P12 =~gpplied  (h3) 12 pnL ] Cfea)
2n: |14
ruZ[l-‘-ﬂJJ (g11)
m3E ]

13




I nputVariableExpansion Adlion, Cagan and Powers

If different properties were allowed, 1 VE could produce different load distributions and radii;
however, for the same material, at optimality the two columns have equal radii and equally di-
vided loads. With asingle material, each column carries half the load and:

'.I'lW'&:f!BL‘:*JA' (13)

Congtraint (13) is easier to satisfy than constraint (12), so, depending on the actual values of
the design parameters, FVE can produce afeasible design starting from an infeasible primitive-
prototype. Repeated | VE generations produce at optimality:

Papplied Wiz nE ’

e (19

where N isthe number of columnsin thedesign. I'VE will only produce a feasible prototype if
at least N columns exist to satisfy constraint (14). The radius of each column and the total
weight are;
mfmad Wi, = pL2"3& 15
"= NnE m=PE TSR ()

Equation (15) shows that the total weight increases with the number of columns. In conclu-
sion, enough columns are needed to digribute the load in an acceptable fashion, as specified by
congraint (14), but not more, because it works against the minimizing total weight objective,
as indicated by equation (15). Application of induction produces an inferior solution in this
problem. In thiscase IVE hasinnovated by producing a feasible design space which lies be-
yond the null design space of the initial primitive-prototype.

Note the difference between IVE and DVE. DVE would have expanded the column into
asingle column of different regions. 1VE replicates the topology of the prototype column and
relates the new columnsthrough the total applied load.

7. Example: Competing Reactions in a Mixed-Reactor Network
In complex and industrially relevant applications symbolic solutions frequently cannot be
found. Thisexample demonstrates IVE in conjunction with numerical analysis.
Consider the reaction shown in Figure 6. R reactsto produce P via zero order Kinetics.
An unwanted side reaction produces SP via first order kinetics. The process objective is to
maximize profit, as defined by equation (16).

14
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ke R =Reactant
R 3 - m SP
Xo ™~ v SP = Side product
Mo P = Product

Figure6. Reaction kinetics

Profit .—i\_ alf? i \[%ﬂg%‘mﬂ_\[%igt ] o

Profit= A Af G Cp- B AfG Cgp - D V32 (16)
where
ko =zero order rate congtant [gmol/(/min)], Q =volumetric flowrate [//min],
ki =first order rate constant [min-1], A =saleprice of TP[$/gmolP],
C\ = concentration of speciesi [gmol/fl, B =disposal cost of UB [$/gmoal SP],
V =individual reactor volume [/], D = capital cost [S//*],

M = time of operation [min].
A more complete evaluation function would involve the cost of P, operating costs, etc.
The processisto be carried out by awell-mixed reactor (CSTR). The primitive-prototype
takes the following form:

Maximize Profit® AMQ Cp-BMQCsp-D V372
Wl’t (CR, CP, CSP’ Vs Q)

8ubjectt0ﬁ|ff\§’g :6 hy) V>0 (g
Cpo-Cp _ 14 (h2) (20 (9
_ kg 0 OSCRSCRO (93
Cspo-Csp (hg) ~ 0<SCPSSCRO (6%
-kiCR  Q 0<.CsP £ Cro (%D
Q = Qo ' (h4)

Congtraints (hi) - (113) represent the CSTR mass balances for R, P and SP respectively;
(gl) and (g2) are positivity congraints; (g3) - (gs) specify the realizable concentration bounds;
and (114) setsthe volumetric flowrate equal to its input value. With the exception of (114), all
congtraints are local. The update formulae for IVE are: the sum of the input flowrates to each
reactor for (h,) and {A M 1(Qi Cpi) - B M 1(Qi CgPi) - D YVU'7} for the objective.
Different update formulae and additional boundary conditions apply for DVE; the initial
primitive-prototype is the same for both techniques, but the re-combination of the flows de-
pends on the expansion technique.
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A specific design is defined by the following parameters:

CRo=20gmoV/, 2=5 //min,

Cpo =Csp, = 0gmol//, A =5%gmol P,
ko =0.1 gmol/(/min), B =0.5 $gmoal SP,
ki =0.05min-1, D = 25,000 $//3/2,

_ M= 10"min(-2yrs).
At optimality it is found numerically that the CSTR volume is 153 liters, producing a
profit of $ 3.6 million over aperiod of two years. Better designs can be sought by applying

DVE and IVE. The corresponding design topologies are shown in Figure 7 and the results are
summarized in Table 1.

Table 1. Comparison of the primitive prototype and the designs of DVE and IVE

Optimal vol-  Net Prdfit, P Sales, SP Disposal, Capital cost,
ume, [/] [106$] [106$] {105 8] [100$]
SingleCSTR 153 3577 76.635 25.621 47.438
Serial CSTRs (DVE) 2@199 29.690 199.376 28.926 140.760
Parallel CSTRs (I VE) 2@198 34.583 197.976 24.112 139.280

Q. CRo

DVE Q. Cr1.
Cp1. Csp1 01.CR1, O, Cra,
Cp1, Csp1 Cp2, Csp2
@, CRr1,
Cp1, Cspt =

@, CRo ——

A

0,Cr2,
Cp2, Csp2

Figure7. Design topologies produced by IVE and by DVE
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At optimality both the serial solution, produced by DVE, and the parallel solution, pro-
duced by IVE, have two reactors of equal volumes. The paralld solution also calls for an
equal split in volumetric flowratesinto the two reactors. The best performance is exhibited by
the parallel configuration, innovated through the application of IVE. The results of further
application of DVE and IVE are shown in Tables 2 and 3 respectively. In both cases, at opti-
mality the individual reactors are sized equally.

When employing a large number of reactorsin series (the result of DVE, shown Table
2), the total volume of the system approaches a constant value. Inducing constraint activity,
with the mass balance and flowr ate equality constraints active and the positivity and concentra-
tion inequality constraints inactive, produces the limit of infinite reactorsin series with total
volume of about 240 liters. At thislimit the capital cost vanishes, indicating that the economic
model used in the process objective is no longer valid. Nevertheless the analysis shows the
trend that smaller reactorsin seriesproduce a larger profit than asinglereactor, because of dis-
economies of scale (capital cost dependenceto the 3/2 power).

Table 2. Performance of reactors in series (DVE)

Serial CSTRs Total vol- Net Prdfit, P Sales, SP Disposal, Capital cost,
(DVE) ume, [/ [1&9] [1&$]
1 153 3577 76.635 25.621 47.438
2 399 29.690 199.376 28.926 140.760
3 367 50.397 183597 31.640 101360
4 328 56.244 164.232 33577 74.412
5 308 58.889 153.849 34.615 60.345
10 271 63.774 135491 36.451 35.266
100 243 74.027 121.344 37.866 9.452
1000 240 79.102 120.039 37.996 2941

Similarly, diseconomies of scale make the parallel operation with smaller reactors more
profitable than that of asingle reactor (theresult of IVE, shown Table 3). Again the economic
model breaksdown at the limit of infinitereactors. Thislimit isonly accessible with induction
of constraint activity if at least five parallel reactors are present before the induction limit is
considered because the active set of constraints changes. At this point all of R hasreacted to
produce P, while the mass balance of SP becomes inductively inactive and the positivity con-
graint on Cp becomesinductively active. In this example if we had induced congtraint activity
of the wrong constraint set, we would have produced an invalid solution; see Cagan and
Agogino (1991b) for adiscussion on the limitations of heuristic-based induction techniques.
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Table 3. Peformance of reactors in parallel (IVE)

Parallel Total vol- Net Profit, P Sales, SP Disposal, Capital cost,
CSTRS(TVE)  ume,!/] [107] [1(fi$] [IOH] [10"S]
1 153 3377 76.635 25.621 47.438
2 396 34383 197.976 24.113 139.280
3 621 70.812 310.363 16.333 223.218
4 841 108.532 ‘ 420562 7.100 304.930
5 1,000 146.447 500.000 0 353553
10 1,000 250.000 500.000 0 250.000
100 1,000 420.943 500.000 0 79.057
1000 1,000 475.000 500.000 0 25.000

8. Discussion

These examples illustrate the fundamental features of IVE. The main ideaisparallel
processing of an input by replicating the design topology and distributing the input to the indi-
vidual regions. The introduction of new variables supports design innovation.

In some cases, the trend towards parallelism is caused by the form of the objective func-
tion. For example, when the objective reflects diseconomies of scale then parallel designs are
favored over single-region designs and 1VE continues dividing the space until other features
dominate the objective function. In the reactor example, the capital cost was proportional to
the individual reactor volume raised to the 3/2 power, which promoted parallel processing
through the diseconomies of scale.

In other cases the trend towards parallel systems generated by | VE was controlled by the
design constraints. For example, in the column problem the radius limitation on each column
constraint due to buckling criteriais satisfied through the repeated application of IVE.

In more complex examples there will be more interplay between other economic issues.
For example, in the catalyst powder problem the costs associated with generating small parti-
cles were not included in the optimization model. As more of these features are included, di-
rect numerical searches for performance will be preferred over symbolic methods. The reactor
synthesis problem illustrates how IVE can still be used to guide the development of system
structures in this more complex environment. _

IVE and DVE are two main tools for expanding the design space in an optimally di-
rected manner. We expect that other methods which are hybrids of these two will prove useful
in certain problems. In addition, other expansion techniques may aso be possible.
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Thisresearch has not resolved the issue of how to control the application of alibrary of
design space expansion tools, such as IVE and DVE. There may be problem characteristics
and improvement trajectories which can suggest when each techniqueis applicable.

The IVE algorithm has not been automated. Except for the treatment of the boundary
conditions, its automation would be analogous to that of DVE.

9. Conclusions’

Input Variable Expansion, IVE, is a new formal domain independent technique for the
generation of innovative designs. 1VE, along with the complementary DVE, form the begin-
nings of alibrary of formal approaches for design space expansion. We expect that other com-
plementary techniques, aswell as hybrid techniques, can be invented and added to thislibrary.

IVE has been shown to improve designs either by producing better objectives or by ex-
panding an initially infeasible design space to create one which is feasible. The methodology
has done so by employing both symbolic and numerical solutions, as needed.

IVE provides away of formally structuring the search for alternative design concepts, be
it automated or directly applied by the designer. Although symbolic analysis lends intuitive
under standing to the design problem, numerical solutions are capable of addressing problems

of higher complexity which may permit the application of this method to industrially relevant
problems.
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