
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Paper Machines

by

Daniele Mundici and Wilfried Sieg

February 1994

Report CMU-PHIL-48

Philosophy
Methodology
Logic

Pittsburgh, Pennsylvania 15213-3890

Paper Machines*
Daniele Mundici and Wilfried Sieg

* An expanded version of this paper, Mathematics studies machines, is to appear (in Italian) in:
Le Scienze della Mente. C. Mangione (ed.), a volume of the encyclopedia Le Scienze e le
Tecnologie. ieri oggi e domani. Grandi Opere, Milan, Italy. -- P. Odifreddi read that paper very
carefully; we profited from his suggestions also for the present essay.

University Libraries
Carnegie Mellon University
Pittsburgh PA 15213-3890

PROLOGUE. Machines were introduced as calculating devices to
simulate operations carried out by human computors following fixed
algorithms. This is true for the early mechanical calculators
devised by Pascal and Leibniz, for the analytical engines built by
Babbage, and for the theoretical machines introduced by Turing. The
distinguishing feature of the latter is their universality: They are
claimed to be able to capture any algorithm whatsoever and, con-
versely, any procedure they can carry out is evidently algorithmic.
The study of such paper machines (by mathematical means) is the
topic of our essay; section zero provides necessary logical back-
ground.

In section one, Steps (towards Turing's analysis), we examine
the analyses of effective calculability given in the thirties. We
argue that Godel, Church & Kleene, and Hilbert & Bernays focused on
one central informal notion, namely the stepwise calculation by a
human computor in a symbolic calculus. In each case a serious
stumbling-block to a convincing analysis emerged: either only very
specific, obviously mechanical steps were allowed or the restricted
nature of steps in computations was characterized by recourse to
(primitive) recursiveness. Turing overcame this critical difficulty
by formulating axiomatic conditions for a computor and by reducing
stepwise calculations (carried out by a computor that satisfies the
conditions) to computations (carried out by a machine that can be
described mathematically in a most convenient way).

In section two, Steps (towards the mathematical theory), we
describe results that are central to recursion theory and that
reinforce the conceptual analysis given in section one. The idea of
stepwise calculation is reflected directly in Kleene's Normal Form
Theorem which implies, with hardly any additional work, the
existence of a universal machine. Then we discuss the Halting
Problem and a concept of effective reducibility: by reducing the
Halting Problem to the decision problem Turing established the
unsolvability of the latter. Turing's computability notion allowed
Godel to formulate the incompleteness theorems for all sufficiently
strong "formal" theories, because that notion captured, in Godel's
judgement, the informal concept of calculability exactly.

In section three, Physical limits, we pursue the analysis of
computation steps in a quite different way. The axiomatic conditions
for computors were motivated by limitations of the human sensory
apparatus, but Turing saw their ultimate justification as given by

limitations of human memory. Physics provides grounds for such
memory limitations; we argue also that there are physical reasons,
why steps cannot be accelerated arbitrarily and why they cannot be
made arbitrarily complex. A different sense of the mathematical
study of machines emerges, namely, the formulation of principles
governing the operations of physically realizable machines.

0 LOGICAL BACKGROUND. The central issues can be traced back
to Greek mathematics and philosophy, as they concern the axiomatic
presentation of geometry (culminating in Euclid's Elements) and the
formalization of logical reasoning (by Aristotle and, for sentential
logic, by the Stoics). But only Frege provided in his Begriffsschrift
an expressive formal language and a logical calculus that allowed
him to realize the earlier intentions with respect to mathematics.
He required that all assumptions of a proof be explicitly formulated
in the language and that each step in a proof be taken in accord with
one of the antecedently specified rules of the calculus. With this
sharpening of the axiomatic method Frege analyzed the "epistemolo-
gical nature" of theorems. That could be done, because the rules do
not require contentual knowledge; indeed, Frege claimed that in his
system "inference is conducted like a calculation".

0.1 DECISION PROBLEM. More than half a century later Godel
referred back to Frege when he described in his 1933 "the
outstanding feature of the rules of inference" in a formal
mathematical system. The rules, Godel said, "refer only to the
outward structure of the formulas, not to their meaning, so that
they can be applied by someone who knew nothing about
mathematics, or by a machine." Frege had not viewed the possibility
of mechanically drawing inferences as one of the logically
significant achievements of his Begriffsschrift. Hilbert, however,
grasped the potential of this aspect, radicalized it, and exploited it
in his formulation and pursuit of the consistency problem. His
research program started in a rough and tentative way around 1900
and was pursued with great intensity in the twenties. The strict
formalization of mathematics seemed to open up new ways of
addressing foundational issues and of solving mathematical
problems - through calculation.

The most famous problem among these is the Entscheidungs-
problem or decision problem. It is closely related to the consistency
problem and was pursued, for example by Herbrand, on account of
this connection. Its classical formulation is found in Hilbert and

Ackermann's 1928 book Grundzuge der Theoretischen Logik: "The
Entscheidungsproblem is solved if one knows a procedure that
permits the decision concerning the validity, respectively,
satisfiability of a given logical expression by a finite number of
operations." (The problem had been formulated by Hilbert already in
lectures given in Gottingen during the winter term 1917/18.)

Hilbert and Ackermann emphasized the fundamental importance
of the decision problem, and researchers in the Hilbert school real-
ized that a positive solution would allow the decision concerning the
provability of any mathematical statement (within finitely axioma-
tized theories), von Neumann 1927 took that as sufficient reason to
expect a negative solution, but claimed that there was no clue as to
how an actual proof of undecidability would go. To support this
claim he pointed to the deep conceptual problem. There were proofs
for the unsolvability of well-known mathematical problems;
however, all such impossibility results were given relative to a
determinate class of admissible means (e.g., doubling the cube by
using only ruler and compass). And von Neumann saw exactly here
the problem; any negative solution to the Entscheidungsproblem
would require a mathematically precise answer to the question:
"What are mechanical procedures?"

Mechanical procedures for natural numbers were familiar from
mathematical practice: The values of all "primitive recursive"
functions can be calculated mechanically. And most functions from
elementary number theory are in this class, as was established
already by Skolem 1923] for example, addition, multiplication,
exponentiation, the factorial function n!, the sequence of prime
numbers, and the sequence of Fibonacci numbers are all primitive
recursive. However, Ackermann had discovered in the mid-twenties
a non-primitive recursive function whose values could be
determined by a mechanical procedure.1

0.2 INCOMPLETENESS. In his 1931 paper Godel used primitive
recursive functions to describe, after an effective number theoretic
coding, the syntax of particular "formal" theories. Since Godel
strove to use a general concept of formality through the underlying
concept of calculability, there was no reason to focus attention on
theories whose syntax could be presented primitive recursively. And

Schemes for non-primitive recursive functions whose values are calculable were investigated
systematically by Peter in the mid-thirties; see her book Rekursive Funktionen.

in the 1934 Princeton Lectures Godel tried very hard to make his
incompleteness results less dependent on particular formalisms.
But he did not succeed in resolving the main conceptual issue to his
own satisfaction, i.e., to give a general notion of "formal theory". He
viewed the primitive recursive definability of formulas and proofs
as a precise condition which in practice suffices to describe formal
systems, but he was searching for a condition that would suffice in
principle. In what direction could one search? Godel considered it
as an "important property" that the value of a primitive recursive
function can be computed by a "finite procedure", for any argument;
he added in a footnote:

The converse seems to be true if, besides recursions according to the scheme (2) [of
primitive recursion], recursions of other forms ... are admitted. This cannot be
proved, since the notion of finite computation is not defined, but it can serve as a
heuristic principle.

In the last section of his Princeton lectures Godel defined "general
recursive functions". They are obtained as unique solutions of func-
tional equations expressing more than primitive recursions, and -
that was crucial for Godel - their values are computed in a calculus
with particular mechanical rules.

0.3 THESIS. The footnote we quoted in the last paragraph may seem
to express a form of Church's Thesis; but Godel emphasized in a
1965 letter to Martin Davis that no formulation of that thesis was
intended: "The conjecture stated there only refers to the equivalence
of 'finite (computation) procedure1 and 'recursive procedure1.
However, I was, at the time of these lectures, not at all convinced
that my concept of recursion comprises all possible recursions; ... "
At the time, Godel was equally unconvinced by Church's proposal to
identify effective calculability with A,-definability. Church recalled
in a letter to Kleene (dated November 29, 1935) a conversation with
Godel in early 1934, when Godel called his proposal "thoroughly un-
satisfactory". Nevertheless, Church announced his thesis in a talk at
the meeting of the American Mathematical Society on April 19,
1935; he formulated it in terms of recursiveness, not A,-definability.
In his subsequent 1936 paper An unsolvable problem of elementary
number theory Church wrote:

The purpose of the present paper is to propose a definition of effective calculability
which is thought to correspond satisfactorily to the somewhat vague intuitive notion in
terms of which problems of this class are often stated, and to show, by means of an
example, that not every problem of this class is solvable.

Church proposed again to identify effective calculability with
recursiveness. The fact that A,-definability was known to be an
equivalent concept simply added for Church "... to the strength of the
reasons adduced below for believing that they [these precise con-
cepts] constitute as general a characterization of this notion [i.e.,
effective calculability] as is consistent with the usual intuitive un-
derstanding of it.ff These reasons will be analyzed in section 1.0.

1 STEPS (towards Turing's Thesis). According to the conven-
tional view, the work of Godel, Church, Turing, and others (e.g.,
Kleene, Post, Hilbert, Bernays) provided mathematical definitions of
mechanical procedures. The fact that these definitions turned out to
be equivalent, in the sense of characterizing the same class of num-
ber theoretic functions as computable, has been taken to support
Church's Thesis. The question for us is: What are the grounds for ac-
cepting the various notions as constituting a mathematical descrip-
tion of mechanical procedures? The considerations in this section
are based on [Sieg 1994], as are those of the preceding section; good
complementary discussions are found in [Gandy 1988], [Tamburrini],
and [Odifreddi, part I, section 8].

1.0 STEP-BY-STEP. In his 1936 Church pointed out that the notion
calculability in a logic suggests itself as a way to characterize
effective calculability of number theoretic functions, and he argued
that it does not lead to a definition more general than recursiveness.
Let us indicate the argument: Church considered a logic L whose
language contains the equality symbol =, a symbol { }() for the
application of a unary function symbol to its argument, and numerals
for the positive integers. He called unary functions F effectively
calculable if and only if there is an expression f in L such that
{f}(M)=N is a theorem of L exactly when F(m)=n; M and N are
expressions of L that stand for the positive integers m and n.
Church claimed that such F are recursive, when L satisfies
conditions that guarantee essentially the recursive enumerability of
Lfs theorem predicate; the claim follows by an unbounded search.
The crucial condition in Church's list requires the steps in
derivations of equations to be, well, recursive! Here we hit a
serious stumbling-block for Church's analysis, since an appeal to the
thesis when arguing for it is logically circular. And yet, Church's
argument achieves something: The general concept of calculability is
explicated as derivability in a logic, and the step-condition is used
to sharpen the idea that we operate by effective rules in such a

formalism. We suggest that the claim "Steps of any effective
procedure are recursive!" be called Church's Central Thesis.

ChurcIVs concept calculability in a logic is extremely natural
and fruitful; it is directly related to decidability (Entscheidungs-
definitheit) for relations and classes in Godel's 1931 and to repre-
sentability in his Princeton lectures; Godel defined the very notion
in 1936 and emphasized its type-absoluteness. Finally, in 1946
Godel took absoluteness in a general sense as the main reason for
the special importance of recursiveness: Here we have the first
interesting epistemological notion whose definition is not dependent
on the chosen formalism. But the stumbling-block Church had to
face shows up also here, as absoluteness is achieved only relative to
formal systems.

The definition of absoluteness Godel gave in 1946 is explicit
already in Hilbert and Bernays1 Grundlagen der Mathematik II. They
called a number-theoretic function reckonable according to rules
(regelrecht auswertbar), if it is calculable in some deductive for-
malism, and formulated three recursiveness conditions for such
formalisms. Then they proved: (i) a function that is calculable in
some deductive formalism satisfying the recursiveness conditions
can be computed in a very restricted number theoretic formalism,
and (ii) the functions calculable in the latter formalism are exactly
the recursive functions.

Hilbert and Bernays1 analysis is a most satisfactory capping of
the development from Entscheidungsdefinitheit to an "absolute" no-
tion of computability. But their analysis does not overcome the
major stumbling-block; rather, it puts the stumbling-block in plain
view through the recursiveness conditions that deductive
formalisms must satisfy. The crucial condition requires the proof
predicate for such formalisms to be primitive recursive! We want to
show now, how Turing got around this fundamental difficulty and
start out by describing Turing machines; in the presentation of these
machines we follow Davis 1958, not Turing's original paper.

1.1 MACHINES & WORKERS. A Turing machine consists of a fi-
nite, but potentially infinite tape; the tape is divided into squares,
and each square may carry a symbol from a finite alphabet, say, just
the two-letter alphabet consisting of 0 and 1. The machine is able
to scan one square at a time and perform, depending on the content
of the observed square and its own internal state, one of four op-

erations: print 0, print 1, or shift attention to one of the two imme-
diately adjacent squares. The operation of the machine is given by a
finite list of commands in the form of quadruples qjS|<Ciqm that ex-
press: if the machine is in internal state q\ and finds symbol Sk on
the square it is scanning, then it is to carry out operation Q and
change its state to qm. The deterministic character of the machine
operation is guaranteed by the requirement that a program must not
contain two different quadruples with the same first two compo-
nents.

In 1936, the very year in which Turing's paper appeared, Post
published a strikingly similar computation model, where a worker
operates in a symbol space consisting of "a two way infinite se-
quence of spaces or boxes ... fi.2 The worker can be in and operate in
just one box at a time; the boxes admit only two conditions: they can
be empty or unmarked, or they can be marked by a single sign, say a
vertical stroke. The worker can perform a number of primitive acts',
namely, make a vertical stroke [V], erase a vertical stroke [E], move
to the box immediately to the right [Mr] or to the left [M|] (of the box
he is in), and determine whether the box he is in is marked or not [D].
In carrying out a particular combinatory process the worker begins
in a special box and then follows directions from a finite, numbered
sequence of instructions. The i-th direction, i between 1 and n, is in
one of the following forms: (i) carry out act V, E, Mr, or M| and then
follow direction jj, (ii) carry out act D and then, depending on
whether the answer is positive or negative, follow direction jj1 or
jj". (Post has a special stop instruction, but that can be replaced by
the convention to halt the process, when the number of the next di-
rection is greater than n.)

Are there intrinsic reasons for choosing Formulation 1, except
for its simplicity and Post's expectation that it will turn out to be
equivalent to recursiveness? An answer to this question is not
clear from Post's paper, at the very end of which he wrote:

The writer expects the present formulation to turn out to be equivalent to recursiveness
in the sense of the Godel-Church development. Its purpose, however, is not only to
present a system of a certain logical potency but also, in its restricted field, of psycho-
logical fidelity. In the latter sense wider and wider formulations are contemplated. On
the other hand, our aim will be to show that all such are logically reducible to formu-
lation 1. We offer this conclusion at the present moment as a working hypothesis. And
to our mind such is Church's identification of effective calculability with recursiveness.

2 Post remarks that the infinite sequence of boxes is ordinally similar to the series of integers
and can be replaced by a potentially infinite one, expanding the finite sequence as necessary.

Investigating wider and wider formulations and reducing them
to Formulation 1 would change for Post this "hypothesis not so much
to a definition or to an axiom but to a natural law" . It is methodolo-
gically remarkable that Turing proceeded in exactly the opposite
way when trying to justify that all computable numbers are machine
computable or, in our way of speaking, that all effectively
calculable functions are Turing computable: He did not try to extend
a narrow notion reducibly and obtain in this way quasi-empirical
support, but analyzed the intended broad concept and reduced it to a
narrow one - once and for all.

1.2 CONCEPTUAL ANALYSIS. Turing's On computable numbers
opens with a description of what is ostensibly its subject, namely,
"real numbers whose expressions as a decimal are calculable by
finite means". Turing is quick to point out that the problem of
explicating "calculable by finite means" is the same when
considering, e.g., computable functions of an integral variable. Thus
it suffices to address the question: "What does it mean for a real
number to be calculable by finite means?" In §9 he argues that the
operations of his machines "include all those which are used in the
computation of a number". But he does not try to establish the claim
directly; he rather attempts to answer what he views as "the real
question at issue": "What are the possible processes which can be
carried out [by a computor] in computing a number?"

Turing imagines a computor writing symbols on paper that is
divided into squares "like a child's arithmetic book". As the two-di-
mensional character of this computing space is taken not to be es-
sential, Turing takes a one-dimensional tape divided into squares as
the basic computing space and formulates one important restriction.
That restriction is motivated by limits of our sensory apparatus to
distinguish at one glance between symbolic configurations of suffi-
cient complexity. It states that only finitely many distinct symbols
can be written on a square. Turing suggests as a reason that "If we
were to allow an infinity of symbols, then there would be symbols
differing to an arbitrarily small extent", and we would not be able to
distinguish at one glance between them. A second (and clearly re-
lated) way of arguing the point uses a finite number of symbols and
strings of such symbols. E.g., Arabic numerals like 9979 or 9989 are
seen by us at one glance to be different; however, it is not possible
for us to determine immediately that 9889995496789998769 is
different from 98899954967899998769.

Now we turn to the question: "What determines the steps of
the computor, and what kind of elementary operations can he carry
out?11 The behavior is uniquely determined at any moment by two
factors: (i) the symbols or symbolic configuration he observes, and
(ii) his "internal state". This uniqueness requirement may be called
the determinacy condition (D); it guarantees that computations
are deterministic. Internal states or, as Turing also says, "states of
mind" are introduced to have the computorfs behavior depend possi-
bly on earlier observations and, thus, to reflect his experience.
Since Turing wanted to isolate operations of the computor that are
"so elementary that it is not easy to imagine them further divided",
it is crucial that symbolic configurations relevant for fixing the
circumstances for the actions of a computor are immediately rec-
ognizable. So we are led to postulate that a computor has to satisfy
two finiteness conditions:

(F.1) there is a fixed finite number of symbolic configurations a
computor can immediately recognize;

(F.2)3 there is a fixed finite number of internal states that need be
taken into account

For a given computor there are consequently finitely many different
combinations of symbolic configurations and internal states. Since
his behavior is according to (D) uniquely determined by such
combinations and associated operations, the computor can carry out
at most finitely many different operations. These operations are
restricted as follows:

(0.1) only elements of observed symbolic configurations can be
changed;

(0.2) the distribution of observed squares can be changed, but each
of the new observed squares must be within a bounded distance L of
an immediately previously observed square.

Turing emphasized that "the new observed squares must be
immediately recognisable by the computer"; that means the distri-
butions of the new observed squares arising from changes according
to (0.2) must be among the finitely many ones of (F.1). Clearly, the

3 Godel objected in 1972 to this finiteness condition for a notion of human calculability that
might properly extend mechanical calculability; for a computor or for a paper machine it is
quite unobjectionable.

same must hold for the symbolic configurations resulting from
changes according to (0.1). Since some steps may involve a change
of internal state, Turing concluded that the most general single
operation is a change of either symbolic configuration and, possibly,
internal state or observed square and, possibly, internal state. With
this restrictive analysis of the steps of a computor, the proposition
that his computations can be carried out by a Turing machine is
established rather easily.4 Thus we have Turing's Theorem: Any
number theoretic function F that can be computed by a computor
satisfying the determinacy condition (D) and the conditions (F) and
(O) can be computed by a Turing machine.

1.3 TURING'S THESIS. Turingfs analysis and his theorem can be
generalized: (D) is not needed to guarantee the Turing computability
of F in the theorem. Computors that do not satisfy (D) can be mim-
icked by non-deterministic Turing machines and thus, exploiting the
reducibility of non-deterministic to deterministic machines, by de-
terministic Turing machines. That allows us to connect Turingfs
considerations with those of Church discussed in § 1.0: Consider an
effectively calculable function F and a computor who calculates the
value of F in a logic L; by Turing's generalized theorem F is Turing
computable and thus recursive. This argument for Ps recursiveness
does no longer appeal to Church's Central Thesis; rather, such an
appeal is replaced by the assumption that the calculation in the
logic is done by a computor satisfying the conditions (F) and (O). If
that assumption is to be discharged, then a substantive thesis is
needed again. And it is this thesis we call Turing's Central
Thesis: a mechanical computor must satisfy the finiteness condi-
tions (F), and the elementary operations he can carry out must be
restricted as conditions (O) require.

Church wrote in a 1937 review of Turingfs paper when compar-
ing Turing computability, recursiveness, and ^-definability: "Of
these, the first has the advantage of making the identification with
effectiveness in the ordinary (not explicitly defined) sense evident
immediately ..." Turing's work provided for Godel "a precise and un-
questionably adequate definition of the general concept of formal
system". In the historical and systematic context Turing found him-

4 Turing constructed machines that mimic the work of computors directly and observed: "The
machines just described do not differ very essentially from computing machines as defined in §
2, and corresponding to any machine of this type a computing machine can be constructed to
compute the same sequence, that is to say the sequence computed by the computer [in our
terminology: computor]." But compare our discussion in § 3.1.

self, he asked exactly the right question: "What are the possible pro-
cesses a human computor can carry out in computing a number?" The
general problematic required an analysis of the idealized capabili-
ties of a mechanical computor. Let us emphasize that the separation
of conceptual analysis (leading to the axiomatic conditions) and
rigorous proof (establishing Turing's Theorem) is essential for
clarifying on what the correctness of his general thesis rests;
namely, on recognizing that the axiomatic conditions are true for
computors who proceed mechanically. We have to remember that
clearly when engaging in methodological discussions concerning
artificial intelligence and cognitive science. Even Godel got it
wrong, when he claimed that Turing's argument in the 1936 paper
was intended to show that "mental processes cannot go beyond
mechanical procedures".

2 STEPS (towards the basic theory). We focus on results that
are central for recursion theory and computer science; these results
reinforce our conceptual analysis and are frequently appealed to in
support of Church's Thesis. If we take for granted a representation
of natural numbers in the two-letter alphabet of Turing machines
and a straightforward definition of when to call a number-theoretic
function (Turing) computable, we can recast our earlier question:
Why does this notion provide "an unquestionably adequate definition
of the general concept of formal system"? Is it at all plausible that
every effectively calculable function is Turing computable?

2.0 NORMAL FORM. It seems that a naive inspection of the very
restricted notion of Turing computability should lead to "No!" as a
tentative answer to the second and, thus, also to the first question.
However, a systematic development of Turing computability con-
vinces one quickly that it is a very powerful notion. One goes almost
immediately beyond the examination of particular functions and the
writing of programs for machines computing them; instead, one con-
siders machines that correspond to operations on functions and that
yield, when applied to computable functions, ones that are also com-
putable. Three such functional operations are crucial, namely, com-
position, primitive recursion, and minimization. The latter opera-
tion allows an unbounded search for a solution to equations of the
form g(y,xi, ... ,xn)=0: given a computable function g such that for
every x-|, ... ,xn there is a y with g(y,xi, ... ,xn)=0 one can define (by
minimization) a new computable function f (x i , ... ,xn) whose value
for the indicated arguments is the smallest y with g(y,xi, ... , xn)=0.
This is usually indicated by f(x-|, ... ,xn)=^iy.g(y,xi, ... ,xn)=0.

Kleene established in 1936 the equivalence between Godel's
recursiveness (defined through an equational calculus) and " | i -
recursiveness". The latter notion is characterized by an inductive
definition that is obtained from that for the primitive recursive
functions by adding a single clause for minimization as described
above. This characterization of the recursive functions together
with the closure of computable functions under the above functional
operations and the computability of a few simple initial functions
implies that all recursive functions are computable.

Conversely, the idea underlying Church's argument for the
recursiveness of functions "calculable in a logic" (and also Kleenefs
argument for the ^-recursiveness of functions "calculable in Godel's
equational calculus") can be used to show that every total
computable function is actually recursive! Gandy called Church's
argument the "step-by-step argument": if the steps in "logical
calculations" are recursive, then the functions being calculated are
recursive. But in what sense can steps be "recursive", as they are
taken in a logical calculus, whereas recursiveness is a property of
number theoretic functions and predicates? It was Godel who had
shown in his 1931 paper, how to "code", "arithmetize", or - as we
often put it in recognition of the fundamental character of his
technique - "Godel-number" the finite syntactic objects of a logical
calculus. Given the arithmetization of syntactic objects, it is
tedious, but not difficult to see that the syntactic notions (like
formula or derivation) for "standard" formal theories are indeed
(primitive) recursive. Computations of Turing machines can be
described in exactly the same way to yield ultimately that all Turing
computable function are recursive.

This result was generalized by Kleene, who associated partial
recursive functions with computations; i.e., the domain of a function
is now taken to coincide with the set of arguments for which the
corresponding Turing machine computation terminates. The essence
of the earlier observations is captured for partial recursive
functions by Kleene's Normal Form Theorem. In the formulation (for
a one-place function f to keep matters simple, but without loss of
generality) one uses a particular three-place predicate T and a one-
place function U. The T-predicate applied to numbers e, x, y
expresses that y is the code of a computation of a Turing machine
with code e for the numerical argument x; U extracts from the
computation, in case it terminates, the numerical result. Kleene's

Theorem can now be stated as follows: For every partial recursive
function f there is a natural number e, such that for all x in the
domain of f, f(x) = U(|iy.T(e,x,y)). (The domains of f and the function
A,x.|iy.T(e,x,y) are co-extensional.)

2.1 UNCOMPUTABLE FUNCTIONS. Kleenex Theorem exploits the
uniform description of Turing machine computations and has most
important consequences. Consider, first of all, the two-place
function g(e,x)=U(|iy.T(e,x,y)); g is partial recursive and provides an
enumeration of all one-place partial recursive functions (Kleene's
Enumeration Theorem). Together with the fact that the partial re-
cursive functions are exactly the Turing computable ones this theo-
rem guarantees the existence of a universal Turing machine. Such a
machine was explicitly constructed by Turing, and the idea underly-
ing his construction was fundamental for the development of the ar-
chitecture of digital computers through von Neumann in 1958. How
is the existence established by using Kleene's mathematical work?
Note that by the above observations the two-place function g can be
computed by a Turing machine M[g]. M[g] interprets its first argu-
ment as the code e of a Turing machine M[f] computing the one-place
function f; its second argument is taken by M[g] as the argument for
f or rather M[f]. Then M[g] proceeds to compute f(x) by following the
program for M[f]; thus, M[g] is able to duplicate the computation of
ANY Turing machine. - The existence of a universal machine is
established here without the elaborate construction of Turing's;
clearly, if one desires to do so, one can extract from the above
argument a program for a universal machine.

For our purposes some "negative" results are most important,
as they were for the pioneers of the subject. In contrast to Kleene's
Enumeration Theorem for partial recursive functions, we can show
by a classical diagonal argument5 that the one-place total recursive
functions cannot be enumerated by a total two-place recursive
function. The argument proceeds as follows: Assume, to obtain a
contradiction, that there is a total recursive function h enumerating
all one-place total recursive functions f; i.e., for every function f
there is a natural number e such that h(e,x)=f(x) for all x. Clearly,
as h is (assumed to be) recursive the one-place function f* defined
by
(1) f*(x) = h(x,x)+1

5 The diagonal method of proof goes back to Cantor who used it first to show that the set of
real numbers is not enumerable.

is also recursive; thus, as h is an enumeration, we have for f* an e*
such that for all x :
(2) h(e*,x)=f*(x).
For x=e* we obtain from (2)
(3) h(e*,e*)=f*(e*);
and from (1)
(4) f * (e*) -h(e\e*)+1.

Obviously, (3) and (4) imply the contradiction h(e*,e*)=h(e*,e*)+1.
Thus we know that an enumeration function for the total recursive
functions cannot be recursive. And similarly, functions enumerating
Turing machines that compute total number theoretic functions can-
not be calculated by Turing machines.

2.2 UNDECIDABLE PROBLEMS. A modification of the above
argument (exploiting the existence of a universal machine) shows
that particular questions concerning Turing machines cannot be
answered by Turing machines. The most famous question is this:
Does the computation of machine M for input x terminate or halt?
This is the Halting Problem as formulated by Turing in 1936] it is
clearly a fundamental issue concerning computations. Turing used
the unsolvability of this particular problem to establish the
unsolvability of related machine problems, e.g. the Self-halting
Problem and the Printing Problem. For that purpose Turing made
implicit use of a notion of (effective) reducibility; a problem P,
identified with a set of natural numbers, is reducible to another
problem Q iff there is a recursive function f, such that for all x: P(x)
iff Q(f(x)). Thus, if we want to see that x is in P we compute f(x)
and test whether that number is in Q. In order to obtain his negative
answer to the decision problem Turing reduced (in a most elegant
way) the Halting Problem to the Decision Problem; thus, if the latter
problem were solvable, the former problem would be.

The self-halting problem K is the simplest in an infinite se-
quence of increasingly complex and clearly undecidable problems,
the so-called jumps. First of all notice that for a machine M with
code e the set K can be defined arithmetically by the statement
"there exists a y, such that T(e,e,y)lf. K is indeed complete for sets A
that are definable by formulas obtained from recursive ones by just
prefixing one existential quantifier; i.e. any such A is reducible to K.
These A can be given a different and very intuitive characterization:
A is either the empty set or the range of a recursive function. Under
this characterization the A's are naturally called "recursively enu-

merable", or simply r.e.. It is not difficult to show that the recur-
sive sets are exactly those that are r.e. and have an r.e. complement.
Post gave a different way of "generating" these sets by production
systems and thus opened a distinctive approach to recursion theory;
such an approach is very beautifully presented in Smullyan's book
1961. Now, coming back to more complex sets, to obtain the jump
hierarchy the concept of computation is relativized to sets of natu-
ral numbers whose membership relations are revealed by "oracles".
The jump K1 of K, for example, is defined as the self-halting prob-
lem, when an oracle for K is available. This hierarchy can be asso-
ciated to definability questions in the language of arithmetic: all
jumps can be defined by increasingly complex arithmetical formulas,
and all arithmetically definable sets are reducible to some jump.

2.3 INCOMPLETE THEORIES. The above considerations underly the
"arithmetic hierarchy" introduced by Kleene and Mostowski. But
there are sets of natural numbers that are not definable by
arithmetic formulas; a particular example is the set of Godel-
numbers of sentences of true arithmetic statements. If that set
were arithmetically definable, one could formulate arithmetically
the "liar sentence" that expresses its own falsity. This observation
of Godel and Tarski is the cornerstone for proving that any semanti-
cally sound formal theory of arithmetic (with symbols for addition
and multiplication) is incomplete: No matter which true statements
we choose as axioms and no matter which inferences leading from
true statements to true ones we select, there will be true state-
ments that are not provable in the theory. That is correct as long as
formality requirements are imposed on the theory, meaning - in
mathematical terms and using the identification of formality with
recursiveness - that the set of theorems is r.e.. (The theorem
predicate of such a theory is the first example of a predicate that is
r.e., but not recursive.)

This argument, under the explicit assumptions on the theory,
establishes the existence of a true, but formally undecidable,
sentence and reveals the purely recursion-theoretic character of the
first incompleteness theorem. Godel, in his 1931 paper, constructed
a particular unprovable statement for the particular theory PM
inspired by Russell and Whitehead's "Principia Mathematica", namely,
the self-referential statement G expressing that it itself is not
provable in PM. Recall that the latter theory was taken not only as a
fundamental, but indeed universal theory for all of mathematics.
Using an improvement of GodePs construction due to Rosser, one can

formulate a sentence R whose independence from PM is established
under the sole assumption of PM's syntactic consistency. In this
form the First Incompleteness Theorem is taken to refute an
underlying assumption of Hilbert's Program, namely that formal
theories like PM can capture "completely" mathematical practice.
The aim of establishing the consistency of formal theories by
restricted mathematical, so-called finitist, means was taken to be
unreachable on account of GodePs Second Incompleteness Theorem.
This theorem states that the proposition "PM is consistent", when
formulated in the language of PM, cannot be proved in PM. To reach a
definite verdict on the original version of Hilbert's Program, it has
only to be assumed that finitist mathematics can be formalized in
PM.6

Given the background for Turing's work on the decision problem
and Godel's work on incompleteness, it is quite clear that they
needed as broad a notion as possible. Turing's computability notion
is highly idealized, because it disregards limitations on two
resources, namely, space and time. The former is disregarded, as
the number of tape squares scanned during a computation is
unbounded; the latter is disregarded, as the number of computation
steps is not limited. If we insist that the number of steps be
bounded, we automatically insist on a bound for the number of tape
squares that can be used in a computation. Yet it seems only too
necessary to impose such bounds: Our lifespan is limited, and the
size of the physical universe is bounded. It is an open problem,
whether a mathematical concept can capture "feasible
computations". For an informed judgement, conceptual analysis has
to go hand in hand with experience derived from mathematical
development and computational practice. This is a central issue of
contemporary complexity theory.

INTERLUDE: from mathematics to physics. Godel's First Incom-
pleteness Theorem shows that most mathematically interesting
theories contain undecidable statements. In the prototypical case of
Peano arithmetic the existence of undecidable sentences was
regarded for many years as irrelevant to the working mathematician.
In 1977 Paris and Harrington exhibited an undecidable sentence in
Peano arithmetic that has direct significance, at least, for the

6 It is generally (and most plausibly) assumed that finitist mathematics can be formalized in
elementary number theory and, possibly, coincides with a weak fragment of number theory,
primitive recursive arithmetic.

mathematician working in Ramsey theory. Their sentence can be
promptly decided in Zermelo-Fraenkel set theory with the axiom of
choice (ZFC), i.e. the first-order theory most frequently adopted as
the official foundation for the whole edifice of mathematics.
However, ZFC is no less incomplete than Peano arithmetic: For
instance, as shown by Godel and Cohen, one cannot settle in ZFC
Cantor's problem, whether there is a set whose cardinality lies
strictly between the cardinality of the set of natural numbers and
that of the set of real numbers.7

Even the founders of set theory were not unanimous on the
problem, whether the evolution of their subject would follow that of
geometry after the discovery of the independence of the parallel
postulate. Consider the concluding remarks of Skolem's 1922 paper
Einige Bemerkungen zur axiomatischen Begrundung der Mengenlehre:

The most important result above is that set theoretic notions are relative. I had already
communicated it orally to F. Bernstein in Gottingen in the winter of 1915-16. There
are two reasons why I have not published anything about it until now: first, I have in the
meantime been occupied with other problems; second, I believed that it was so clear that
axiomatization in terms of sets was not a satisfactory ultimate foundation of mathematics
that mathematicians would, for the most part, not be very much concerned with it. But
in recent times I have seen to my surprise that so many mathematicians think that these
axioms of set theory provide the ideal foundation for mathematics; therefore it seemed to
me that the time had come to publish a critique.

This remark was preceded by the question: "What does it mean for a
set to exist if it can perhaps never be defined?" Skolem gave a most
interesting answer to it. "It seems clear that this existence can be
only a manner of speaking, which can lead only to purely formal
propositions - perhaps made up of very beautiful words - about
objects called sets. But most mathematicians want mathematics to
deal, ultimately, with performable computing operations ..." There
are related developments in mathematics and proof theory traceable
to Skolem and contemporaneous work of Weyl in Das Kontinuum,
exploring the formalization of the scientifically applicable parts of
set theoretic mathematics in weak formal theories. And these
theories are very much motivated by computational concerns; cf.
[Feferman].

It is possible that from a long process of natural selection
Euclidean-like set theoretic vertebrates, or even primates, will

7 For informative expositions see the relevant chapters in the Handbook of Mathematical Logic
edited by Barwise.

emerge. But, perhaps, the first-order treatment of sets parallels
the Hamiltonian treatment of the forced pendulum, where the
official a priori determinism is made ineffective by a teeming
microcosm of capricious details. If that were so, the incompleteness
of ZFC - in the framework of a complete logic - may be ascribed to
uncontrollable, uninteresting details in our set theoretic stipula-
tions/observations, just as unpredictability of a forced pendulum -
in the framework of deterministic Hamiltonian mechanics - is
caused by uncontrollable, uninteresting microscopic perturbations in
the preparation/measurement of the system. A forced pendulum is a
small sphere attached to the bottom end of a string; the sphere may
oscillate in any direction, while the top end of the string is forced
to oscillate along a horizontal line under the action of a crank shaft.
Assume that the forcing frequency is a little higher than the natural
frequency of the pendulum. Initially, the sphere will oscillate in
parallel to the forcing oscillations, but then a perpendicular compo-
nent of motion appears. Eventually, the motion becomes stationary
along a circle with the period of the rotation being equal to the fre-
quency of the forcing oscillation. But however precise we try to
make our knowledge of the initial conditions of the forced pendulum,
and notwithstanding the deterministic character of the Hamiltonian
theory describing the forced pendulum, we cannot predict, whether
it will eventually rotate clockwise or counterclockwise.

Unpredictability follows from the fact that a multitude of
infinitesimal perturbations in the initial conditions causes macro-
scopic bifurcations already in the short-term evolution of the sys-
tem. Bifurcation entails a sort of incompleteness of the underlying
deterministic theory, at least concerning the problem of inferring
from the initial conditions a precise truth value for the proposition
"The system shall eventually rotate clockwise". The best technology
can't help the Hamiltonian mountain to bring forth the appropriate
clockwise or counterclockwise mouse. The reader will recall that
Plato and Galileo had different views on the readability of the Book
of Nature: The former believed that the plethora of accidental per-
turbations affecting the physical world and our perception of it
would not allow any experimental physical theory at all. The latter
regarded the Book of Nature as written in terms of triangles, cir-
cles, and other geometric figures so that we can read it "provando e
riprovando" (by repeated experiment).

A typical reaction to incompleteness phenomena in mechanics
is to regard them as unphysical - just as undecidable sentences in

mathematics are sometimes regarded as not genuinely mathemati-
cal. This attitude is made explicit in quantum statistical mechanics
by the slogan "Nature does not have ideals". In other words, whenever
a physical system is described by an algebra A of operators, A
should have no nontrivial quotient structure. One of the effects of
[Mundici 1986] is that, for the algebras of operators describing the
thermodynamic limit process in quantum statistical mechanics, one
has a reasonable notion of axiomatic presentation of the system. It
may be the case that the axiomatization is essentially Godel
incomplete - in the sense that, although there is a recursive listing
of the axioms, there is no decidable extension. In this case the
system must have a very stubborn quotient structure, one that can
only be eliminated by destroying the effective presentability of the
system. As for Peano's axiomatization of arithmetic essential Godel
incompleteness entails the incompatibility of two desiderata,
namely:
(a) completeness of the information available within the formaliza-
tion, and
(b) effective computability of (the consequences of) this informa-
tion.
In this context it may be of interest to mention that the undecid-
ability of the halting problem has been used by da Costa and Doria to
show the undecidablity of problems in classical mechanics and the
incompleteness of suitable axiomatizations of the theory; see [Da
Costa-Doria, 1993] and references therein.

3 PHYSICAL LIMITS. We discussed limits of computations in the
logical sense first and were concerned with the Incompleteness
Theorems and the unsolvability of the Entscheidungsproblem. Now
we want to give "flesh" to the abstract machines and ask: What are
general physical constraints on computational devices? Recall that
Turing appealed in his analysis to the limitations of the sensory
apparatus of human computors; however, he claimed that the
justification for his (central) thesis lies ultimately "in the fact that
the human memory is necessarily limited". This remark is not
expanded upon at all, and we can only speculate as to Turing's
understanding of this "fact": Did he have in mind more than the
spatial limitations for "encoding" finite configurations (discussed
below)? If such limitations hold also for computing devices, are
there ways of getting around their effect, e.g. by speeding up
operations or by using more complex ones? We begin our con-
siderations with a computational problem concerning finite graphs.

3.0 ONE PHYSICAL STEP. Draw an edge between each pair of
distinct vertices of a hexagon. The resulting graph is known as the
6-clique and is denoted by K6. Now follow freely your inspiration
and color the 15 edges of K6 red or blue. Then, necessarily, there
will exist a monochromatic 3-clique, i.e., a triangle with only blue
or only red sides. For a proof of this claim choose your favorite
vertex V in K6 and suppose for the moment that there are at least
three red edges VA, VB, VC. If the triangle ABC is blue, we are done,
otherwise one of the triangles VAB, VAC, or VBC must be red, and we
are done. What, if our hypothesis fails? In this case V will be a
vertex with at least three blue edges, and a photocopy of the above
argument, possibly printed in red ink, yields a monochromatic
triangle. Q.E.D.

The argument provides immediately a direct and fast way of
finding a monochromatic triangle for each possible coloring of the
hexagon. Passing from six to fortyfive points and coloring all edges
of the 45-clique K45 red or blue, consider the question, whether all
such colorings have a monochromatic 5-clique. Experimentally, the
answer seems to be affirmative, yet nobody has an argument to
exclude the existence of a counterexample - and nobody is willing to
check all possible colorings.8 Here is the description of a "concrete"
Gedanken-Turing-machine T that decides in less than 60 minutes,
whether there is an exceptional coloring of K45, i.e., a red-blue
coloring having no monochromatic 5-cliques:

(1) T systematically tries all possible n=2990 colorings of K45 until
an exceptional coloring is found, in which case T rings a bell and
stops;
(2) T's instructions are written in such a way that for each individ-
ual coloring T decides in less than half an hour, whether the coloring
has a monochromatic 5-clique: the number of 5-cliques to check is
just 45!/(40!x5!)=1221759;
(3) Then we accelerate the tape of T, as is frequently done in comic
movies, so that the second coloring is checked in (1/4)-th, the third
in (1/8)-th the n-th in 1/(2n)-th of an hour;
(4) In this way T solves the problem in less than 60 minutes, as re-
quired.

° This problem originated from a theorem of Ramsey and is one among many famous problems
that can be easily explained, but that cannot be solved even by the experts of the Government
with their latest supercomputers.

What is wrong with this T? Does relativity theory impose an
insurmountable upper bound on the number of steps T can perform in
one second? Does quantum thermodynamics impose a lower bound on
the amount of heat being produced by T during the computation? We
can argue as follows: Suppose T comes down from our mathematical
world, where it can at most assume a papery nature, to the physical
world satisfying the following two conditions:
(i) time is not recycled, i.e., no portion of the time used for one step
can be used for another step - this is a reformulation of the sequen-
tial behavior of Turing machines;
(ii) energy is not recycled, i.e., no portion of the energy used for one
step can be used for another step.
Then, if f is the number of steps performed by T in one second (T's
frequency), and if W is the power (energy per second) used by T
measured in watt, T will obey the inequality

where h=6.6256x10-34 joule x sec is Planck's constant; that means
the power absorbed by T grows at least as fast as the square of its
frequency. The argument for the inequality is roughly this9: The por-
tion of the tape that is scanned during a computation step undergoes
a noticeable modification of its physical properties. Hence, by the
Heisenberg inequality, the energy uncertainty AE of the tape square
must be greater than h/(2rcAt), where At=1/f is the time needed for
the step. A fortiori, the energy used for the step must be greater
than AE, and the inequality immediately follows from (i) and (ii).

Albeit small, the multiplicative constant h has an effect, and
the quadratic lower bound for W can be used as a convincing argu-
ment for the unfeasibility of (3) for Turing machines. Of course, one
might argue that parallel computers are able to circumvent condi-
tion (i), and that a carefully designed Turing machine could, at least
partially, circumvent condition (ii). More radically, one might argue
that Heisenberg's uncertainty principle need not imply that any
amount of energy is "used" for a computation step. In any case, no
real computer has so far violated the above lower bound. In the next
subsection we want to explore, how space-time features of compu-
tations are physically constrained, and how such constraints prevent
us from having "arbitrarily" complex operations.

For details cf. [Mundici 1981].

3.1 ONE PHYSICAL REGION. In the above analysis of steps, there
is no allusion to the details of the (physical) construction of Turing
machines - except that each step requires an interaction between
the square being scanned and the scanning head. Recall from section
1.2 that the restricted formulation of Turing machines achieves a
mathematically uniform and simple description of computations and
recall further that its adequacy is guaranteed by Turingfs Theorem.
The starting point of the analysis was, however, the "mechanical be-
havior" of a human computor operating on finite configurations. This
behavior can be described directly and mathematically precisely.

But first we take a preliminary step and replace the states of
mind by, what Turing described as, a "physical and definite counter-
part". This is done by considering "states of mind" not as a property
of the working computor, but rather as part of the configuration on
which he operates. Turing discussed this replacement very vividly
in section 9, III, of his 1936 paper:

It is always possible for the computer [i.e., in our terminology, the computor] to break
off from his work, to go away and forget all about it, and later to come back and go on
with it. If he does this he must leave a note of instructions (written in some standard
form) explaining how the work is to be continued. This note is the counterpart of the
"state of mind". We will suppose that the computer works in such a desultory manner
that he never does more than one step at a sitting. The note of instructions must enable
him to carry out one step and write the next note.

Mathematically that is done quite beautifully in [Davis 1958]:
instantaneous descriptions of machines, that means finite sequences
in the alphabet of a Turing machine, contain exactly one state sym-
bol indicating by its position in the sequence which symbol is being
scanned; programs of Turing machines can then be viewed as a set of
Post production rules operating on (a single symbol of) such instan-
taneous descriptions.

If in this way of describing Turing machines one replaces fi-
nite sequences by finite graphs (with a few well-motivated proper-
ties) and the simple Post-Turing operations on one symbol at a time
by operations on a fixed finite number of "distinguished" graphs,
then one arrives at the notion of a Kolmogorov Machine. This latter
notion, or rather a general concept of algorithm, was introduced by
Kolmogorov and Uspensky in 1958; for an informative discussion see
[Uspensky 1992]. As it turns out KMs compute exactly the Turing
computable number theoretic functions, i.e. the partial recursive
functions. The focus on a fixed finite number of distinguished
graphs can be motivated by thinking of a human computor operating

according to rules; and with this understanding, as is detailed in
[Sieg and Byrnes], the KMs provide what we called above a mathe-
matically direct and precise description of Turing's computor. But
the restriction can also be motivated by physical considerations; let
us look at the underlying relativistic limitations.10

Assume that a machine operates on configurations containing
z different "symbols", each symbol being physically represented or
coded by at least one atom; that is an altogether reasonable as-
sumption. Then there must be at least z pairwise disjoint regions
containing the codes (of the symbols). Otherwise, the electron
clouds of two different codes might overlap, making the codes in-
distinguishable and leading the machine to "mental confusion". Let c
and a denote, respectively, the speed of light and Bohr's radius of
the hydrogen atom, where a/c=0.176x1 CM8 seconds. It follows that
the codes will be contained in a volume V of at least z(4/3)7ca3 cubic
meters; that forces the diameter 2r to be larger than 2az1/3 meters
- the diameter being the largest possible distance between two
codes in this volume. Let f be again the frequency of our machine
and note that 1/f is the time available for each computation step.
Since signals cannot travel faster than light and since a computa-
tion step involves the whole configuration, it follows that f cannot
exceed c/(2az1/3) steps per second. Thus, we obtain the inequality
fzi/3 < 2.828x1018 steps per second, which points out a fundamental
incompatibility between high number of codes (thus, size of
configurations) and high computational speed. The operations of KMs
are thus necessarily restricted in complexity, as they have to lead
from distinguished graphs to distinguished graphs; and within the
given physical boundaries only finitely many different graphs are
realizable.

3.2 CELLS & CIRCUITS. One alternative to speeding up
computations was mentioned already: parallel operations. Cellular
automata introduced by Ulam and von Neumann operate in parallel; a
particular cellular automaton was made popular by Conway, the so-
called game of life. A cellular automaton is made up of many
identical cells. Typically, each cell is located on a regular grid in
the plane and carries one of two possible values, say, 0 or 1; after
each time unit its values are updated according to a simple rule that

10 We follow Mundici [1981], pp.302 ft, Mundici [1983], pp. 43 ft, and Sieg [1994], section
3.3, for the connection to Turing's claim that memory limitations provide the justification for
the finiteness conditions.

depends only on its own previous value and the previous values of its
neighboring cells. Such cellular automata can simulate universal
Turing machines; they also yield simulations of very general and
complex physical processes. It should be noted that cellular auto-
mata do not satisfy the finiteness axioms for Turingfs computor.
The reason is that computation steps may operate on unbounded
regions of the plane. But that does not mean that cellular automata
cannot be simulated by Turing machines: Indeed, they can be!

von Neumann used these devices to construct (complicated)
self-replicating machines. But it is possible to avoid a detailed
construction of von Neumann's to create a "self-reproducing" ma-
chine, i.e. Turing machines. First one notices the possibility of
performing operations on machines effectively (indeed, primitive
recursively) on the codes of their programs; the most pervasive
operation is captured in Kleene's S-m-n-Theorem that allows to
determine the code of a machine for n arguments from a machine for
(m+n) arguments, when m arguments are fixed. Then one can
establish a fundamental fact, the so-called Recursion or Fixed-Point
Theorem. And that allows the proof of the existence of a self-
replicating automaton in the following sense: there is an m, such
that g(m,y)=m for all y. For details concerning these arguments we
have to point to the literature; a very good presentation can be found
in [Davis 1958] or [Cutland].11

Another interesting model of parallel computation is provided
by Boolean circuits. The very practical justification for this model
is that the building blocks of most real machines are Boolean cir-
cuits. In their simplest form Boolean circuits are given by formulas
of the propositional calculus. Any such formula F of q variables out-
puts 1 or 0 according to whether the assignment bi,...,bq satisfies F
or not. The most general formulas contain apart from "and", "or",
"not" also other connectives, such as "iff". Furthermore, while the
output value of a subformula other than a variable may serve as the
input for exactly one (larger) subformula, the truth value of a sub-
circuit is addressed to many other subcircuits simultaneously. The
only requirement is that there are no loops. In this way the input
information bi,... ,bq is processed in parallel by many subcircuits,
each sending their outputs to other subcircuits, and finally we ob-
tain the output. In contrast to Turing machines, which can handle

1 1 In [Odifreddi, pp. 170-174] one finds a most informative and wide-ranging discussion on
self-reproduction and cellular automata.

inputs of unbounded length, a Boolean circuit accepts as its input
only sequences of q bits. There are 2q such sequences and 22" 0-1-
valued functions of q variables; most of them are irreducible, in the
sense that the best Boolean circuits computing the function are not
very different from the (trivial) listing of the values of the function
over each possible input. (This fact was first proved by Shannon.)
On the other hand, there do exist seemingly complex 0-1-valued
Boolean functions that can be represented by short circuits. It is a
very interesting problem to write down the shortest possible
circuits; curiously enough, nobody knows the shortest circuits for
addition and multiplication. In fact, very little is known about the
computing power of Boolean circuits.

3.3 GENERAL PARALLELISM. How can parallelism be captured in a
general mathematical way, not restricted to the simple pattern of
cellular automata or Boolean circuits, but clearly encompassing
them? Gandy provided for the first time in his 1980 a conceptual
analysis and a general description of parallel algorithms. These
algorithms are thought to be carried out by "discrete deterministic
mechanical devices", i.e., machines satisfying the physical
assumptions explicit in our discussion in the last section. As to such
"mechanical devices" Gandy suggested that "the reader may like to
imagine some glorious contraption of gleaming brass and polished
mahogany, or he may choose to inspect the parts of Babbage's
Analytical Engine1 which are preserved in the Science Museum at
South Kensington". And, to give the above "i.e.-remark" in Gandy's
language, "The only physical assumptions made about mechanical
devices ... are that there is a lower bound on the linear dimensions of
every atomic part of the device and that there is an upper bound (the
velocity of light) on the speed of propagation of changes". He
formulated axiomatic principles for these devices and proved that
whatever can be calculated by devices satisfying the principles is
also computable by a Turing machine; this is a marvel of analysis,
though not of exposition. The definitional preliminaries are lengthy;
Shepherdson wrote [in Herken 1988]: "Although Gandyfs principles
were obtained by a very natural analysis of Turing's argument they
turned out to be rather complicated, involving many subsidiary
definitions in their statement. In following Gandy's argument,
however, one is led to the conclusion that that is in the nature of the
situation ..."

We want to give an informal description that skirts the
preliminary definitions, focusing rather on the intuitive considera-

tions that underly the mathematical formulations. The confi-
gurations on which a Gandy machine GM operates are taken to be
hereditarily finite sets over some (potentially infinite) set A of
urelements as labels, HF(A). The configurations must satisfy two
boundedness conditions: the first, called Limitation of Hierarchy,
expresses that all configurations of a given GM must be in a segment
of the cumulative hierarchy HF(A) containing only sets of rank less
than a fixed natural number; the second, called Unique Reassembly,
requires that all configurations can be uniquely reassembled from
parts of bounded size. The third and central condition, called the
Principle of Local Causation, governs the transition from one con-
figuration Cn to the next one Cn+i: Cn can be reassembled (according
to condition 2) from parts of bounded size that fit into a fixed finite
number of isomorphism types; GM operates on these parts in parallel
and assembles Cn+i from locally computed parts. It is here that the
relativistic limitation on the speed of light comes in or, more gen-
erally, as Gandy puts it: "Its justification (i.e., that of the Principle
of Local Causation) lies in the finite velocity of propagation of ef-
fects and signals: contemporary physics rejects the possibility of
instantaneous action at a distance." This forces the restriction to
parts of bounded size on which the computation is carried out.

The successive states of cellular automata (and the successive
configurations of Gandy machines) can be computed by suitable
Turing machines; but how complex is this "serialization"? This is a
most interesting question, as the cellular automata are particular
kinds of dynamical systems that are used to simulate physical pro-
cesses! Indeed, Fredkin has been advocating the use of (reversible)
cellular automata in physics for some time. In his Digital Mechanics
he conjectures "that there will be found a single cellular automaton
rule that models all of microscopic physics; and models it exactly."
The interested reader should delve into the paper by Richard
Feynman, Simulating physics with computers, published in the
International Journal of Theoretical Physics, volume 21 (1982), pp.
467-488. See also [Herken 1988] and [Toffoli and Margoulis].

EPILOGUE. Every mathematical model of physical processes comes
with at least two problems: How accurately does the model capture
physical reality, and how efficiently can the model be used to make
predictions? What is distinctive about the modern developments is
this: Computer simulations have led to an emphasis of the algorith-
mic aspect of scientific laws and, conversely, physical systems are
being considered as computational devices that process information

much as computers do. Let us compare the forced pendulum (or the
classical pendulum) with a Gedanken-45-clique (with a 6-clique,
respectively), whose red-blue coloring is assumed to vary with time.
Just as a classical exercise in Hamiltonian mechanics immediately
yields conservation of energy for the pendulum, similarly the
combinatorial argument given at the beginning of section 3.0 yields
the conservation of a monochromatic 3-clique in the red-blue 6-
clique. By contrast, even the most powerful computer will not be
able to decide whether a given forced pendulum will eventually
rotate clockwise, or whether a variable red-blue 45-clique will
always have a monochromatic 5-clique.

Computational intractability stems, perhaps, from the impos-
sibility of conceptually handling (symbolizing) a virtually infinite
amount of relevant information, namely, the list of digits of the real
numbers measuring the initial conditions of the pendulum or the list
of red and blue edges in all possible colorings of the 45-clique.
Owing to this impossibility, the forced pendulum, as well as the
variable red-blue 45-clique remain their own best simulators. The
situation is similar for cellular automata: in some fortunate cases a
mathematical theorem can completely describe the evolution of a
cellular automaton, but in general an automaton is its own best
simulator. When computing a Boolean function, what should be
considered the "ratio extrema11, namely the direct consultation of the
table of all its values, almost always turns out to be the "ratio sola
unica". When no shortcuts are available and the computer attains the
highest degree of resemblance with the simulated system, we regard
the system (or, equivalent^, the simulation) as being irreducible.

The Turing machine model is not well suited to simulations of
irreducible systems, as most physical processes seem to correspond
to parallel computations. Even non-deterministic Turing machines
are unsuitable, because they require too much parallelism; e.g., in
the search for an exceptional coloring of the 45-clique we would
replace the above Turing machine T by 2 9 9 0 Turing machines all
working in parallel, each checking a different coloring. Setting up
paradigms for parallel computing is expected to afford a more effi-
cient handling, not only of simulations of physical processes, but
also of combinatorial and decision problems. It seems, ironically,
that our mathematical inquiry into paper machines has led us to a
point where (effective) mathematical descriptions of nature and
(natural) computations for mathematical problems coincide.

BIBLIOGRAPHY

J. Barwise (ed.)f Handbook of Mathematical Logic, North-Holland, Amsterdam, Fifth
Reprinting, 1991.

A. Church, An unsovable problem of elementary number theory, American Journal of
Mathematics 58, 1936, pp. 345-363. Also in (Davis 1965).

A. Church, Review of Turing 1936, Journal of Symbolic Logic 2, 1937, pp. 42 -43.

N.C.A. da Costa, F.A.Doria, On Arnold's Hilbert Symposium problems, In: Proceedings of
the 3rd Godel Colloquium in Brno, August 1993, G. Gottlob et al. (eds.), Springer
Lecture Notes in Computer Science, 713, 1993, pp. 152-158.

N. Cutland, Computability - An introduction to recursive function theory; Cambridge
University Press, 1980.

M. Davis (ed.), The Undecidable; Raven Press, Hewlett (New York), 1965.

M. Davis, Computability and Unsolvability, McGraw-Hill, New York, 1958.

S. Feferman, Why a little goes a long way: Logical foundations of scientifically applicable
mathematics; to appear in: PSA 1992, volume II, Proc. of the Philosophy of Science
Association meeting, Chicago October 29-November 1, 1992.

Edward Fredkin, Digital mechanics; Physica D 45 (1990), pp. 254-270.

R. O. Gandy, Church's thesis and principles for mechanisms; In: The Kleene Symposium,
J. Barwise, H.J. Keisler, and K. Kunen (eds.), North-Holland, Amsterdam, 1980, pp.
1 2 3 - 1 4 8 .

R. O. Gandy, The confluence of ideas in 1936, In: [Herken 1988], pp. 55-111.

M.R. Garey, D.S. Johnson, Computers and Intractability, W.H.Freeman, San Francisco,
1979.

K. Godel, Uber formal unentscheidbare Satze der Principia Mathematica und verwandter
Systeme I, Monatshefte fur Mathematik und Physik 38, 1931, pp. 173-198. Also in
[Godel 1986].

K. Godel, The present situation in the foundations of mathematics, lecture presented in
December 1933, to appear in: [Godel 1994].

K. Godel, Uber die Lange von Beweisen, Ergebnisse eines mathematischen Kolloquiums 7,
1936, pp. 23-24. Also in: [Godel 1990].

K. Godel, Remarks before the Princeton bicentennial conference on problems in
mathematics, 1946; reprinted in: [Godel 1990], pp. 150-153 .

K. Godel, Some remarks on the undecidability results; written in 1972, published in:
[Godel 1990], pp. 305-306

K. Godel, Collected Works, volume I; Oxford University Press, 1986.

K. Godel, Collected Works, volume II; Oxford University Press, 1990.

K. Godel, Collected Works, volume III; Oxford University Press, 1994; to appear.

R. Herken (ed.)f The Universal Turing Machine (A half-century survey), Oxford
University Press, 1988.

D. Hilbert, P. Bernays, Grundlagen der Mathematik, volume II, Springer Verlag, Berlin,
1939.

S.C. Kleene, General recursive functions of natural numbers, Mathematische Annalen,
volume 112 (5), 1936, pp. 727-742; reprinted in [Davis 1965], pp. 237-253.

S.C. Kleene, Introduction to metamathematics, Groningen, 1954.

D. Mundici, Irreversibility, uncertainty, relativity and computer limitations, II Nuovo
Cimento, Europhysics Journal, 61 B, n.2 (1981) pp. 297-305.

D. Mundici, Natural limitations of decision procedures for arithmetic with bounded
quantifiers, Archiv fur mathematische Logik und Grundlagenforschung 23 (1983), 37-
54.

D.Mundici, Interpretation of AF C*-algebras in Lukasiewicz sentential calculus, Journal
of Functional Analysis, 65 (1986) pp. 15-63.

P. Odifreddi, Classical Recursion Theory; North-Holland Publishing Company, volume I,
second reprinting 1992; volume II, 1993.

R. Peter, Rekursive Funktionen, Verlag der Ungarischen Akademie der Wissenschaften,
Budapest, 1951.

E. Post, Finite combinatory processes. Formulation 1, J. Symbolic Logic 1 (1936), pp.
103-105. Also in: [Davis 1965].

W. Sieg, Mechanical procedures and mathematical experience; to appear in: Mathematics
and Mind, A. George (ed.), Oxford University Press, 1994, pp. 71-117.

W. Sieg, J. Byrnes, Turing's argument: a mathematical explication; manuscript.

T. Skolem, Begrundung der elementaren Arithmetik durch die rekurrierende Denkweise
ohne Anwendung scheinbarer Veranderlichen mit unendlichem Ausdehnungsbereich;
Videnskapsselskapets skrifter, I. Matematisk-naturvidenskabelig klasse, no. 6;
translated and reprinted in [van Heijenoort 1967], pp. 302-333.

R. Smullyan, Theory of Formal Systems, Princeton University Press, 1961.

G. Tamburrini, Reflections on Mechanism; Ph.D. Thesis, Columbia University, 1988.

T. Toffoli, N. Margoulis, Cellular Automata Machines, MIT Press, Cambridge,
Massachusetts, 1988.

A. Turing, On computable numbers, with an application to the Entscheidungsproblem,
Proc. London Mathematical Society 42, 1936, 230-265. Also in: [Davis 1965].

V.A. Uspensky, Kolmogorov and Mathematical Logic; Journal of Symbolic Logic, 37 (2)
(1992), 385-412.

J. van Heijenoort (e<±), From Frege to Godel; Harvard University Press, Cambridge,
1967.

J. von Neumann, Zur Hilbertschen Beweistheorie, Mathematische Zeitschrift 26, 1927,
pp. 1-46.

J. von Neumann, The Computer and the Brain; Yale University Press, 1958.

