
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Supporting Chemical Process Design within an
Integrated Architecture

Ajay Modi, Allen Newell, David Steier, Arthur Westerberg
EDRC 06-119-92

Supporting Chemical Process Design within an
Integrated Architecture

AjaylLModi
Department of Chemical Engineering and Engineering Design Research Center

Allen Newell
School of Computer Science

David M. Steier
Engineering Design Research Center

Arthur W. Westerberg1

Department of Chemical Engineering and Engineering Design Research Center

Carnegie Mellon University, Pittsburgh, PA 15213

Abstract Process design is a complex activity that requires the design agent to possess
characteristics currently missing in most artificial design systems. Soar is an integrated
software architecture for knowledge-based problem solving, learning and interaction with
external environments. We report on tfto systems developed using the architecture. The
first, CPD-Soar, designs distillation sequences, while the second, Interval-Soar, performs
simple arithmetic tasks. The structure and behaviour of both systems is described and
discussed in depth. In so doing, it is depicted how design and design-related tasks can be
cast within the Soar framework, hence demonstrating the functioning and strengths of the
architecture's problem-solving mechanisms. The systems provide evidence for an
hypothesis about learning; namely, that the knowledge learned by an agent while
performing a task is strongly dependent upon the models the agent brings to the problem-
solving experience. Specifically, it is shown that the richer the model an agent has of its
evaluation ftinctions, the more general the knowledge it learns. In relation to this, we
describe how the functionality of Interval-Soar can be used to farther improve upon the
performance of CPD-Soar. We also discuss a number of other issues that arose when
building the two systems.

1. Introduction
Given the significant role that design plays within the chemical processing industry, the
development of computer-based support systems has long been an important objective within
chemical engineering. However, most process design systems developed to date lack
mechanisms allowing them to handle the inherent complexities of their domain. In particular, the
ability to make decisions along the entire spectrum of contexts within which design problems are
posed, the ability to bring multiple knowledge sources to bear in making these decisions and the

!To whom correspondence concerning this paper should be addressed. University Libraries
Carnegie .'HefloMfttiveVslty
Pittsburgh PA 1S2I3-3890

ability to learn new knowledge, either from internal problem-solving experiences or from
external sources, are seen as being especially significant, even necessary, for dealing with the
extensive demands of process design domains.

We begin by introducing the Soar architecture as a vehicle for constructing process design
systems with the above abilities, and then describe two systems, CPD-Soar and Interval-Soar,
built using the architecture. While die former designs distillation sequences, die latter performs
simple arithmetic tasks. The motivation for constructing each system as well as its domain,
structure, operation and performance is presented in detail. The implications for process design
of each system are also discussed A number of effective ways of further improving the abilities
and performance of CPD-Soar are described These include endowing the system with
knowledge to evaluate competing separation tasks using marginal prices as well as embedding
within the system the functionality of Interval-Soar. The problem-space structure and expected
performance of CPD2-Soar, the enhanced version of CPD-Soar, are postulated

2. Soar
Soar [Laird et al 87] is an integrated software architecture for knowledge-based problem solving,
learning and interaction with external environments under development for several years. The
architecture is of direct interest to a large group of researchers for a broad spectrum of reasons.
Their research agendas are diverse and their academic backgrounds range from psychology and
sociology to engineering and computer science.

The Soar system has been used to build systems capable of solving problems ranging from
highly routine to extremely difficult, and its learning mechanism has been successfully applied in
a wide variety of situations [Steier et al 87]. Depicted as a block diagram IA Figure 2-1, the
architecture comprises a small number of distinct mechanisms that provide support for a large
number of the capabilities deemed important for a problem-solving agent These mechanisms
include problem spaces for conducting all search, production rules for all long-term knowledge,
attribute-value objects for all short-term knowledge, preference-based decision making for all
decisions, impasse-driven subgoaling for all goal generation, input/output functions for all
interactions with the external world and chunking for all learning. The chapter only briefly
describes the mechanisms; more detailed descriptions are provided by Laird et al [Laird et al
90].

CPD-Soar was developed using Soar 4, an earlier version of the architecture, while the current
version, Soar 5, was used in creating Interval-Soar. The description of the architecture presented
is of Soar 5 with some of the more important differences between Soar 4 and Soar 5 highlighted.

Recognition Memory

Working Memory
context suck

Decision Procedure

Figure 2-1: Architectural structure of Soar

2.1. Problem Spaces
* All tasks in Soar are performed as seaich in problem spaces. A problem space consists of a set of

states and a set of operators. Applying an operator to the current state generates a new state and a
goal is achieved when a desired state is reached. Figure 2-2 depicts an example problem space
from the Blocks World task.

Figure 2-2: Example problem space
(from [Laird et al 90], Figure 2-1)

In Soar, multiple goals correspond to a task decomposition, each of which may require different
problem spaces to be searched. The task is accompUshed when the top-level goal is attained.
All search is realised by two generic functions: task-implementation and search-control. Task-

implementation functions involve the retrieval or generation of problem spaces, states and
operators. Search-control functions, on the other hand, involve the selection of objects (problem
spaces, states, operators) from among those competing.

A major difference between Soar 4 and Soar 5 is in the way changes are made to an existing
state. In Soar 4, the application of an operator results in the creation of a new state. All state
modifications are made directly on the new state and any state contents not changed as a result of
the operator application are copied from the old state. Multiple states may thus be maintained
within a single problem space. In contrast, an operator is implemented in Soar 5 by making
destructive changes to the existing state; thus, only a single state is maintained in each problem
space.

2.2. Working Memory
All short-term or temporary knowledge, representing the current problem-solving situation, is
stored in working memory as a set of objects. Each object, denoted by a unique symbol called
its identifier, consists of a set of augmentations and a set of preferences for the augmentations.
While augmentations describe the object in terms of a set of attributes, preferences determine the
actual contents of working memory by asserting the relative or absolute worth of a specific value
of an attribute. Since the values of attributes can be identifiers of other objects, complex frame-
like representation structures may be created. Figure 2-3 depicts the general form of an
augmentation, which consists of four symbols: a class, an identifier, an attribute (preceded by an
A) and a value. Of the example augmentations, two share the same identifier (c4) and hence refer
to the same object, and two belong to the same class (distillation-column).

GENERAL FORM OF AN AUGMENTATION:

(class id "attribute value)

EXAMPLES OF AUGMENTATIONS:

(component c4 Aname benzene)
(component c4 Aflowrate 23.8)
(distillation-column d8 Are£lux-ratio 2.85)
(distillation-column d2 Areboiler r3)
(reboiler r3 Atemperature 473)

Figure 2-3: Example Soar working-memory augmentations

2.3. Recognition or Long-Term Memory
All long-term knowledge in Soar is stored in an associative recognition memory, realised as a
production system. Each production consists of a set of conditions and a set of actions. The
conditions test working memory for the presence or absence of object augmentations whereas the
actions add to it new augmentations and preferences. Productions encode all knowledge required
to perform a task. This knowledge pertains to either task implementation or search control. An
important characteristic of Soar as a production system is the absence of any conflict resolution.
All productions that are instantiated, i.e., have their conditions satisfied, are selected to fire, thus
allowing the retrieval of knowledge in parallel.

Figure 2-4 presents an example Soar production, its English version, the working memory
augmentations that instantiate the production, i.e., cause it to fire, and the augmentations and
preferences added to working memory as a result of the production firing. The pluses in the
working-memory elements denote acceptable preferences.

In Soar 4, the preference scheme is only used in determining the contents of context slots, i.e.,
problem spaces, states and operators. In Soar 5, preferences are used to determine the values of
all augmentations, not just those pertaining to the context

2.4. Decision Cycles
All problem solving in Soar revolves aroung a number of decisions; what problem space should
be searched to attain a goal what state should the search proceed from and what operator should
be applied to the state. These decisions occur in a sequence of decision cycles, each consisting of
two phases.

During the first phase, the elaboration phase, all instantiated productions fire. Since productions
may create working memory elements that satisfy other productions, this process can continue
for many elaboration cycles. It terminates when it runs to quiescence, i.e., when no more
productions can fire. Elaboration results in both augmentations and preferences being added to
working memory.

The selection of an object for a role is made during the second phase of the decision cycle, the
decision procedure phase. Beginning with the oldest goal, the decision procedure considers each
slot in the goal-context-stack. Within a context, the problem-space role is considered first,
followed by the state and operator roles respectively. All preferences relevant to a slot are
gathered and interpreted to determine an object for its role. If a unique decision can be made for
an object for one of the slots in the context hierarchy, that object will be chosen. The selection of
an object for a context slot signifies the end of a decision cycle and problem solving then
proceeds with the elaboration phase of the next cycle. Figure 2-5 pictorially illustrates an
example sequence of three decision cycles.

SOAR PRODUCTION:

(sp interval*inst-select-x
(goal <g> Aprobiem-space <p> Astate <s>)
(problem-space <p> Aname interval)
(state <s> ^parameter <x>)
(parameter <x> Aselected no Aname x)

— >
(goal <g> Aoperator <o> +)
(operator <o> Aname select-x + Aparameter <x> +))

ENGLISH VERSION OF PRODUCTION:

If problem*space interval has been selected
and parameter x has not been selected

then create an acceptable preference for operator select-x
and create an acceptable preference to augment operator

select-x with parameter*x

AUGMENTATIONS INSTANTIATING PRODUCTION:

(goal g2 Aprobiem-space p3 Astate s2)
(problem-space p3 Aname interval)
(state s2 Aparameter x5)
(parameter x5 Aselected no Aname x)

AUGMENTATIONS AND PREFERENCES ADDED BY PRODUCTION FIRING:

(goal g2 Aoperator o2 •)
(operator o2 Aname select-x + Aparameter x5 +)

Figure 2-4: Example Soar production and working-memory contents
before and after firing

OCCISONJ

V V •

w w w w

Figure 2-5: Example sequence of decision cycles
(from [Laird et al 87], Figure 2-6)

2.5- Subgoaling
A situation may arise in the problem solving when a unique decision cannot be made for any of
the slots in the current context because of either incomplete or inconsistent information. Such a
situation, known as an impasse, is dealt with by Soar by automatically subgoaling. Furthermore,
subgoals may occur within subgoals, thus resulting in a hierarchy. The architecture recognises
four kinds of impasses: tie, no-change, rejection and conflict A tie impasse occurs when several
objects, for example operators, have been made acceptable, but not enough knowledge exists to
select one. A no-change impasse arises if none of the context slots change value during a
decision cycle. A rejection impasse occun if all the objects made acceptable for a context slot
are also rejected A conflict impasse arises if the objects for a context slot have conflicting
preferences, e.g., X is better than Y and Y is better than X. Impasses are resolved when
preferences that allow Soar to select one of the candidate objects uniquely for a context slot are
added to working memory.

Figure 2-6 depicts the preferences in working memory before and after an operator-tie impasse
* has occurred

BEFORE SUBGOALING:

(operator 01 acceptable)
(operator 02 acceptable)
(operator 03 acceptable)
(operator 03 indifferent to operator 02)

~> Generate subgoal to resolve tie ixnpasae among
operators 01, 02 and 03

AFTER SUBGOALING:

(operator 01 better than operator 02)
(operator 03 rejected)

—> Operator Ol selected and impasse resolved

Figure 2-6: Example preferences in Soar before and after
an operator-tie impasse

2.6. External Interaction
All interactions with the external environment occur via a single input/output (I/O) interface. The
interface allows Soar systems to communicate with two kinds of functions, input functions and
output functions, both written in Lisp. Input functions provide Soar with information about the
outside world by creating preferences that result in changes to top-level-state augmentations.
Output functions affect the external enviroment by responding to changes in top-level-state
augmentations caused by production firings. An output function is triggered whenever a
working-memory element that pattern matches the output function is created

The I/O interface is a feature of Soar 5. In Soar 4, all interactions with the external world are
performed via lisp functions that are called as actions from the right-hand-sides of productions.

2.7. Chunking
Soar learns from its experiences in resolving impasses by constructing productions, known as
chunks* for insertion into its long-term or recognition memory. The chunks summarise the
problem solving that occurred in the subgoals and are created whenever results are generated.
Chunking operates by basing the actions of a new production on the results of the subgoal and
the conditions on those aspects of the pre-impasse situation that were relevant to the generation

10

of the results. Relevancy is determined by working backwards through the traces of the
productions that fired in the subgoal to those working-memory elements, residing outside the
subgoal, on which the subgoal's results are ultimately dependent These elements form the basis
of the chunk's conditions. An important feature of the backtracing procedure is that productions
that only generate search-control knowledge do not have their traces examined since these
productions only affect the efficiency with which a goal is attained, and not the correctness of its
results. Finally, the working-memory elements deemed relevant by the backtracing procedure
are processed to determine the chunk's actual conditions and actions. This includes replacing
some of the symbols in the working-memory elements by variables, a process known as
variablization. Only symbols that are object identifiers are replaced by variables. All others are
left as constants. This generalisation process ensures that the chunks learned will apply in future
problem-solving situations that are not exactly the same as the ones they were created under,
only similar. Laird et al [Laird et al 86] have presented a detailed description of chunking in
Soar.

Figure 2-7 schematically illustrates the creation of an example chunk. The circles in the diagram
represent working-memory elements while the intervals between the dashed lines represent
decision cycles. Since the elements A, B and C represent the pre-impasse situation and the
elements D and E are the results that resolve the impasse, the former constitute the conditions of
the learned chunk and the latter its actions.

Like any other learning system, it is possibltffor Soar to acquire incorrect knowledge, which may
result if the system either makes the wrong inference or receives the wrong information.
Although productions encode all knowledge in Soar, errors only arise through incorrect
decisions, Le., the wrong problem space, state and operator being selected. Consequently,
recovering from erroneous knowledge in Soar does not involve modifying the productions that
encode the knowledge, but rather the decisions that are the consequence of applying the
knowledge. By learning productions that make the right decisions, Soar recovers from incorrect
knowledge. Laird [Laird 88] has described a recovery-from-error technique that allows Soar
systems to recover from any incorrect knowledge they may have captured in their long-term
memories.

Rosenbloom and Laird [Rosenblootn & Laird 86] have described how chunking maps onto
explanation-based learning [Mitchell et al 86], an analytic learning method.

3. CPD-Soar

3.1. Overview .
CPD-Soar is a system developed within the Soar architecture that solves process design tasks.
The system determines the sequence in which the splits should be applied to a feed stream in
order to create the desired products. The reasons for developing CPD-Soar were simple: to
understand how a process design task could be cast within the Soar framework and to observe

11

fmpats* fUtolv*

Figure 2-7: Chunk creation in Soar
(from [Newell 90], Figure 4-12)

how die resulting system would perform, in terms of both problem solving and learning.

Given a feed specification, CPD-Soar solves the task by first generating all the applicable splits
and then sequencing them. It controls the search by applying a number of heuristics commonly
used in distillation sequence design. It resolves ties and conflicts among the heuristics by
performing a one-step lookahead search. It has been shown in Chapter CHAP3 that the marginal
price of a separations task performs better as an evaluation function for controlling the search
than the heuristics employed in CPD-Soar. However, because the function was not discovered
until after CPD-Soar was created, it was not used in evaluating competing*task decisions in
CPD-Soar.

12

3.2. Structure of CPD-Soar
CPD-Soar's knowledge is distributed among its domain spaces and the selection2 space. Figure
3-1 depicts the decomposition of the system into its problem spaces and operators. Each problem
space is depicted by an oval and the operators it contains are listed in the box next to it
Impasses are denoted by directed lines linking problem spaces. ON refers to an Operator No-
change impasse.

CPD-Soar is implemented by 168 (Soar 4) productions. Of these, 60 implement the selection
space and other default search-control knowledge. The sizes of the remaining task spaces in
CPD-Soar in terms of numbers of productions is summarised in Table 3-1.

3.2.1. Domain Spaces
There are seven domain spaces in CPD-Soar design, feed, order, split, sequence, update and
output. Of these, all except the design space are operatoT-implementation spaces. The design
space, which is the top-level space, has eight operators: get-feed, order-components,
link-components, make-splits, identify-forbidden, sequence-split, update-stream and write.

The get-feed operator interacts with the user to obtain the feed specifications. This operator is
implemented as a problem space called feed which contains two operators, moke-feed and
get-comp. Make-feed prompts the user for the name of the feed stream and the number of
components. Get-comp obtains the following information about each component from the user
its flowrate, its relative volatility and product in which it is desired.

The order-components operator ranks the components in a stream in descending order according
to volatility. The lightest component, i.e., the one with the highest volatility, is given a rank one.
The operator is instantiated for all streams that are unordered and is implemented as a problem
space called order. This space contains a single operator, rank, which is instantiated for all
unranked components in the selected stream.

Streams are represented as linked lists and columns are modelled as list-splitters, i.e., as perfect
sputters. Each component in a stream, other than the one with the highest rank, has an attribute
"lighter-than" whose value is the identifier of the component that is adjacent to and heavier than
it The operator link-components links all the components in a stream whose components have
already been ordered.

Make-splits generates all the possible sharp splits that can be applied to the feed stream. For a
stream with N components, the number of possible sharp splits is 2V-1. Each split is
characterised by a light and heavy key. The split problem space implements the make-sphts
operator. Split contains a single operator, also called sptt, that generates a split and computes
the ratio of the volatilities of the light and heavy keys. Identify-forbidden tags each split

-Boldface TlmesRoman is used to denoce problem spaces and M&ee Unties is used to denote operators.

13

gVALUATE-OBJECTl

GET-FEED
ORDER-COMPONENTS
LINK-COMPONENTS
MAKE-SPLITS
IDENTIFY-FORBIDDEN
SEOUENCE-SPLIT
UPDATE-STREAM
WRITE

ON (EVALUATE.OBJCCT)

SELECTION"
I/CONFLICT

(SEQUENCE-SPLIT)

ON (ORDER.
COMPONENTS)

MAKE-FEED
GET-COMP

COMPUTE-FLOW
COMPUTE-FRACTION
COMPUTE-NORMVOL

ON (SEQUENCE'
SPUD

ON (UPDATE
STREAM)

MAKE-NEW
COMPUTE-VAPRATE

Figure 3-1: Problem-space structure of CPD-Soar

14

Problem Space

Design

Feed

Order

Update

Split

Sequence

Output

No. Productions

49

9

8
14

6

15

7

Table 3-1: Sizes of domain spaces in CFD-Soar

generated by make-splits as either allowed or forbidden. A split is forbidden if its two keys
coexist in the same product

The operator update-stream computes the mole fractions of a stream's components, normalises
their volatilities with respect to the heaviest component and computes the total flowrate of the
stream. It is implemented as a problem space called update, which contains three operators:
compute-flow, compute-fraction and comjtihe-normvol.

When all the allowable splits have been sequenced, the write operator writes them to the screen
in the order they are to be applied. Write is implemented as the problem-space output, which
contains a single operator called print that outputs a split to the screen.

The operators described thus far are all used by GPD-Soar to perform routine book-keeping and
input/output functions. However, the key function to be performed in solving the design problem
is the ranking of the allowable splits in the order in which they are to be applied. This function is
performed by the sequence-split operator, which is implemented as a problem space called
sequence that contains two operators, make-new and compute-vaprate. The make-new operator
generates two new streams corresponding to the distillate and bottoms products and augments
these streams with their components. It also generates a column that is augmented with its feed
and product streams. The compute-vaprate operator computes the vapour flowrate in the
column using a simplified function proposed by Douglas [Douglas 88].

The sequence-split operator is made acceptable for all unranked allowable splits that may be
applied to streams that have neither been split nor are products. Splits that apply to different
streams are made indifferent to each other. The following heuristics are used to select among
splits that apply to the same stream: easiest separation best (similar to hardest separation worst),
removal of lightest key best and removal of component with largest flowrate best. If the
application of the heuristics fails to result in a unique split choice, a one-step lookahcad strategy

IS

is employed to make a decision. This involves selecting the split that results in the column with
the lowest vapour flowrate.

3.2.2. Selection Space
The selection space contains Soar's default knowledge for resolving multi-choice impasses, i.e.,
ties or conflicts among competing problem spaces, states or operators. It contains one operator,
evaluate-objecty whose function is to compute an evaluation for a competing object. The
following section describes the use of the selection space to resolve ties or conflicts among
competing sequence-split operators.

3.3. Illustration of CPD-Soar Executing
To portray the search performed by CPD-Soar, consider the simple but representative situation in
which a stream consisting of three components, A, B and C, is to be separated This situation is
depicted in Figure 3-2.

Suppose that CPD-Soar, on the basis of its current knowledge, i.e., its heuristics, is unable to
decide between the two possible splits, A/B or B/C. This indecision could be due to one of two
reasons. Either its knowledge indicates both splits are equally good, in which case a tie impasse
will be encountered, or its knowledge is conflicting, with one piece of information stating A/B is
better and another stating B/C is better, in which case a conflict impasse will arise.

In both cases, CPD-Soar subgoals into the selection space to generate the knowledge required to
resolve the impasse. In the selection space, the evaluate-object operator is made acceptable for
each object in the tie or conflict impasse, in this case, the two sequence-split operators. Since it
does not matter in which order the splits are evaluated, the evaluate-object operators are made
indifferent to each other. CPD-Soar evaluates the competing splits by trying each one out in turn
and comparing the results.

Suppose the B/C split is selected first to be evaluated. If CPD-Soar encounters an operator no-
change impasse in trying to apply the evaluate-object operator, the design space is made
acceptable. The B/C split is applied to the stream and the vapour flowrate of the resulting column
computed Suppose it is X in this case. This knowledge is passed back to the selection space.
CPD-Soar next performs the same sequence of operations for the second split Suppose the
vapour flowrate for the A/B split is Y. The two evaluations, i.e., flowrates, are then compared in
the selection space and a better-than preference is generated for the split corresponding to the
smaller flowrate with respect to the other. Supposing that X is smaller than Y in this case, the
split B/C is chosen.

To illustrate die behaviour of CPD-Soar, die problem-solving trace for an example eight-
component problem is presented below. This version of CPD-Soar is only endowed with one
search-control heuristic, select easiest separation next; hence, the splits are applied in order of
decreasing ratio of key-component relative volatilities. Splits with the equal key-component

16

TASK GOAL

DESIGN MOSLEM SPACE

OPERATOR TIE OR
CONFLICT SUSGOAL

SELECTION PROBLEM SPACE

•VALUATION SUSGOAL

DESIGN PROILEM SPACE

Figure 3-2: Selecting among competing splits in CPD-Soar

relative-volatility ratios are made indifferent to each other.

The leftmost column indicates die decision cycle number. G (for goal), P (for problem space), S
(for state) and O (for operator) indicate the context slots and the identifiers adjacent to them, e.g.,
Gl or P2, indicate the specific objects that fill the slots together with their names in some cases,
e.g., design or get-feed. Indentations in the trace indicate the creation of subgoal£ All statements
in brackets are comments included to make the trace readable while all other statements are
either output by the system or input by the user.

0 6 : 61

17

1 P: P2 DESIGN
2 S: S4
3 O: 05 GET-FEED
4 —>G: Q€ (GET-FEED OPERATOR NO-CHANGE)
5 P: P7 FEED
6 S: S9

7 O: Oil MAKE-FEED Enter name of feed stream

feed [The feed stream name has been entered]

Enter number of components
8 [The number of components has been entered]

8 S: N13

9 O: 014 GET-COMP Enter component name

h [The component name has been entered]

Enter component volatility

3 [The component volatility has been entered]

Enter component flowrate

1 [The component flowrate has been entered]
[Name/ volatility and flowrate are entered for the
remaining 7 components]

10 S: N25
11 0: 026 ORDER-COMPONENTS
12 «-X3: G27 (ORDER-COMPONENTS OPERATOR NO-CHANGE)
13 P: P28 ORDER
14 S: S30

[The components of the feed stream are ordered...]

31 S: N83
32 0: 084 LINK-COMPONENTS [The components are linked]
33 S: N85
34 0: 086 DPDATE-STREAM
35 —X3: G87 (UPDATE-STREAM OPERATOR NO-CHANGE)

[The stream is updated]
36 P: P88 UPDATE
37 S: S90
38 0: 091 COMPUTE-FLOW
39 S: N93
40 O: 094 COMPUTE-NORMVOL

18

41 S: N96
42 O: 097 COMPUTE-FRACTION
43 S: N99
44 O: O100 MAXE-SPLITS
45 —>G: 6101 (MAXE-SPLITS OPERATOR NO-CHANGE)

[All possible splits are created]
46 P: P102 SPLIT
47 S: S104
48 O: O106 SPLIT
49 S: N129
50 O: 0131 SEQUENCE-SPLIT

[A split is selected to apply]
51 —>G: 6137 (SEQUENCE-SPLIT OPERATOR NO-CHANGE)
52 P: P138 SEQUENCE
53 S: S140
54 O: 0141 MAKE-STREAM [New streams are created]
55 S: N154
56 O: 0156 ORDER-COMPONENTS [The components are ordered...]

[Similar steps to those described above are performed
whenever a new stream is created; its components are
ranked and linked and it is updated...]

233 S: N509
234 O: 0510 WRITE %*

[Since all splits are ranked, they are output]
235 —>G: 6511 (WRITE OPERATOR NO-CHANGE)
236 P: P512 OUTPUT
237 S: S514
238 0: 0515 PRINT
Split B/C of key-component volatility ratio 3 is 1
Split C/D of key-component volatility ratio 5/2 is 2
Split E/r of key-component volatility ratio 2 . is 3
Split r/6 of key-component volatility ratio 2 is 4
Split 6/H of key-component volatility ratio 2 is 5
Split A/B of key-component volatility ratio 2 is 6
Split D/E of key-component volatility ratio 3/2 is 7
goal D0-DESI6N achieved [The problem has been solved]
"End — Explicit Halt"

3.4. Performance of CPD-Soar . , , .
As noted earlier, almost all of CPD-Soar's problem solving involves either routine calculations
or the transfer of information into and out of the system. The only problematic situations
encountered concern the ordering of the splits. Hence, the performance of the system is most
usefully described with respect to its strategy in resolving ties or conflicts among competing
splits In regard to this, two points will be made: the first concerns the use of the single-step

19

lookahead search and the second the use of vapour flowrate as an evaluation metric.

Recall that an important incentive in constructing GPD-Soar was to get an appreciation of the
kind of chunks that would be learned in domains in which a significant portion of the problem
solving involves numerical calculations. To achieve this objective, the lookahead search was
deemed sufficient since chunks are learned by CPD-Soar whenever results are generated within
subgoals.

Vapour flowrate was selected as an evaluation metric since in many contexts it is a good
indicator of the cost, both construction and operating, of a column. Lower vapour rates result in
smaller columns and lower utility usage. However, this in no way implies that CPD-Soar is
restricted to using vapour flowrate as the evaluation metric. By endowing it with the appropriate
knowledge, the system can certainly be made to apply alternative evaluation metrics.

To depict its learning performance, a typical chunk learned by CPD-Soar is presented in Figure
3-33 together with its English version. Although too specific, i.e., die condition elements have
attributes whose values are numeric constants, such a chunk can be useful if the system solves its
task by conducting an exhaustive search and the search space is represented as a network, i.e.,
the quantity of each species in the input to a distillation column is assumed to be either the same
as in the initial process feed or zero. Under these conditions, a chunk acquired early in the
problem solving can fire during later stages of the same problem.

In process design problems, it is often the case that many computations are repeated several
times during the same problem instance. Also, decisions among the same competing choices
may also be repeated An example from the domain of distillation-sequence design is the
calculation of the column parameters for a particular split A search down one branch of the
graph may require the A/B split to be evaluated. However, further down the branch a decision
may be made not to explore it any further and to switch the search to another branch. This new
branch may now also require the A/B split to be evaluated. However, since the design system
will have chunked away the results of the A/B evaluation that was performed during the search
of the previous branch, this evaluation will not have to be repeated. In process design problems,
it is also often the case that decisions from among the same competing choices will have to be
remade several times within a single problem instance. For example, while searching a particular
branch of a graph, a decision may have to be made between two competing splits, say, A/B and
B/C, which in turn may require a search. Later, when some other branch of the graph is being
searched, it is possible that a decision may again be required between A/B and B/C. This time
however, the system will be able to make a decision immediately based on the knowledge it had
learned earlier. Such within-trial transfers of knowledge can help make tractable larger design
problems than would be attempted without it

3Thc syntax of the production presented here is Soar 4 since this was the version of the architecture within which
CPD-Soar was initially developed while the productions presented elsewhere are in Soar 5 syntax.

20

(•p p45 alaborata
(goal <gl> "problan-apaca (o undacidad <pl> }
Aatata < O undacidad <nl> } Adaairad <dl>)
(dasirad <dl> Abattar lowar)
(oparator <o2> Anana aaquanca-aplit A»plit <»1>
Aatraam <«3>)
(aplit <al> Ahk <hl> Alk <11> Aralvol 3/2)
(Ik <11> Anana b)
(atraan <a3> Acomponant < d > { o <cl> <c2> }
(o <c2> o <cl> <c3>))
(componant <cl> Anama b Aflowrata 2)
(hk <hl> Anama c)
(componant <c2> Anama c Aflowrata 3)
(oparator { o <o2> } Anama aaquanca-aplit)
(oparator Aaplit < o <al> <«2> } Aatraam <«3>)
(aplit <«2> Ahk { o <hl> <h2> > Alk { o
Aralvol 2)
(Ik <12> Anama a)
(componant <c3> Anama a Aflowrata 1)
(hk <h2> Anama b)

— >
(prafaranca <o2> Arola oparator Avalua worsa
Arafaranca Agoal <gl> ^roblam-apaca <pl>
Astata

If aaquanca-aplit oparator o2 that inplamanta
aplit al haa baan aada accaptabla

and aplit al haa light kay B and haavy kay C
and tha ratio of volatilitiaa batwaan B and C i« 1.5
and C haa flowrata 3
and B haa flowrata 2
and aaquanca-aplit oparator ol that implamanta

aplit »2 haa baan mada accaptabla
and aplit «2 haa light kay A and haavy kay B
and tha ratio of volatilitiaa batwaan A and B i t 2
and A haa f lowrata 1

than craata a woraa prafaranca for oparator o2 with
raapact to oparator ol

Figure 3-3: Example of a chunk leamed by CPD-Soar

21

3.5. Implications for Process Design
The development of GPD-Soar was intended to be an initial step towards understanding the
implications of developing a process designer within an integrated architecture. Its instantiation
was a valuable exercise for two main reasons: one, it presented evidence that the mechanisms
present in Soar can provide process design systems with useful abilities and two, the act of
creating it was helpful in distinguishing those aspects of the task domain that are well understood
from those that are not

. Usefulness of Soar's Mechanisms for Process Design Systems
As described in Chapter CHAP2, if process design systems are to be capable of tackling the
complex and diverse demands of their domains, they require a wide range of abilities. Some of
these capacities have been displayed by a number of design systems, mostly small shallow expert
systems performing in limited domains. These include the ability to represent and manipulate
symbolic situations, the ability to formulate tasks as search, the ability to decompose larger
problems into groups of smaller subproblems and to organise these as subgoal hierarchies, and
the ability (made possible by archiving the system's knowledge as a parallel if-then recognition
memory) to bring all relevant knowledge to bear at each point of the problem-solving process.
Other capacities, such as the ability to mix knowledge and search, operating as recognition-like
systems in regions where the expertise exists, and searching where it is lacking, and die ability to
learn, have not The development of CPD-Soar was important since it provided evidence that
process design systems can be built in which not only the missing capabilities are exhibited, but
that all the above-mentioned capacities can be tightly integrated within a single process designer.

The mixing of knowledge application and search that occurs in CPD-Soar plays an important
role in allowing design decisions to be made at run time rather than at system-creation time. To
illustrate die significance of run-time decision making, consider the multiplicity of heuristic rules
that have been proposed for selecting the split to be applied to a process stream. Since most of
these rules discriminate on the basis of different attributes, conflicts and ties among the
competing splits are to be expected in many cases even after the rules have been applied. Most
previous works in the field deal with this problem in one of a number of ways. One approach
involves ranking the heuristics in order of importance. In all cases however, the ranking function
used is very subjective and usually does not have any basis. A second approach does away with
the use of the rules altogether. Instead, either exhaustive searches or heuristic evaluation
functions involving partial searches are employed to rate the competing splits. However, most of
these schemes are computationally expensive for even moderately sized problems. A third
approach uses only a subset of ail the rules that have been shown to be useful. This subset is
selected carefully so as to avoid the possiblity of conflicts arising. However, this approach loses
out in situations where the weeded-out rules could have applied

As will have been noted, in each approach decisions about how splits should be evaluated are
made a priori, i.e., when the system is created As emphasized in Chapter CHAP2, this is
tantamount to solving, at least partially, a design problem before it has even been posed. Hence,

22

any design systems created on the basis of the above-mentioned approaches will also suffer any
shortcomings resulting from a priori made decisions. In this regard, CPD-Soar's ability to deal
with inconsistent and incomplete knowledge by subgoaling allows it to overcome the
weaknesses of the other approaches. The power of using heuristic rules as a means of
controlling the search is exploited, and only when the rules result in conflicts or ties, is the more
expensive lookahead search resorted to.

All this is not to say that CPD-Soar, in the version described, has no decisions hardwired into it
The system's solution strategy (heuristic search), its split evaluation metric (vapour flowrate) and
its model for computing vapour flowrate, among other decisions, were all made when the system
was created. However, as noted earlier, these restrictions are not a consequence of using Soar. It
is certainly possible to pose the selection of solution strategies and evaluation metrics and
models, for example, as decisions within CPD-Soar. The only limit to doing this is the current
lack of understanding in making these decisions. Although the relevant design literature is flush
with descriptions of different solution methods and models and evaluation functions, all
performing well within their (usually unstated) contexts, there is an absence of any discussion of
the conditions which govern their performance and hence their selection.

3.5.2. Utility of Creating CPD-Sdar in Understanding the Task
The act of creating CPD-Soar was itself a valuable exercise because it helped to better
understand the task domain. In this regard, the development activity was useful in two significant
ways. First, the task analysis performed to help articulate the domain knowledge was
instrumental in the discovery of the marginal price concept for the separation system design
problem. The usefulness of the concept has been described in Chapter CHAP3.

Second, the explicit mapping of task knowledge to problem spaces required to instantiate the
system helped identify gaps in the current state of understanding of the task. The dearth of
knowledge to select among competing models, evaluation functions and methods alluded to
earlier is only one such hole. Two other important areas where it was discovered that a lack of
understanding existed about the required knowledge, how the knowledge was to be integrated
with the rest of the system's knowhow, and what was needed in the way of capacities to learn
this knowledge, are discussed below. In light of our experiences with constructing CPD-Soar, it
is conjectured that building process design systems within an architecture such as Soar that
forces the explicit representation of all task-related knowledge is a powerful scheme for
identifying where future design research should be concentrated.

Learning in Numerically-Intensive Domains: Although the use of chunking within CPD-Soar
demonstrated how a process designer's problem-solving experiences can be captured for future
use it also indicated that knowledge learned in operator-implementation and evaluation subgoals
in numerically-intensive domains such as engineering design could be too specific. This is
problematic since learning will only be truly useful if the captured knowledge can also be used in
situations different from the ones it was acquired under. Observing CPD-Soar s learning
behaviour was thus valuable since it explicitly pointed to the need for a solution to the too-

23

specific-chunks problem.

Even though some headway was subsequently made in dealing with the problem of learning
knowledge that is too specific, very little was known at the outset about either the cause of the
problem or its remedy. Was it the particular task representation being used that resulted in the
chunks being too specific? If so; what alternative representations would have to be employed?
Or was it the inherent nature of chunking? Perhaps the abstraction processes embedded within
the learning mechanism were singly inadequate for creating chunks of the right generality. If so,
any additional abstractions needed would have to be provided a priori to the system or would
have to be generated as part of the problem solving. However, the problem spaces within which
these abstractions could be created and how these spaces should be integrated with the design-
task spaces was largely unknown. Later work leading to the development of Interval-Soar
provided some answers to these issues.

Interaction with External Software Systems: A recurring issue during the design of CPD-Soar
was the question of how the total task labour was to be distributed Should CPD-Soar perform
the task completely using only its own internal abilities? Or should part of the effort be shipped
out to external systems? If so, what aspects of the task should these be, and to what external
systems should they be sent? The answers to these and other related questions were and still are
largely unknown. It was finally decided to have CPD-Soar perform the task internally, without
recourse to external tools. The reason for this was simple: to avoid the complexities of Soar-tool
interactions until a better understanding wfcs obtained of what was required to get CPD-Soar to
use external tools effectively. Besides, such a decision would allow the learning and problem-
solving behaviour of a Soar system performing autonomously within the process design domain
to be witnessed, which, it should be recalled, was one of the primary aims of creating CPD-Soar
in the first place.

Later, it was observed that although CPD-Soar could perform its task, it did so inefficiently, a
symptom largely attributable to its non-use of external tools. Such tools will henceforth be
referred to as external software systems (ESSs), since they are created and exist external to the
agent, here CPD-Soar, that ultimately uses them. CPD-Soar's task environment is analogous to
that of a human designer performing the same task without die benefit of external software
systems, except perhaps a simple calculator. Such a task environment is not a true reflection of
the current state of affairs. Due to the pervasive growth of research in process design towards
specifying and writing software aids and tools, the nature of the process design environment has
evolved from one inhabited by no software tools to one populated by many systems. Real
process design environments are today rife with software tools; equation solvers, optimisation
packages, process simulators, databases, etc. abound in number. These software systems have
developed to the point where they now perform a significant portion of the complete design task.
Hence, if artificial agents are to be created for solving process design problems, it is imperative
that they be endowed with tool-using capacities.

However, as mentioned earlier, it is still largely unknown how artificial agents can be made to

24

use ESSs. With the formation of the DESS (Interaction with External Software Systems)
subgroup within die Soar community, preliminary steps have already been taken towards
achieving this understanding. Newell and Steier [Newell & Steier 91] have described the
subgroup's objectives, the empirical observations that lead to its formation and the activitcs that
compose its research agenda.

The ESS environment is very relevant to CPD-Soar. Even in its current limited form, a large
proportion of its operators, including order-components, update-stream, compute-flow,
compute-fraction, compute-normvol and computeraprate, could be implemented as external
knowledge sources. As the complexity and size of CPD-Soar9 s task grows, one can envisage the
system having to interact with larger and more sophisticated ESSs. Databases could be accessed
to retrieve relevant component data, process simulators could be invoked to simulate columns
and compute relevant parametric quantities such as reflux ratios and vapour flowrates,
mathematical programming packages could be executed to optimise process variables and
external memories could be used to store detailed design descriptions.

Getting artificial agents to interact with ESSs involves more than just the creation of the
appropriate transducers and interfaces to facilitate the conversion and exchange of information
from one entity to another. As Newell and Steier have stated, a commonly held belief, termed the
transduction fallacy by them, is that the only capability required by an agent in working with an
ESS is the transduction between the representations of the agent and the software system. For
example, in the case of CPD-Soar interacting with an optimisation package, it could appear that
all that was required was the conversion of the mathematical programming model to a language
suitable for input to the optimisation package. This is clearly a fallacy, because there is certainly
a fair amount of problem-solving activity involved in first formulating the task as a mathematical
program before transducing it into the syntax required by the solver.

Newell and Steier have listed and discussed the performance capabilities required by an artificial
agent in order to use an external software system. These include formulate-subtask, create-input,
convert-output, interpret-result, operate-software-system and simulate-ESS. Formulate-subtask
is the capability concerned with formulating a subtask as a computational problem and deciding
whether to solve the problem using internal resources or to employ an ESS. Create-input and
convert-output are the transduction capabilities. Interpret-result involves the use of the results
created by the ESS in service of the original task. Operate-software-system deals with the
operation and monitoring of the ESS under both normal and abnormal conditions and simulate-
ESS involves the ability to create the same results as the ESS at either the same or different
levels of abstraction and approximation. The capabilities and their interactions are depicted in
Figure 3-4.

The development of CPD-Soar was useful for the role it played in identifying the need for
research into understanding what was required to get artificial agents to interact with ESSs. The
creation of the system provided evidence, one more data point, of the need for focussed effort in
both defining a relevant research agenda and executing it

23

Operating
System
(fad)

Figure 3-4: Capabilities for using external software systems
(from [Newell & Steier 91], Figure 2)

4. Interval-Soar

4.1. Overview «
Interval-Soar is a system developed within die Soar architecture that performs a simple
arithmetic task. Although die problem solved by Interval-Soar is elementary, namely, to
determine which of two fimctions gives the larger response when applied to a variable, its
creation was valuable in the attempt to understand what is required by an artificial agent to learn

26

useful knowledge while performing in a quantitative domain. The development of Interval-Soar
was a direct response to the observation that the chunks learned by CPD-Soax were too specific
to be of general use.

As was seen earlier, when CPD-Soar selects among competing separation tasks by evaluating
them via a lookahead search, all that it teams for a particular input (representing the flowrates
and volatilities of the components involved) is that one task should be preferred over another for
that input The chunk presented in Figure 3-3 illustrates this learning. The reason for the
specificity in the learning is that all the system knows, albeit implicitly, about the evaluation
employed is that it produces numeric values which are to be compared to make a unique choice.
Hence, all that can, and does, get learned is knowledge of the kind depicted in Figure 3-3. If the
system is to be capable of learning more general knowledge, then it must initially have more
knowledge, i.e., a better model, of what is to be learned. For example, if the model possessed by
the system is that the results of the evaluation also provide information about the region in which
the evaluation function is applicable, then the system will learn about this region. Interval-Soar
is an attempt to explore this hypothesis.

Two simple evaluation functions, one of which was monotone increasing and the other
monotone decreasing, were selected for investigation within Interval-Soar. The system was
implicitly provided with an abstract model of these functions, namely, that they intersected at a
single point Then, if the hypothesis was valid, through their application, the system would leam
information about the evaluation function** that was of more general use than the knowledge
learned by CPD-Soar.

4.2. Task Performed by Interval-Soar
The task performed by Interval-Soar consists of selecting one of two functions, fl and f2, to
apply to each element of a set of values of a scalar variable x. The function to be chosen for a
particular value of x, say x, is the one which gives the greater result Hence, if fl(j) < f2(J), f2
will be selected as the function to be applied. When a result has been computed for a particular x
value, it is labelled with the function that was applied to it When all the variable values have
been labelled, the task is considered accomplished. As a consequence of performing its task,
Interval-Soar learns to converge to the intersection point of the two functions.

Each function is characterized by a parameter called its bound. For function fl, this is ub-ol
(upper bound of operator 1) and for function f2, it is Ib-o2 (lower bound of operator 2) . The
bounds of the operators thus demarcate the intervals or regions in which the operators should be
applied. The value at which the two bounds, ub-ol and Ib-o2, are equal, corresponds to the
intersection of the two functions.

•The lower bound of operator 1 is assumed to be minus infinity aid the upper bound of operator two is assumed

to be plus infinity.

27

If the value of % falls within a particular interval, then the operator to which that interval
corresponds will be selected to apply to the data point If, however, the data point does not fall
within an interval, then a lookahead search in which both operators are applied will be performed
to make a decision about which operator to select If, after a full evaluation, opl is selected as the
operator to apply, die data point will be learned as die new value of ub-ol. Conversely, if opl is
selected, the value of Ib-o2 will be updated to the x value. By such a process of refining the
values of the bounds, Interval-Soar incrementally converges to the intersection point of the two
intervals.

Since Interval-Soar performs this task without any knowledge of the functions themselves3, the
issue is not one of solving two equations in two unknowns. Instead, it is a problem of
determining the intersection point only using knowledge of the sample data set Although in its
current version, Interval-Soar assumes that the functions only intersect at a single point, it is
expected that this assumption could be relaxed in future versions of the system. In order to
perform its task, as will become clearer later, the system requires the ability to recognize and
recall declarative knowledge. However, since chunking is the only learning mechanism within
Soar, this memorizing of declarative knowledge must be performed using chunking, a task not as
straightforward as learning procedural knowledge.

43. Structure of Interval-Soar
The knowledge in Interval-Soar is districted among several problem spaces: the interval
space, the selection space, the refine space, the function spaces and the memory space. Figure
4-1 shows the decomposition of the system into its problem spaces.

Interval-Soar is implemented by 934 (Soar 5) productions. These include the productions that
encode Soar's default search-control knowledge. Table 4-1 summarises the numbers of
productions required to implement the different spaces. As is seen, the function spaces required
by far the largest number of productions.

4 J . L Interval Space
The interval space is die top-level space. It contains three operators: selecUx, opl and opl.
Select-x selects t data point to be classified from among all those still unlabelled. Opl and opl
implement the functions fl and f2 respectively.

43.2. Selection Space
The selection space contains Soar's default knowledge for resolving multi-choice impasses that
arise when several competing alternatives exist In Interval-Soar, the space is used to resolve ties
between the operators opl and opl in the interval space. To accomplish this, the selection space
has been augmented with four additional operators: memory, x-lte-ub-ol, x-gte-lb-ol and

5Although the example problem described later depicts die forms of the functions for the purposes of illustration,
Interval-Soar does not have access to this knowledge per se.

28

SELECT*
OPl. 0P2

MEMORY
REFINE-INTERVAU
X-LTE-UB-01
X-OTE-IB-O2

ON (OPl. OPl)

OP1, OP2

F1-EQ-F2
F1-QT-F2

ON (ttPINB*
INTERVAL)

ON (MEMORY!

ON (COMPARE)

EXAMINE-CUE
EXAMINE-tNPUT
GEflERATE-SYMBOL-TABLE
QENERATE-OUTPUT
RECOQNIZE-INPUT
MEMORY
COMPARE

Figure 4-1: Problem-space structure of Interval-Soar

29

Problem Space
Interval

Selection

Refine
Memory

Function

No. Productions
11

23
19
57

810

Table 4-1: Sizes of problem spaces in Interval-Soar

refine-interval. Memory retrieves the current values of the bounds, ub-ol and Ib-o2.
X-Ite-ub-ol and x-gte-lb-o2 are comparison operators. The first compares x to ub-ol and, if it is
less than or equal to the bound, returns the value true. The second compares x to Ib-o2 and in this
case returns true if x is greater than or equal to the bound The operator refine-interval refines
the values of the bounds on the intervals. It does this by conducting a lookahead search on the
operators opl and op2$ comparing their evaluations and updating the bound of the operator that
has the higher evaluation.

43.3. Refine Space **
The refine space, which implements the refine-interval operator, contains five operators: opl,
op2% fl-eq-f2, fl»gt*J2 and memory. Fl-eq-f2 returns a value of true if fl is equal to f2.
Likewise, fl-gt-/2 returns a value of true if fl is greater than f2. In contrast to the memory
operator in the selection space, the memory operator in the refine space associates the value of a
bound with its corresponding cue, Le., it learns a new bound value.

43.4. Memory Space
Although the learning of procedural knowledge in Soar only requires the application of
chunking, the acquisition of declarative knowledge6 also requires a search by the system. This
additional deliberate processing occurs in the memory space, which implements the memory
operator developed by Rosenbloom [Rosenbloom 89].

The memory operator provides Interval-Soar with the means to memorize and retrieve
declarative knowledge. It provides the system with object recognition and recall abilities. The
operator takes two arguments: an input object (the object to be learned) and a cue object The cue

^Declarative knowledge includes facts. It is knowledge about what is true in the world. Procedural knowledge, on
the other hand, includes knowledge about which actions the system can perform, when certain actions should be
preferred over others and how to carry out the actions. An involved discussion of representing, storing, retrieving,
using and acquiring different forms of knowledge, including both procedural and declarative, is provided by
Rosenbloom et al [Rosenbloom et al 89].

30

•
constrains the situations in which the input object is to be retrieved. When the memory operator
is applied, all objects that were previously associated with the given cue are recalled. If the input
object is not among those retrieved, then it is learned (and will thus be retrieved die next time the
memory operator is applied with the same cue). The absence of a cue is effectively taken to be
the cue if the memory operator is applied without one. The operator will only perform retrieval
of earlier memorized objects if it is applied without an input object However, if no objects had
been previously associated with the cue, then nothing is retrieved and the operator is simply
terminated.

Each application of the memory operator results in the learning of two recognition chunks and a
recall chunk. The recognition chunks allow the system to determine if it has seen the cue and
input objects before and the recall chunk allows it to generate a representation of an object seen
before. By learning such chunks, Interval-Soar can recognise and retrieve previously
encountered objects without having to perform a search.

Suppose it is desired to associate the objects "Fido" and "Bozo" with the cue "dog." This means
that whenever the system is presented with the cue "dog," the objects "Fido" and "Bozo" should
be recalled. This association, which is a form of memorization, is carried out by selecting and
applying the memory operator, in this case, twice. Suppose the first time the operator is applied
with the cue "dog" and the input object (or object to be learned) "Fido." As a consequence of
applying the memory operator, a chunk will be learned that delivers, Le., retrieves, the object
"Fido" on any future occasion that the operator is applied with the cue "dog." In other words, the
chunk will have the symbol "dog" as a condition and the symbol "Fido" as an action. Suppose
the operator is applied for a second time. However, this time we wish to associate the object
"Bozo" with the cue "dog." This application will result in the object "Fido" being retrieved (since
it was previously associated with the given cue) and the object "Bozo" being memorized, i.e., a
chunk being learned with the symbol "dog" as a condition and the symbol "Bozo" as an action.
Thus, when the cue "dog" is encountered on future occasions, the firing of the chunk will deliver
the object "Bozo" into the system's working memory. If the memory operator is applied for a
third time with the cue "dog" and no object to be learned, then only retrieval of the objects
"Fido" and "Bozo" will occur. An application of the memory operator with the cue "cat" will not
retrieve anything since no objects have been associated with that cue. In Interval-Soar, the cues
are "ub-ol" and "Ib-o2" and the learned objects are the values of the bounds.

Not only for its crucial role within Interval-Soar, but also because of the interesting way in which
its implementation allows the chunking mechanism to acquire the recall production, the
functioning of memory operator is significant to this work and hence is described in greater
depth. However, before resorting to this, the following pertinent aspects of chunking should be
recalled. Chunking operates by summarizing the processing that leads to the results of subgoals,
on which a chunk's actions are based. By backtracing through the production traces to the
working-memory elements that were ultimately relevant to the creation of the subgoal's results,
the chunk's conditions are determined. For the functioning of the memory operator, the most

31

important feature of the chunking mechanism is that productions that only generate search-
control knowledge* Le.f desirability preferences, do not have their traces examined as pan of the
backtracing process since these productions only affect the efficiency with which a goal is
attained, and not the correctness of its results.

The key to memorising an object so that it can be recalled on presentation of a cue is to learn a
chunk that can generate the object when the need arises. In Soar, this can be easily accomplished
by simply making a copy of the object within a subgoal. Since this copy is a subgoal result, it
will be incorporated as an action in the chunk that is learned. However, since the creation of the
copy is based on an examination of the original object, the conditions of die chunk will test for
the existence of the latter before generating the former. Such a chunk is clearly useless since it
requires the object to be recalled to be already available. The memory operator overcomes this
problem by creating the recalled object in two phases. First, it exhaustively generates all the
possible objects that can be constructed from the symbols the system has already learned to
recall. Next, the created objects are examined and the one determined to be equivalent to the
original object is selected. By making a copy via such a scheme, die generation of the recalled
object within the subgoal is treated as the creation of search-control knowledge. Since working-
memory elements that embody such knowledge do not get backtraced from when the condition
elements of a chunk are determined, the original object does not get incorporated into the chunk.

To ground this more concretely, consider the use of the memory operator in learning to recall the
object "Fido" on presentation of the cue "(fog.*9 In order to highlight only the important features,
the description of the representation and manipulation of the input object in working memory has
been abstracted from the actual processing that occurs. Suppose the operator is represented by:

(operator q6 "name memory Alearn 17 Acue c8)
(object c8 Aname dog)
(object 17 Aname Fido)

If a no-change impasse occurs in the attempt to apply the memory operator, the memory space is
selected and its initial state, with identifier sll, is augmented with the input object as well as the
symbols of which the object is composed The objects the system has already seen before, and
from which the recalled object will be generated, are represented as known-symbol attributes of
the state. In its current incarnation, the memory has to be provided with these symbols a priori,
i.e., when the system is created Suppose for this example the known symbols are dog, name,
object, Fido, Polly and parrot. Hence:

(state all "'input 17
"input-augmentation a21
"known-symbol dog name object Fido

Polly parrot)
(augmentation a21 "class object "id 17

"attribute name "value rido)

32

(object 17 Aname rido)

All the possible values that each class, id, attribute and value field of the input object can acquire
are next given acceptable preferences. For this example, each field has seven potential values;
six representing the known symbols and an extra one representing a newly generated id; in this
case, x!8. Hence the following state augmentions, representing components of the recalled-
object, are given acceptable preferences (denoted by +) and placed in working memory:

(atate all Adass dog +)
(state all Adaas nan* +)
(state all Adass object +)
(state all Aclaaa rido +)
(state all Aclaaa Polly +)
(state sll Adass parrot +)
(state all Adaaa xl8 +)
(state sll Aid dog +)
•

(state sll Aid xl8 +)
(state all "attribute dog +)
•

(state sll Aattribute*xl8 +)
(state sll Avalue dog +)
•

(state all Avalue xl8 +)

Next, a symbol table is generated that links each input symbol to a known symbol. If an input
symbol is an id, e.g., 17, as in this case, it is linked to the earlier generated id, x!8. At this point
the contents of working memory will be:

(atate all Ainput 17
Ainput-augmentation a21
Afcnoim-aymbol dog name object rido

Polly parrot
Ainput-symbol object name rido 17
* symbol-table s28)

(augmentation a21 Aclaaa object Aid 17
"attribute name Avalue rido)

(object 17 Aname rido)
l-table s28 A17 xl8 Aobject object

A A P i d o r i d o)

The values of the attributes of the input augmentation, all, are then compared to the attributes of

33

the symbol table and best preferences (denoted by >) are generated for those state augmentations
representing the components of the recalled object for which acceptable preferences were earlier
created. Hence:

(atate til Adaaa object >)
(atate all Aid xl8 >)
(atata all Aattribute nama >)
(atata all Avalue rido >)

Finally, the output object is created using the objects for which the best preferences were created.
Working memory thus becomes:

(atate all Ainput 17
Ainput-augmentation a21
Aknown-symbol dog name object rido

Polly parrot
Ainput-symbol object name rido 17
^symbol-table s28)

(augmentation a21 Aclass object Aid 17
Aattribute name Avalue Fido)

(object 17 Aname rido)
(symbol-table s28 A17 xl8 Aobject object

*n«pe name AFido rido)
(object x!8 Aname rido)

Figure 4-2 depicts the recall chunk learned for this example. Since desirability preferences were
used to create the copy of the object to be learned from symbols already known, no test of the
original object appears as a condition of the chunk. If the recalled object had been created by
simply copying the original object in the subgoal, a chunk would have been learned in which a
test of the original object would have appeared as a condition, thus indicating that for an object
to be recalled, it must already be known!

The illustration just presented of the functioning of the memory operator only depicted the
important actions. As developed by Rosenbloom, the memory operator, implemented as the
memory space, contains six operators that produce the described learning capability. These
include examine-input, examine-cue, generate-symbol-table, generate-output, recognize-input
and memory. The examine-input and examine-cue operators cycle through all the symbols from
which the input and cue objects are respectively constructed so that tests of these symbols appear
iii the recognition chunks learned. Generate-symbol-table creates the symbol table relating the
input symbols to the output symbols from which generate-output constructs the output object
Recognize-input recognizes the input object and the input-cue pair. The memory operator
augments the parent memory operator (which was implemented as the memory space) with the
recalled object

34

P38
(goal <gl> Ast*t* <al> Aop«rator <ql>)
(operator <ql> Anaa* memory Acum <cl>)
(object <cl> Anmm* dog)

— >
(operator <ql> Arecalled <xl> &, <xl> •)
(object <xl> Aname rido •))

If the memory operator has been selected to apply
and the cue is dog

then augment the memory operator with rido, the
object to be recalled

Figure 4-2: Example recall chunk learned on application
of the memory operator

In Interval-Soar, the memory space has been augmented with an additional operator, compare.
This operator is needed to determine if th^ purrcnt bound is equal to the old bound If they are
not equal (which will always be the case since the interval is being refined), a reject preference is
generated for the old bound and consequently a chunk is also learned that automatically rejects
the old bound on future occasions. If the memory space were not augmented with the compare
operator, every time a bound value were required, the application of the operator would retrieve
all the old values, not just the most recent one. Learning to reject an old object is an important
feature of Interval-Soar that was not illustrated by the example of the functioning of the memory
operator presented above. If the object "Bozo" had also been associated with the cue "dog" in
the animal example, the memory operator would have retrieved both "Fido" and "Bozo" on
presentation of the cue "dog."

43.5. Function Spaces
The function spaces, developed by Rosenbloom and Lee, contain knowledge about performing
basic logical, arithmetic and control functions. This knowledge allows Interval-Soar to execute
the mathematical functions it needs symbolically, such as computing fl and f2, comparing fl to
£2, comparing x to ub-ol and Ib-o2 and comparing the new value of a bound with an old one, all
without recourse to an external computing device. A detailed description of the function spaces
is given by Rosenbloom and Lee [Rosenbloom & Lee 89].

35

4.4. Example of Interval-Soar Executing
This section illustrates the functioning of Interval-Soar with a simple example. Consider the two
functions, f l = 7 - x a n d £ 2 » x + l , and the three data points: x « 1.3, x • 3.0 and x « 5.8. As
described earlier, the task is to apply one of the functions to each of the data points, compute the
results and label the points with the names of the operators corresponding to the functions that
were applied to them. As a by-product of this problem solving, the system must learn the values
of two bounds, ub-ol and Ib-o2. These parameters demarcate the intervals where the functions
should be selected If a data point has a value less than or equal to ub-ol, fl should be applied. If
it has a value greater than or equal to Ib-o2, (2 should be applied.

Problem solving begins in the interval space. The initial state consists of a set of (three in this
case) unlabelled data points. The desired state is one in which each data point has had its
function value computed and is labelled. The operator select-x is first applied to choose a data
point on which to work. Since the order in which the data points are selected is irrelevant, they
are all made indifferent to each other. Once a point has been selected (suppose in this case it is x
= 5.8), operators opl and opl are proposed to apply. Opl implements fl and opl implements f2.
Since both operators are equally acceptable at this stage, a tie impasse results.

To resolve the tie between opl and opl in the interval space, a subgoal is created and the
selection space is chosen. In the selection space, Interval-Soar first tries to retrieve any existing
bounds on the tieing operators. It does this by proposing the memory operator twice, one with
the cue ub-ol and the other with the cue H&&2. Since the order in which the bounds are retrieved
is irrelevant, the two memory operators are made indifferent to each other. However, nothing is
retrieved because no values have yet been associated with the cues since this is the first time
Interval-Soar is performing the task.

Thus, to make a decision that resolves the impasse, a lookahead evaluation of the tieing operators
must be performed. To do this, an acceptable preference is generated for the refine-interval
operator, which is then selected. If there is an operator no-change impasse in attempting to apply
the rtfine-interval operator, the refine space is made acceptable and selected. The schemes used
to evaluate the operators opl and opl are just the functions themselves. Thus, opl and opl are
first applied in random order to the data point The function spaces are used to implement the
operators opl and opl. In this case fl = 1.2 and f2 » 6.8. Next, the comparison operators fl-eq-fl
and fl-gt-fl are selected and applied in turn to determine the relative magnitude of f 1 with
respect to £2. Fl-eq-jl returns a value of false (indicating the two parameters are not equal) and
fl-gt-gl returns a value of false (indicating that f 1 is not greater than f2). Before this knowledge
is passed back to the higher-level spaces, the value of Ib-o2 (since f2 is greater than fl) is
memorized as 5.8. Interval-Soar carries this step out by selecting and applying the memory
operator with the cue object as Ib-o2 and the learned object as 5.8. The knowledge that f2 is
greater than f 1 is now passed back to the higher spaces to resolve the initial tie between opl and
opl. Interval-Soar thus applies opl to the data point x = 5.8, which is consequently labelled op2.
In this case no subgoaling into the function spaces is required to implement operator opl.

36

Chunks that were teamed earlier during the lookahead search on opl and opl fire to directly
apply function £2. The state of affairs at this stage of the problem solving is depicted in Figure
4-3.

F •
%* Li-02

OP2
OP2

X s 5.8

F1 s 7 • X
F2 a X + 1

OP1

5.8

Figure 4-3: Location of bounds after first data point is employed

The entire problem-solving behaviour is now repeated for another data point There are a few
differences since Interval-Soar uses some of the knowledge it had chunked away when running
the first point Suppose the point x * 3.0 is selected mis time. The selection space is again
chosen in response to a tie between opl and op2 in the interval space. In the selection space,
the memory operators first apply to retrieve any bounds, i.e., any numbers associated with the
cues ub-ol and Ib-o2. Since 5.8 has been associated with Ib-o2, it is recalled instantly. The
comparison operator x*gU4b-o2 is next selected and applied to determine the relative magnitude
of-the data point with respect to the bound. Since x is not greater than or equal to l̂b-02 in this
case, a value of false is returned. This knowledge does not allow a decision to be made between
the competing operators; hence, the refitu-interval operator is selected to compute a full
evaluation once again. Opl and opl are applied in random order in the refine space. In this case,
both f 1 and f2 are determined to be 4.0. The operator fl-eq-/2 is next applied and returns a value
of true. Again, before this knowledge is passed back to the higher spaces to resolve the tie, the

37

values of the bounds are updated by applying the memory operator. The value of ub-ol is
memorized to be 3.0 by associating the number 3.0 with the cue ub-ol. In the case of Ib-o2, the
process is slightly different Since the number 5.8 is already associated with the cue Ib-o2 (from
the previous run), the number associated with the cue is updated to 3.07. This updating is
performed in the memory space (which is selected in response to a no-change impasse for the
memory operator) by applying the compare operator. This operator compares the new value of
the bound (the number to be learned) with its old value. If they are not equal (which, as noted
earlier, will always be the case since the interval is being refined), a reject preference is
generated for the old bound. After the memorization process is completed, the knowledge that fl
is equal to (2 is passed up to the higher spaces. In this situation, opl and opl will be made
indifferent to each other and one will be picked at random. Figure 4-4 depicts the problem
solving situation at this stage.

OP2

X m 3.0

F1 » 7 • X
F2 s X • 1

Figure 4-4: Location of bounds after second data point is employed

The final point from the set to be labelled is x * 1.3. By now the sequence of steps taken to

7In Soar, this is equivalent to having a chunk that generates a reject preference for 5.8 and another chunk that
generates an acceptable preference for 3.0.

38

achieve this should hopefully be clear. In the selection space, memory operators are first applied
to retrieve the cunent values of the bounds. In this case, both uK>l and UK>2 are associated with
the number 3.0. Next, the comparison operators, x*e-ulH>l and x-tfe-fc-o* are selected to
apply Ttie first returns a value of true since x is less than ubol, while the second returns a value
offiserince x is less than Ib-o2. Since Interval-Soar possesses the knowledge that if a data
£ T i s less than the bound ubol, operator opl should be selected, a better-Aan preference is

l with respect to op2. Hence, in this case, the tie impasse in the interval space
^ ^ r e s o l v e d without resorting to a full evaluation of the competing operators, as was done
during the two previous trials. The situation at this stage is depicted in Figure 4-5.

Ui>01

OP2

1.3

F1 m 7 • X
F2 a X • 1

0 1.3 3.0

Figured: Location of bounds after third data point is employed

It should be noted that operator no-change impasses are encountered when attempting to apply
the memory operator, opl, opl and the comparison operators (fl-eq~f2, fl-gt-JZ, xJte-ub-ol,
x-gte4b-o2 and compare). The memory space is selected in the case of the memory operator and
the function spaces are selected for the others.

39

4.5. Performance of Interval-Soar
To illustrate the performance of Interval-Soar, the results from running the system using three
different sets of data points are now presented Each set consists of three points: set 1 is {1.3,
3.0,5-8}, set 2 is {1.8,3.7,6.6} and set 3 is {2,4,4.5,6.9}.

Across-trial transfer, as distinct from across-task transfer, occurs when chunks acquired when
solving a problem apply when the same problem, i.e., one involving the same pair of functions as
well as the same set of data points, is repeated at a later time. Here Table 4-2 illustrates the
effects of across-trial transfer for the task at hand Each data set, each representing a different
problem, was presented to Interval-Soar three times in succession. In each trial the system began
solving its task with the knowledge it was endowed with at creation time as well as the
knowledge it had acquired in all prior problem-solving trials. Thus, at the start of the second
trial, the system had access to its innate knowledge as well as that learned during the first trial,
and at the start of the third trial, the system's knowledge base also included the knowledge
learned during the second trial. The results displayed in the table depict the effects of learning on
the system's performance. For each test case, the changes in decision cycle numbers from one
trial to the next are presented. As can be seen, the benefits of learning are encouraging. For the
first trial, the average number of decision cycles required was 355. For trial two, this dropped to
73, a percentage drop of 79.4 and for trial three, this further dropped to 9 for a total percentage
drop of 97.5 over the first trial. Since most of the productions learned in Interval-Soar were
arithmetic-operator-implementation chunks,^ major part of the reduction in decision cycles was
due to the system not having to subgoal into the function spaces.

It should be noted that case 1 required fewer decision cycles than either cases 2 or 3 since the set
of data points to be labelled in case 1 contained the actual intersection point of the functions.

Trial
Case

1

2

3

Avc

1

317

374

374

355

2

57

81

81

73

3

9

9
9

9

Table 4-2: Effects of across-trial transfer of chunks: changes in numbers of
decision cycles

Table 4-3 shows the number of productions learned by the system over the course of each of the
three trials. In all cases the system begins with 934 productions. A Soar system that learns on all
goals during a trial will nonnally not acquire additional knowledge during subsequent trials
because the system will have learned all that it can during the first trial. The behaviour of

40

Interval-Soar, however, is an interesting example of how a system that learns on all goals during
a first trial can learn additional knowledge during a second trial. This learning occurs in Interval-
Soar since knowledge acquired during the first trial causes it to carry out a different problem*
solving process in the second trial- This new process creates a different goal hierarchy, thus
allowing the system to acquire knowledge that was not acquired through the original problem-
solving process. To illustrate this, consider die data points in example set 1. At the end of the
first trial, Interval-Soar learns that the values of ub-ol and Ib-o2 are both 3. During the second
trial, this knowledge is brought to bear. When Interval-Soar attempts to decide which function to
apply to 5.8, the first point in the set, it compares this number with the retrieved bounds instead
of carrying out a complete evaluation as it did during the first trial. This comparison process
requires Interval-Soar to subgoal into the function spaces (rather than the refine space) and the
chunking that takes place over these spaces thus allows the system to acquire additional
knowledge during a second trial. For case 1, the system acquires 65 chunks during the first trial
and 10 chunks during the second trial. No chunks are acquired during die third trial since the
system has learned all that it can. During this trial, no subgoaling occurs since productions
learned in the previous trials fire to prevent all impasses.

Trial
Case

1
2

3

1

vr65

76
76

2

10

15
15

3

0
0

0

Table 4-3: Numbers of Productions Learned during Different Trials

Table 4-4 illustrates the effects of across-task transfer, which occurs when chunks learned while
solving a problem in a particular domain apply during the solution of another problem, i.e., one
involving a different set of data points but the same pair of functions. It will be reemphasised
that this phenomenon differs from the across-trial transfer described earlier in which the effects
of learning were examined across repeated presentations of the same problem, involving both the
same functions and the same data points. In the case of Interval-Soar, chunks acquired when
using the data points from set 1, for instance, fire when performing the task using the data points
from set 2 or set 3. Again, the benefits of learning are encouraging. Each data set was run
independently with the chunks acquired during the running of the other two data sets, and, in
each case, the number of decision cycles required was less than the number needed when no
imported chunks were used. The percentage decrease in decision cycles ranged from 12.6 (when
running set 1 with chunks learned during the running of set 3) to 71.4 (when running set 2 with
chunks learned during the running of set 1). The average decrease over all 6 runs was.38.1%.

41

Case
1 with no imported chunks

1 with chunks imported from 2

1 with chunks imported from 3

2 with no imported chunks

2 with chunks imported from 1

2 with chunks imported from 3

3 with no imported chunks

3 with chunks imported from 1

3 with chunks imported from 2

No. Decision Cycles

317

252
277
374

107
257
374

169
232

% Decrease in DC

-

20.5

12.6

-

71.4

31.3

-

54.8

38.0

Table 4-4: Effects of across-task transfer of chunks

As described earlier, chunks acquired during problem solving prevent the system from
subgoaling should the same or similar situations arise in the future. Most of the chunks learned in
Interval-Soar are operator-implementation productions. These are productions that fire to
implement an operator directly in particular situations. Before learning, such an operator,
because of its complexity, would require subgoaling in order to be applied. Table 4-5 is a
summary of the number of operator-implementation productions learned for the different
operators in Interval-Soar.

The memory operator-implementation chunks deserve special attention. As noted earlier, the
purpose of applying the memory operator is to either recall or memorize declarative knowledge.
These chunks allow the system to recognize the input object, i.e., the object to be learned, to
recognize the combination of cue and input objects and to retrieve any previously learned objects
associated with the given cue. Typical examples of these chunks are presented in Figures 4-6 and
4-7. Chunks are also a c q u i t that reject previously learned values of the bounds. An example
of such a chunk is given in Figure 4-8.

Besides operator-implentation chunks, search-control productions are also learned by Interval-
Soar to resolve the tie impasses encountered between opl and op2 in the interval space. An
example of such a chunk is presented in Figure 4-9.

4.6. Implications for Process Design
An important contribution of Interval-Soar was the demonstration that when performing in a
quantitative domain, an artificial agent must bring additional background knowledge to the
learning experience in order to learn useful knowledge. In other words, what a system learns

42

Operator

opl
op2

x-lte-ub-ol

x-gte-lb-o2

memory

fl-eq-fl
fl-gt'f2
compare

No. Implementation
Chunks Learned

7
5
4

4

3
3
4

3

Table 4-5: Numbers of operator-implementation chunks learned for different
operators

from the application of an evaluation is dependent upon what model, LeM knowledge, about the
evaluation the system brings to the problem-solving experience. By endowing Interval-Soar
with a model, even implicitly, of the evaluation functions it employs, it was depicted that the
system could be made to learn useful knowledge about those functions.

The implications of Interval-Soar are also important for process design. To ground this more
explicitly, recall again the basic problem-solving behaviour of CPD-Soar, it selects among
multiple separation tasks by evaluating the competing choices via a lookahead search. The
evaluation function applied computes the vapour flowrates of the separation tasks and the task
with the lowest flowrate is ultimately selected. Since all that the system knows, albeit implicitly,
is that the evaluation function only produces numeric values, and that these values are to be
compared when making a decision, then, as has already been seen, all that will get learned is that
when a particular input is presented to the evaluation function, the relative preference of one
separation task over another should be delivered. Utilizing the insight obtained through the
development of Interval-Soar, it is conceivable that an agent such as CPD-Soar can be made to
learn more general knowledge if it were supplied with a richer model of its evaluation function
than it currently has. This model, like the model embedded within Interval-Soar, could be that
the evaluations provide additional information about the system's function, e.g., in what region it
was applicable. Then, when the agent applied the function to select among the competing
separation tasks, the knowledge learned would be about this region and hence be of more general

use.

It is often the case in process design domains that multiple functions are available for evaluating
candidate designs. As described in Chapter CHAP2, the differences among the underlying
models and equations on which the functions are based can be characterised along a number of

43

(sp p294 elaborate
(goal <gl> Aoperator)
(operator -Arecognized input Aname memory
Alearn <yl>)
(pmram <yl> Avalue <il>)
(integer <il> Asign positive Ahead <cl> Atail <cl>)
(column <cl> Aanchor head tail Adigit <dl>)
(digit <dl> Aname 5)

— >
(operator Arecognized input 6, input +))

If the memory operator has been selected to apply
and the input object has not yet been recognised
and the object to be learned is the number 5

then create an operator augmentation indicating that
the input object has been recognised

(sp p293 elaborate
(goal <gl> Aoperator)
(operator Aname memory Acue <c2> Alearn <yl>)
(class <c2> Aname Ib-o2)
(param <yl> Avalue <il>)
(integer <il> Asign positive Ahead <cl> Atail <cl>)
(column <cl> Aanchor head tail Adigit <dl>)
(digit <dl> Aname 5)

— >
(operator Arecognixed cue-input &, cue-input +))

If the memory operator has been selected to apply
and the cue object is Ib-o2
and the object to be learned is the number 5

tfcen create an operator augmentation indicating that
the combination of cue and input objects has been
recognised

Figure 4-6: Example recognition chunks learned by Interval-Soar

(sp p295 elaborate
(goal <gl> "operator)
(operator Aname memory Acue <cl>)
(class <cl> "name Ib-o2)

(integer <x3> "sign positive + "head <xl> +
Atail <xl> +)
(digit <x2> "name 5 +)
(column <xl> "digit <x2> +
"anchor head + head 4, tail 6, tail +)
(param <x4> "value <x3> +)
(operator "recalled <x4> «, <x4> +))

If the memory operator has been selected to apply
and the cue object is Ib-o2

then augment the memory operator with the number 5/ the
object to be recalled

Figure 4-7: Example recall chunk learned by Interval-Soar

(sp p593 elaborate
(goal <gl> "operator)
(operator Aname memory Acue <cl> Arecalled <x4>)
(class <cl> Aname Ib-o2)
(param <x4> Avalue <xl>)
(integer <xl> Atail <x3>)
(column <x3> Aanchor tail Adigit <x2>)
(digit <x2> Aname 5)

— >
(operator Arecalled <x4> - <x4> 6))

If the memory operator has been selected to apply
and the cue object is Ib-o2
and the object recalled is the number 5

then create a reject preference for the recalled object

Figure 4-8: Example chunk learned by Interval-Soar to reject
a (previously learned) bound

45

(sp plO51 elaborate
(goal <gl> "operator <o2> + { o <o2> } +)
(operator <o2> Aname opl *param <xl>)
(operator Aname op2)
(paraa <xl> Avalua <il>)
(integer <il> A«ign poaitive Atail <cl> Ahaad <cl>)
(column <el> Aanchor head Adigit <dl>)
(digit <dl> Aname 2)

— >
(goal <gl> Aoperator <o2> >))

Zf operator opl has been made acceptable
and operator op2 haa been made acceptable
and data point x haa a value 2

then create a better-than preference for operator opl
with reapect to operator op2

Figure 4-9: Example search-control chunk learned by Interval-Soar

other dimensions besides their form: accuracy (how well is the real situation depicted?),
precision (to what order of magnitude can the results be believed?), scope (under what conditions
is the function applicable?) and efficiency (how expensive is the function to apply?). Interval-
Soar only has knowledge about the form of its evaluation functions. However, if a design agent
was also endowed with the knowledge that its use of an evaluation function also provided
information about the accuracy, precision, scope and efficiency of the function, die learning
performed by the agent will be much more richer than if its a priori knowledge were only that
the use of the function provided information about its form. This kind of learning has added
value since the system will now be capable of selecting among competing evaluation functions
on the basis of such characteristics as accuracy, precision, scope and efficiency. Of course, given
our initial foray into this domain, much work has still to be performed to obtain a better
understanding of what is required of an artificial agent to perform this learning. The next section
postulates the structure and expected performance of GPD2-Soar, an enhanced version of CPD-
Soar whose implicit model of an evaluation function is that its application provides two kinds of
information: information about the form of the function and information about the error in the
result obtained The use of Interval-Soar's functionality in realising the system is discussed

Learning about the evaluation functions employed by a process designer also has implications
for interacting with external software systems. As described earlier, many evaluation functions
are implemented as independent software tools. Because these tools often contain the expertise
and cumulative results of many person-years of research, their calculations cannot be performed

46

internally by the design agent Hence, each time a candidate design needs to be evaluated, an
external software system has to be invoked. However, given the inherent complexity of most
ESSs and the combinatorial size of typical design spaces, calling upon an ESS to compute an
evaluation frequently will be costly. Thus, there is an incentive for the agent to be capable of
calculating its evaluations cheaply, even if they are much more approximate than those produced
by the ESS. In this regard, Ac functionality of Interval-Soar is very relevant If the design agent
were endowed with a model of the ESS, then, like Interval-Soar has, it could learn to create the
same results, perhaps at a different level of approximation or abstraction, as the ESS. This
capability of an agent of performing internally the same computations as a specific ESS has been
termed simulate-ESS by Newell and Steier [Newell & Steier 91].

In concluding this section on Interval-Soar, a few final remarks will be made. The development
of Interval-Soar was a preliminary attempt to understand what is required by an artificial agent to
learn useful knowledge when performing in a quantitative domain. In process design domains,
approximate models of the evaluation functions employed by the agent can be useful in making a
search cheaper. By learning such models, the agent can by-pass the employment of expensive
evaluation functions by simulating their operations internally. The internal generation of abstract
or approximate models by a problem-solving agent however, has only recently been recognised
as an area of much-needed research. Descriptions of current research efforts in this domain can
be found in Ellman et al [EUman et al 90].

5. CPD2-Soar: A Postulated Extension to CPD-Soar

5.1. Overview
This section describes how the abilities and performance of CPD-Soar can further be improved.
It presents a new problem-solving strategy for the design of distillation sequences and discusses
the rationale behind the strategy. The strategy draws on the lessons learned from the
development of the two earlier-described systems. To implement the suggested strategy, CPD2-
Soar, an enhanced version of CPD-Soar, is postulated. Its problem-space structure and expected
performance are described. The section concludes by discussing the implications of CPD2-Soar
for process design.

5.2. Basis for an Improved Design System
As mentioned earlier, one aspect in the design of distillation sequences that is largely not
understood are the conditions which govern the selection of an evaluation function. Although
new evaluation functions and rules are often presented in the design literature, there is hardly
ever any discussion regarding the context in which the proposed functions perform well and
hence should be selected. In all known design systems developed to date, the evaluation
functions employed by the system to analyse design decisions and control the search are a priori
selected by the system's developer at system-creation time. Even CPD-Soar fits this mould. It
always attempts to decide among a set of competing separations tasks by first applying us

47

heuristic rules. If the application of the rules does not succeed in breaking the impasse, a one-
step lookahead evaluation is carried out and the task with the smallest vapour rate is selected to
apply. At no point does die system deliberate about its choice of evaluation function.

Since the choice of an evaluation function is context dependent, a system that is capable of
selecting the function as part of its problem-solving activity will clearly perform better than one
in which this decision has been hardwired into the system by its creator. This section attempts to
make a first pass at describing how such a system could be constructed It describes how the
selection of an evaluation function could be posed as a problem-solving activity within a design
system. It also describes how the system could learn to improve its evaluation-function choosing
ability by capitalising on its problem-solving experiences. The capacity to perform this learning
draws on an important lesson learned from the development of Interval-Soar; namely, that the
better the model a system has of its evaluation functions, the more general its learning will be.

The marginal price of a separations task is its change in price as a result of performing it in the
absence of non-key components. Its use as an evaluation function for controlling the search in
distillation sequence design problems has been described in depth in Chapter CHAP3. The
ability to select among competing evaluation functions will be illustrated by focussing upon two
variations of marginal price: the marginal vapour rate (MV) and die marginal total annualised
cost (MTAQ. Although the performance of marginal price as an evaluation function has been
seen to be excellent, it was not used to control the search in CPD-Soar since the function was
discovered after the system was created v%

The large combinatorial problem resulting even when the feed mixture consists of only a modest
number of components is a major motivation for using heuristic evaluation functions to tame the
search. However, although the use of these functions may result in greater computational
efficiency, it is usually at the expense of solution quality. The multiplicity of evaluation
functions for distillation sequence design that have been reported in the design literature are
specific points along a spectrum of evaluation schemes whose extremums represent no search
and exhaustive search. The selection of an evaluation function thus properly involves a trade-off
between the computational resources used and the solution quality obtained

The MV evaluatioo function is cheaper to compute than the MTAC evaluation function since
computing costs first necessitates computing vapour flowrates. In turn, both these functions are
cheaper than a search. On die other hand, the quality of the results delivered decreases from a
search to the MTAC evaluation function to the MV evaluation function. Given the potential
savings in computational effort, it is beneficial to use as cheap an evaluation function as possible
when solving a design task. For example, there would be no incentive for a search to be
performed if the use of the MTAC evaluation function resulted in die same solution. Likewise,
employing the MTAC evaluation function when the MV function will also deliver the same result
is clearly a waste of resources. Hence, learning the conditions under which an evaluation
function will deliver decisions of a certain minimum quality will be useful. However, if the
quality of a solution and the conditicms under which an evaluation function should be selected

48

are
to be iwsoned about, metrics must first be devised to represent them.

•n. „ « « difference between the evaluation of a decision and the equation ot me oest
The percentage aincren^ ^"~ .. * design decision. In the distillation sequence
decision possible is used to represent*° «£ * s t r f ^ WKpnet ^ g ^ from me task to the
domain, the e v a l u a t i o n ^ " " £ ^ ^ ^ ^ ^ could result i n different tasks being

the next section.

•c e.wt«H to aoolv However, a preliminary c«uuu»-v m,a«t-, rHAM
is seiectca 10 APF1/* * r . f mction and reported upon in Chapter unAr j ,
in gauging the performance of: the ev ua OT ' h w h c f t ^ reladve njagnitudes
indicate that the function only delivers the same^resui ^ ^ ^ ^^ of the tasks are all
of the marginal prices of the competing UKKS g ^ ^ ^ o n m s o b s c r v a t i o n

^ I ^ T S S S r«^"pn^of * e -sks r e l ^ - ^
decision of the desired quality. If a bound can oe P 1 ^ ^ & d e d s i o n of a certain minimum
prices of the competing tasks can j r o w m ° ^ n . t f A e e v a l u a t i o n faction should be used,
quality, then the bound could be used to aecia p ^ ^ nl2^,e t0 the marginal prices of the
To measure the magnitude of the marginal pnee ^ ^ m t r o d u c e d . The marginal price
other competing tasks, the notion of a mar* ^^ -cc o f m e task to the lowest marginal

, o f a task i s the inverse o f the nitioo ^ ^ ^ ^ ^ ^ d e f i n c s > ^ Ulustrates with

IOW a bound on this quantity can be

£ | L d m order to ensure a mmimum solution qu^ity.

SAProblem-SolvlngStratwrfCPIM-Soar . few terms are first
Before outlining the steps in CFK-Sou * V°o * ^ ^ ^ ^ ^ exajnple

decision set for the stream ^ ^ " J ^ ^ ^ decision sets for a 4<omponem

^ZZ&ZSZ and
The marginal vapour ratio of a task; is defined as:

• «f ta«w i and MV^O) is the lowest marginal vapour rate
where MV</) is the marginal vapour rate of task; and wnj)

49

of all the tasks besides j in die decision set To illustrate this, consider the decision set (A/BCD,
AB/CD.ABC/D} and suppose MV(AB/CD) < MV(A/BCD) < MV(ABC/D). Then the marginal
vapour ratios of the tasks will be given by:

MVR(ABC/D)

MV(ABICD)

MV{ABICD)
MV{ABCID)

The MVs of the tasks are repectively given by:.

MViAIBCD) « ViABICD) - V{AJB)

MV(AB/CD) » V{ABICD) - V(B/Q

MV(ABC/D) = V{ABCID) - V(C/D)

where V(J) is the vapour rate of tasky.

Similar to the marginal vapour ratio, the marginal cost ratio of task j is defined as:

MCR(i)
MCm

where MTAC(j) is the NTT AC of task j and MTACHj) is the lowest MTAC of all the tasks besides j
in the decision set

The vapour bound is a metric used to detennine if a competing separation task should be
selected or not The bound has an error level associated with it Hence, B/ is the vapour bound
at error level e. If a distillation sequence whose cost is not more than e% of die cost of the best
solution attainable is desired, a bound value at error level e will be used in making the task-
selection decisions. More specifically, the bound Bv

€ will be used in selecting a separation task
from each of the problem's decision sets. Any tasky for which MVR(J) > B/ will be preferred-
Analogous to the vapour bound, the cost bound can also be used to detennine if a separation task
should be selected or not Be* is the cost bound at error level e. When evaluating a set of
separation tasks using the MCR evaluation function, any task / for which AfC/?(/) > B/will be
preferable.

The error, £(/)> of a task is defined as:

(3)

50

where C(j) is the evaluation of task ; and C(b) is the evaluation of the best decision in the
decision set of which j is a member. The evaluation of a task is a total annualised cost of the
sequence segment, as determined by a lookahead search, from the task to the end of the
sequence. To illustrate the task error, consider the decision set {A/BCD, AB/CD, ABC/D}. If
task A/BCD is the best decision, then:

, CWICD) - *ABCID)
V ' ' C(ABC/D)

Task errors are employed by CPD2-Soar to learn bound values. Whenever the system performs a
search to select a separation task, it uses the occasion to learn the values of the vapour and cost
bounds at each error level. There are two circumstances in which a search will be performed;
either no bound values at the desired error level are retrieved (because the system has not yet
solved enough problems to have stored values at the desired error level), or the bounds are
unsuccessful in resolving the impasse. The system can only learn the bound values at a priori
defined error levels. There are no restrictions on what or how many levels can be selected. The
only constraint is that they must be decided upon at the time the system is created.

Table 5-1 depicts the steps in CPD2-Soar's evaluation strategy. It outlines the use of marginal
price ratios and bound values in selecting a separation task as well as the procedures used in
learning a bound value for the first time and in updating it on subsequent occasions. In
presenting the strategy, the following nomenclature is employed: {D} is the current decision set,
{Mf} is the subset of {D} for which £(/) V e and MVR(j) > 1, [Mf) is the subset of {D} for
which £(/) > e and MCR(j) > 1, {T} is the set of preferable tasks, {N} is the set of non-
preferable tasks, rv is the task in {Mye} with the largest MVR and tc is the task in {Mc

c} with the
largest MCR.

CPD2-Soar evaluates competing separation tasks using a three-pronged approach. The system
attempts to evaluate the tasks using the marginal vapour ratio (MVR) evaluation function first
since this function is cheaper to apply than either the marginal cost ratio (MCR) evaluation
function or a total search. However, if it fails to result in a decision, the MCR evaluation function
is employed If this evaluation function also fails to resolve the impasse, a search is performed.

Steps (1), (2) and (3) of the strategy are performed to evaluate the separation tasks using the
MVR evaluation function. If a value for the vapour bound at the desired level e is retrieved, the
MVRs of the tasks are compared to it Any task whose MVR is greater than the bound value is
preferred In other words, the selection of such a task is likely to lead ultimately to a sequence
whose cost is no greater than e% of the cost of the best sequence in the search space.
Conversely, a task whose MVR is less than or equal to the bound value is considered non-
preferable, i.e., its selection is not likely to lead to the design goal. All the preferred tasks, the
members of {T}, are given better-than preferences with respect to the members in {N}, the set of
non-preferable tasks. Since all the tasks in {T} are likely to lead to the design goal, they are all
made indifferent to each other. It should be noted that the bound B/ implicitly plays a dual role:

SI

1. Compute the marginal vapour ratio, MVR, for each task in {D}.

2. Retrieve B/ , the vapour bound at the specified error level e. If the bound is
not retrieved, go to step (4).

3. Place any task j for which MVR(j) > Bv* in {T}. Place all other tasks in {N}. If
{T} is non-empty, go to step (12); else, continue.

4. Compute the marginal cost ratio, MCR, for each task in {D}.

5. Retrieve Be«, the cost bound at the specified error level e. If the bound is not
retrieved, go to step (7).

6. Place each task j for which MCR(j) > B/ in {T}. Place all other tasks in {N}. If
{T} is non-empty, go to step (12); else, continue.

7. Perform a search on each member in {D}. In doing so, identify (T) and {N}.

8. Compute E(j) for each task j.

9. Identify the sets {M/} and {M/} for all e. A task j is a member of {M/} if E(j)
> e and MVR(j) > 1. A task j is a member of {M/} if E(j) > e and MCR(j) > 1.

10. Identify the task tv. Set Bv« := L2 • MVR(tv) if B/ was not retrieved at step (1).
If B/ was retrieved, perform the assignment only if 1.2 * MVR(ty) > B/ .

11. Identify the task tc. Set B/ := 12 • MCR(te) if Be« was not retrieved at step (4).
If B/ was retrieved, perform the assignment only if 12 * MCR(tc) > Bc«.

12. Generate "better-than" preferences for all tasks in {T} with respect to all
tasks in {N}. Generate "indifferent" preferences for all tasks in {T} with
respect to each other.

Table 5-1: CPD2-Soar's task-evaluation strategy

52

one, in deciding if a particular function should be employed to evaluate the tasks; and two, in
' selecting a task from among those competing for inclusion within the design solution.

The MVR evaluation function may fail to deliver a design decision for one of two reasons; either
no bound value is retrieved because no value had been previously associated with the bound at
the desired error level or no tasks were found to be preferred. In this case, the system resorts to
evaluating the tasks using the MCR evaluation function. The procedure followed here, depicted
by steps (4), (5) and (6), are exactly the same as for the MVR evaluation function.

In the situation where both the evaluation functions fail to resolve the impasse, the system resorts
to a search, depicted by step (7) in Table 5-1. This entails creating the entire distillation sequence
of which a task is a part and costing it It should be noted that the search is recursive. When
decision points are encountered further downstream, the tasks are evaluated first by the MVR
evaluation function, then by the MCR evaluation function if die preceding function fails, and
finally by a search if both the functions fail.

The system attempts to learn the bound values on the culmination of a search since the
information required to carry out the learning is generated during the search. The learning phase
is depicted by steps (8), (9), (10) and (11). The error of each task in the decision set is first
computed using equation 3. Next, the set {M/} is determined, the members of which have errors
larger than the desired error level and marginal prices greater than one. An error greater than the
desired error indicates that if one of t h e ^ tasks is selected, it may not lead ultimately to a
distillation sequence whose cost fell within the desired percentage of the cost of the best solution
attainable. It should be recalled that the value of a bound at a particular error level denotes how
large the relative magnitudes of the tasks' marginal vapour rates should be in order for the MVR
evaluation function to deliver preferred decisions. If the MVR of a task is greater than one, it
means that it has the smallest MV in the decision set and hence should have been selected by the
MV evaluation function. However, if it is not chosen, then the size of its MVR is an indication of
how large the bound should be. Hence, the value of the bound B< should be at least as large as
the task (rv) with the largest MVR in the set {M/} . Thus, if no bound value already exists, Bv« is
set to l.2MVR(t}. If a bound value already exists, the assignment is only performed if
l.2MVR(Q > £ / . The value of B* is learned in a similar manner.

It should be noted that the bound values are set at a value 20% higher than the task (in {M/} or
{M •}) with the highest marginal price. The 20% acts as a buffer zone and allows the system to
overcome errors in the bound values. If a bound value is set to the highest marginal price, the
system will have no way of checking in the future if the bound value just learned is safe enough
to be used in making a decision. By setting the bound value to be slightly higher than the highest
marginal price, the system will automatically check the value of the bound by conducting a
search over those tasks whose marginal prices are close to the bound value. In memorizing the
bound values in such a manner, it is expected that these values will converge to a steady point for
each error level. Also, since marginal cost is a better (in terms of solution quality) evaluation
function than marginal vapour rate, it is expected that for a given error level, the cost bound will

53

be lower than the vapour bound, indicating that on average, the former will more often be
selected than the latter.

The problem-solving strategy employed by CPD2-Soar can be summarised as follows. At first,
the system attempts to evaluate competing tasks by comparing their marginal vapour ratios to the
vapour-bound value at the desired error level Any task whose MVR is greater than the bound
value is likely to lead to the design goal and hence is preferred If the use of the vapour bound is
unsuccessful in resolving the impasse, the cost bound is used If this test also fails, a search is
performed Knowledge generated during a search is used by the system to refine the values of
the bounds.

5.4. Structure of CPD2-Soar
This section describes the problem spaces within which task-evaluation strategy described in the
previous section could be implemented. The problem spaces in CPD2-Soar are essentially a
combination of those in CPD-Soar and Interval-Soar. The system's knowledge is distributed
among several problem spaces: the domain spaces, the selection space, the refine space, the
function spaces and the memory space. Figure 5-1 depicts the major problem spaces in CPD2-
Soar.

5.4.1. Domain Spaces
The top-level space in CPD2-Soar, Resign, has eight operators: identify-forbidden,
link-components, get-feed, order-components, make-splits, sequence-split, update-stream and
write. The latter six are implemented as the feed, order, split, update, output and sequence
spaces respectively. Feed interacts with the user to obtain the feed specifications, order ranks
the components in a stream in descending order according to volatility, split generates all the
possible sharp splits that can be applied to the feed stream, update computes the mole fractions
of a stream's components, normalises their volatilities and computes the total flowrate of the
stream and write outputs the results on completion of the design. Sequence ranks all the
allowable splits in the order they are to be applied It contains three operators: make-new,
compute-vaprate and compute-tac. The first applies a split to a stream to generate the resulting
column and product streams while the second computes the vapour flowrate of the column. The
third operator, compute-tac, is a new addition to the sequence space. It does not exist in CPD-
Soar. Compute-tac calculates the total annualised cost of a distillation column. The domain
spaces in CPD2-Soar are depicted in Figure 5-2.

5.4.2. Selection Space
As in other Soar systems, the selection space is used to resolve multi-choice impasses. In CPD2-
Soar, the space is chosen in response to ties and conflicts among competing sequence-split
operators in the design space. In CPD2-Soar, the selection space has eight operators: memory,
evaluate-object, compute-mv, compute-mtac, compute-mvr, compute-mcr, refine-interval and
compare. The memory operator retrieves the current value of a vapour or cost bound at a
specified error level. Evaluate-object computes an evaluation for a competing sequence-split

OH (oa operator*
performing arithmetic y
calculation*)

TI1/COWTLICT
(UQU1MCB-8FX»XT)

C0HPUTC-1IVR

coram-urac

KVALQATl-OBJECT
RBVXn-XVTBKVJfcL

IH1-IOTUT

AT1-8YMB0L-TABLB
QXHUtXTS-OUTVUT
RXCOGWI21-IOTOT
uniostx
COMPAM

Figure 5-1: Problem-space structure of CPD2-Soar

55

GET-FEED
ORDER-COMPONENTS
LINK-COMPONENTS
MAKE-SPLITS
XDENTXFY-FORBXDDEN
SEQUENCE-SPLIT
UPDATE-STREAM
WRITE

PRINT

ON (ORDER-
COMPONENTS)

ON (SEQUENCE-SPLIT)

MAKE-FEED
GET-COMP

MAKE-NEW
COMPUTE-VAPRATE
COMPUTE-TAC

UTE-FLOW
COMPUTE-FRACTION
COMPUTE-NORMVOL

Figure 5-2: Domain problem spaces in CPD2-Soar

56

operator. The evaluation metric used in CPD2-Soar is the total annualised cost of the complete
sequence of which the competing separation task is a part. The operators compute-mv,
compute-mtac, compute-mvr and compute-mcr respectively calculate the marginal vapour rate,
marginal total annualised cost, marginal vapour ratio and marginal cost ratio for a task. The
refine-interval operator updates the value of a bound. The compare operator compares two
numbers and determines their relative magnitudes with respect to each other.

5.4.3. Refine Space
The refine space implements the refine-interval operator. It contains three operators: memory,
compute-task-error and compare. In contrast to its functioning in the selection space, the
memory operator in the refine space associates the value of a bound with its corresponding cue,
i.e., its application results in the learning of a new bound value. Compute-task-error calculates
the error of a task.

5.4.4. Memory Space
The memory space implements the memory operator. Its functioning was described earlier in the
section on Interval-Soar. In CPD2-Soar, the cues for the memory operator are the names of the
bounds, either "vapour" or "cost," and their error levels. The objects to be learned are the values
of the bounds.

5.4.5. Function Spaces v.
The function spaces provide CPD2-Soar with an elementary mathematical capability. These
spaces contain knowledge that allows the system to cany out basic logical, arithmetic and
control functions. Their structure and performance is described at length by Rosenbloom and
Lee [Rosenbloom & Lee 89].

5.5. Illustration of CPD2-Soar Executing
This section uses an example to illustrate the major features of CFD2-Soar's problem-solving
strategy. Assume that the system has been programmed to learn the bound values at the 10%
error level. So as to make the example easier to follow, the example only illustrates the learning
of the vapour bound. The learning of the cost bounds would be performed in exactly the same
way using the corresponding cost-bound operators.

The feed mixture consists of four components: A, B, C and D. Tables 5-2 and 5-3 summarise
some relevant information concerning the example problem. The first table presents the vapour
rates, marginal vapour rates, marginal vapour ratios, total annualised costs, evaluations and
errors of all the tasks in the search space. Thesecond table presents the costs of all the sequences
in the search space and the percentages by which these costs deviate from the cost of the
cheapest sequence. The information provided in the tables is intended to facilitate the verbal
illustration of the search CPD2-Soar undergoes in solving the example problem. The description
that follows only attempts to highlight the important features of the problem-solving activity.
For example, even though the application of operators to order components or compute mole

57

fractions may not be mentioned, it should be assumed that they are indeed performed.

Task

A/BCD

AB/CD

ABC/D

A/BC

AB/C

A/B

B/CD

BC/D

B/C

C/D

V
(kmol/s)

260

345

210

250

340

235

315

190

300

160

MV
(kmol/s)

25

45

50

15

40
-

15

30
-

-

MVR

1.80

0.56.

0.50

2.67

0.38
-

2.0

0.5
-

-

TAC
($)

400,000

250,000

500,000

250,000

230,000

225,000

200,000

250,000

100,000

200,000

C
($)

750,000

675,000

850.000

350,000

455,000
-

400,000

350,000
-

-

E
(%)
11.1

0

25.9

0

23.1

-

14.3

0
-

-

Table 5-2: Data for example problem to illustrate the
functioning of CPD2-Soar

V*,

Sequence

1

2

3

4

5

First
Task

A/BCD

A/BCD

AB/CD

ABC/D
ABC/D

Second
Task

B/CD

BC/D

A/B

A/BC

AB/C

Third
Task

C/D

B/C

C/D

B/C

A/B

Cost
($)

800,000

750,000

675,000

850,000

955,000

Deviation
(%)
18.5

11.1

0

25.9

41.5

Table 5-3: Cost of sequences in example-problem search space

To resolve the tie among the three sequence-split operators, which represent the A/BCD,
AB/CD, and ABC/D tasks, the system subgoals into the selection space. In the selection space,
the memory operator is made acceptable and selected The operator is applied to retrieve the
current value of the vapour bound at the 10% error level. Since no value has previously been
associated with the bound at the desired error level, the retrieval operation is unsuccessful.
Hence the system attempts to resolve the tie impasse by performing a lookahead search.

58

«
To carry out the lookahead search, evaluate-object operators are made acceptable for each of the
tieing objects, in this case, the three sequence-split operators. The application of these operators
will yield an evaluation for each of the tieing tasks. Since the evaluation computed by the
evaluate-object operator is the cost of the distillation-sequence segment from the task to the end
of the sequence, a recursive problem-solving process is set into motion by the application of the
evaluate-object operator.

Since the order in which the task evaluations are calculated does not matter, the evaluate-object
operators are made indifferent to each other. Suppose the task A/BCD is chosen to be evaluated
first In response to the no-change impasse that arises in trying to apply the evaluate-object
operator, the design space is made acceptable. The task is applied to the stream and the vapour
flowrate and total annualised cost of the resulting column computed. Since the bottoms stream
from the distillation column is a non-product stream, two sequence-split operators, representing
the tasks B/CD and BC/D, are proposed. A tie impasse arises, and the selection space is
proposed and selected to resolve it.

To evaluate the competing tasks, the 3-stage process described above is repeated. The memory
operator is first applied to retrieve the vapour bound. Since no bound is retrieved, it is next
applied to retrieve the cost bound. Again, since no bound is retrieved, a lookahead search is
performed to evaluate each of the competing tasks. Suppose the task B/CD is chosen to be
evaluated first In this case the bottoms stream of the column generated has only one possible
task applicable to it The C/D task is made preferable is selected immediately. Its application
results in the streams (C) and (D) being created. Since these are pure-component streams, the
lookahead search on the task B/CD terminates. The same process is now repeated for the BC/D
task. C(B/CD\ the evaluation for task B/CD, is found to be $400,000 and C(BC/D) is determined
to be $350,000.

At the end of the lookahead search to resolve the tie between the tasks B/CD and BC/D, which
together constitute the current decision set {D}, the system attempts to learn values for the
bounds. The rejine-interval operator is selected and the system subgoals into the refine space
where the compute-task-error operator is applied twice to determine the error of the tasks.
E(BC/D) is calculated to be 0% and E(B/CD) is calculated to be 14.3%. Since
MVR(B/CD) m 2.0 > 1 and E(B/CD) > 10%, flv

10 is assigned the value 2.4 (= 1.2 * 2.0)
because {Dv

10} • {B/CD}. Figure 5-3 pictorially depicts this situation.

At this point the system has generated all the information it requires to compute an evaluation for
the A/BCD task, which is $750,000. The entire recursive problem-solving process just described
is now repeated to evaluate the AB/CD and ABC/D tasks. For the AB/CD task, the evaluation is
straightforward since no decision points are encountered further downstream. The system
subgoals into the design space and applies the AB/CD task. The resulting streams (AB) and
(CD) are then further split into pure components. C(AB/CD) is determined to be $675,000.

In evaluating the ABC/D task, an impasse between the tasks A/BC and AB/C is encountered.

59

10% ERROR LEVEL

USE VAPOUR
BOUND TO MAKE
DECISION

2.4

2.0
EITHER USE
COST BOUND
TO MAKE
DECISION OR
SEARCH

1.0

B 1 0
o v (CURRENT VALUE OF VAPOUR BOUND)

VALUE OF MVR ABOVE WHICH
FAILURE OF THE EVALUATION
FUNCTION HAS NOT YET BEEN
' SEEN.

MVR AXIS

Figure 5-3: Location of bound learned by CPD2-Soar in example problem

This time the memory operator is successful at retrieving a value for the vapour bound at the
10% error leveL The compute»mv and compute-mvr operators are then applied in succession to
compute the marginal vapour rates and marginal vapour ratios of the tasks. The quantities arc
summarised in Table 5-2. Since MVR(AIBC) > flv

10, the task A/BC is preferred and hence given
a better-than preference than its competitor AB/C The impasse is resolved and the chosen task
applied Finally, the task A/B is applied to the stream (AB) to complete the information needed
to compute an evaluation for the task ABG/D, which is $850,000.

60

Since the evaluation process for the three initial competing tasks is now complete, the system
attempts once again to leam values for the bounds. In response to a no-change impasse on the
refine-interval operator, the system selects the refine space. Here the compute-task-error
operator is applied thrice to calculate the errors of the tasks; E(A/BCD), E(AB/CD and E(ABC/D)
are computed to be 11.1%, 0% and 25.9% respectively. In this case, Dv

10 ={ A/BCD}. However,
since \2MVR{AIBCD) < flv

10, the value of flv
10 is not changed.

5.6. Expected Performance of CPD2-Soar
Although no data has explicitly been presented regarding the utility of the bounds, it is expected
that the bounds will be useful in preventing expensive lookahead searches in many cases. The
reason for this is that marginal price ratios, rather than straightforward marginal prices, are used
in determining the bound values. The ratios are loaded metrics; they encapsulate a large quantity
of domain knowledge. They indicate how small the marginal prices of the tasks in a decision set
can become relative to each other before the marginal price evaluation function fails to deliver
the correct decision.

A task with a marginal price ratio greater than one indicates that it has the smallest marginal
price of all the tasks in the decision set Hence, if the marginal price evaluation function always
gave the correct decision, the bound value would always be one irrespective of how close the
magnitudes of the marginal prices of the competing tasks became. If a situation arose in which a
task with a marginal price ratio smaller thaftvone was also the correct decision, Le., the one with
the smallest evaluation, it would be a signal to the system that the marginal prices of the
competing tasks were too close to each other and hence the bound on the ratio should be refined
upwards.

The bound values are also a function of the task errors. The larger the magnitudes of the
marginal prices relative to each other, the smaller the errors in the solutions generated. Hence,
the larger the marginal price ratios or bound values, the smaller the expected errors. Figure 5-4
indicates how the vapour and cost bounds are expected to vary for different desired error levels.
Since marginal cost is a better evaluation function than marginal vapour rate, it is expected that
for a given error level, the cost bound will be lower than the vapour bound, indicating that on
average, the former will be successful more often than the latter.

It should be noted that in the form described, CPD2-Soar takes no account of the overhead
involved in computing the marginal price ratios and invoking the memory operator to retrieve
and store bound values. Currently, it is assumed that the use of marginal price ratios is cheaper
than conducting a search. However, there is certainly a cost involved in performing the
operations required to use the ratios, and in reality, this cost must be compared to the cost of
performing a search to determine which solution strategy is indeed cheaper.

61

VAKHJ11ATE

COST

NOT

I t IS

Figure 5*4: Expected variation of vapour and cost bounds with error levels

5.7. Implications for Process Design
A primary motivation for describing CPD2-Soar was to show that the functionality of a system
like Interval-Soar could be fruitfully utilised within a process design system. Interval-Soar
provided evidence for an hypothesis about learning; namelyf that the knowledge learned by an
agent is dependent upon the the models the agent brings to the problem-solving experience. The
purpose of CFD2-Soar was to demonstrate for the process design domain what Interval-Soar
does for an arithmetic domain; that the richer the model an agent has of its evaluation functions,
the more general the knowledge it learns.

62

CPD2-Soar is valuable for two reasons: first, it recognises that the selection of a function to
evaluate competing designs is an important, but often ignored, subproblem within a design task;
and second, it depicts how a learning ability could be used by a design system to generate a
design solution that met a minimum quality criterion without resorting to a search. These factors
are further discussed below.

Learning to Select among Multiple Evaluation Functions: The selection of a function to
evaluate competing designs is an important, but often ignored, subproblem within a design task.
Almost all existing design systems have this decision hardwired into them when they are
developed As described in Chapter CHAP2, this is tantamount to solving a design problem
before it has even been posed. The selection of an evaluation function can only properly be made
when the context is known within which the task is to be solved. CPD2-Soar is based on the
recognition that process design is also an activity, and not just the product of an activity.

CPD2-Soar depicts how a design system can be provided with the ability to select among
multiple competing functions. It depicts how the selection of a evaluation function can be posed
as a problem-solving activity within a design system. It also indicates how a system could learn
to improve its evaluation-function choosing ability by abstracting from its problem-solving
experiences.

Generating Design Solutions that Satisfy a Minimum Quality Criterion: The goal pursued
by almost all existing systems when soking a process design problem is to determine the
cheapest design from among all the solutions embedded within the search space. However, a
more useful goal would be to generate a solution whose cost was no greater than a certain
percentage of the cost of the best solution. By stating the design goal in such a fashion, two
advantages accrue: one, relaxing the condition that the best solution is required ensures that the
otherwise expensive search needed to solve the task is avoided; and two, adding the condition
that the cost of the solution generated be not more than a certain distance from the best solution
attainable ensures that a certain minimum solution quality is maintained. At a first glance, it
often seems that a potentially unsolvable conflict exists within the stated design objective. To
determine if a particular solution lies within a certain horizon from the best solution, the best
solution must first be found. But finding it requires an exhaustive search of the design space,
precisely what the revised design objective is intended to avoid.

CPD2-Soar depicts how the apparent conflict in the design goal can be overcome by capitalizing
on a system's learning. To determine if a design solution lies within a certain distance of the best
solution, the system uses knowledge learned from earlier problem-solving experiences. In so
doing, the system avoids a search of the design space. In CPD2-Soar, the vapour and cost bound
metrics play an important role in realizing this ability.

A definition of a design goal that includes a bound on the solution quality also has a merit in
addition to the ones described earlier. In so stating the goal, an attempt is also made to account
for the inherent impreciseness of the models and evaluation functions used to analyse designs. In

63

•
other words* the usefulness of all evaluation metrics in comparing the costs of competing designs
only extends to a certain degree. To illustrate this, consider a column-costing model whose
preciseness is hundreds of thousands of dollars. Then, a column whose cost was predicted to be
$345,873 by the model should really be equivalent in quality to a column whose cost was
calculated to be $278,132. If the preciseness of die model is taken into consideration, the cost of
both columns can only be believed to be $300,000 with any certainty. Thus, any additional effort
expended in finding the solution that cost $278,132 is wasted since the seemingly better solution
is not really better if the preciseness of the models is also taken into account

6* Summary
The Soar architecture was introduced as a vehicle for developing design systems with
capabilities seen to be important fen* chemical process domains but missing in most existing
design systems. Two systems developed within the Soar framework, CPD-Soar and Interval-
Soar, were reported upon. The tasks, problem-space structure, operation and performance of each
system was described in depth. The implications for process design of the systems were also
discussed.

The construction of CPD-Soar and Interval-Soar was a valuable exercise for two main reasons:
one, it presented evidence that the mechanisms present in Soar can provide design systems with
useful abilities, and two, the act of creating the systems was helpful in identifying those aspects
of the task domain that are well understoo&and those that are not Selecting among competing
evaluation functions and design methods, learning approximate and/or abstract models of
complex evaluation functions and interacting with external software systems were three areas
identified as not being well understood.

The systems also provided evidence for the hypothesis that the learning carried out by a system
is related to the model the system brings to the problem-solving experience. This hypothesis was
proposed in response to CFD-Soar's learning behaviour, in particular, its learning of very
specific knowledge. Interval-Soar verified that if an agent was provided with a richer model, in
this case, of its evaluation function, the learning carried out by the agent would be more general
and thus more uscfuL

Finally, a number of effective ways of further improving the abilities and performance of CPD-
Soar, utilising die lessons learned earlier, were described. The problem-space structure and
expected performance of CPD2-Soar, the enhanced version of CPD-Soar, was postulated.

1. Acknowledgements
We would like to thank Paul Rosenbloom for the use of die memory operator and, along with
Soowon Lee, for the use of the function spaces. This work was supported by the Engineering
Design Research Center, a National Science Foundation Engineering Research Center at
Carnegie Mellon University.

64

List of Symbols
B * Cost bound at error level e

(D)

A//

MCR(f)

MTAC(j)

MTAC*(j)

MV(J)

MV*(/)

Vapour bound at error level e

Evaluation of task j [$]

Decision Set

Error of task j

Si-'-set of tasks j from (D) for which £(/) > e and MCR{f) > 1

Subwt of tasks y from {D} for which £(/) > e and MVR(J) > 1

Marginal cost ratio of tasky

Marginal total annualised cost of tasky [$]

Lowest MTAC of all tasks besides j in the
decision set of which j is a member [$]

Marginal vapour rate of task j [kmol/hr]

Lowest MV of all tasks besides j in the
decision set of which j is a member [kmol/hr]

MVRij) Marginal vapour ratio of task;

{N} Set of unacceptable tasks

{T} Set of acceptable tasks

Arguments, Subscripts and Superscripts

b Refers to the task in a decision set with the best evaluation

e Error level on a bound or the desired error for a problem

j Refers to a task

t Refers to the task with the largest MCR in M*

t Refers to the task with the largest MVR in Af v«

65

References
[Douglas 88] Douglas, J. M.

Conceptual Design of Chemical Processes.
McGraw-Hill, San Francisco, CA, 1988.

[Ellmanera/90] Ellman, T., R. Keller & J. Mostow (editors).
Automatic Generation of Approximations and Abstractions - Working Notes of

the AGAA-90 Workshop, Boston, MA.
American Association of Artificial Intelligence, 1990.

[Laird 88] Laird, J.E.
Recovery from incorrect knowledge in Soar.
In Proceedings of the National Conference on Artificial Intelligence, pages

618-623. August, 1988.

[Laird etal 86] Laird, J. E., P. S. Rosenbloom & A. NewelL
Chunking in Soar The anatomy of a general learning mechanism.
Machine Learning 1(1): 11-46,1986.

[Laird et al 87] Laird, J. E., A. Newell & P. S. Rosenbloom.
Soar: An architecture for general intelligence.
Artificial Intelligence 33(l):l-64,1987.

[Laird et al 90] Laird, J. E., C. B. Congdon, E. Altmann & K. Swedlow.
Soar User's Manual: Version 52.
Technical Report CMU-CS-90-179, School of Computer Science, Carnegie

Mellon University, Pittsburgh, PA, 1990.

[Mitchell et al 86] Mitchell, T. M., R. M. Keller & S. T. Kedar-CabeUi.
Explanation-based generalization: A unifying view.
Machine Learning l(l):47-86,1986.

[Newell 90] Newell, A.
Unified Theories of Cognition.
Harvard University Press, Cambridge, MA, 1990.

[Newell ASteier 91]
Newell, A. & D. Steier.
Intelligent Control of External Software Systems.
Technical Report EDRC-05-55-91, Engineering Design Research Center,

Carnegie Mellon University, Pittsburgh, PA, 1991.

[Rosenbloom 89] Rosenbloom, P. S.
A memory operator for Soar.
1989.
Unpublished code and working notes.

[Rosenbloom & Laird 86]
Rosenbloom, P. S. & J. E. Laird.
Mapping explanation-based generalization onto Soar.
In Proceedings of AAAI-86, pages 561-567. 1986.

66

[Rosenbloom&Lce89]
Rosenbloom, P. S. & S. Lee.
Soar arithmetic and functional capability.
1989.
Unpublished code and working notes.

[Rosenbloom etal 89]
Rosenbloom, P. S., A. Newell & J. E. Laird
Towards the knowledge level in Soar: The role of the architecture in the use

of knowledge.
In K. VanLehn (editor), Architectures for Intelligence. Lawrence Erlbaum

Associates, Hillsdale, NJ, 1989.

[Steier et al 87] Steier, D. M., J. E. Laird, A. Newell, P. S. Rosenbloom, R. A. Flynn,
A. Golding, T. A. Polk, O. G. Shivers, A. Unruh & G. R. Yost
Varieties of learning in Soar.
In Proceedings of the Fourth International Workshop on Machine Learning,

pages 300-311. 1987.

