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Abstract Process design is a complex activity that requires the design agent to possess
characteristics currently missing in most artificial design systems. Soar is an integrated
softwar e ar chitecture for knowledge-based problem solving, learning and interaction with
external environments. We report on tfto systems developed using the architecture. The
first, CPD-Soar, d&gg(ns digtillation sequences, while the second, Interval-Soar, performs
smple arithmetic tas«s. The structure and behaviour of both systems is described and
discussed in depth. In so doing, it is depicted how design and design-related tasks can be
cast within the Soar framework, hence demonstrating the functioning and strengths of the
architecture's problem-solving mechanisms. The systems provide evidence for an
hypothesis about learning; namely, that the knowledge learned by an agent while
performing a task is strongly dependent upon the models the agent bringsto the problem-
solving experience. Specifically, it is shown that the richer the model an agent has of its
evaluation ftinctions, the more fgeneral the knowledge it learns. In relation to this, we
describe how the functionality of Interval-Soar can be used to farther improve upon the
erformance of CPD-Soar. We also discuss a number of other issues that arose when
uilding thetwo systems.

1. Introduction

Given the significant role that design plays within the.chemical processing industry, the
development of computer-based support systems has long been an important objective within
chemical engineering. However, most process design systems developed to date lack
mechanisms allowing them to handle the inherent complexities of their domain. In particular, the
“ability to make decisions along the entire spectrum of contexts within which design problems are
posed, the ability to bring multiple knowledge sour ces to bear in making these decisions and the
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ability to learn new knowledge, either from internal problem-solving experiences or from
external sources, are seen as being especially significant, even necessary, for dealing with the
extensive demands of process design domains.

We begin by intrbducing the Soar architecture as a vehicle for constructing process design
systems with the above abilities, and then describe two systems, CPD-Soar and Interval-Soar,
built using the architecture. While die former designs distillation sequences, die latter performs
smple arithmetic tasks. The motivation for constructing each system as well as its domain,
gructure, operation and performance is presented in detail. The implications for process design
of each system are also discussed A number of effective ways of further improving the abilities
and performance of CPD-Soar are described These include endowing the system with
knowledge to evaluate competing separation tasks using marginal prices as well as embedding
within the system the functionality of Interval-Soar. The problem-space sructure and expected
performance of CPD2-Soar, the enhanced version of CPD-Soar, are postulated

2. Soar

Soar [Laird et al 87] isan integrated softwar e architecture for knowledge-based problem solving,
learning and interaction with external environments under development for several years. The
architecture is of direct interest to a large group of researchersfor a broad spectrum of reasons.
Their research agendas are diverse and their academic backgrounds range from psychology and
sociology to engineering and computer science.

The Soar system has been used to build systems capable of solving problems ranging from
highly routine to extremely difficult, and its lear ning mechanism has been successfully applied in
a wide vafiety of situations [Steier et al 87]. Depicted as a block diagram I'A Figure 2-1, the
architecture comprises a small number of distinct mechanisms that ;frovide support for a large
number of the capabilities deemed important for a problem-solving agent These mechanisms
include problem spaces for conducting all search, production rules for all long-term knowledge,
attribute-value objects for all short-term knowledge, preference-based decision making for all
decisions, impasse-driven subgoaling for all goal generation, input/output functions for all
interactions with the external world and chunking for all learning. The chapter only briefly
describes the mechanisms; more detailed descriptions are provided by Laird et al [Laird et al
90].

CPD-Soar was developed using Soar 4, an earlier version of the architecture, while the current
version, Soar 5, wasused in creating Interval-Soar. The description of the architecture presented
isof Soar 5 with some of the more important differences between Soar 4 and Soar 5 highlighted.
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2.1. Problem Spaces

* All tasksin Soar are performed as seaich in problem spaces. A problem space consists of a set of
states and a set of operators. Applying an operator to the current state generates a new state and a
god is achieved when a desired state is reached. F| gure 2-2 depicts an example problem space
from the Blocks World task.

Figure2-2: Example problem space
- (from [La|rd et al 90] F|gure 2-1)

' .
In Soar, multiple goals correspond to a task decomposition, each of which may require different
problem spaces to be searched. The task is accompUshed when the top-level god is attained.
All search is redised by two generic functions; task-implementation and search-control. Task-
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implementation functions involve the retrieval or generation of problem spaces, states and
operators. Search-control functions, on the other hand, involve the selection of objects (problem
spaces, states, operators) from among those competing.

A major difference between Soar 4 and Soar 5 is in the way changes are made to an existing
sate. In Soar 4, the application of an operator resultsin the creation of a new sate. All date
modifications are made directly on the new state and any state contents not changed as aresult of
the operator application are copied from the old state. Multiple states may thus be maintained
within a single problem space. In contrast, an operator is implemented in Soar 5 by making
destructive changes to the existing state; thus, only a single ate is maintained in each problem
space.

2.2. Working Memory

All short-term or temporary knowledge, representing the current problem-solving stuation, is
sored in working memory as a set of objects. Each object, denoted by a unique symbol called
its identifier, consists of a set of augmentations and a set of preferences for the augmentations.
While augmentations describe the object in terms of a set of attributes, preferences determine the
actual contents of working memory by asserting the relative or absolute worth of a specific value
of an attribute. Since the values of attributes can be identifiers of other objects, complex frame-
like representation sructures may be created. Figure 2-3 depicts the general form of an
augmentation, which consists of four symbols: a class, an identifier, an attribute (preceded by an
A) and a value. Of the example augmentations, two share the same identifier (c4) and hence refer
to the same object, and two belong to the same class (distillation-column).

GENERAL FORM OF AN AUGVENTATI ON:

(class id "attribute val ue)

EXAMPLES OF AUGVENTATI ONS:

(conponent c4 “name benzene)

(conponent c4 | ow ate 23.8)
(distillation-colum d8 “reflux-ratio 2.85)
(distillation-colum d2 “*reboiler r3)
(reboiler r3 At enperature 473)

Figure2-3: Example Soar \}vorking-memory augmentations




2.3. Recognition or Long-Term Memory

All long-term knowledge in Soar is stored in an associative recognition memory, redised as a
production system. Each production consists of a set of conditions and a set of actions. The
conditions test working memory for the presence or absence of object augmentations whereas the
actions add to it new augmentations and preferences. Productions encode all knowledge required
to perform atask. This knowledge pertains to either task implementation or search control. An
important characteristic of Soar as a production system is the absence of any conflict resolution.,
All productions that are ingtantiated, i.e., have their conditions satisfied, are selected to fire, thus
alowing theretrieval of knowledge in parall€l.

Figure 2-4 presents an example Soar production, its English verson, the working memory
augmentations that instantiate the production, i.e., cause it to fire, and the augmentations and
preferences added to working memory as a result of the production firing. The pluses in the
working-memory elements denote acceptable preferences.

In Soar 4, the preference scheme is only used in determining the contents of context slots, i.e.,
problem spaces, states and operators. In Soar 5, preferences are used to determine the values of
al augmentations, not just those pertaining to the context

2.4. Decision Cycles

All problem solving in Soar revolves arougg a number of decisions; what problem space should
be searched toattain a goal what state should the search proceed from and what operator should

be applied to the state. These decisions occur in asequence of decision cycles, each conssting of
two phases.

During the first phase, the elaboration phase, al instantiated productions fire. Since productions
may create working memory elements that satisfy other productions, this process can continue
for many elaboration cycles. It terminates when it runs to quiescence, i.e., when no more

productions can fire. Elaboration results in both augmentations and preferences being added to
working memory.

The sdlection of an object for arole is made during the second phase of the decison cycle, the
decision procedure phase. Beginning with the oldest goal, the decision procedure considers each
dot in the goa-context-stack. Within a context, the problem-space role is considered firgt,
followed by the state and operator roles respectively. All preferences relevant to a dot are
gathered and interpreted to determine an object for itsrole. If a unique decision can be made for
- an object for one of the slots in the context hierarchy, that object will be chosen. The selection of
an object for a context dot signifies the end of a decision cycle and problem solving then
- proceeds with the elaboration phase of the next cycle. Figure 2-5 pictoridly illustrates an
example sequence of three decision cycles.




SCAR PRODUCTI ON

(sp interval *i nst-sel ect-x

(goal <g> “probi em space <p> “state <s>)
(probl em space <p> “name interval)
(state <s> “paraneter <x>)

(par armet er <x> “sel ected no “nane x)

(goal <g> “operator <o> +)
(operator <o> “name sel ect-x + “paraneter <x> +))

ENG.I SH VERSI ON OF PRODUCTI ON:

| f
and

t hen
and

pr obl enfspace interval has been sel ected
paraneter x has not been sel ected

create an acceptable preference for operator select-x
create an acceptabl e preference to augnent operator
sel ect-x wi th paraneter*x

AUGVENTATI ONS | NSTANTI ATI NG PRCDUCTI O\

(goal g2 “probi em space p3 “state s2)
(probl em space p3 “name interval)
(state s2 “paraneter x5)

(paraneter x5 “sel ected no “nane x)

AUGVENTATI ONS AND PREFERENCES ADDED BY PRCDUCTI ON FI R NG:

(goal @2 “operator 02 )
(operator 02 “name select-x + “paraneter x5 +)

Figure 2-4: Example Soar production and working-memory contents
before and after firing
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Figure 2-5: Example ssquence of decision cycles
(from [Laird et al 87], Figure 2-6)

2.5- Subgoaling

A dtuation may arisein the problem solving when a unique decision cannot be made for any of
the dots in the current context because of ether incomplete or incongstent information. Such a
gtuation, known asan impasse, isdealt with by Soar by automatically subgoaling. Furthermore
subgoals may occur within subgoals, thus resulting in a hierarchy. The architecture recognises
four kinds of impasses: tie, no-change, rgection and conflict A tieimpasse occurswhen sveral
objects, for example operator s, have been made acceptable, but not enough knowledge exists to
sdlect one. A no-change impasse arises if none of the context dots change value during a
decison cycle. A rgection impasse occun if all the objects made acceptable for a context dot
are also rejected A conflict impasse arises if the objects for a context sot have conflicting
preferences, eg., X is better than Y and Y is better than X. Impasses are resolved when
preferences that allow Soar to sdect one of the candidate objects uniquely for a context dot are
added to working memory.




Figure 2-6 depicts the preferences in working memory before and after an operator-tie impasse
* hasoccurred

BEFORE SUBGOALI NG

(operator 01 acceptabl e)
“(operator 02 acceptabl e)
(operator 03 accept abl e)
(operator 03 indifferent to operator 02)

~> (Cenerate subgoal to resolve tie ixnpasae anong
operators 01, 02 and 03

AFTER SUBGOALI NG

(operator 01 better than operator 02)
(operator 03 rejected)

—> (perator A selected and inpasse resol ved

Figure 2-6: Example preferencesin Soar before and after
an operator-tie impasse

A

2.6. External Interaction

All interactions with the external environment occur viaa single input/output (1/0) interface. The
interface allows Soar systems to communicate with two kinds of functions, input functions and
output functions, both written in Lisp. Input functions provide Soar with information about the
outside world by creating preferences that result in changes to top-level-state augmentations.
Output functions affect the external enviroment by responding to changes in top-level-state
augmentations caused by production firings. An output function is triggered whenever a
working-memory element that pattern matches the output function is created

The /O interface is a feature of Soar 5. In Soar 4, all interactions with the externa world are
performed vialisp functions that are called as actions from the right-hand-sides of productions.

2.7. Chunking ) : .

Soar learns from its experiences in resolving impasses by constructing productions, known as
chunks® for insertion into its long-term or recognition memory. The chunks summarise the
problem solving that occurred in the subgoas and are created whenever results are generated.
Chunking operates by basing the actions of a new production on the results of the subgod and
the conditions on those aspects of the pre-impasse stuation that were relevant to the generation
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of the results. Relevancy is determined by working backwards through the traces of the
productions that fired in the subgoal to those working-memory elements, residing outside the
subgoal, on which the subgoal'sresults are ultimately dependent These elements form the basis
of the chunk's conditions. An important feature of the backtracing procedure is that productions
that only generate search-control knowledge do not have their traces examined since these
productions only affect the efficiency with which a goal is attained, and not the correctness of its
results. Finally, the working-memory elements deemed relevant by the backtracing procedure
are processed to determine the chunk's actual conditions and actions. This includes replacing
some of the symbols in the working-memory elements by variables, a process known as
variablization. Only symbols that are object identifiers are replaced by variables. All others are
left as constants. This generalisation process ensuresthat the chunkslearned will apply in future
problem-solving situations that are not exactly the same as the ones they were created under,

only smilar. Laird et al [Laird et al 86] have presented a detailed description of chunking in
- Soar.

Figure 2-7 schematically illustrates the creation of an example chunk. Thecirclesin the diagram
represent working-memory elements while the intervals between the dashed lines represent
decision cycles. Since the elements A, B and C represent the pre-impasse stuation and the
elements D and E are the resultsthat resolve the impasse, the former constitute the conditions of
the learned chunk and the latter itsactions.

Like any other learning.system, it is possibltffor Soar to acquire incorrect knowledge, which may
result if the system either makes the wrong inference or receives the wrong information.
Although productions encode all knowledge in Soar, errors only arise through incorrect
decisions, Le., the wrong problem space, state and operator being selected. Consequently,
recovering from erroneous knowledge in Soar does not involve modifying the productions that
encode the knowledge, but rather the decisions that are the consequence of applying the
knowledge. By learning productions that make the right decisions, Soar recovers from incorrect
knowledge. Laird [Laird 88] has described a recovery-from-error technique that allows Soar

systems to recover from any incorrect knowledge they may have captured in their long-term
memories.

Rosenbloom and Laird [Rosenblootn & Laird 86] have described how chunking maps onto
explanation-based learning [Mitchell et al 86], an analytic learning method.

* 3. CPD-Soar

3.1 Ovérview

CPD-Soar is a system developed within the Soar architecture that- solves process design tasks.
The system determines the sequence in which the splits should be applied to a feed stream in
order to create the desired products. The reasons for developing CPD-Soar were simple: to
understand how a process design task could be cast within the Soar framework and to observe
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Figure2-7: Chunk creation in Soar
(from [Newell 90], Figure4-12)

how dieresulting syssem would perform, in terms of both problem solving and lear ning.

Given afeed ecification, CPD-Soar solvesthetask by first generating all the applicable splits
~and then seguencing them. It controls the search by applying a number of heurigtics commonly
used in digtillation sequence design. It resolves ties and conflicts among the heurigtics by
performing a one-step lookahead sear ch. It has been shown in Chapter CHAP3 that the marginal
. price of a spéarations task performs better as an evaluation function for controlling the search
than the heurigtics employed in CPD-Soar. However, because the function was not discovered
until after CPD-Soar was created, it was not used in evaluating competing*task decisions in

CPD-Soar.




3.2. Structure of CPD-Soar

CPD-Soar's knowledge is distributed among its domain spaces and the selection? space. Figure
3-1 depicts the decomposition of the system into its problem spaces and operators. Each problem
space is depicted by an oval and the operators it contains are listed in the box next to it

Impasses are denoted by directed lines linking problem spaces. ON refers to an Operator No-
change impasse.

CPD-Soar is implemented by 168 (Soar 4) productions. Of these, 60 implement the selection
gpace and other default search-control knowledge. The sizes of the remaining task spaces in
CPD-Soar in terms of numbers of productionsis summarised in Table 3-1.

3.2.1. Domain Spaces

There are seven domain spaces in CPD-Soar design, feed, order, split, sequence, update and
output. Of these, all except the design space are operatoT-implementation spaces. The design
space, which is the top-level space, has eight operators  get-feed, order-components,
link-components,make-splits,identify-forbidden,sequence-split,update-streamandwrite.

The get-feed operator interacts with the user to obtain the feed specifications. This operator is
implemented as a problem space called feed which contains two operators, moke-feed and
get-comp. Make-feed prompts the user for the name of the feed stream and the number of
components. Get-comp obtains the following information about each component from the user
itsflowrate, itsrelative volatility and product in which it isdesired.

The order-components operator ranks the componentsin a sream in descending order according
to volatility. The lightest component, i.e., the one with the highest volatility, is given arank one.
The operator is ingtantiated for all sreams that are unordered and is implemented as a problem

space called order. This space contains a single operator, rank, which is ingantiated for all
unranked componentsin the selected stream.

Streams are represented as linked lists and columns are modelled as list-splitters, i.e., as perfect
sputters. Each component in a stream, other than the one with the highest rank, has an attribute
"lighter-than" whose value is the identifier of the component that is adjacent to and heavier than

it The operator link-components links all the components in a ssream whose components have
already been ordered.

Make-splits generates all the possible sharp splits that can be applied to the feed sream. For a
sream with N components, the number of possible sharp splits is 2V-1. Each spllt is
characterised by a light and heavy k_ey The split problem space implements the make-sphts
operator. Split contains a single operator, also called sptt,’that generates a split'and computes
the ratio of the volatilities of the light and heavy keys. Identify-forbidden tags each split

-Boldface TImesRoman is used to denoce problem spacesand M& ee Unties is used to dencte operators
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ORDER-COMPONENTS
LINK-COMPONENTS
MAKE-SPLITS
IDENTIFY-FORBIDDEN
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MAKE-NEW
COMPUTE-VAPRATE

COMPUTE-FLOW

COMPUTE-FRACTION
MAKE-FEED COMPUTE-NORMVOL
GET-COMP

Figure3-1: Problem-space structure of CPD-Soar
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Problem Space No. Productions
Design 49
Feed 9
Order 8
Update 14
Split 6
Sequence 15
Output 7

Table3-1: Sizesof domain spacesin CFD-Soar

generated by make-splits as either dlowed or forbidden. A split is forbidden if its two keys
coexist in the same product

The operator update-stream computes the mole fractions of a stream's components, normalises
their volatilities with respect to the heaviest component and computes the total flowrate of the
stream. It is implemented as a problem space called update, which contal ns three operators.
compute-flow,compute-fractionandcomjtihe-normvol.

When all the alowable splits have been sequenced, the write operator writes them to the screen
in the order they are to be applied. Write is implemented as the problem-space output, which
contains a single operator called print that outputs a split to the screen.

The operators described thus far are all used by GPD-Soar to perform routine book-keeping and
input/output functions. However, the key function to be performed in solving the design problem
is the ranking of the allowable splitsin the order in which they are to be applied. This function is
performed by the sequence-split operator, which is implemented as a problem space caled
segquence that contains two operators, make-new and compute-vaprate. The make-new operator
generates two new streams corresponding to the distillate and bottoms products and augments
these streams with their components. It aso generates a column that is augmented with its feed
and product streams. The compute-vaprate operator computes the vapour flowrate in the
column using a smplified function proposed by Douglas [Douglas 88].

The sequence-split operator is made acceptable for all unrénked dlowable splits that may be
-gpplied to streams that have neither been split nor are products. Splits that apply to different
streams are made indifferent to each other. The following heuristics are used to select among
splits that gpply to the same stream: easiest separation best (Smilar to hardest separation worst),
remova of lightest key best and remova of component with largest flowrate best. If the
application of the heuristics fails to result in a unique split choice, aone-step lookahcad strategy
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is employed to make adecision. Thisinvolves selecting the split that results in the column with
the lowest vapour flowr ate.

3.2.2. Selection Space

The selection space contains Soar's default knowledge for resolving multi-choice impasses, i.e.,
ties or conflicts among competing problem spaces, states or operators. It contains one operator,
evaluate-object, whose function is to compute an evaluation for a competing object. The
following section describes the use of the selection space to resolve ties or conflicts among
competing sequence-split operators.

3.3. lllustration of CPD-Soar Executing

Toportray the search performed by CPD-Soar, consider the smple but representative stuation in
which a stream consisting of three components, A, B and C, is to be separated This Stuation is
depicted in Figure 3-2.

Suppose that CPD-Soar, on the basis of its current knowledge, i.e., its heuristics, is unable to
decide between the two possible splits, A/B or B/C. Thisindecision could be due to one of two
reasons. Either its knowledge indicates both splits are equally good, in which case a tie impasse
will be encountered, or its knowledge is conflicting, with one piece of information stating A/B is
better and another stating B/C is better, in which case a conflict impasse will arise.

In both cases, CPD-Soar subgoals into the selection space to generate the knowledge required to
resolve the impasse. In the selection space, the evaluate-object operator is made acceptable for
each object in the tie or conflict impasse, in this case, the twb'sequenceusplit operators. Since it
does'not matter in which order the splits are evaluated, the evaluate-gbject opérators are made
indifferent to each other. CPD-Soar evaluates the competing splits by trying each one out in turn
and comparing the results. '

Suppose the B/C split is selected first to be evaluated. |f CPD-Soar encounters an operator no-
change impasse in trying to apply the evaluate-object operator, the design space is made
acceptable. The B/C split is applied to the stream and the vapour flowr ate of the resulting column
computed Suppose it is X in this case. This knowledge is passed back to the selection space.
CPD-Soar next performs the same sequence of operations for the second split Suppose the
vapour flowrate for the A/B splitis Y. Thetwo evaluations, i.e., flowrates, are then compared in
the selection space and a better-than preference is generated for the split corresponding to the
smaller flowrate with respect to the other. Supposing that X is smaller than Y in this case, the
split B/C is chosen. C -

To'illustrate die behaviour of CPD-Soar, die problem-solving trace for an example eight-
component problem is presented below. This version of CPD-Soar is only endowed with one
search-control heuristic, select easiest separation next; hence, the splits are applied in order of
decreasing ratio of key-component relative volatilities. Splits with the equal key-component
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TASK GOAL
DESIGN MOSLEM SPACE

OPERATOR TIE OR
CONFLICT SUSGOAL

SELECTION PROBLEM SPACE

VAPOUR RATE
n¥

*VALUATION SUSGOAL
DESIGN PROILEM SPACE

Figure3-2: Selecting among competing splitsin CPD-Soar

relative-volatility ratios are made indifferent to each other.

~ Theleftmost column indicates die decision cycle number. G, (for goal), P (for problem space), S
(for state) and O (for operator) indicate the context dots and the identifiers adjacent tothem, eg.,
-Gl or P2, indicate the specific objects that fill the dots together with their namesin some cases,
e.g., design or get-feed. Indentationsin the trace indicate the creation of subgoa £ All statements

in brackets are comments included to make the trace readable while all other statements are
either output by the system or input by the user.

0 6: 61
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P: P2 DESI GN

S A4

O 05 CET-FEED

—G: €. (CET-FEED CPERAHJ?P(}C}MwﬂE)
P: P7 FEED
S S9

O Gl MXKE-FEED Enter nane of feed stream

N oO0Ohr~rWDN PR

f eed [ The feed stream nane has been entered]

Ent er nunber of conponents
[ The nunber of conponents has been entered]

8

8 S: Ni3
9 O 014 CGET-COWP Enter conponent nane

h [ The conponent nane has been entered]

Enter conponent volatility

3 [ The conponent volatility has been entered]
Enter conponent flowate

1 [ The conponent flow ate has been entered]

[Nane/ volatility and flowate are entered for the
remai ni ng 7 conponents ]

10 S N25
11 0: 026 ORDER COVPONENTS

12 «X3: @7 (ORDER OOVPONENTS CPERATOR NO- CHANGE)
13 P. P28 ORDER

14 S S30

[ The conponents of the feed streamare ordered...]

31 S N83

32 0: 084 LINK-COWONENTS [The conponents are |inked]
33 S N85

34 0: 086 DPDATE- STREAM

35 —X3: G87 (UPDATE- STREAM CPERATCR NO- CHANGE)
[ The streamis updat ed]

36 P: P88 UPDATE

37 S: S90

38 0: 091 CGOMPUTE- FLOW
39 S N93

40 QO 094 COWPUTE- NOCRWCL




41 S: NO6

42 QG 097 COWPUTE- FRACTI ON
43 S: N99

44 O (0100 MAXE- SPLI TS

45 —G: 6101 (NMAXE-SPLI TS OPERATOR NO CHANCGE)
[Al possible splits are created]

46 P. P102 SPLIT

47 S. S104

48 O 0106 SPLIT

49 S N129

50 O 0131 SEQUENCE- SPLIT
[Asplit is selected to apply]

51 —G: 6137 (SEQUENCE-SPLIT GPERATOR NO CHANGE)

52 P: P138 SEQUENCE

53 S. S140
54 QO 0141 MAKE-STREAM [New streans are created]
55 S: N154

56 QO 0156 ORDER- COVMPONENTS [The conponents are ordered...]
[Smlar steps to those described above are performnmed

whenever a new streamis created; its conponents are
ranked and linked and it is updated...]

233 S: Nb09
234 O 0510 WRITE oG

[Snce all splits are ranked, they are output]
235 —G:. 6511 (WR TE OPERATOR NO CHANGE)
236 P. P512 QUTPUT
237 S. Sh14
238 0: 0515 PRI NT
Split B/ C of key-conponent volatility ratio 3 IS
Split D of key-conponent volatility ratio 5/2 is
Split E/r of key-conponent volatility ratio 2. 1is
Split r/6 of key-conponent volatility ratio 2 I's
Split 6/H of key-conponent volatility ratio 2 'S
Split A/B of key-conponent volatility ratio 2 I's
Split DE of key-conponent volatility ratio 3/2 is

goal DO-DESI 6N achi eved [ The probl em has been sol ved]
"End — Explicit Halt"

<N~NOURAWNER

3.4. Perfor manceof CPD- Soar D

‘As noted earlier, almost all of CPD-Soar's problem solving involves either routine calculations
or the transfer of information into and out of the system. The only problematic stuations
encountered concern the ordering of the splits. Hence, the performance of the system is most
usefully described with respect to its strategy in resolving ties or conflicts among competing
splits. In regard to this, two points will be made: the first concerns the use of the single-step
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lookahead search and the second the use of Vapour flowrate as an evauation metric.

Recall that an important incentive in constructing GPD-Soar was to get an appreciation of the
kind of chunks that would be learned in domains in which a significant portion of the problem
solving involves numerical calculations. To achieve this objective, the lookahead search was
deemed sufficient since chunks are learned by CPD-Soar whenever results are generated within
subgoals.

Vapour flowrate was sdlected as an evauation metric since in many contexts it is a good
indicator of the cost, both construction and operating, of a column. Lower vapour rates result in
smaler columns and lower utility usage. However, this in no way implies that CPD-Soar is
restricted to using vapour flowrate as the evauation metric. By endowing it with the appropriate
knowledge, the system can certainly be made to apply aternative eval uation metrics.

To depict its learning performance, a typica chunk learned by CPD-Soar is presented in Figure
3-32 together with its English version. Although too specific, i.e., die condition elements have
attributes whose values are numeric constants, such achunk can be useful if the system solvesits
task by conducting an exhaustive search and the search space is represented as a network, i.e.,
the quantity of each speciesin the input to adistillation column is assumed to be either the same
as in the initial process feed or zero. Under these conditions, a chunk acquired early in the
problem solving can fire during later stages of the same problem.

In process design problems, it is often the case that many computations are repested severd
times during the same problem instance. Also, decisions among the same competing choices
may also be repeated An example from the doman of distillation-sequence design is the
caculation of the column parameters for a particular split A search down one branch of the
graph may require the A/B split to be evaluated. However, further down the branch a decision
may be made not to explore it any further and to switch the search to another branch. This new
branch may now aso require the A/B spdlit to be evaluated. However, since the design system
will have chunked away the results of the A/B evauation that was performed during the search
of the previous branch, this evaluation will not have to be repeated. In process design problems,
it is also often the case that decisions from among the same competing choices will have to be
remade severa times within asingle problem instance. For example, while searching a particular

- branch of agraph, a decision may have to be made between two competing splits, say, A/B and
B/C, which in turn may require a search. Later, when some other branch of the graph is being
searched, it is possible that a decison may again be required between A/B and B/C. This time
however, the system will be able to make adecison immediately based on the knowledge it had
learned earlier. Such within-trid transfers of knowledge can help make tractable larger design.
probl ems than would be attempted without it

*Thc syntax of thelproductlon presented hereis Soar 4 since this was the version of the architecture within which
CPD-Soar was initially developed while the productions presented elsewhereare in Soar 5 syntax.
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3.5. Implicationsfor Process Design :

The development of GPD-Soar was intended to be an initia step towards understanding the
implications of developing a process designer within an integrated architecture. Its intantiation
was avauable exercise for two main reasons. one, it presented evidence that the mechanisms
present in Soar can provide process design systems with useful abilities and two, the act of

cregting it was helpful in distinguishing those aspects of the task domain that are well understood
from those that are not

3.5.1. Usefulness of Soar's Mechanisms for Process Design Systems
As described in Chapter CHAP2, if process design systems are to be capable of tackling the
complex and diverse demands of their domains, they require a wide range of abilities. Some of
these capacities have been displayed by a number of design systems, mostly small shallow expert
systems performing in limited domains. These include the ability to represent and manipulate
" symbolic situations, the ability to formulate tasks as search, the ability to decompose larger
problems into groups of smaller subproblems and to organise these as subgoa hierarchies, and
the ability (made possible by archiving the system's knowledge as a parald if-then recognition
memory) to bring al relevant knowledge to bear at each point of the problem-solving process.
Other capacities, such as the ability to mix knowledge and search, operating as recognition-like
systemsin regions where the expertise exists, and searching whereiit islacking, and die ability to
learn, have not The development of CPD-Soar was important since it provided evidence that
process design systems can be built in whigh not only the missing capabilities are exhibited, but
that all the above-mentioned capacities can be tightly integrated within a single process designer.

The mixing of knowledge application and search that occurs in CPD-Soar plays an important
role in allowing design decisions to be made at run time rather than at system-creation time. To
illustrate die significance of run-time decision making, consider the multiplicity of heuristic rules
that have been proposed for selecting the split to be applied to a process stream. Since most of
these rules discriminate on the basis of different attributes, conflicts and ties among the
competing splits are to be expected in many cases even &fter the rules have been applied. Most
previous works in the field deal with this problem in one of a number of ways. One approach
involves ranking the heuristics in order of importance. In all cases however, the ranking function
used isvery subjective and usualy does not have any basis. A second gpproach does away with
the use of the rules atogether. Instead, either exhaustive searches or heuristic evauation
functions involving partial searches are employed to rate the competing splits. However, most of
these schemes are computationaly expensive for even moderately sized problems. A third
“approach uses only a subset of ail the rules that have.been shown to be useful. This subset is
selected carefully so as to avoid the possiblity of conflicts arising. However, this-approach loses
_out in Situationis where the weeded-out rules could have applied

As will have been noted, in each aoproach deéisions about how splits should be evauated are
made a priori, i.e., when the system is created As emphasized in Chapter CHAP2, this is
tantamount to solving, at least partialy, adesign problem before it has even been posed. Hence,
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any design systems created on the bass of the above-mentioned approaches will also suffer any
shortcomings resulting from apriori made decisons. In thisregard, CPD-Soar's ability to deal
with inconsgent and incomplete knowledge by subgoaling allows it to overcome the
weaknesses of the other approaches The power of usng heurigic rules as a means of

contralling the search isexploited, and only when therulesresult in conflictsor ties, isthe mare
expensvelookahead search resorted to.

All thisisnot to say that CPD-Soar, in the verson described, has no decisions hardwired into it
The system's solution drategy (heuridtic search), its split evaluation metric (vapour flowrate) and
itsmodd for computing vapour flowrate, among other decisions, were all made when the sysem
was created. However, asnoted earlier, theseredrictions are not a consequence of usng Soar. It
is-certainly possble to pose the sdection of solution drategies and evaluation metrics and
modeds, for example, as decisons within CPD-Soar. The only limit to doing this is the current
lack of underganding in making these decisons. Although the rdevant design literature is flush
with descriptions of different solution methods and models and evaluation functions, all
performing well within ther (usually undated) contexts, there is an absence of any discussion of
the conditions which govern ther performance and hencether selection.

3.5.2. Utility of Creating CPD-Sdar in Under standing the Task

The act of creating CPD-Soar was itsdf a valuable exercise because it helped to beter
undergand the task. domain. In thisregard, theda/elopment activity was useful in two ggnificant
ways. Fird, the task -analyss performed to hdp articulate the domain knowledge was
ingrumental in the discovery of the marginal price concept for the separation system design
problem. The usefulness of the concept has been described in Chapter CHAPS.

Second, the explicit mapping of task knowledge to problem spaces required to ingantiate the
sysem heped identify gaps in the current date of underdanding of the task. The dearth of
knowledge to sdect among competing models, evaluation functions and methods alluded to
earlier isonly one such hole. Two other important areas where it was discovered that a lack of
understanding existed about the required knowledge, how the knowledge was to be integrated
with the res of the system's knowhow, and what was needed in the way of capacities to learn
thisknowledge, are discussed below. In light of our experiences with congructing CPD-Soar, it
is conjectured that building process desgn sysems within an architecture such as Soar that
forces the explicit representation of all task-rdated knowledge is a powerful scheme for
identifying wher e future design research should be concentrated.

L earning in Numerically-I ntensive Domains. Although the use of chunking within CPD-Soar
. demongrated how a process designer's problem-solving experiences can be captured for future
use it alsoindicated that knowledge learned in operator-implementation and evaluation subgoals
in numerically-intensve domains such as engineering design could be too specific. This is
problematic snce learning will only betruly ussful if the captured knowledge can also beused in
Stuations different from the ones it was acquired under. Observing CPD-Soar’s Iearnmg
behaviour was thus valuable since it explicitly pointed to the need for a solution to the too-
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gpecific-chunks problem.

Even though some headway was subsequently made in dealing with the problem of learning
knowledge that is too specific, very little was known at the outset about either the cause of the
problem or its remedy. Was it the particular task representation being used that resulted in the
chunks being too specific? If so; what dternative representations would have to be employed?
Or was it the inherent nature of chunking? Perhaps the abstraction processes embedded within
the learning mechanism were singly inadequate for creating chunks of the right generdity. If so,
any additiona abstractions needed would have to be provided a priori to the sysem or would
have to be generated as part of the problem solving. However, the problem spaces within which
these abstractions could be created and how these spaces should be integrated with the design-
task spaces was largely unknown. Later work leading to the development of Interval-Soar
provided some answers to these issues.

Interaction with External Software Systems. A recurring issue during the design of CPD-Soar
was the question of how the total task labour was to be distributed Should CPD-Soar perform
the task completely using only its own internal abilities? Or should part of the effort be shipped
out to external systems? If so, what aspects of the task should these be, and to what external
systems should they be sent? The answers to these and other related questions were and still are
largely unknown. It was finally decided to have CPD-Soar perform the task internally, without
recourse to external tools. Thereason for this was simple: to avoid the complexities of Soar-tool
interactions until a better understanding wics obtained of what was required to get CPD-Soar to
use externa tools effectively. Besides, such a decision would alow the learning and problem-
solving behaviour of a Soar system performing autonomoudy within the process design domain
to be witnessed, which, it should be recalled, was one of the primary aims of creating CPD-Soar
in thefirst place.

Later, it was observed that adthough CPD-Soar could perform its task, it did so inefficiently, a
symptom largely attributable to its non-use of externd tools. Such tools will henceforth be
referred to as external software systems (ESSs), since they are created and exist external to the
agent, here CPD-Soar, that ultimately uses them. CPD-Soar's task environment is analogous to
that of a human designer peforming the same task without die benefit of externa software
systems, except perhaps a smple calculator. Such atask environment is not atrue reflection of
the current date of affairs Due to the pervasive growth of research in process design towards
specifying and writing software aids and tools, the nature of the process design environment has
evolved from one inhabited by no software tools to one populated by many systems. Red
process design environments are today rife with software tools; equation solvers, optimisation
packages, process simulators, databases, etc. abound in number. These software systems have
developed to the point where they now perform a significant portion of the complete design task.
Hence, if artificial agents are to be created for solving process design problems, it is imperative
that they be endowed with tool-using capacities.

However, as mentioned earlier, it is still largely unknown how artificial agents can be made to
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use ESSs. With the formation of the DESS (Interaction with External Software Systems)
" subgroup within die Soar community, preliminary steps have already been taken towards
achieving this undersanding. Newell and Steler [Newell & Steler 91] have described the
subgroup's obj ectives, the empirical observations that lead to its formation and the activitcs that
compose itsresear ch agenda.

The ESS environment is very relevant to CPD-Soar.. Even in its current limited form, a large
proportion of its operators, including order-components, update-stream, compute-flow,
compute-fraction, compute-normvol and computeraprate, could be implemented as external
knowledge sources. As the complexity and size of CPD-Soar®s task grows, one can envisage the
system having to interact with larger and more sophisticated ESSs. Databases could be accessed
to retrieve relevant component data, process smulators could be invoked to smulate columns
and compute relevant parametric quantities such as reflux ratios and vapour flowrates,
mathematical programming packages could be executed to optimise process variables and
external memories could be used to store detailed design descriptions.

Getting artificial agents to interact with ESSs involves more than just the creation of the
appropriate transducers and interfaces to facilitate the conversion and exchange of information
from one entity to another. As Newell and Steier have stated, a commonly held belief, termed the
transductionfallacy by them, is that the only capability required by an agent in working with an
ESS is the transduction between the representations of the agent and the software system. For
example, in the case of CPD-Soar interacting with an optimisation package, it could appear that
all that was required was the conversion of the mathematical programming model to a language
suitable for input to the optimisation package. Thisis clearly a fallacy, because thereis certainly
a fair amount of problem-solving activity involved in firg formulating the task as a mathematical
program befor e transducing it into the syntax required by the solver.

Newell and Steier have listed and discussed the performance capabilitiesrequired by an artificial
agent in order to use an external software system. These include formulate-subtask, create-input,
convert-output, interpret-result, operate-software-system and smulateESS, Formulate-subtask
is the capability concerned with formulating a subtask as a computational problem and deciding
whether to solve the problem using internal resources or to employ an ESS. Create-input and
convert-output are the transduction capabilities. Interpret-result involves the use of the results
created by the ESS in service of the original tak. Operate-software-system deals with the
operation and monitoring of the ESS under both normal and abnormal conditions and smulate-
ESS involves the ability to create the same results as the ESS at either the same or different
-levels of abgtraction and approximation. The.capabilities and ther interactions are depicted in
Figure 3-4. ' B

The development of CPD-Soar was useful for the role it played in identifying the need for
research into understanding what was required to get artificial agentsto interact with ESSs. The
creation of the system provided evidence, one more data point, of the need for focussed effort in
both defining arelevant resear ch agenda and executing it '
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Figure 3-4: Capabilitiesfor usng externa software systems
(from [Newel & Seer 91], Figure2)

4. | nterval-Soar

4.1. Overview ' « :

Interval-Soar is a sysem developed within die Soar architecture that performs a smple
arithmetic task. Although die problem solved by Interval-Soar is dementary, namdy, to
determine which of two fimctions gives the larger response when applied to a variable, its
creation was valuable in the attempt to undersand what isrequired by an artificial agent to learn
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useful knowledge while performing in a quantitative domain. The development of Interval-Soar

was a direct response to the observation that the chunks learned by CPD-Soax were too specific
to be of general use.

As was seen earlier, when CPD-Soar sdlects among competing separation tasks by evaluating
them via a lookahead search, al that it teams for a particular input (representing the flowrates
and volatilities of the components involved) is that one task should be preferred over another for
that input The chunk presented in Figure 3-3 illustrates this learning. The reason for the
specificity in the learning is that al the system knows, albeit implicitly, about the evauation
employed is that it produces numeric values which are to be compared to make a unigue choice.
Hence, dl that can, and does, get learned is knowledge of the kind depicted in Figure 3-3. If the
system is to be capable of learning more general knowledge, then it must initialy have more
knowledge, i.e., abetter model, of what is to be learned. For example, if the modd possessed by
the system is that the results of the evaluation also provide information about the region in which

the evaluation function is applicable, then the system will learn about thisregion. Interval-Soar
IS an attempt to explore this hypothesis.

Two smple evauation functions, one of which was monotone increasing and the other
monotone decreasing, were sdlected for investigation within Interval-Soar. The system was
implicitly provided with an abstract model of these functions, namely, that they intersected at a
single point Then, if the hypothesiswas valid, through their application, the system would leam

information about the evauation function**that was of more genera use than the knowledge
learned by CPD-Soar.

4.2. Task Performed by Interval-Soar

The task performed by Interval-Soar consists of selecting one of two functions, fl and f2, to
apply to each element of a set of values of a scalar variable x. The function to be chosen for a
particular value of x, say X, is the one which gives the greater result Hence, if fI(j) < f2(J), f2
will be selected as the function to be applied. When aresult has been computed for aparticular x
value, it is labelled with the function that was gpplied to it When al the variable values have
been labelled, the task is considered accomplished. As a consegquence of performing its task,
Interval-Soar learns to converge to the intersection point of the two functions.

Each function is characterized by a parameter caled its bound. For function fl, this i |s ub-ol
(upper bound of operator 1) and for function f2, it is 1b-02 (lower bound of operator 2) The
bounds of the operators thus demarcate the intervals or regions in which the operators should be

“applied. The value a which the two bounds, ub-ol and Ib-02 are equal, corresponds to the
_intersection of the two functions.

*The lower bound of operator 1 isassumed to be minus infinity aid the upper bound of operator two is assumed
tobeplusinfinity.
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If the value of % falls within a particular interval, then the operator to which that interva
corresponds will be selected to gpply to the data point If, however, the data point does not fal
within an interval, then alookahead search in which both operators are applied will be performed
to make adecision about which operator to select If, after afull evaluation, opl is selected as the
'operator to apply, die datapoint will be learned as die new value of ub-ol. Conversdly, if opl is
selected, the value of 1b-02 will be updated to the x value. By such a process of refining the
values of the bounds, Interval-Soar incrementally converg& to the intersection point of the two
intervals.

Since Interval-Soar performs this task without any knowledge of the functions themsalves®, the
issue is not one of solving two equations in two unknowns. Instead, it is a problem of
determining the intersection point only using knowledge of the sample data set Although in its
current version, Interval-Soar assumes that the functions only intersect at a single point, it is
expected that this assumption could be relaxed in future versions of the system. In order to
perform its task, as will become clearer later, the system requires the ability to recognize and
recall declarative knowledge. However, since chunking is the only learning mechanism within
Soar, this memorizing of declarative knowledge must be performed using chunking, atask not as
straightforward as learning procedura knowledge.

43. Structure of Interval-Soar

The knowledge in Interval-Soar is districted among severa problem spaces. the interval
space, the selection space, the refine space, the function spaces and the memory space. Figure
4-1 shows the decomposition of the system into its problem spaces.

Interval-Soar is implemented by 934 (Soar 5) productions. These include the productions that
encode Soar's default search-control knowledge. Table 4-1 summarises the numbers of
productions required to implement the different spaces. Asis seen, the function spac& required
by far the largest number of productions.

4J.L Interval Space

The interval space is die top-level space. It contains three operators.  selecUx, opl and opl.
Select-x selects t data point to be classified from among al those till unlabelled. Opl and opl
implement the functions fl and f2 respectively. :

43.2. Selection Space

The selection space contains Soar's defaullt knowl edge for resolvi ng multi-choice impasses that
- arise when severa competing aternativesexist In Interval-Soar, the space is used to resolveties
between the operators opl and opl in the interval space. To accomplish this, the selection space
has been augmented with four additional operators. memory, x-lte-ub-ol, x-gte-lb-ol and

*Although the example problem described later depicts die forms of the functions for the purposes of illugtration,
Interval-Soar does not have access to this knowledge per se.
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SELECT*
OPI.0P2
MEMORY TIE (OPL. OF2)
REFINE-INTERVAU
X-LTE-UB-01

X-OTE-IB-02

ON (ttPINB* OP1, OP2
INTéRVAL) MEMORY *
F1-EQ-F2
F1-QT-F2

ON (OPI. OPI)

ON (X-LTE-UB-O1.
X-GTR-L8-02)

ON (F1.8Q-F2,
FI-GT-F2)

ON (MEMORY) ON (MEMORY!

ON (COMPARE)

EXAMINE-CUE
EXAMINE-tNPUT
GEfIERATE-SYMBOL-TABLE
QENERATE-OUTPUT
RECOQNIZE-INPUT
MEMORY

COMPARE

Figure4-1: Problem-space srudture of Interval-Soar
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Problem Space No. Productions
Interval 1
Selection 23
Refine 19
Memory 57
Function 810

Table4-1: Sizes of problem spacesin I nterval-Soar

refine-interval.  Memory retrieves the current values of the bounds, ub-ol and Ib-02.
X-Ite-ub-ol and x-gte-1b-02 are comparison operators. The first compares x to ub-ol and, if it is
less than or equal to the bound, returnsthe value true. The second compares x to1b-02 and in this
case returns true if x is greater than or equal to the bound The operator refine-interval refines
the values of the bounds on the intervals. It does this by conducting a lookahead search on the
operators opl and op2s comparing their evaluations and updating the bound of the operator that
has the higher evaluation.

43.3. Refine Space K

The refine space, which implements the refine-interval operator, contains five operators. opl,
op2y, fl-eq-f2, fl»gt*J2 and memory. Fl-eqg-f2 returns a value of true if fl is equal to f2.
Likewise, fl-gt-/2 returns a value of true if fl is greater than f2. In contrast to the memory
operator in the selection space, the memory operator in the refine space associates the value of a
bound with its corresponding cue, Le,, it learns a new bound value.

43.4. Memory Space

Although the learning of procedural knowledge in Soar onIy requires the application of
chunking, the acquisition of declarative knowledge® also requires a search by the system. This
additional deliberate processing occurs in the memory space, which implements the memory
operator developed by Rosenbloom [Rosenbloom 89].

The memory operator provides Interval-Soar with the means to memorize and retrieve
declarative knowledge. It provides the system with object recognition and recall abilities. The
operator takes two arguments: an input object (the object to be learned) and a cue object The cue

"Declarative knowledge includes facts. It isknowledge about what istruein the world. Procedural knowledge, on
the other hand, includes knowledge about which actlons the system can perform, when certain actions should be
preferred over others and how to carry out the actions. An involved discussion of representing, storing, retrieving,
using and acquiring different forms of knowledge, including both procedural and declarative, is provided by
Rosenbloom et al [Rosenbloom et al 89].
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condrains the stuationsin which the input object isto beretrieved. When the memory operator
isapplied, all objectsthat were previoudy associated with the given cue arerecalled. If the input
obj ect isnot among thoseretrieved, then it islearned (and will thus beretrieved die next timethe
memory operator is applied with the same cue). The absence of a cue is effectively taken to be
the cueif the memory operator is applied without one. The operator will only perform retrieval
of earlier memorized objectsif it is applied without an input object However, if no objects had

been previoudy associated with the cue, then nothing isretrieved and the operator is Smply
terminated.

Each application of the memory operator resultsin the learning of two recognition chunks and a
recall chunk. The recognition chunks allow the sysem to determine if it has seen the cue and
input objects before and the recall chunk allows it to generate arepresentation of an object seen

before. By learning such chunks Interval-Soar can recognise and retrieve previoudy
encountered objectswithout having to perform a search.

Supposeit isdedred to associate the objects " Fido' and " Bozo' with the cue "dog" Thismeans
that whenever the sysem is presented with the cue "dog," the objects " Fido" and " Bozo' should
be recalled. This association, which is a form of memorization, is carried out by sdecting and
applying the memory operator, in thiscase, twice. Supposethefirg timethe operator isapplied
with the cue "dog"' and the input object (or object to be learned) "Fido." As a consequence of
applying the memory operator, a chunk will be learned that ddivers, Le, retrieves, the object
"Fida' on any future occasion that the operator isapplied with thecue " dog”" In other words, the
chunk will have the symbol "dog' as a condition and the symbal " Fido" as an action. Suppose
the operator is applied for a second time. However; this time we wish to assodiate the object
"Bozo" with thecue" dog" Thisapplication will result in theobject " Fido' beingretrieved (Snce
it was previoudy associated with the given cue) and the object " Baozo" being memorized, i.e, a
chunk being learned with the symbadl "dog' as a condition and the symbal " Bozo" as an action.
Thus, when the cue "dog' isencountered on future occasions, thefiring of the chunk will deliver
the object "Bozo" into the system'’s working memory. |f the memory operator is applied for a
third time with the cue "dog' and no object to be learned, then only retrieval of the objects
"Fido' and "Bozo" will occur. An application of the memory operator with thecue ™ ca” will not
retrieve anything since no objects have been associated with that cue. In Interval-Soar, the cues
are" ub-o" and"1b-02' and thelearned objects are thevaluesof thebounds.

Not only for itscrucial rolewithin Interval-Soar, but also because of theinter esting way in which
its implementation allows the chunking mechanian to acquire the recall production, the
functioning of memory operator is significant to this work and hence is described in grester
" depth. However, before resorting to this, the following pertinent aspects of chunking should be
recalled. Chunking operates By summarizing the processing that leads to theresults of subgoals,
on which a chunk's actions are based. By backtracdng through the production traces to the
wor king-memory elements that were ultimately-rdevant to the creation of the subgoal's results,
the chunk's conditions are determined. For the functioning of the memory operator, the most
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important feature of the chunking mechanism is that productions that only generate search-
control knowledge* Le; desirability preferences, do not have ther traces examined as pan of the
backtracing process since these productions only affect the eff|C|ency with which a goal is
attained, and not thecorrectnasof its results.

The key to memorlsmg.an object so that it can be recalled on presentation of a cueisto learn a
chunk that can generate the object when the need arises. In Soar, this can be easily accomplished
by simply making a copy of the object within a subgoal. Since this copy is a subgoal result, it
will be incorporated as an action in the chunk that'is learned. However, since the creation of the
copy is based on an examination of the original object, the conditions of die chunk will test for
the existence of the latter before generating the former. Such a chunk is clearly useless since it
requires the object to be recalled to be already available. The memory operator over comes this
problem by creating the recalled object in two phases. Firg, it exhaustively generates all the
. possible objects that can be congtructed from the symbols the system has already learned to
recall. Next, the created objects are examined and the one determined to be equivalent to the
original object is selected. By making a copy via such a scheme, die generation of the recalled
object within the subgoal is treated as the creation of search-control knowledge. Since working-
memory elements that embody such knowledge do not get backtraced from when the condition
elements of a chunk are determined, the original object does not get incor porated into the chunk.

To ground this more concretely, consider the use of the memory operator in learning torecall the
object " Fido" on presentation of the cue " (f&*° In order to highlight only the important features,
the description of the representation and manipulation of the input object in working memory has
been abstracted from the actual processing that occurs. Suppose the operator isrepresented by:

(oper at or q6 '‘name menory Al earn 17 “cue c8)
(obj ect c8 name dog)
(obj ect 17 “name Fi do)

If a no-change impasse occursin the attempt to apply the memory operator, the memory space is
selected and itsinitial state, with identifier dll, is augmented with the input object as well as the
symbols of which the object is composed The objects the system has already seen before, and
from which the recalled object will be generated, are represented as known-symbol attributes of
the state. In its current incarnation, the memory has to be provided with these symbols a priori,
i.e., when the system is created Suppose for this example the known symbols are dog, name,
- object, Fido, Polly and parrot. Hence: _
(state all "'input 17
"1 nput - augnent ati on a21 _
“known-synbol dog name obj ect Fido
Pol |y parrot)
(augnmentation a2l "class object "id 17
“attribute name "val ue rido)
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(object 17 “name rido)

All the possible valuesthat each class, id, attribute and value field of the input object can acquire
are next given acceptable preferences. For this example, each field has seven potential values,
six representing the known symbols and an extra one representing a newly generated id; in this
case, X!'8. Hence the following state augmentions, representing components of the recalled-
object, are given acceptable preferences (denoted by +) and placed in working memory:

(atate all Adass dog +)
(state all daas nan* +)
(state all “dass object +)
(state all “claaa rido +)
(state all cI aaa Polly +)
(state sl| “dass parrot +)
(state all Adaaa Xl 8 +)
(state sll % d dog +)

'(state sl Aidxl8 +)
(state all "attribute dog +)

(state sl| “attribute*xl 8 +)
(state sll “val ue dog +)

(state all Aval ue xI 8 +)

Next, a symbol table is generated that links each input symbol to a known symbol. If an input

symbol isanid, e.g., 17, asinthiscase, itislinked to the earlier generated id, x!8. At this point
the contents of working memory will be:

(atate all “input 17

A nput - augnent ati on a2l
f cnoi maynbol dog name object rido
Pol |y parr ot
A nput - synbol obj ect name rido 17
*synbol -tabl e s28) :
(augmant ation a2l cI aaa object %4 d-17
"attribute nane “val ue rido) |
gobJ.ect 17 “name ri do)

Y“b°l -table s28 JJ.BQ S.alki €Ct Obj ect

Apido ri

The vaues of the attributes of the input augmentation, all, are then compared to the attributes of
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the symbol table and best preferences (denoted by >) are generated for those sate augmentations
representing the components of the recalled object for which acceptable preferences were earlier
created. Hence:

(atate til “daaa object >)
(atate all A d xI8 >)

(atata all “attribute nana >)
(atata all “val ue rido >)

Finally, the output object is created using the objects for which the best preferences were created.
Working memory thus becomes:

(atate all % nput 17
A nput - augnent at i on a2l
Aknown- synbol dog name object rido
Pol 'y parr ot
A nput - synbol object nane rido 17
Asynbol -t abl e s28)
(augnent ati on a2l “cl ass object 4 d 17
Aattri bute name “val ue Fi do)
(obj ect 17 “nane ri do)
(synbol -tabl e s28 #17 x| 8 “obj ect obj ect
*n«pe nane “Fi do ri do)
(obj ect x!8 “nane rido)

Figure 4-2 depicts the recall chunk learned for this example. Since desirability preferences were
used to create the copy of the object to be learned from symbols already known, no test of the
original object appears as a condition of the chunk. If the recalled object had been created by
simply copying the original object in the subgoal, a chunk would have been learned in which a
test of the original object would have appeared as a condition, thus'indicating that for an object
to berecalled, it must already be known!

The illustration just presented of the functioning of the memory operator only depicted the
important actions. As developed by Rosenbloom, the memory operator, implemented as the
memory space, contains six operators that produce the described learning capability. These
include examine-input, examine-cue, generate-symbol-table, generate-output, recognize-input
and memory. The examine-input and examine-cue operators cycle through all the symbols from
. which the input and cue objects are respectively constructed so that tests of these symbols appear
iii the recognition chunks learned. Generate-symbol-table creates the symbol table‘relating the
input symbols to the output symbols from which generate-output constructs the output object
Recognize-input recognizes the input object and the input-cue pair. The memory operator
augments the parent memory operator (which was implemented as the memory space) with the
recalled object
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(goal <gl> “st*t* <al > “op«rator <gl>)
(operat or <ql > “naa* nenory “cum <cl >)
(obj ect <cl > “nmmt dog)

—_—
(operator <qgl > *recalled <xI> & <x|> )
(obj ect <xI > “nane rido «))

If the nenory operator has been selected to apply
and the cue is dog

then augnent the nenory operator with rido, the
object to be recalled

Figure4-2: Examplerecall chunk learned on application
of the memory operator

In Interval-Soar, the memory space has been augmented with an additional operator, compare.
This operator is needed to determine if th™ purrent bound is equal to the old bound If they are
not equal (which will always bethe case sincetheinterval is being refined), argect preferenceis
generated for the old bound and consequently a chunk is also learned that automatically reects
the old bound on future occasions. If the memory space were not augmented with the compare
operator, every time a bound value wererequired, the application of the operator would retrieve
all the old values, not just the most recent one. Learning toreect an old object is an important
feature of Interval-Soar that was not illustrated by the example of the functioning of the memory
operator presented above. If the object "Bozo" had also been associated with the cue "dog' in
the animal example, the memory operator would have retrieved both "Fido" and "Bozo" on
presentation of the cue " dog."

43.5. Function Spaces

The function spaces, developed by Rosenbloom and L ee, contain knowledge about performing
basic logical, arithmetic and control functions. This knowledge allows Interval-Soar to execute
the mathematical functions it needs symbolically, such as computing fl and f2, comparing fl to
£2, comparing x to ub-ol and 1b-02 and comparing the new value of a bound with an old one, all
without recourse to an external computing device. A detailed description of the function spaces
-is given by Rosenbloom and L ee [Rosenbloom & L ee 89]. '




4.4. Example of I nterval-Soar Executing

This section illustrates the functioning of Interval-Soar with a smple example. Consder the two
functions, fl=7-xand£2»x+1, and the three data points. x « 1.3, x » 3.0 and x « 5.8. As
described earlier, the task isto apply one of the functions to each of the data points, compute the
results and labdl the points with the names of the operators corresponding to the functions that
wer e applied to them. As a by-product of this problem solving, the system must learn the values
of two bounds, ub-ol and Ib-02. These parameters demar cate the intervals where the functions
should be selected If a data point has a value less than or equal to ub-ol, fl should be applled If
it hasavalue greater than or equal to 1b-02, (2 should be applied.

Problem solving begins in the interval space. The initial state consists of a set of (three in this
case) unlabelled data points. The desred sate is one in which each data point has had its
function value computed and is labelled. The operator select-x is first applied to choose a data
point on which to work. Since the order in which the data points are selected isirreevant, they
are all made indifferent to each other. Once a point has been selected (supposein thiscaseit is x
= 5.8), operators opl and opl are proposed to apply. Opl implements fl and opl implements f2.
Since both operators are equally acceptable at this stage, atieimpasse results.

To resolve the tie between opl and opl in the interval space, a subgoal is created and the
selection space is chosen. In the selection space, Interval-Soar first triesto retrieve any existing
bounds on the tieing operators. It does this by proposing the memory operator twice, one with
the cue ub-ol and the other with the cue H&&2 Since the order in which the bounds are retrieved
isirrelevant, the two memory operators are made indifferent to each other. However, nothing is
retrieved because no values have yet been associated with ‘the cues since this is the first time
Interval-Soar is performing the task.

Thus, to make a decision that resolves the impasse, a lookahead evaluation of the tieing operators
must be performed. To do this, an acceptable preference is generated for the refine-interval
operator, which isthen selected. If there is an operator no-change impasse in attempting to apply
the rtfine-interval operator, the refine space is made acceptable and selected. The schemes used
to evaluate the operators opl and opl arejust the functions themselves. Thus, opl and opl are
first applied in random order to the data point The function spaces are used to implement the
operators opl and opl. In thiscase fl = 1.2 and f2 » 6.8. Next, the comparison operator sfl-eg-fl
and fl-gt-fl are selected and applied in turn to determine the relative magnitude of f1 with
respect to £2. Fl-eg-jl returnsa value of false (indicating the two parameters are not equal) and
fl-gt-gl returns a value of false (indicating that f 1 is not greater than f2). Before this knowledge
is passed back to the higher-level spaces, the value of 1b-02 (since f2 is greater than fl) is
~memorized as 5.8. Interval-Soar carries this step out by selecting and applyihg the memory
- operator with the cue object as Ib-02 and the learned object as 5.8. The knowledge that f2 is
greater than f1 is now passed back to the higher spaces to resolve the initial tie between opl and
opl. Interval-Soar thus applies opl to the data point x = 5.8, which is consequently labelled op2.
In this case no subgoaling into the function spaces is required to implement operator opl.
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Chunks that were teamed earlier during the lookahead search on opl and opl fire to directly

apply function £2. The date of affairs at this stage of the problem solving is depicted in Figure
4-3. -

T %* Li-02

0 58 X

Figure4-3: Location of bounds after firs data point isemployed

The entire problem-solving behaviour is now repeated for ancther data point There are a few
differences since Interval-Soar uses some of the knowledge it had chunked away when running
the firg point Suppose the point x * 3.0 is sdected rhis time. The selection space is again
chosen in response to a tie between opl and op2 in the interval space. In the selection space,
the memory operators firs apply to retrieve any bounds, i.e., any numbers associated with the
cues ub-ol and Ib-02. Since 5.8 has been associated with 1b-02, it isrecalled ingantly. The
comparison operator X* gU4b-02 isnext selected and applied to deter minether eative magnitude
of-the data point with respect to thebound. Sincex isnot grester than or equal toMb-02 in this
case, avalue of falseisreturned. Thisknowledge does not allow a decision to be made between
the competing operators hence, the refitu-interval operator is sdected to compute a full
evaluation once again. Opl and opl are applied in random order in therefine space. In thiscase,
both f 1 and f2 are determined to be 4.0. The operator fl-eg-/2 isnext applied and returnsa value
of true. Again, before this knowledge is passed back to the higher spacesto resolve the tie, the
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values of the bounds are updated by applying the memory operator. The value of ub-ol is
memorized to be 3.0 by associating the number 3.0 with the cue ub-ol. In the case of 1b-02, the
process is dightly different Since the number 5.8 is dready associated with the cue 1b-02 (from
the previous run), the number associated with the cue is updated to 3.0”." This updating is
performed in the memory space (which is sdected in response to a no-change impasse for the
memory operator) by applying the compare operator. This operator compares the new vaue of
the bound (the number to be learned) with its old value. If they are not equa (which, as noted
earlier, will dways be the case since the interval is being refined), a rgect preference is
generated.for the old bound. After the memorization process is completed, the knowledge that fl

is equa to (2 is passed up to the higher spaces. In this Situation, opl and opl will be made

indifferent to each other and one will be picked at random. Figure 4-4 deplcts the problem
solving Situation at this stage.

Fyoooun

opP2

X m3.0

F1 »7 X
F2 s X1

0 3.0 X

Figure4-4: Location of bounds after second data point is employed

The find point from the set to be labelled is x * 1.3. By now the sequence of steps taken to

“In Soar, this is equivalent to having a chunk that generates a reject preference for 5.8 and another chunk that
generates an acceptable preference for 3.0.
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achieve this should hopefully be clear. In the selection space, memory operators arefirst applied
to retrieve thecunent valuesof thebounds In thiscase, both uK >l and uk>2 are associated with
the number 3.0. Next, the comparison operators x*e-ulH>| and x-tfe-fc-0* are sdected to
apply Ttiefirst reurnsavalue of truesncex islessthan ubol, Whllethesecondreturnsavalue
gffiserince x is less than 1b-02. Since Interval-Soar possesses the knowledge that if a data
£T i s less than the bound ubol, operator opl should be selected, a better-Aan preference is

-ed for o | with respect to op2. Hence, in this case, thetlelmpassem theinterval space

AN resolved without resorting to a full evaluation of the oompenng operators, as was done
duringthetwo previoustrials. The Stuation at thissageisdepicted in Figure4-5.

"Ui>01
F ‘ LB-02

0 1.3 3.0 X

Figured: Location of boundsafter third data point is employed

It should be noted that operator no-change impasses are encountered when attempting to apply
the memory operator, opl, opl and the comparison operators (fl-eq~f2, fl-gt-JZ, xJte-ub-ol

X-gtedb-02 and compare). Thememory spaceis selected in the case of the memory operator and
the function spaces are sdlected for theothers




4.5. Performance of I nterval-Soar

" To illusirate the performance of Interval-Soar, the results from running the system using three
different sets of data points are now presented Each set consists of three points: set 1 is {1.3,
3.0,5-8}, st 2is{1.8,3.7,6.6} and set3is{2,4,4.5,6.9}.

Acrosstrid trandfer, as distinct from acrosstask transfer, occurs when chunks acquired when
solving aproblem gpply when the same problem, i.e., one involving the same pair of functions as
well as the same set of data points, is repeated at a later time. Here Table 4-2 illustrates the
effects of across-trid transfer for the task at hand Each data set, each representing a different
problem, was presented to Interval-Soar three timesin succession. In each tria the syslem began
solving its task with the knowledge it was endowed with at creation time as well as the
knowledge it had acquired in all prior problem-solving trials. Thus, at the start of the sscond
trial, the system had access to its innate knowledge as well as that learned during the first trid,
and at the start of the third tria, the system's knowledge base aso included the knowledge
learned during the second trial. The results displayed in the table depict the effects of learning on
the system's performance. For each test case, the changes in decison cycle numbers from one
tria to the next are presented. As can be seen, the benefits of learning are encouraging. For the
first trial, the average number of decision cycles required was 355. For trid two, this dropped to
73, apercentage drop of 79.4 and for trial three, this further dropped to 9 for a tota percentage
drop of 97.5 over the firg tria. Since most of the productions learned in Interva-Soar were
arithmeti c-operator-implementation chunks major part of the reduction in decision cycles was
due to the system not having to subgoal into the function Spaces.

It should be noted that case 1 required fewer decision cycles than either cases 2 or 3 since the st
of data points to be labelled in case 1 contained the actual intersection point of the functions.

Trid 1 2 3
Case

1 317 | 57 9
2 374 } 81 9
3 374 | 81 9
Avc 355 | 73 9

Table4-2: Effects of across-trid transfer of chunks. changes in numbers of
decison cycles

Table 4-3 shows the number of productions learned by the system over the course of each of the
threetrias. In al casesthe system begins with 934 productions. A Soar system that learnson all
gods during a trial will nonnally not acquire additional knowledge during subsequent trials
because the system will have learned all that it can during the first trial. The behaviour of
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Interval-Soar, however, is an interesting example of how a system that learns on all goals during
afirg trial can learn additional knowledge during a second trial. Thislearning occursin Interval-
Soar since knowledge acquired during the firg trial causes it to carry out a different problem*
solving process in the second trial- This new process creates a different goal hierarchy, thus
allowing the system to acquire knowledge that was not acquired through the original problem-
solving process. To illustrate this, consider die data points in example set 1. At the end of the
firg trial, Interval-Soar learns that the values of ub-ol and Ib-02 are both 3. During the second
trial, this knowledge is brought to bear. When Interval-Soar attemptsto decide which function to
apply to 5.8, the first point in the set, it compares this number with the retrieved bounds instead
of carrying out a complete evaluation as it did during the firg trial. This comparison process
requires Interval-Soar to subgoal into the function spaces (rather than the refine space) and the
chunking that takes place over these spaces thus allows the system to acquire additional
knowledge during a second trial. For case 1, the system acquires 65 chunks during the fir trial
and 10 chunks during the second trial. No chunks are acquired during die third trial since the
system has learned all that it can. During this trial, no subgoaling occurs since productions
learned in the previoustrialsfire to prevent all impasses.

- Trial 1 2 3
Case .

1 vres 10 0
2 76 15 0
3 76 15 0

Table4-3: Numbers of Productions Learned during Different Trials

Table 4-4 illustrates the effects of across-task transfer, which occurs when chunks learned while
solving a problem in a particular domain apply during the solution of another problem, i.e., one
involving a different set of data points but the same pair of functions. It will be reemphasised
that this phenomenon differs from the acrosstrial trander described earlier in which the effects
of lear ning wer e examined across repeated presentations of the same problem, involving both the
same functions and the same data points. In the case of Interval-Soar, chunks acquired when
using the data points from set 1, for instance, fire when performing the task using the data points
from set 2 or set 3. Again, the benefits of learning are encouraging. Each data set was run
" independently with the chunks acquired during the ruhni_ng of the other two data sets, and, in
each case, the number of decision cycles required was less than the number needed when no
imported'chunks wer e used. The percentage decrease in decision cyclesranged from 12.6 (when
running set 1 with chunks learned during the running of set 3) to 71.4 (when running set 2 with
chunks learned during the running of set 1). The average decrease over all 6 runswas.38.1%.
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Case No. Decision Cycles { % Decreasein DC

1 with noimported chunks 317 -

1 with chunksimported from 2 252 20.5
1 with chunksimported from 3 277 12.6
2 with no imported chunks 374 -

2 with chunksimported from 1 107 71.4
2 with chunksimported from 3 257 31.3
3 with no imported chunks 374 -

3 with chunksimported from 1 169 54.8
3 with chunksimported from 2 232 38.0

Table 4-4: Effects of acrosstask transer of chunks

As described earlier, chunks acquired during problem solving prevent the system from
subgoaling should the same or similar situations arisein the future. Most of the chunks learned in
Interval-Soar are operator-implementation productions. These are productions that fire to
implement an operator directly in particular stuations. Before learning, such an operator,
because of its complexity, would require subgoaling in order to be applied. Table 4-5 is a
summary of the number of operator-implementation productions learned for the different
operatorsin Interval-Soar.

The memory operator-implementation chunks deserve special attention. As noted earlier, the
purpose of applying the memory operator is to either recall or memorize declarative knowledge.
These chunks allow the system to recognize the input object, i.e., the object to be learned, to
recognize the combination of cue and input objects and to retrieve any previoudy learned objects
associated with the given cue. Typical examples of these chunks are presented in Figures 4-6 and
4-7. Chunksarealsoacquit that rgect previoudy learned values of the bounds. An example
of such a chunk isgiven in Figure 4-8.

Besides operator-implentation chunks, search-control productions are also learned by Interval-
Soar to resolve the tie impasses encountered between opl and op2 in the interval space. An
' example of such achunk is pr@ented in Figure 4-9. :

4.6. Implications for Process Design

An important contribution of Interval-Soar was the demonstration that when performing in a
quantitative domain, an artificial agent must bring additional background knowledge to the
learning experience in order to learn useful knowledge. In other words, what a system learns
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Operator No. Implementation
ChunksLearned

opl 7
- op2 5
X-lte-ub-ol 4
x-gte-1b-02 4
memory 3
fl-eq-fl 3
fl-gt'f2 4
compare 3

Table 4-5: Numbers of operator-implementation chunks learned for different
operators

from the application of an evaluation is dependent upon what model, Le, knowledge, about the
evaluation the system brings to the problem-solving experience. By endowing |nterval-Soar
with a model, even implicitly, of the evaluation functions it employs, it was depicted that the
system could be made to learn useful knowledge about those functions.

The implications of Interval-Soar are also important for process design. To ground this more
explicitly, recall again the basic problem-solving behaviour of CPD-Soar, it selects among
multiple separation tasks by evaluating the competing choices via a lookahead search. The
evaluation function applied computes the vapour flowrates of the separation tasks and the task
with the lowest flowrate is ultimately selected. Since all that the system knows, albeit implicitly,
Is that the evaluation function only produces numeric values, and that-these values are to be
compar ed when making a decision, then, as has already been seen, all that will get learned is that
when a particular input is presented to the evaluation function, the relative preference of one
separation task over another should be delivered. Utilizing the insight obtained through the
development of Interval-Soar, it is conceivable that an agent such as CPD-Soar can be made to
learn more general knowledge if it were supplied with aricher model of its evaluation function
than it currently has. This model, like the model embedded within Interval-Soar, could be that
the evaluations provide additional information about the system'’s function, e.g., in what region it
was applicable. Then, whén the agent applied the function to select- among .the competing

separ ation tasks, the knowledge learned would be about this region and hence be of more general

use.
It is often the case in process design domains that multiple functions are available for evaluating

candidate designs. As described in Chapter CHAP2, the differences among the underlying
models and equations on which the functions are based can be characterised along a number of




(sp p294 el aborate
(goal <gl > “operat or <ol >)
(operator <ol > -*recogni zed input “nane nmenory
A earn <yl >)
(pmram <yl > Aval ue <il>)
(integer <il> “sign positive *head <cl>*tail <cl>)
(col umn <cl > “anchor head tail Adigit <dl>)
(digit <dl >*nane 5)

(operator <ol > *recogni zed input 6, input +))

If the nermory operator has been selected to apply
and the input object has not yet been recognised
and the object to be learned is the nunber 5

then create an operator augnentation indicating that
the input object has been recogni sed

%

(sp p293 el aborate
(goal <gl > “operator <ol >)
(operator <ol > “nanme menory “cue <c2> A earn <yl >)
(class <c2> “nane | b-02)
(param <yl > “val ue <il>)
(integer <il> “sign positive *“head <cl> *tail <cl>)
(colutm <cl > “anchor head tail “digit <dl>)
(digit <dl>“name 5)

(operator <ol > *recogni xed cue-input & cue-input +))
If the nmenbry operator has been selected to apply
and the cue object is Ib-02
and the object to be learned is the nunber 5
‘tfcen create an.operator augnentation indicating that

the conbination of cue and input objects has been.
recogni sed :

Figure4-6: Examplerecognitioh chunkslearned by Interval-Soar




(sp p295 el aborate
(goal <gl>" operat or <ol >)
(oper at or <o| > “nanme menory “cue <cl >)
(class <cl > "nane | b-02)

(integer <x3> "sign positive + "head <x|> +
Aail <xl> +)

(digit <x2> "nane 5 +)

(colum <xI> "digit <x2> +

“anchor head + head 4, tail 6, tail +)
(param <x4> "val ue <x3> +)

(operator <ol > "recal |l ed <x4> «, <x4> +))

If the nmenory operator has been selected to apply
and the cue object is Ib-02

then augnment the nenory operator with the nunber 5/ the
object to be recalled :

Figure4-7. Examplerecall chunk learned by Interval-Soar

uh

(sp p593 el aborate
(goal <gl>" operat or <ol >)
(oper at or <o| > “name nmenory “cue <cl > *recal | ed <x4>)
(class <cl > “name | b-02)
(param <x4> “val ue <x| >)
(integer <xI>*tail <x3>)
(col um <x3> fanchor tail Adigit <x2>)
(digit <x2> “name 5)

(operator <ol > “*recall ed <x4> - <x4> 6))
If the nmenory operator has been selected to apply
and the cue object is Ib-02

and the object recalled is the nunber 5

then create a reject preference for the _recal | ed obj ect

Flgure4 8: Example chunk Iearned by Interval-Soar to re]ect
' a (previoudy learned) bound




(sp pl GB1 el aborate
(goal <gl > "operator <02> + { 0 <02> <ol> } +)
(operator <02> “nane opl *param <x| >)
(operator <ol > “nanme op2)
(paraa <x| > “val ua <il >)
(integer <il>"«ign poaitive “tail <cl>*haad <cl>)
(col umn <el > “anchor head Adi git <dl >)
(digit <dl > “nanme 2)

(goal <gl > “operator <02> > <ol >))
Zt operator opl has been nade acceptabl e
and operator op2 haa been nade acceptable

and data point x haa a value 2

then create a better-than preference for operator opl
with reapect to operator op2

Figure4-9: Example search-control chunk learned by Interval-Soar

LY

other dimensions besides their form: accuracy (how wdl is the rea gStuation depicted?),
precision (to what order of magnitude can the results be believed?), scope (under what conditions
Is the function applicable?) and efficiency (how expensive is the function to apply?). Interval-
Soar only has knowledge about the form of its evauation functions. However, if adesign agent
was also endowed with the knowledge that its use of an evaluation function aso provided
information about the accuracy, precison, scope and efficiency of the function, die learning
performed by the agent will be much more richer than if its apriori knowledge were only that
the use of the function provided information about its form. This kind of learning has added
value since the system will now be capable of salecting among competing evauation functions
on the basis of such characteristics as accuracy, precision, scope and efficiency. Of course, given
our initia foray into this domain, much work has- «ill to be performed to obtain a better
understanding of what is required of an artificia agent to perform this learning. The next section
postul ates the structure and expected performance of GPD2-Soar, an enhanced version of CPD-
Soar whose implicit mode of an evaluation function is that its gpplication provides two kinds of
information: information about the form of the function and information about the error in the
result obtained The use of Interval-Soar's functiondity in realising the system is.discussed

" Learning about the evaluation functions employed by a process designer also has implications
for interacting with externa software systems. As described earlier, many evaluation functions
are implemented as independent software tools. Because these tools often contain the expertise
and cumulative results of many person-years of research, their calculations cannot be performed
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internally by the design agent Hence, each time a candidate design needs to be evauated, an
external software system has to be invoked. However, given the inherent complexity of most
ESSs and the combinatorid size of typical design spaces, calling upon an ESS to compute an
evauation frequently will be costly. Thus, there is an incentive for the agent to be capable of
calculating its evaluations cheaply, even if they are much more approximate than those produced
by the ESS. In this regard, Ac functiondity of Interval-Soar isvery relevant If the design agent
were endowed with a modd of the ESS, then, like Interval-Soar has, it could learn to cregte the
same results, perhaps at a different level of gpproximation or abstraction, as the ESS. This

capability of an agent of performing internally the same computations as a specific ESS has been
termed smulate-ESS by Newed | and Steier [Newd | & Steier 91].

In concluding this section on Interval-Soar, afew fina remarks will be made. The development
of Interval-Soar was apreliminary attempt to understand what is required by an artificid agent to
learn useful knowledge when performing in a quantitative domain. In process design domains,
approximate models of the evaluation functions employed by the agent can be useful in making a
search cheagper. By learning such models, the agent can by-pass the employment of expensive
evaluation functions by smulating their operationsinternally. The interna generation of abstract
or approximate models by a problem-solving agent however, has only recently been recognised

as an area of much-needed research. Descriptions of current research efforts in this domain can
be found in Ellman et al [EUman et al 90].

5. CPD2-Soar: A Postulated Extension to CPD-Soar

5.1.Overview

This section describes how the abilities and performance of CPD-Soar can further be improved.
It presents a new problem-solving strategy for the design of distillation sequences and discusses
the rationade behind the dtrategy. The drategy draws on the lessons learned from the
development of the two earlier-described systems. To implement the suggested strategy, CPD2-
Soar, an enhanced version of CPD-Soar, is postulated. Its problem-space structure and expected

performance are described. The section concludes by discussing the implications of CPD2-Soar
for process design.

5.2. Basisfor an Improved Design System

As mentioned earlier, one aspect in the design of distillation sequences that is largely not
understood are the conditions which govern the sdlection of an evauation function. Although
“new evauation functions and rules are often presented in the design literature, there is hardly
ever any discussion regarding the context in which the proposed functions perform well and
hence should be selected. In al known design systems developed to date, the evauation
functions employed by the system to analyse design decisions and control the search are apriori
selected by the system's developer at system-creation time. Even CPD-Soar fits this mould. It
aways attempts to decide among a set of competing separations tasks by first applying us
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_heurigtic rules. If the application of the rules does not succeed in bregking the impasse, a one-
step lookahead evaluation is carried out and the task with the smallest vapour rate is sdlected to
apply. At no point does die sysem ddliber ate about its choice of evaluation function.

Since the choice of an evaluation function is context dependent, a sysem that is capable of
secting the function as part of its problem-solving activity will clearly perform better than one
in which thisdecison hasbeen hardwired into the sysem by itscreator. This section attemptsto
make a firs pass at describing how such a sysem could be congructed It describes how the
sdection of an evaluation function could be posad as a problem-solving activity within a desgn
system. It also describes how the system could learn to improveits evaluation-function choosing
ability by capitalisng on its problem-solving experiences. The capacity to perform this learning
draws on an important lesson learned from the development of Interval-Soar; namdy, that the
better the modd a syssem has of its evaluation functions, the more general itslearning will be.

The marginal price of a sgparations tak is its change in price as a result of performing it in the
absence of non-key components. Its use as an evaluation function for contralling the search in
digillation sequence design problems has been described in depth in Chapter CHAP3. The
ability to select among competing evaluation functions will be illugtrated by focussing upon two
variations of marginal price the margnal vapour rate (MV) and die margina total annualised
cost (MTAQ. Although the performance of marginal price as an evaluation function has been
seen to be excdlent, it was not usad to contral the search in CPD-Soar since the function was
discovered after the sysem wascreated

Thelarge combinatorial problem resulting even when the feed mixture consists of only a modest

number of componentsis amaor mativation for usng heurigic evaluation functions to tame the

search. However, athough the use of these functions may result in greaster computational

efficiency, it is usually at the expense of solution quality. The multiplicty of evaluation

functions for digtillation sequence design that have been reported in the desgn literature are

specific points along a spectrum of evaluation schemes whose extremums represent no search
and exhaudtive search. The seection of an evaluation function thus properly involves a trade-off

between the computational resour ces used and the solution quality obtained

The MV evaluatioo function is cheaper to compute than the MTAC evaluation function snce
computing costs firs necessitates computing vapour flowrates. In turn, both these functions are
cheaper than a search. On die other hand, the quality of the results ddlivered decreasesfrom a
search to the MTAC evaluation function to'the MV evaluation function. Given the potential
~ savingsin computational effort, it isbeneficial to use as cheap an evaluation function aspossible
when solving a design task. For example, there would be no incentive for a ssarch to be
performed if the use of the MTAC evaluation function resulted in die same solution. Likewise,
employing the M TAC evaluation function when the MV function will also ddliver the same result
Is clearly a wade of resources Hence, learning the conditions under which an evaluation
function will ddiver decisons of a certain minimum. quality will be useful. However, if the
quality of a solution and the conditicms under which an evaluation function should be sdected
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of dl the tasks besdesj in die decison set To illustrate this, consder the decison set (A/BCD,
AB/CD.ABC/D} and suppose MV(AB/CD) < MV(A/BCD) < MV(ABC/D). Thenthe margind
vapour ratios of the taskswill be given by:

IBCD) = MV(ABICD)
MVR(A/BCD) MVA/BCD)

MV(A/BCD)
MV(ABICD)

MVR(ABC/D)= MVIABICD)
MV{ABCID)

TheMVs of the tasks are repectively given by:.

MVR(AB/CD) =

MViAIBCD) « ViABICD) - V{AJB)

MV(AB/CD) » V{ABICD) - V(B/Q

MV(ABC/D) = V{ABCID) - V(C/D)
where V(J) isthe vapour rate of tasky.

Similar to the margina vapour ratio, thesargiaa cost raﬁo of taskj is defined as:

. MTACH) e
MCR(i) ® ——= 2)
e )= MTACH

where MTAC(j) isthe NTTAC of taskj and MTACH]j) isthe lowest MTAC of dl the tasks besides;
in the decision set

The vapour bound is a metric used to detennine if a competing separation task should be
selected or not The bound has an error level associated with it Hence, B/ is the vapour bound
at error level e. If adigtillation sequence whose cost is not more than €% of die cost of the best
solution attainable is desired, a bound value at error level e will be used in making the task-
selection decisions. More specificaly, the bound B, will be used in selecting a separation task
from each of the problem'sdecision sets. Any tasky for which MVR(J) > B/ will be preferred-
Analogous to the vapour bound, the cost bound can also be used to detennine if a separation task
should be sdlected or not Bg* is the cost bound at error level e. When evauating a set of
‘separation tasks using the MCR evaluation function, any task/ for which AfC/a/) > B/will be
preferable. B . :

Theerror, £(/)> of atask is defined as:

E(j) = o)
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where C(j) is the evaluation of task ;"and C(b) is the evaluation of the best decision in the
decision set of which | is a member. The evaluation of a task is a total annualised cost of the
sequence segment, as determined by a lookahead search, from the task to the end of the
sequence. Toillugtrate the task error, consider the decision set {A/BCD, AB/CD, ABC/D}. If
task A/BCD isthebest decision, then:

samern » CWICD) - *ABCID)
EABCD; C(ABCID)

Task errorsare employed by CPD2-Soar to learn bound values. Whenever the system performsa
search to select a separation task, it uses the occasion to learn the values of the vapour and cost
bounds at each error level. There are two circumstances in which a search will be performed;
ether no bound values at the desired error level are retrieved (because the system has not yet
solved enough problems to have sored values at the desired error level), or the bounds are

“unsuccessful in resolving the impasse. The system can only learn the bound values at a priori
defined error levels. There are no redtrictions on what or how many levels can be selected. The
only congtraint isthat they must be decided upon at the time the system is created.

Table 5-1 depicts the steps in CPD2-Soar's evaluation strategy. It outlines the use of marginal
price ratios and bound values in selecting a separation task as well as the procedures used in
learning a bound value for the first time and in updating it on subsequent occasions. In
presenting the strategy, the following nomenclature is employed: {D} isthe current decision set,
{Mf} is the subset of {D} for which £(/) V eand MVR(j)) > 1, [Mf) isthe subset of {D} for
which £(/) > e and MCR(j)) > 1, {T} is the set of preferable tasks, {N} is the set of non-
preferable tasks, ry isthe task in {My®} with the largest MVR and t;isthetask in {M:} with the
largest MCR.

CPD2-Soar evaluates competing separation tasks using a three-pronged approach. The system
attempts to evaluate the tasks using the marginal vapour ratio (MVR) evaluation function first
since this function is cheaper to apply than ether the marginal cost ratio (MCR) evaluation
function or atotal search. However, if it failsto result in a decision, the MCR evaluation function
isemployed Ifthisevaluation function also failstoresolve the impasse, a search is performed.

Steps (1), (2) and (3) of the strategy are performed to evaluate the separation tasks using the
MVR evaluation function. If avalue for the vapour bound at the desired level eisretrieved, the
MVRs of the tasks are compared to it Any task whose MVR is greater than the bound value is
.preferred In other words, the selection of such atask is likely to lead ultimately to a sequence
* whose cost is no greater than €% of the cost of the best sequence in the search space.
Conversdly, a task whose MVR is less than or equal to the bound value is considered non-
preferable, i.e., its selection is not likely to lead to the design goal. All the preferred tasks, the
membersof {T}, are given better-than preferentes with respect to the membersin {N}, the set of
non-preferable tasks. Since all thetasksin {T} arelikely to lead to the design goal, they are all
made indifferent to each other. It should be noted that the bound B/ implicitly plays.a dual role:




S

1 Compufethe mar ginal vapour ratio, MVR, for each task in {D}.

2. Retrieve B/, the vapour bound at the specified error leve e. If the bound is
not retrieved, goto step (4).

3. Placeany task j for which MVR(j) > B,* in {T}. Placeall other tasksin {N}. If
{T} isnon-empty, gotostep (12); else, continue. '

4. Computethe marginal cost ratio, MCR, for each task in {D}.

5. Retrieve Bg, the cost bound at the specified error leve e. If the bound is not
retrieved, gotostep (7).

6. Place each task j for which MCR(j) > B/ in {T}. Placeall other tasksin {N}. If
{T} isnon-empty, gotostep (12); else, continue.

7. Perform a search on each member in {D}. In doing so, identify (T) and {N}. |
8. Compute E(j) for each task j.

9. ldentify thesets{M/} and {M/} for all e. A task] isamember of {M/} if E(j)
>eand MVR(j)) > 1. Ataskjisamember of {M/} if E(j) >eand MCR(j) > 1.

10. Identify thetask t,. Set B« := L2 « MVR(t,) if B/ wasnot retrieved at step (1).
If B/ was retrieved, perform the assgnment only if 1.2* MVR(ty) > B/.

11. Identify thetasK t.. Set B/ := 12 « MCR(t¢) if Bs««wasnot retrieved at step (4).
If B/ wasretrieved, perform the assgnment only if 12 * MCR(t;) > B«

12. Generate " better-than" preferences for all tasks in {T} with respect to all
tasks in {N}. Generate "indifferent" preferences for all tasks in {T} with
respect to each other.

Table5-1: CPD2-Soar'stask-evaluation drategy
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one, in deciding if a particular function should be employed to evaluate the tasks; and two, in
" selecting' a task from among those competingfor inclusion within the design solution.

The MVR evaluation function may fail to deliver a design decision for one of two reasons; either
no bound valueisretrieved because no value had been previousy associated with the bound at
the desired error level or no tasks were found to be preferred. In this case, the system resorts to
evaluating the tasks using the MCR evaluation function. The procedure followed here, depicted
by steps (4), (5) and (6), areexactly the same as for the MVR evaluation function.

In the situation wher e both the evaluation functions fail to resolve the impasse, the system resorts
to a search, depicted by step (7) in Table 5-1. Thisentails creating the entire ditillation sequence
of which a task is a part and costing it It should be noted that the search is recursive. When
decision points are encountered further downstream, the tasks are evaluated first by the MVR

evaluation function, then by the MCR evaluation function if die preceding function fails, and
finally by a search if both the functions fail.

The system attempts to learn the bound values on the culmination of a search since the
information required to carry out the learning is generated during the search. The learning phase
is depicted by steps (8), (9), (10) and (11). The error of each task in the decision set is first
computed using equation 3. Next, the set {M/} is determined, the members of which have errors
larger than thedesired error level and marginal prices greater than one. An error greater than the
desred error indicates that if one of the” tasks is selected, it may not lead ultimately to a
digtillation sequence whose cost fell within the desired per centage of the cost of the best solution
attainable. It should berecalled that the value of a bound at a particular error level denotes how
large the relative magnitudes of the tasks' marginal vapour rates should be in order for the MVR
evaluation function to deliver preferred decisions. If the MVR of a task is greater than one, it
meansthat it has the smallest MV in the decision set and hence should have been selected by the
MV evaluation function. However, if it is not chosen, then the size of its MVR is an indication of
how large the bound should be. Hence, the value of the bound B¢ should be at least as large as
thetask (r,) with the largest MVR in theset {M/}. Thus, if no bound value already exists, Bk« is
set to [.2MVR(t}. If a bound value already exists, the assgnment is only performed if
.2MVR(Q > £/. The value of B* is learned in a smilar manner.

It should be noted that the bound values are set at avalue 20% higher than thetask (in {M/} or
{M <}) with the highest marginal price. The 20% acts as a buffer zone and allows the system to
overcome errors in the bound values. If a bound value is set to the highest marginal price, the
system will have no way of checking in the future if the bound value just learned is safe enough
to-be used in making a decision. By setting the bound value to be slightly higher than the highest
marginal price, the system will automatically check the value of the bound by conducting a
- search over those tasks whose marginal prices are close to the bound value. In memorizing the
bound valuesin such amanner, it is expected that these values will converge to a steady point for
each error level. Also, since marginal cost is a better (in terms of solution quality) evaluation
function than marginal vapour rate, it is expected that for a given error level, the cost bound will
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be lower than the vapour bound, indicating that on average, the former will more often be
selected than thelatter.

The problem-solving strategy employed by CPD2-Soar can be summarised as follows. At firg,
the system attempts to evaluate competing tasks by comparing their marginal vapour ratiosto the
vapour-bound value at the desired error level Any tak whose MVR is greater than the bound
valueislikely to lead to the design goal and henceispreferred If the use of the vapour bound is
unsuccessful in resolving the impasse, the cost bound is used If this test also fails, a search is
performed Knowledge generated during a search is used by the system to refine the values of
the bounds. |

5.4. Structure of CPD2-Soar

This section describes the problem spaces within which task-evaluation strategy described in the
previous section could be implemented. The problem spaces in CPD2-Soar are essentially a
combination of those in CPD-Soar and Interval-Soar. The system's knowledge is distributed
among several problem spaces. the domain spaces, the selection space, the refine space, the
function spaces and the memory space. Figure 5-1 depicts the major problem spacesin CPD2-
Soar.

5.4.1. Domain Spaces

The top-level space in CPD2-Soar, Reﬂgn has eight operators.  identify-forbidden,
link-components, get-feed, order-components, make-splits, sequence-split, update-stream and
write. The latter six are implemented as the feed, order, split, update, output and sequence
spaces respectively. Feed interacts with the user to obtain the feed specifications, order ranks
the components in a sream in descending order according to volatility, split generates all the
possible sharp splits that can be applied to the feed stream, update computes the mole fractions
of a stream's components, normalises their volatilities and computes the total flowrate of the
dream and write outputs the results on completion of the design. Sequence ranks all the
allowable splits in the order they are to be applied It contains three operators. make-new,
compute-vaprate and compute-tac. The first applies a split to a sream to generate the resulting
column and product streams while the second computes the vapour flowrate of the column. The
third operator, compute-tac, is a new addition to the sequence space. It does not exist in CPD-
Soar. Compute-tac calculates the total annualised cost of a digtillation column. The domain
spacesin CPD2-Soar are depicted in Figure 5-2. '

5.4.2. Selection Space '

Asin other Soar systems, the selection space is used to resolve multi-choice impasses. In CPD2-
Soar, the space is chosen in response to ties and conflicts among competing sequence-split
operatorsin the design space. In CPD2-Soar, the selection space has eight operators. memory,
evaluate-object, compute-mv, compute-mtac, compute-mvr, compute-mcr, refine-interval and
compare. The memory operator retrieves the current value of a vapour or cost bound at a
specified error level. Evaluate-object computes an evaluation for a competing sequence-split
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operator. The evaluation metric used in CPD2-Soar is the total annualised cost of the complete
sequence of which the competing separation task is a part. The operators compute-mv,
compute-mtac, compute-mvr and compute-mcr respectively calculate the marginal vapour rate,
marginal total annualised cost, marginal vapour ratio and marginal cost ratio for a tak. The
refine-interval operator updates the value of a bound. The compare operator compares two
numbers and deter mines their relative magnitudes with respect to each other.

5.4.3. Refine Space

The refine space implements the refine-interval operator. It contains three operators. memory,
compute-task-error and compare. In contrast to its functioning in the selection space, the
memory operator in the refine space associates the value of a bound with its corresponding cue,

i.e., its application results in the learning of a new bound value. Compute-task-error calculates
theerror of atask.

5.4.4. Memory Space

Thememory space implements the memory operator. Its functioning was described earlier in the
section on Interval-Soar. In CPD2-Soar, the cues for the memory operator are the names of the

bounds, either "vapour" or "codt," -and their error levels. The objectsto be learned are the values
of the bounds.

5.4.5. Function Spaces Vs,

The function spaces provide CPD2-Soar with an eementary mathematical capability. These
spaces contain knowledge that allows the system to cany out basic logical, arithmetic and

control functions. Their structure and performance is described at length by Rosenbloom and
Lee[Rosenbloom & Lee 89]. -

5.5. lllustration of CPD2-Soar Executing

This section uses an example to illustrate the major features of CFD2-Soar's problem-solving
srategy. Assume that the system has been programmed to learn the bound values at the 10%
error level. So asto make the example easier to follow, the example only illustrates the learning
of the vapour bound. The learning of the cost bounds would be performed in exactly the same
way using the corresponding cost-bound operators.

The feed mixture consists of four components. A, B, C and D. Tables 5-2 and 5-3 summarise
some relevant information concer ning the example problem. The first table presents the vapour
rates, marginal vapour rates, marginal. vapour ratios, total annualised costs, evaluations and
“errors of all the tasks in-the search space. Thesecond table presents the costs of all the sequences
in the search space and the percentages by which these costs deviate from the cost of the
cheapest sequence. The information provided in the tables is intended to facilitate the verbal
illustration of the search CPD2-Soar undergoes in solving the example problem. The descrlptlon
that follows only attempts to highlight the important features of the problem-solving activity.
For example, even though the application of operators to order components or compute mole




57

fractions may not be mentioned, it should be assumed that they are indeed performed.

Task \% MV MVR TAC C E
(kmol/s) | (kmoal/s) $) $) (%)
A/BCD 260 25 180 400,000 | 750,000 111
AB/CD 345 45 0.56. 250,000 { 675,000 0
ABC/D 210 50 0.50 500,000 { 850.000 25.9
A/BC 250 15 267 250,000 | 350,000 0
AB/C 340 40 0.38 230,000 | 455,000 231
A/B 235 - - 225,000 - -
B/CD 315 15 20 200,000 | 400,000 14.3
BC/D 190 30 0.5 250,000 | 350,000 0
B/C 300 - - 100,000 - -
CD - 160 - - 200,000 - -
Table5-2: Datafor example problem to illustrate the
functioning of CPD2-Soar
V*;
Sequence First Second Third Cost Deviation
Task Task Task ©) (%)
1 A/BCD B/CD C/D 800,000 185
2 A/BCD BC/D B/C 750,000 111
3 AB/CD A/B C/ID 675,000 0
4 ABC/D A/BC B/C 850,000 259
5 ABC/D AB/C A/B 955,000 41.5

Table5-3: Cost of sequences in example-problem search space

. To resolve the tie among the three sequence-split operators, which represent the A/BCD,
- AB/CD, and ABC/D tasks, the system subgoals into the selection space. In the selection space,
the memory operator is made acceptable and selected The operator is applied to retrieve the
current value of the vapour bound at the 10% error level. Since no value has previoudy been
associated with the bound at the desired error level, the retrieva operation is unsuccessful.
Hence the system attempts to resolve the tie impasse by performing alookahead search.
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Tocarry out the lookahead sear ch, evaluate-object operators are made acceptable for each of the
tieing objects, in this case, the three sequence-split operators. The application of these operators
will yield an evaluation for each of the tieing tasks. Since the evaluation computed by the
evaluate-object operator isthe cost of the distillation-sequence segment from the task to the end
of the sequence, arecursive problem-solving process is set into motion by the application of the
evaluate-object operator.

Since the order in which the task evaluations are calculated does not matter, the evaluate-object
operators are made indifferent to each other. Suppose the task A/BCD is chosen to be evaluated
first In response to the no-change impasse that arises in trying to apply the evaluate-object
operator, the design space is made acceptable. The task is applied to the stream and the vapour
flowrate and total annualised cost of the resulting column computed. Since the bottoms sream
from the distillation column is a non-product stream, two sequence-split operators, representing
the tasks B/CD and BC/D, are proposed. A tie impasse arises, and the selection space is
proposed and selected to resolveit.

To evaluate the competing tasks, the 3-stage process described above is repeated. The memory
operator is first applied to retrieve the vapour bound. Since no bound is retrieved, it is next
applied to retrieve the cost bound. Again, since no bound isretrieved, a lookahead search is
performed to evaluate each of the competing tasks. Suppose the task B/CD is chosen to be
evaluated first In this case the bottoms stream of the column generated has only one possible
task applicable to it The C/D task is made preferable is selected immediately. Its application
results in the streams (C) and (D) being created. Since these are pure-component streams, the
lookahead search on the task B/CD terminates. The same process is now repeated for the BC/D
task. C(B/CD\ the evaluation for task B/CD, is found to be $400,000 and C(BC/D) is determined
to be $350,000.

At the end of the lookahead search to resolve the tie between the tasks B/CD and BC/D, which
together congtitute the current decision set {D}, the system attempts to learn values for the
bounds. The rgjine-interval operator is selected and the system subgoals into the refine space
where the compute-task-error operator is applied twice to determine the error of the tasks.
E(BC/D) is calculated to be 0% and E(B/CD) is calculated to be 14.3%. Since
MVR(B/CD) m 2.0 > 1 and E(B/CD) > 10%, fl,*° is assigned the value 2.4 (= 1.2 * 2.0)
because {D,'%} « {B/CD}. Figure 5-3 pictorially depictsthis situation.

At thispoint the system has generated all the information it requiresto compute an evaluation for
the A/BCD task, which is $750,000. The entirerecursive problem-solving processjust described
is now-repeated to evaluate the AB/CD and ABC/D tasks. For the AB/CD task, the evaluation is
draightforward since no decision points are encountered further downstream. The system
subgoals into the design space and applies the AB/CD task. The resulting streams (AB) and
(CD) arethen further split into pure components. C(AB/CD) is determined to be $675,000.

In evaluating the ABC/D task, an impasse between the tasks A/BC and AB/C is encountered.




39

10% ERROR LEVEL

USE VAPOUR
BOUND TO MAKE
-DECISION
4
24 B0 ( CURRENT VALUE OF VAPOUR BOUND)
'
20 VAL UE OF MVR ABOVE \HI CH
EITHER USE FA TURE OF THE EVALUAT| ON
COST BOUND FUNCTI ONHASNOT YET BEEN
TO MAKE SEEN
DECISION OR
SEARCH

10

MVRAXIS

Figure5-3: Location of bound learned by CPD2-Soar in example problem

This time the memory operator is successful at retrieving a value for the vapour bound at the
""10% error level. The compute»mv and compute-mvr operators are then gpplied in succession to
compute the marginal vapour rates and marginal vapour ratios of the tasks. The quantities arc
summarised in Table 5-2. Since MVR(AIBC) > fl,%°, the task A/BC is preferred and hence given
a better-than preference than its competitor AB/C The impasse is resolved and the chosen task
applied Finally, the task A/B is applied to the stream (AB) to complete the information needed
to compute an evaluation for the task ABG/D, which is $350,000.




60

Since the evaluation process for the three initial competing tasks is now complete, the sysem
attempts once again to leam values for the bounds. In response to a no-change impasse on the
refine-interval operator, the syslem selects the refine space. Here the compute-task-error
operator is applied thriceto calculate the errors of the tasks, E(A/BCD), E(AB/CD and E(ABC/D)
are computed to be 11.1%, 0% and 25.9% respectively. In thiscase, D,'® ={ A/BCD}. However,
since \2MVR{AIBCD) < fl,*°, the value of fl,'°is not changed.

5.6. Expected Performance of CPD2-Soar

Although no data has explicitly been presented regarding the utility of the bounds, it is expected
that the bounds will be useful in preventing expensive lookahead searches in many cases. The
reason for thisis that margina price ratios, rather than straightforward marginal prices, are used
in determining the bound values. The ratios are loaded metrics; they encapsulate alarge quantity
. of domain knowledge. They indicate how small the margind prices of the tasks in adecision set

can become relative to each other before the marginal price evauation function falls to deliver
the correct decision. :

A task with a marginal price ratio greater than one indicates that it has the smalest margind
price of al the tasks in the decision set Hence, if the margind price evauation function always
gave the correct decision, the bound value would always be one irrespective of how close the
magnitudes of the margina prices of the competing tasks became. If a Situation arose in which a
task with amarginal price ratio smaller theftvone was also the correct decision, Le., the one with
the smalest evaluation, it would be a signd to the sysem that the margind prices of the

competing tasks were too close to each other and hence the bound on the ratio should be refined
upwards.

The bound values are adso a function of the task errors. The larger the magnitudes of the
margina prices relative to each other, the smaler the errors in the solutions generated. Hence,
the larger the marginal price ratios or bound values, the smdler the expected errors. Figure 54
indicates how the vapour and cost bounds are expected to vary for different desired error levels.
Since margina cost is a better evaluation function than margina vapour rate, it is expected that
for a given error level, the cost bound will be lower than the vapour bound, indicating that on
average, the former will be successful more often than the latter. '

It should be noted that in the form described, CPD2-Soar takes no account of the overhead
involved in computing the marginal price ratios and invoking the memory operator to retrieve
* and store bound values. Currently, it is assumed that the use of margina price ratios is cheaper

than conducting a search. However, there is certainly a cost involved in performing the
operations required to use the ratios, and in redlity, this cost must be compared to the cost of
performing a search to determine which solution strategy is indeed cheaper.
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Figure5*4: Expected variation of vapour and cost bounds with error levels

5.7. Implicationsfor Process Design
A primary motivation for describing CPD2-Soar was to show that the functiondity of a system
like Interval-Soar could be frwtfully utilised within a process design system. Interval-Soar
-provided evidence for an hypothesis about learning; namely; that the knowledge learned by an
agent is dependent upon the the models the agent brings to the problem-solving experience. The
purpose of CFD2-Soar was to demonstrate for the process design domain what Interval-Soar
does for an arithmetic domain; that the richer the model an agent has of its evaluation functions,
the more general the knowledge it learns.
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CPD2-Soar is valuable for two reasons: fird, it recognises that the sdection of a function to
“evaluate competing designs is an important, but often ignored, subproblem within a design task;
and second, it depicts how a learning ability could be used by a desgn sysem to generate a

design solution that met a minimum quality criterion without resorting to a search. These factors
are further discussed below.

Learning to Select among Multiple Evaluation Functions. The sdlection of a function to
evaluate competing designs is an important, but often ignored, subproblem within a design task.
Almost al existing design systems have this decison hardwired into them when they are
developed As described in Chapter CHAPZ, this is tantamount to solving a design problem
before it has even been posed. The sdection of an evauation function can only properly be mede
when the context is known within which the task is to be solved. CPD2-Soar is basad on the
recognition that process design is also an activity, and not just the product of an activity.

CPD2-Soar depicts how a design system can be provided with the ability to sdect among
multiple competing functions. It depicts how the sdection of a evauation function can be posed
as a problem-solving activity within adesign system. It aso indicates how a system could learn

to improve its evauation-function choosing ability by abstracting from its problem-solving
experiences. '

Generating Design Solutions that Satisfy a Minimum Quality Criterion: The god pursued
by dmogt al existing systems when soking a process design problem is to determine the
cheapest design from among al the solutions embedded within the search space. However, a
more useful goal would be to generate a solution whose cost was no greater than a certain
percentage of the cost of the best solution. By stating the design gad in such a fashion, two
advantages accrue: one, relaxing the condition that the best solution is required ensures that the
otherwise expensive search needed to solve the task is avoided; and two, adding the condition
that the cost of the solution generated be not more than a certain distance from the best solution
attainable ensures that a certain minimum solution quaity is maintained. At a first glance, it
often seems that a potentially unsolvable conflict exists within the stated design objective. To
determine if a particular solution lies within a certain horizon from the best solution, the best

solution must first be found. But finding it requires an exhaustive search of the design space,
precisely what the revised design objective is intended to avoid.

CPD2-Soar depicts how the apparent conflict in the design god can be overcome by capitalizing
on asystem's learning. To determine if adesign solution lies within a certain distance of the best
solution, the system uses knowledge learned from earlier probl em-solving experiences. In so
doing, the system avoids a search of the design space. In CPD2-Soar, the vapour and cost bound
~ metrics play an important role in reaizing this ability.

A definition of a design goa that includes a bound on the solution quality also has a merit in
addition to the ones described earlier. In so stating the goal, an attempt is also made to account
for the inherent impreciseness of the models and evaluation functions used to analyse designs. In
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other words* the usefulness of al evaluation metrics in comparing the costs of competing designs
only extends to acertain degree.  To illustrate this, consider a column-costing model whose
preciseness is hundreds of thousands of dollars. Then, a column whose cost was predicted to be
$345,873 by the mode should really be equivdent in quality to a column whose cost was
cdculated to be $278,132. If the preciseness of die modd is taken into consideration, the cost of
both columns can only be believed to be $300,000 with any certainty. Thus, any additiona effort
expended in finding the solution that cost $278,132 is wasted since the seemingly better solution
is not really better if the preciseness of the modelsis also taken into account

6 Summary

The Soar architecture was introduced as a vehicle for developing design sysems with
capabilities seen to be important fet chemica process domains but missing in most existing
design systems. Two systems developed within the Soar framework, CPD-Soar and Interval-
Soar, were reported upon. The tasks, problem-space structure, operation and performance of each
system was described in depth. The implications for process design of the systems were aso
discussed. -

The congtruction of CPD-Soar and Interval-Soar was a vauable exercise for two main reasons:
one, it presented evidence that the mechanisms present in Soar can provide design systems with
useful abilities, and two, the act of .creating the systems was helpful in identifying those aspects
of the task domain that are well understoo& and those that are not Selecting among competing
evaluation functions and design methods, learning approximate and/or abstract models of
complex evaluation functions and interacting with external software systems were three areas
identified as not being well understood.

The systems also provided evidence for the hypothesis that the learning carried out by a system
is related to the mode the system brings to the problem-solving experience. This hypothesis was
proposed in response to CFD-Soar's learning behaviour, in particular, its learning of very
specific knowledge. Interval-Soar verified that if an agent was provided with aricher model, in
this case, of its evauation function, the learning carried out by the agent would be more genera
and thus more uscful

Finally, a number of effective ways of further improving the abilities and performance of CPD-
Soar, utilisng die lessons learned earlier, were described. The problem-space structure and
expected performance of CPD2-Soar, the enhanced version of CPD-Soar, was postul ated.
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List of Symbols

B Cost bound at error level e
By Vapour bound at error level e
) " Evaluation of taskj [$]
(D) Decision Set
Error of task |
A/l S-'-st of tasksj from (D) for which £(/) > e and MCR{f) > 1
Subwt of tasksy from {D} for which £(/) > eand MVR(J) > 1
MCR(f) Marginal cost ratio of tasky
MTAC() Marginal total annualised cost of tasky [$]
T e
MV(J) Marginal vapour rate of task j [kmol/hr]
Mv*() ~ Lowest MV of all tasks besidesj in the
decision set of whichj is a member [kmol/hr]
MVRIij) Marginal vapour ratio of task;
{N} Set of unacceptable tasks
{T} Set of acceptable tasks

Arguments, Subscriptsand Superscripts

b
e
j
t

<

Refersto thetask in adecision set with the best evaluation
Error level on abound or the desired error for a problem

Refersto atask

Refers to the task with the largest MCR in M#-

-t Refers to the task with the largest MVR in Af &
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