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Abstract

This paper deals with the weak fragments of arithmetic PV and S\
and their induction-free fragments PV and S^1 • We improve the
bootstrapping of 5^, which allows us to show that the theory S\ can
be axiomatized by the set of axioms BASIC together with any of the
following induction schemas: Y,\-PIND, Y,\-LIND, H^PINDOT U\-LIND.
We improve prior results of Pudlak, Buss and Takeuti establishing the
unprovability of bounded consistency of S^1 in S2 by showing that, if
5*2 proves Vx<p(x) with <p a SQ(EJ)-formula, then S% proves that each
instance of <p(x) has a S "̂1 -proof in which only Eo(Ej)-formulas occur.
Finally, we show that the consistency of the induction free fragment PV"
of PV is not provable in PV.

1 Technical Preliminaries

We assume familiarity with the theories of bounded arithmetic and the general
notation introduced in [2]. We will denote the language of S^ and T\ by L&. Thus,
Lh = {0, 5, +, •, |a|, [|aj , # , < } • The theories of bounded arithmetic were defined
in [2] to include a finite set BASIC of open axioms in addition to induction

Martially supported by the NSF grant DMS-9205181.
2 Partially supported by the Faculty Development Fund of CMU. Most of this joint work has

been done while A. Ignjatovic was visiting the Mathematics Department of the UCSD during
the Summer of 1992.

University Libraries
Carnegie Mellon University
Pittsburgh PA 15213-3890



axioms. In this paper, we shall extend the original version of BASIC axioms to
include two more simple axioms: \a\ < a and \a • b\ < \a\ + \b\. The addition
of these two axioms makes our arguments in section 3 considerably easier and
more elegant at the cost of slightly weakening the result of section 3 that S%
can not prove B^-Cor^Sj1). Although we can prove this without the use of
these extra BASIC axioms, we feel that this would not be worth carrying out
the more complicated proof; and, as explained in [2], there is no real advantage
in working in the exact original version of BASIC (see also [4]). What is
important is that the consistency with respect to a restricted provability notion of
a very weak base theory (i.e., 571) consisting of only common properties of basic
operations is not provable in the significantly stronger theory 52. The equational
theory axiomatized by only the BASIC axioms we call 5^ and its first order
counterpart, 5J 1 . Note our S "̂1 is not quite the usual version since it has the
additional two BASIC axioms. However, the theories Sx

2 and T\ for i > 0 are
defined as usual since they can already prove the two new axioms.

We define the language Le to be L& plus the following set of extra symbols:
{2fo^-,sq(a), (a, 6), (a)!,(a)2}. Here 2j*6| stands for the function 2min{a'l6l>; a -
b is the usual limited subtraction; sq(a) is just the unary squaring function
(i.e. sq(a) = a - a) and will be used to form short terms denoting high-degree
polynomials; (a, 6) is the pairing function; (a)i and (a)2 are the two corresponding
projection functions. As shown in [2], all of the above functions can be Ej -defined
in ,S£ and the same theory can prove that these functions satisfy the basic
properties 1-4 below, which we will take as axioms of our equational theories in
the language Le. We define E~ to be the equational theory in the language Le

axiomatized by the set of axioms BASICe consisting of the axioms of BASIC
together with the following additional groups of axioms.

1. \a\<a, | a - 6 | < | a | + |6|;

2. 2f0| = 1, 2°, = 1, a + b<\c\D 2fcf
fc = 2fc| • 2fc|;

c / 0 D ( 2 f c | = 2 A 2 f c | < 2 - c ) ;

3. a<b<->a + b = 0, a + b = 0 *-• (b — a) + a = 6;

4. sq(a) = a • a;

5. «<*,&»! = a, ((a,fe))2 = 6, ((a)ll(a)2> = o> \(a,b)\ < 2 • (1 + \a\
(a, b) = L|((a2 + 62 + 2ab + a + 1) - b)\.



Recall that a function f(b, a) is obtained by limited recursion on notation from
the functions g(a) and h(b,c,a) with the bounding function k(b,a), provided
/(0,a) = g(a) and, for all b > 0 and all a, the following holds:3

f(b,a) = rmn{h(bj(l±b\,a),a),k(b,a)}.

It is a classic result of Cobham's that every polynomial time computable function
can be defined from functions in Le by use of composition and limited recursion
on notation. We define Lp to be the language containing Le plus symbols for all
polynomial time computable functions. PV" is an equational Lv -theory which is
axiomatized by BASIC* plus axioms defining the polynomial time functions in
terms of their definition by limited recursion on notation. PV is the equational
theory obtained from the theory PV" by adding the induction rule for all open
formulas of Lp. S^^E^ , PV{~ and PV\ are the first order theories which are
conservative over S2, E", PV" and PV. Note that the induction rule of PV is
restricted to open formulas. The original definitions of PV" and PV are due to
Cook [5].

However, to make our arguments simpler, we will not work directly with purely
equational theories, as, for example, PV is formulated in Cook's [5]. Proofs
in our theories contain quantifier-free formulas only, but we allow in formulas
also inequalities and propositional connectives. Thus, our proof-system will also
include propositional rules of inference. We choose such a proof system because in
order to eliminate applications of the induction rule from certain proofs we must
apply the speed up induction method, and the formulas needed in this method
would be extremely awkward if we worked in a purely equational theory. On the
other hand, this does not weaken our results, since inequalities and propositional
connectives (and the corresponding rules) can be easily removed by replacing
formulas which contain inequalities and propositional connectives with suitable
arithmetical combinations. For example, inequality t\ < t2 can be replaced by
ti^t2 = 0, while <i = 0Vi2 = 0 can be replaced by ii-i2 = 0. This transformation
is easily seen to produce only polynomial increase of the length of proofs. Thus,
we will work with quantifier-free theories rather than purely equational ones, and
since for our purposes our formalism differs inessentially from the usual one, we
use the same notation for purely equational theories like PV or PV~ and the

3Strictly speaking, min{a,6} is not in the language Lt\ however, it can be replaced by



corresponding quantifier free theories.
We use the usual hierarchies, E* and II*, of formulas to measure the

(bounded) quantifier complexity of formulas in our first order theories; in addition,
B\ denotes the class of formulas obtained as the least closure of Sj formulas under
Boolean connectives and sharply bounded quantifiers; the class B\ is sometimes
denoted S£(S•) and in [3] is denoted E^+1 n IlJ+1.

We will use numeral terms, n, whose length is linear in the logarithm of the
number n, defined by:

0 ^ 0 , 1=5(0) , 2*5(5(0))

2n = 2-n, 2n + l = 2 n + l

For notational simplicity, we will not underline numerals corresponding to the
numbers 0,1,2.

We use Gentzen-style sequent calculus proof systems for formal proofs in the
theories PV, PV~~, Sx

2, etc. For first-order theories with bounded quantifiers, we
use the system LKB which is the usual Gentzen sequent calculus augmented with
inference rules for the bounded quantifiers (described in [2]). For such theories,
we will mostly consider bounded proofs, i.e., proofs in which all formulas have only
bounded quantifiers. Proofs for equational theories are formulated in the sequent
calculus without any quantifier rules, but with the substitution rule:

r(q)—>A(q)

where a is an eigenvariable which must not appear in the lower sequent and t is
an arbitrary term.

We define the size of a proof P to be the total number \P\ of symbols in them.
Sequent calculus proofs are presumed to be tree-like (our proofs will work without
this assumption, however). The initial sequents in proofs can be logical axioms
of the form A—>A for A an arbitrary atomic formula, or equality axioms, or
sequents of atomic formulas expressing BASIC axioms.

Without loss of generality, we always assume that a proof P = P(a, b) of a
sequent T—>A is in free variable normal form. This means that none of the free
variables a appearing in the sequent T—>A are used as eigenvariables, and all
other free variables b in the proof are used exactly once as an eigenvariable of an



induction rule, a bounded quantifier rule or a substitution rule in the proof P.
This assumption is permissible, since otherwise we can rename some variables and
replace some variables by the term 0, and obtain a proof of the same endsequent
satisfying the above property. Of course, this procedure is formalizable in any
weak fragment of bounded arithmetic with minimum of induction (e.g. S%). We
can also assume that the sequence of variables b = 60, . . . , 6jt-i is ordered in such
a way that, on any thread of the proof (i.e. any maximal branch through the proof
tree), if 6t- and bj are eigenvariables of two rules and i < j, then 6t is eliminated
by a rule which is below (i.e. closer to the conclusion of the proof than) the rule
by which bj is eliminated. The variables a which occur in the endsequent of a
proof are called parameter variables.

The outline of the remainder of the paper is as follows. In section 2, we give
an improved treatment of the bootstrapping of Si which shows that Si may be
equivalently axiomatized with any of Y>\-LIND, U^-LIND or U^-PIND in place
of Y,\-PIND. This improved bootstrapping simplifies the proofs in section 3.

Pudlak [8] proved that 62 can not prove the consistency of Si using a
modification of the cut-shortening technique of Solovay's. The first author [1]
noted that Pudlak's methods could be modified to prove that #2 can not prove the
consistency of S^"1. Takeuti [10] showed that these techniques established that
Sx

2 could not prove the consistency of Sj"1-proofs in which only Ej+5-formulas
appear. In section 3 we give a new proof that $2 can not prove the consistency
of S21 (with our extended BASIC axioms), which improves on the prior results
by establishing that S\ can not prove the consistency of 5J 1 proofs in which
only l?f-formulas appear (we call this principle the B\ -consistency of S^1)- Our
proof method uses a technique of induction speed-up elaborated in [6] (see also
[7]), which is closely related to a construction due originally to Solovay [9]. The
essential novel feature of our induction speed-up is that it requires only the
introduction of sharply bounded quantifiers. Also, the starting formula need not
define a cut in the standard sense, since the set it defines need not be an initial
segment of the universe (see [6] for more details).

In section 4, it is shown that PV can not prove the consistency of PV~. Since
PV is an equational theories, the speed-up of induction can not be accomplished
with the aid of quantifiers; instead, we develop a different form of the speed-up of
induction based on Skolem functions.



2 Better Bootstrapping of S%

In this section, we give alternative axiomatizations of the theory Si based on
induction schemes different from the E^-PIND axioms used originally by the first
author [2]. We prove that the Y\-PIND axioms may be replaced by either the
Y>\-LIND axioms, the U\-LIND axioms or the U^-PIND axioms without changing
the strength of S]. Of particular interest is that either Y^-LIND or H\-LIND may
be used, since these axioms are, at first glance, somewhat weaker than Y^-PIND.
Also, the fact that S\ can be axiomatized by Y>\-LIND simplifies our proof of the
main result of Section 3.

The results of this section do not depend on our inclusion of two additional
BASIC axioms and thus apply to the theories in the form defined in [2].

To prove the equivalence of the alternative axiomatizations of 5^, it is
necessary to improve on the bootstrapping given in Chapter 2 of [2]; we shall
presume that the reader has [2] available and we will frequently refer to proofs
therein. Our goal in this section is to improve Theorem 2.13 of the bootstrapping
of [2] by showing that the following are equivalent axiomatizations of S\ even for
i = 1; recall that in [2], the equivalence of Y>h

rPIND, \l\-PIND, Y>h
rLIND and

Hj-LIND wets proved only in the presence of S] as base theory.

Theorem 1 The following are equivalent axiomatizations of S-J (for i > 1):

(1) BASIC+Xb
rPIND

(2) BASIC+Yl\-LIND

(3) BASIC+Hb
rPIND

(4) BASIC+U

By Theorem 2.13 of [2], we only need to prove Theorem 1 for the case i = 1. We
shall prove a series of lemmas that establish this theorem.

Lemma 2 The following three functions can be Sj -defined in the theory BASIC+
T,Q-LIND, and basic properties of these functions are provable in this theory:

(1) c = min(a, 6).

(2) c=LenP{a,b) <=> ((a = 0 V b = 0) A c = 0) V S(c) = min(a, |6|).



(3) c=LenMinus(a,b) <=> (b < \a\ A 6 + c = \a\) V (\a\ < b A c = 0).

In fact, these functions are Efc-definable in BASIC + Z,b0-LIND.

Proof: The fact that the minimization function c = min(a, b) can be EQ-defined
in BASIC + T,Q-LIND is proved by the argument of [2, p. 38] showing it is
£j -definable in S] -

In the formula LenP(a,b) the second argument 6 occurs as a 'dummy'
argument which serves only to bound the value of the function. The uniqueness
condition for LenP follows from the BASIC axioms only, with no use of induction.
For the existence condition, let M(a, 6, c) be the defining equation above for LenP
and let N(a, b) be the formula

(Vu < |6|)(3c < |6|)(u < a D M(u, 6, c)).

Then BASIC proves N(Q,b) and (Va)(N(a,b) D N(a + 1,6)). Thus, since
N(a,b) is sharply bounded, BASIC + Eb

Q-LIND proves (V6)iV(|&|,6). From this
last formula, the existence condition for LenP follows without further use of
induction.

The uniqueness condition for the LenMinus function follows from BASIC
without any induction. The proof of the existence condition for LenMinus is
exactly like the proof on page 42 of [2] except that P(y) is replaced by LenP(y, a).
Note that the induction used becomes Y>h

Q-LIND since LenP(y, a) has a SQ defining
equation and its value is < \a\. •

Lemma 3 BASIC + Tl^-PIND h TV\-LIND.

Proof: Follow exactly the proof of the Theorem 2.6 of [2] except let A G IlJ. •

Lemma 4 BASIC + U^LIND h Y\-LIND.

Proof: This lemma is proved by essentially the same method as Theorem 2.11
of [2] (which emulates earlier proofs of analogous results in Peano arithmetic). For
completeness sake, we nonetheless sketch the proof.

Let A(b) e S j . To prove the E^-LIND axiom for A, we suppose that A(0)
and (Wx)(A(x) D A(x + 1)) hold and reason informally in BASIC + H^-LIND.
The idea is to let B(b,c) be the formula -»A(|c| ^- 6) and to use LIND induction



on B(b, c) with respect to b. The — symbol denotes restricted subtraction and is
actually expressed using LenMinus as £„-defined in Lemma 2. Hence B can be
expressed as a IlJ-formula. Now BASIC + U\-LIND can prove:

(Vx < |c|)(A(x) D i4(x + 1)) D (Vx < \c\){B(x, c) D B(x + 1, c))

From the third formula and our hypothesis about A, Ti\ -LIND applied to B yields
5(0, c) D i?(|c|,c). From this and the other two formulas, we get A(0) D A(\c\).
From the assumption that A(0) holds and since c is an arbitrary free variable, it
follows that (Vx)A(|x|) holds. •

Lemma 5 The theory BASIC+ H\-LIND can Ej -define the following functions
and Aj -define the following predicates:

(1) SubPower2(a) *=> S(\a\) = \S(a)\.
That is, SubPower2(a) holds iff a + 1 is a power of two.

(2) c = SubExp(a, b) «=*• SubPowerS{c) A |c| = min(|6|, a ) .
That is, SubExp(a, b) = 2min(l6l'0) - 1.

(3) c = Exp(a,b)

(4) c = Decomp(a, 6, c, J) ^^^ |c| < 6 A a = d- 2min(lal'(>) + c.

c = L5P(a, 6) 4=^ (3d < a)Decomp(a, b, c, d).

d = MSP(a, b) <=> (3c < a)Decomp(a, b, c, d).

Furthermore, elementary properties of these functions and predicates are provable
in this theory.

Proof: (1) Obviously SubPower2 is A\ -defined. Also BASIC can prove the
following properties (for example):

(i) SubPower2(a) D SubPower2(S(a + a)),

(ii) SubPower2(a) A |6| < \a\ D b < a,

8



(iii) SubPower2(a) A SubPower2{b) A \a\ = \b\ D a = 6,

(iv) SubPower2(a) D SubPower2(\\a\).

(2) The existence and uniqueness properties of the E{ -definition of SubExp are
proved analogously to the proof of paragraph (d), page 39 of [2]. Note that only
Ej -LIND is used for the existence proof.

(3) Exp is easily definable from SubExp. (4) The existence and uniqueness
properties of the definitions of LSP and MSP are proved by the same argument
as used in [2] — note that this used only Y^-LIND. •

Lemma6 BASIC + Y>\-LIND \-Y>\-PIND.

Proof: This proof is exactly the same as the proof of Theorems 2.11 and 2.12
of [2], noting that Lemmas 2 and 5 imply that the function

a, u H-> MSP(a, \a\ — u)

is E* -definable in BASIC + S$ -LIND. •
Recall that [2, Theorem 2.6] showed that BASIC + Y^-PIND h \l\-PIND.

Thus, the above sequence of lemmas clearly implies Theorem 1; namely that the
following four theories are equivalent:

(1) BASIC+£

(2) BASIC+Eb
i-LIND

(3) BASIC + Ub
rPIND

(4) BASIC + Ub
rLIND

Theorem 1 allows us to prove that Theorem 4.9 of [2] applies to S] and T2
2

(see also the comment on page 81 of [2]):

Theorem 7 Leti>\ and Sl
2 and T} be axiomatized using Y^-LIND and T,brIND,

respectively. IfT—>A is a bounded sequent provable in S2 or T2, then there is a
proof of F—>A in that theory which has no free cuts, is in free variable normal
form and is restricted by parameter variables.



3 Unprovability of consistency for the first order
theories

In this section, we prove that S^ does not prove the consistency of the fragment
5J 1 for proofs which contain only B\-formulas, with 5J1-proofs encoded in
the standard efficient coding of the syntax of the language L& (see [2]). Thus,
expressions like terms, formulas, sequents or proofs are coded by sequences
containing the Godel numbers of the symbols in these expressions. For any
such expression A, we denote by /(A) the length of its code, i.e. /(A) = |rAn|.
Thus, /(A) is proportional to the sums of the lengths of the codes of the symbols
occurring in A.

By Theorem 1, we may assume that Sx
2 is axiomatized by Y^-LIND. We first

must define the notion of a supplemented proof, which is similar to the notion of a
"proof restricted by parameter variables" used in [2], and the notion of a normal
proof used by Takeuti in [10]. A term of the language Lb is a polynomial if it does
not contain the smash function #; if it also does not contain any free variables
we call it a closed polynomial. The next lemma shows that the lengths of terms
can be polynomially bounded; this will help us to apply the speed-up induction
technique below.

Lemma 8 Let t(x) be an arbitrary term of Lb with k variables. Then, there exists
a polynomial p* such that

\t(a)\ < P*t(\a\). (1)

D tf (|S|) < K(H)- (2)

Recall that S^ is the equational theory axiomatized by BASIC, including the two
extra axioms.
Proof: We define a suitable polynomial by induction on the complexity of the
term t(a).

1. lit(a) isa,thenp*(|a|)^|a|;

2. iff is 0,thenpt* =0;

3. if t(a) is S(h(a)), then tf (|a|) * ̂ (|S|) + 1;

10



4. if t(3)is Lj*i(S)J or 1^(3)1, then Pr(|a|) % ( | a | ) ;

5. if *(S) is *i(3) + *a(3), then^( |a |) * ^ ( | S | ) + p £ ( | S | ) ;

6. if tish-tt, then pj(|o|) * p^d^l) + p£(|a|); and

7. if t is ix#*2, then tf(|3|) * fa;(|3|) • j£(|3|)) + 1.

By using induction on the complexity of the term t, it is easy to see that S2 can
prove both (1) and (2). The induction step in the cases for • and | | uses the extra
BASIC axioms \a-b\< \a\ + \b\ and \a\ < a.

Definition: Let P(a) be a proof in a fragment of bounded arithmetic S2 in
which all formulas are bounded, with parameter variables a and eigenvariables
60,. - . , bn. For each eigenvariable bj of either an instance of an induction rule or
a quantifier rule, let the corresponding principal term be ij(a, 6 1 , . . . , &j-i), for
j < n. Let Q = {Qj\j < n} be a set of equational proofs in the theory S2 which
use only structural rules and the cut rule. Thus, we can assume that in such proofs
all variables are parameter variables. Then the set Q is a set of supplementary
proofs for the proof P(a) provided:

For every principal term ij(a, 60, • • •, &j-i)? there is a polynomial Pj(|a|),
and a proof Qj £ Q which is a proof of the sequent

N < P o ( | a | ) , 16x1 < pi(|3|) |6i-a| < Pj-i(\3\)

—>|^(a ,6 0 , . . . , 6 i _ 1 ) | <Pi(\S\).

Lemma 9 For every bounded proof P(a, 60, - • •, &*) in ^2 there exists a set Q of
supplementary proofs in S2 -

Proof: By induction on the complexity of the term t; we just take the natural
candidate Pj(|a|) = pj.(|a|,po(|a|),... ,pj_i(|a|)) and use the monotonicity of
polynomials, which is provable in BASIC. •

Definition: A supplemented B\-proof of Sx
2 is a pair TT = (P, Q) such that P is

a proof in S%
2 which contains only B\ -formulas and Q is a set of supplementary

proofs for P.

11



Unfortunately, the construction from Lemma 9 is not formalizable (with the coding
of the syntax we use) in any theory whose provably total functions have polynomial
growth rate. The reason is that, due to the possible multiple occurrences of a
variable a, the substitution of the variable a in the term <i(a) by a term t2 can
result in a term whose length is approximately equal to the product of the lengths
of terms t\ and t2- Thus, we cannot freely iterate substitution of terms, since the
lengths of the resulting terms do not grow polynomially in the number of iterations
of substitution. Consequently, Sx

2 cannot prove that for every bounded proof there
exists a set Q of supplementary proofs. This is why Takeuti [10], in order to show
that T\ does not prove the consistency of S21 for proofs in which all formulas
are either E*+5 or II*+5, first proves that T£ does not prove the consistency of
itself for proofs in which all formulas are either S^+5 or II*+5 and for which
there exists a supplementary proof. Using a method from [1] and a (formalized)
conservativeness result, we will avoid proving the second incompleteness theorem
for the notion of consistency of supplemented proofs.

We prove (and show that it can be formalized in S]) the above mentioned
conservativeness result as Theorem 12 below. For this purpose we first develop
the speed-up induction method for the first order theories which extend (or
prove) axioms of BASIC. We associate with each bounded formula A0 several
corresponding formulas in a manner similar to Solovay's cut shortening technique.

Definition: Let L be a first order language extending L&, A°(dJ e) an arbitrary
formula and t(e) an arbitrary term of the language L (from now on we will
suppress in our notation all free variables, e.g., ef, which are not essential for
keeping track of our constructions). Then we define

A^a) = (Vy < |<|)(Vz < \t\)(y < x A (x < y + a) A A°(y) D A°(x))

A2(c) = (Vz < \t\)(Vw < \t\)(w <z-cA A\z) D A^w))

Note that A1 and A2 have the same quantifier complexity as A0 in the hierarchy
of formulas B1?.

Definition: A B\ proof is a sequent calculus proof in which every formula is
in Bl

12



i
Lemma 10 Let A0 be an arbitrary formula of the language L. Then the following
formulas are provable in Ŝ "1 with B\ proofs which involve no free variables (and
thus no eigenvariables) other than those appearing in the formulas being proved:

(6 < a) A A\a) D A1 (6) A A1 {2 - a) (3)

(6 < c) A A2(c) D A2(b) A A\c2) (4)

A2(0)AA2(l)AA2(2) (5)

A2(Cl) A A\c2) D A2(Cl • c2) A A2(Cl + c2) (6)

(Vx < \t\)(A°{x) D A°(x + 1)) ~ A\l) (7)

A\c) A (c > \t\) A (Vx < |i|)(A°(x) D A°(x + 1)) D (A°(0) D A°(|i|)) (8)

Proof: The first conjunct of the conclusion of (3) follows from the elementary
properties of + and • with respect to <, contained among the axioms of the
theory BASIC. To show the second part, we consider arbitrary x, y, a such that
V < £ 5? V + 2a. If x < y + a we apply Ax(a) once; if x > j/ + a we apply Ax(a)
twice, once on y and j/ + a and once on y + a and x. The proof of (4) is similar;
if z • c < w < z • c2, we consider the intermediate point z • c. In the formula
(5) the first two conjuncts are trivial and the third one is equivalent to (3). To
prove statement (6), we notice that if C\ < c2 then c\ • c2 < c^ A c\ + c2 < 2 • c2

and so this statement follows from (4) and (5). Formula (7) is an immediate
consequence of the definition of A1(l). Notice that formula A1 (a) contains the
conjunct y < x in the premise of the implication because the formula A°(d) need
not define an initial segment; on the other hand, such a conjunct is not needed
in A2(c), because A1 (a) always does define an initial segment: if A°(a) satisfies
(Vx < |i|)(A°(x) D A°(x + 1)) then Ax(a) defines a cut containing 1 and closed
for addition, while if this property fails then A1 (a) defines just the singleton {0}.
Finally, to prove (8), we note that by (4), A2(c) A (c > |t|) implies A2(|i|). Thus,
instantiating the universal quantifiers in A2 with z = 1 and w = | i | , we get
Ax(l) D Al(\t\). Since Ax(l) is equivalent to (Vx < \t\)(A°(x) D A°(x + 1)),
this implies A1(|i|). Instantiating universal quantifiers in A1(|<|) with y = 0 and
x — \t\ we get A°(0) D A°(|t|) which clearly implies our claim. •

The above proofs are uniform in A0 in the following sense. Each of them can
be obtained from a single proof containing a new predicate symbol U in all places
where formula A0 appears by replacing U by the formula A0. Consequently, the
sizes of the proofs of all formulas from Lemma (10) are linear in the length of the
formula A0. This fact has the following important consequence.

13



Corollary 11 The following statement is provable in S% - There is a quadratic
polynomial Pind{x,y,z) such that, if t is an arbitrary term of Lb, r is a closed
polynomial and A(x) is an arbitrary B\ -formula of Lb, then there is a B\ proof
£(£,T, A) in S21 of the formula

(1*1 < r) D ((V* < |*|)(A°(x) D A°(x + 1)) D (A°(0) D A°(|*|))) (9)

such that /(*(*, r, A)) < jw( / ( t ) , /(r), 1{A)).

Proof: Since r is built using only 0,1,+ and •, by induction on subterms of
r one can prove that using less than /(r) instances of (5) and (6), together with
their corresponding proofs, one can obtain a proof of A2(r) of length bounded by
a quadratic polynomial p*(|rrn|, | rAn |) . We combine this proof with a proof of the
instance of (8) for c = r; such an instance has a proof linear in /(A), l(t) and / ( r ) .
Thus, the length of the whole proof 8(t, r, A) of (9) can be bounded by a quadratic
polynomial, and since this argument is by induction on a parameter bounded by
the length of the term r, clearly it can be proved in S] using Y,\-LIND. •

As an aside, we note that the previous lemma cannot be used for equational
theories since the formulas A1 and A2 involve quantifiers; nonetheless, in section 4,
we shall prove an analogue of Lemma 10 using a different construction.

Let T be a theory of the language Z^; then B\-PrfT(p,y>) denotes a
formalization (in the usual way for the theories of bounded arithmetic - see [2])
of the notion "P is a proof of (p in T and P contains only B\ formu-
las", with the corresponding predicates B\-ThrriT(<p) = (3x)Bf--PrfT(x,cp) and
Bh

rCon(T) = ^-ThrnT(r0 = V).

Theorem 12 Let ip(a) be a B\ formula such that Sx
2 h Vxy?(x). Then there are

numbers m, n such that for the term r(x) = (x#(x#x)) m + n

S] h Vx3w < T(x)Bh
rPrfs-i{w,rip(xy).

Note that Theorem 12 depends on the presence of the two extra BASIC axioms.
Proof: We first apply the (partial) cut elimination procedure to an S\-proof
of y(a), and obtain a free cut free proof P(a) of y>(a). This proof is clearly a
B\ proof. By Lemma 9 there are supplementary proofs Q for P{a). Let the
eigenvariables of P(a) be 6Q, . . . , 6n. We now argue informally, but it will be clear
that the argument can be carried out in S]. We first fix a value for x and replace
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the free variable a in the proof P(a) and in the proofs in Q by the numeral x. The
length of the proof P(x) is then linear in \x\. Since P(x) is a proof of a sentence,
P(x) has no parameter variables. Thus, for every principal term ifc(6o, • • -, &fc-i) ,
k < n, the corresponding polynomial p* is now a closed term built using only
+, •, the numerals 0 ,1, and \x\. Consequently, for each k < n, the proof Qk is a
proof of the sequent

M <Po,|&i| <Pi , . . . , | 6 jb - i | < Pib-i—>|ifc(6o,...,6fc-i)| <Pk

Claim: There exists a polynomial p(x,y) such that for every sub-proof
D(b0,... ,6fc-i) of the proof P with the endsequent I I—>A there exists a
B\-proof £>* in S^1 such that ID*! < p(\D(b)l \Q\) and £>* has the endsequent:

M < Po, |6i| < Pi, • . . , |&*-i| < p*-i, n — > A

Proof: We proceed by induction on the height of sub derivations D of P.
Consider the last inference of Z). If Z? is just an initial sequent F — > A , let D*
be a proof of

N < Po, |6i| < Pi, •. •, |&*-i| < Pk-i, T - ^ A .

JD* consists of an axiom and weakenings and is easily seen to have length |JD*| <
\P\ + \Q\ - So our estimate follows for any p(x, y) > x + y.

If D is not just an axiom, let the immediate subderivation(s) of D be D\ (or,
Di and Z?2 )• The cases in which the last inference is a propositional or a cut rule,
the claim is an easy consequence of the induction hypothesis. If the last inference
is by an existential quantifier rule of the form

s<t,T —> A,(3x < t)A(x)

the claim again follows easily from the induction hypothesis. The case where the
last inference of D is an V <: left inference is similar.

Now assume that the last inference of D is is an application of the V <: right
rule of the form

h<tk(b),r—>A

—*
where b is the sequence 60,. . . , bk-\. By the induction hypothesis there is a
B\ -proof D\ in S21 of the sequent

s*-i, N < pk, h < tk(b), r -^A, A{h)
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with |Z>i| < p(|-Di|, |Q|), where Ejt_i denotes the cedent

\bo\ <po, \bi\ < P i , . . . , | 6 j t - i | <Pk-i-

Using an initial sequent expressing the transitivity of < , we get a proof of

16*1 < \tk(b)\,\tk(b)\ <Pk-^\h\ <Pk;

we now apply the cut rule on this and on the endsequent S^-i —H'*(^)l ^ Pk of
the proof Qk G Q to get a proof of the sequent

S f c_i, |6 f e |< |* f c(6) |—>\h\<P k .

Using once again a cut , with the initial sequent bk < £jt(&)—>\bk\ < |*fc(&)|> w e

get a proof of

With another cut against the endsequent of D\, we obtain a proof of

Finally, we use an application of the V <: right rule and get the desired proof D*
of

E fc_i,r—>A,(Va:

Notice that the number of lines in the proof D* which are not in the sub derivations
D\ or Qk does not depend on either JDJ, Qk or the endsequent of the proof
D\. The lengths of the sequents in the proof D* which do not appear in the
subderivations D\ or Qk are linear in the sum of the length of the endsequent
of the proof D and the length of the proof Qk. Thus, if p(x,y) is at least
a quadratic polynomial with sufficiently large coefficients, the hypothesis that
\Dl\ < p(\Dxl \Q\) clearly implies that |D*| < p(\D\, \Q\). This finishes the case
of the V <: right rule. The case where the last inference in D is an 3 <: left
inference is handled similarly.

The last remaining case is when the last derivation in P is an application of
the Eb

rLIND rule,

A(O),r—>A
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We use our speed-up induction technique. Let D\ be the immediate subderivation
of D with endsequent A(6fc), T—>A, A(bk + 1). Let b and E^-i be the same as
above. By the induction hypothesis, there is a proof D\ of

E*-i,|6*| <pk,A{bk),T—>A,A(6* + 1)

such that \D\\ < p(|I>i|, |Q|).
Combining D\ with the initial sequents 6* < |tjb(6)|, \tk(b)\ < Pk—>bk < Pk

and bk < Pk —H&*| < Pk from the BASIC axioms, we get a proof of

<PkM < \tk(b)lA(h),T-^A,A(bk + 1).

Using a prepositional inference and an V < :right inference we get a proof Df of

By Corollary 11, there is a i?2~Pro°f ^ m ^e theory 5^"x of

\tk(b)\ < Pfc,(Vx < \tk(b)\)(A(x) D A(x + 1))^(A(O) D A(\tk(b)\))

of length bounded by a quadratic polynomial in the length of terms tk and pk
and the length of the formula A(x). Using £>+ and 5, and a few structural and
prepositional inferences, we get a proof of

We combine this proof with the proof Qk of Sfc_i—>|ijt(^)| <Pk<> to get a
proof D* of

It is ectsy to see analogously to the above estimates that \D*\ < p(|-D|, \Q\) if p is
a polynomial of degree 3 with sufficiently large coefficients.

That completes the proof of the Claim. Since the above argument is clearly
formalizable in S\ and since the size \Q\ of the supplementary proofs is constant,
we get that

S\ h V*3p < T(x)B\-Prf^{pS<p{xy)

for some term r(x) = 2CIXI3 + c for c a sufficiently large constant. This completes
the proof of Theorem 12. •

Combining the above theorem with a diagonalization trick we mentioned
before, we easily get the following, main result of this section.
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Theorem 13 Let i > 0. Then S*2 \f B\-C<m{S?).

Proof: Assume the theorem fails: let 1 — (x#x)#(x#x) and use Godel's
diagonalization lemma to obtain an Lf,-formula xf>(a) such that

S* h Va#(*) <-> -«(3ti> < T)B$-Prfs-i (to, ̂ (x)"1)] (10)

Since ->V(X) 1S a <̂i formula, we have (see [2]) for a suitable term t(a)

S] h Vx[-^(x) D 3t; < f(x)^-Pr/s-1(t;, r-t/ '(xr)].

Thus, for some term r(x), we have

5] h Vx[^(x) D 3u < T(x)fi?-Pr/^-i(u,rO = T)].

Consequently, S^ h Bt—Con(5j1) D Vxrj)(x), and so, since by our assumption
that 5^ H ^-Con(52~a) we get that 5j h Vxxj>(x). But then, by Theorem 12 we
have for the term r(i) = (x#(x#x))m + n:

SJ h Vx3p < r(x)B

which contradicts (10), since for a sufficiently large number £,

S\ h Vx(fc < x D (x#(x#x))m + n < (x#x)#(x#x)). •

Since T^ C 5^+1, Theorem 13 also implies that T-J does not prove

4 Equational Theories

The main result of this section is that PV \f Con(PV~). As already mentioned,
we must develop a new speed-up induction technique for the equational theories,
since it is necessary to avoid the use of quantifiers in the formulas constructed in
speeding up induction. It turns out that the existence of supplementary proofs
for arbitrary proofs will no longer be a problem (because of the presence of a
function symbol for the squaring function), so we can now prove a formalized
(partial) conservativeness result with a polynomial bound on the length of proofs.
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Accordingly, our strategy will be somewhat different than in the case of the first
order theories.

First we must specify the coding of the syntax of the language Lp. We take
functions of Le as primitive, in the sense that they are not defined in terms of any
other functions, and we assign to them Godel numbers. For the function symbols
of Lp not in Le we distinguish the following cases.

1. If a function f(a) is obtained by composition from the functions
h(b),gi(a),...gk(a) then / has Godel number rf= ( r / *y#r , . . . /gf).

2. If a function /(d, a) is obtained by limited recursion on notation from the
functions g(a) and /i(6, c, a) with the bounding function fc(6, a), then we set

We assign Godel numbers to arbitrary terms in the usual way, as it is done for
the syntax of S\; namely, a term is coded by the sequence containing the Godel
numbers of the symbols in the terms. Thus, if / is defined by composition from
hi9ii*"i9k then /(/) > l(h) + l(gi) + ••• + l{gk)\ if / is defined by limited
recursion on notation from the functions g and h with the bounding function k,
then /( /) < l(g) + l(h) + l(k). We define a sequence of terms sqk(x) for k > 0 by
sq°(x) = x and sqk+l = sq(sqk(x)), Note that the term sqk(sqm(x)) is identical
to the term sqk+m(x). It is easy to see that E~~ can prove

x < s q m ( y ) A y < s q k ( z ) D x < s q m + k ( z )

and that the length of this proof is quadratic in k + m. Formalizing in PV yields:

Lemma 14 For every n, the sequence of terms {sqx(a) \ i < \n\} can be defined
by limited recursion on notation, and one can prove in in PV by induction on n
that for every n and every k,m < |n|, the above E~ -proofs of length quadratic in
n exist.

Lemma 15 Let i (a 0 , . . . , a^) be an arbitrary Lp-term. Then PV~ can prove

with a proof whose length is quadratic in l(t).
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Proof: We first prove that Lemma 15 holds for every function / € Lp. We
proceed by induction on the complexity of the definition of / . If / is defined
by limited recursion on notation from the functions g(a) and /i(6, c, a) with
the bounding function &(&,a), then, assuming Ai<Jt(la*'l < c) A (1 < c), by the
inductive hypothesis, the properties of the function sq(c) and the above-mentioned
properties of our coding, PV proves:

1/(3)1 < \k(a)\ < sqW(c) < sql«\c),

with a proof of length bounded by a quadratic function of / ( / ) . Similarly, if / is
defined by composition from /i, # i , . . . , <7* then /(/) > l(h) + l(gi) + • • • + l(gk)-
If m = max{/((}rt-) | 1 < i < A;}, then again, assuming At<fc(lat| < c) A (1 < c), by
the induction hypothesis and the properties of our coding, | / (a) | < 5g^^+m(c),
which clearly implies our claim.

Finally, if t is an arbitrary term then /(£) > /(/) + /(ix) H h l(tk) implies
our claim exactly as in the previous case. •

Lemma 16 For all natural numbers n there is a E~ proof pn of length quadratic
in n of the inequality

\\Sq»(x)\\<n + \\x\\.

Proof: : Since \\sqn(x)\\ = \\(sq"-\x)n < \2 • \sqn-\x)\\ < 1
takes n iterations of the above inference in which every equality is of length linear
in n. Thus ||59n(x)|| < n+ \\x\\ has a proof quadratic in n. •

Thus, we get the following useful consequence of the previous lemma.

Corollary 17 Let t (ao, . . . ,ajt-i) be an Lp-term. The following inequality is
provable in PV~

ACM <c)A(Kc)D \\\t(a)\\\ <W + \\c\\ (11)

with a uniform proof of length quadratic in l(t).

The above facts allow us to prove in PV the existence of supplementary proofs.
We now develop the speed-up technique for equational theories.

For notational convenience, we let 2ĵ . denote the function Exp(x^y) =
2min{a:,|y|} j ^ ̂ o j ^ a n O p e n formula; consider the following formula

A*0{z) = (Vy < *)(Vy' < t)((y' < y) A (y < y1 + 2ft)) A A0(y') D A0(y)).
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Let A^(z, y, y') denote the formula

(y < t) A (yf <y)/\(y<y' + 2ft|) A A0(y') D A0(y)).

Lemma 18 The following sentences are provable in PV{~:

2. (

3.

The above lemma has a proof similar to the proof of Lemma 10.

Lemma 19 Let A0(x) be an open formula, then there are polynomial-time
computable functions Fy(y,y\z) and Fy,{y,y',z) such that, for Af

0 as above,
PV~ proves the following formulas4

A[>(z,Fy°(j/,y\z),F°(y,y',z)) D^z + l,Fy°(y,y\z + 1),F°(y,y',z + 1))y(j/,y\z),F(y,y,z)) D^z + l,Fy(y,y\z + 1),F

and

4(1*1, *J(y. ^ 1*1). ^ ( y ^ , 1*1)) ^ <(\A,y,y')-
Proof: By Lemma 18.2 we have

PVf \- VyVF4(z,y,7) D VyVy'^(^ + 1,y,y'). (12)

Putting this in prenex normal form and applying Herbrand's theorem, there must
exist terms Ty(z, t/, y') and Tyt(z,y,y') such that PV~ proves

A'0(z,Ty{z,y,y'),Ty,{z,y,y')) D A'0(z+ l,y,y'). (13)

It is, in fact, easy to explicitly construct the terms r and r7, and they are uniformly
defined in terms of Ao. In particular, the size of the terms r and r' and the size
of the PV~-proof of (13) are linearly bounded by the size of the formula Ao;
this fact can either be proved by direct construction, but also follows immediately
from the fact PV~ -proof of (12) used A'o only schematically. Let now t* be a

4 The construction we present here significantly simplifies an older version of this proof; the
idea for this simplification was suggested to us by Teddy Seidenfeld.
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term such that |£*| > (|i|, |i |). It is easy to see that using limited recursion on
notation we can define a new function F®{y, y', u) such that

and, for all 1 < u < |i | ,

F°{y,y\U) = (rv(M^u,(
ry(\t\ - u,(F?(y,y',u - l)) l f (*?(?,•,u

and, for all u > |i | ,

Notice that we automatically have |i^(y, y', u)\ < \t*\, so F? is defined by limited
recursion on notation. Let

F°{y,y',z) = (F.°(y,y',|i|-
FZ(y,y',z) =

Then PV" can prove that, for z < |£|,

= ry(\t\ - (|*| - z)), (F,°(y, y', ((\t\ - z) - l))x,

= r,(|*| - (|*| - z)), (F.°(y,y', (|t| - (z + 1)))),, ))
= T,(z lf;(y,y /,z + l),i5(y>y',z + l)) (14)

and similarly, PV~ proves that, for z < |t|,

F2.(y,y',z) = Ty,(z,F2(y,y',z + l),F°(y,y',z + l)). (15)

Thus, substituting x by F2(y,y',z + 1) and y by F°,(y,y',^ + 1) in (13), PV~
can prove, for z < \t\,

implies
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which, together with (14) and (15), implies the first part of Lemma 19. The second
part of Lemma 19 follows from the fact that F°(y, y', \t\) = y and F°,(y, y', \t\) =
y'. Notice that functions F°, F® and F°, depend on the formula A0, since they
are defined using ry and ry, which are obtained either from Herbrand's theorem
or by direct definition using formula A0.

If we set Ai(z,y,y') = A'0(z, F°(y,y',2), F$(y,y',z)) then it is easy to check
that the above implies:

PV~ h A^z^y') D A,{z + l,y,y'); (16)

A0(x) D A0(x + 1), PV~ h A1(0,yiy'); (17)

PV" I- Axdtl.O,*) D (Ao(0) D A>(0)- (18)

Note that in (17), we write Ao(x) D Ao(x +1) to the right of the turnstile, instead
of (Vx)(Ao(x) D AQ(X + 1)) since we are using equational theories.

Iterating the above procedure twice more, we can form formulas A^w, z,z')
and Ai(w, z, z') defined as follows: (recall that we are suppressing in our notation
all the variables irrelevant for the construction)

A[ = ((z<\t\)A(z'<z)A(z<z' + 2l\])AA1(z')DA1(z))

A2 = A'x{w,Fl{z,z',w),Fl
z,{z,z',w))

Similarly, we define formula A^s, tu, w')

(w < \\t\\) A (N/ <W)A(W<W' + 2f|W||) A A2(z') D A2(z),

and finally formula A3(u, w;, w1) is

A'2{v,Fl{w,w',v),Fl,{w,w',v)),

where F}(z,z',w), F},(z,z',w)) and Fl(w,w',v), F*,(w,w',v)) are defined in
the analogous way for A[ and A'2 respectively as Fy(y,y',z), Fy,(y,y',z)) were
defined for A'o. It is easy to see that for all i < 3, and u,- = \t\, \\t\\ or |||t|||
respectively, PV~ proves

(ui < u) A Ai(u, x, x') D Ai(ui, x, x') (19)

(u < u') A (u' < u,-) A A,-(u', i, x') D A,(u, x, x').
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So, with proofs similar to those before, we have

PV~ \~ A2(w, z, z') D A2(w + 1 , 2 , z') (20)

Ax{x,y,y') D A^x + l,y,y% PV~ h A2(0,z,z') (21)

P V " h A2(||*||,0,|*|) D (A^y,^) D A1(|*|,y,y')) (22)

P V " h A3(s, u>, w') D A3(s + 1, w, w') (23)

A2(ar, z, z') D A2(x + 1, z, z% PV~ h A3(0, u;, u/) (24)

PK" h i4a(|||*|||,0, ||*||) D (A2(0,w,w') D A2(| |*| | ,w,u0). (25)

From (17) and (22) we get

A0(x) D A0{x + 1), PV~ h A2(||t||, 0, |i|) D A!(|*|, y, y') (26)

Similarly (16) and (21) implies

PV~[-A2(0,z,z'), (27)

which together with (25) implies that

PV-l-AsdlWH.O, ||*||) D A2(||*||,», w'). (28)

Instantiating (28) with w = 0 and w' = \t\ and using (26) we get that

A0(x) D A0(x + l),PV- \~ A3(|||*|||,0, ||*||) D Ardtly^'). (29)

Instantiating (29) with y = 0 and yf = t and using (19) and (18), we get a proof
of the following lemma.

Lemma 20

A0(x) D A0(x + 1), PV h (|||t||| < u) A A3(u, 0, ||<||) D (Ao(0) D A0(t)).

Also, (20) and (24) imply
PV~ \- A3(0,w,w'); (30)

so, by instantiating (30) and (23) with w = 0 and w' = \\t\\, we get a proof of the
following lemma.

Lemma 21

hA3(0,0, ||*||) A (A3(5,0, ||<||) DA3(s +l ,0, | |* | | ) ) (31)
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The last two lemmas summarize all the properties of the formulas AQ and A3
needed for our results for equational theories. Formulas A\ and A2 are only
auxiliary formulas needed to define and prove the properties of the formula A3
and its relationship to the starting formula AQ .

Definition: A sequent F — > A with all free variables among a0 , . . . , a^-i has
numerically restricted variables if for every free variable aJ5 j< k — 1 occurring
in a formula in F there exists in F a formula of the form \aj\ < sqnj(2) for some
natural number rij.

Clearly, any sequent of closed formulas is a sequent with numerically restricted
variables; furthermore, any sequent can be made numerically restricted by
introducing new formulas with weakening inferences. We are now ready to prove
the main result of this section, i.e. that PV \f Con(PV~). Our proof is based on
the following lemma.

Lemma 22 There is a polynomial time transformation f such that, PV can prove
that for every proof P(a0,..., a^_i) in PV of a sequent F — > A with numerically
restricted variables, f(p) is a PV~ proof of the same sequent.

Proof: We shall prove, for an appropriate polynomial p, that if P is a PV' -proof
of a sequent with numerically restricted variables, then there is a PV~ -proof P*
of the same endsequent with |P*| < p( |P|) . Our argument will be formalizable
in PV and this automatically shows P* is polynomial time constructible from P.
We proceed by induction on the height of the proof P, considering various cases
depending on the final inference of P. The only non-trivial cases are when
the last inference is either a substitution rule or an induction rule; thus, let Pi
be the immediate subderivation of P and S the last sequent of P. Clearly

If the last inference is a substitution rule, then we may assume without loss of
generality that it is of the form

where F contains formulas of the form \aj\ < sqn'(2), for all j < k and must not
contain 6. As before, we can prove (with a short proof) in PV~ that

A ( h i < c) A (2 < c) D \t(a)\ < sqW(c). (32)
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Let m = max{n0 , . . . ,n^_i} , and s = l(t) + m. Then 5 < l(S). Substituting c
by sqm(2) in 32, we can obtain a short proof of Aj<k(\aj\ < sqm(2))—>\t(a) <
sqs(2), and then, since nt- < m for i < fc, also a proof of

|ao| <«g-(2) l...>|a*_1| <sqn*->(2)->\t(a)\ < sq<(2). (33)

By applying a weakening inference to the proof Pi , we obtain a proof Pf of the
numerically restricted sequent

So, by the induction hypothesis, there is a proof in PV~ of length p(|/\*|) °f the
same sequent. Using the substitution rule, we get a PV~ proof of

Finally, applying the cut rule to this and to (33), we get a PV" proof with the
same endsequent as the original proof P.

Assume now that the last inference in P was an application of the induction
rule which, without loss of generality, is of the form

I\A(0)—>A(t(a))

and let Px , S, m and s be as in the previous case. By using weakening inferences,
we get a proof of

r , \b\ < sq°(2),b< <(o), A(6)—>A(6+ 1).

By the induction hypothesis there is a PV~ proof i\* of the same endsequent.
As in the case of the first order theories, we can combine this proof with the proof
of (33), to get a PV~ proof of

T,b<t(a),A(b)—>A(b+l);

adding a few propositional inferences and applying basic properties of < , we can
transform this proof into a PV~ proof of

T, (b < t(a)) D A(b)^(b + 1 < t(a)) D A(b + 1)
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Let A0(b) be the formula (b < t(a)) D A(b). Then, by Lemma 20, there exists a
PV~ proof of

T, ; | | / | ] | <i,A3(m,0, \t\\), Ao(0)-^Ao(t(a)).

It is easy to see that there is a short proof that Ao(t(a)) is equivalent in PV~ to
(a)), while -^Ao(0) is equivalent to ̂ A(0). Thus we get a short proof of

). (34)

Since m equals the maximum of no , . . . , rik-i, Corollary 17 implies that

h |oo| < sqno(2),...,\ak-l\ < *«nfc-1(2)—>|||*(3)||| < l{&+ \\sqm(2)\\-

Since PV~ proves ||s9m(2)|| = m + ||2|| = m + 2 with a proof of length quadratic
in m (and consequently quadratic in s), it follows that there is a short PV~ proof
of

|oo| < sqno(2),...,\ak-1\ < sqn^(2)-^\\\t(a)\\\ < s±2.

Combining these two proofs we get a proof of

T,A3(s±2,0,\\t\\),A(0)—>A(t(a)). (35)

Using Lemma21 we have PV~ h A3(0,0, \\t\\) and

PV-hA3(b,0,\\t\\)DA3(b+l,0,\\t\\).

Instantiating the above formula with 6 = 0, . . . ,3 + 2, and applying applying cuts
(3 + 2)- many times, we get

- I - A 3 ( A £ , 0,11*11). ( 36 )

Combining (35) and (36), we get

T,A(0)->A(t(a)). (37)

From our estimates it is clear that the entire proof is of length polynomial in the
length of the original proof P and has the same endsequent.

This finishes the proof of Lemma 22. •
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Theorem 23 PV \f Con{PV)

Proof: Clearly, any proof of 0 = 1 would be a proof of a numerically restricted
sequent. Thus, by Lemma 22

PV h Prfpvip/0 = V) D PrfpV-(f(pV0 = H-

In other words, PV h Con(PV) D Con(PV). Thus, since PV \f Con(PV)
(see [5]), we get PV \f Con(PV~). •

Concluding remark. Our results are an effort towards answering the
question of whether 52 proves the consistency of the equational theory S£". This
question is clearly relevant for the search of sentences which would show that the
hierarchy of theories S% *s proper without any complexity assumptions.
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