
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Intercalation Calculi for Classical Logic

by

Wilfried Sieg

January 1994

Report CMU-PHIL-46

Philosophy
Methodology
Logic

Pittsburgh, Pennsylvania 15213-3890

INTERCALATION CALCULI FOR
CLASSICAL LOGIC

Wilfried Sieg
Department of Philosophy
Carnegie Mellon University
Pittsburgh, PA 15213

*This material is partially based upon work supported by the National Science Foundation under
Grant No. CCR-9206756. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do not necessarily reflect the views of
the National Science Foundation.

University Libraries
Carnegie Mellon University
Pittsburgh PA 15213-3890

ABSTRACT. Natural deduction (for short: nd-) calculi have not been used
systematically as a basis for automated theorem proving in classical logic. To
remove objective obstacles to their use I describe (1) a method that allows to
give semantic proofs of normal form theorems for nd-calculi and (2) a
framework that allows to search directly for normal nd-proofs. Thus one can
try to answer the question: How do we bridge the gap between claims and
assumptions in heuristically motivated ways? This informal question
motivated the formulation of intercalation calculi. Ic-calculi are the technical
underpinnings for (1) and (2), and the paper focuses on their detailed
presentation and meta-mathematical investigation — in the case of classical
predicate logic.1

1. Search for proofs. Natural deduction calculi have been available since the
mid-thirties and reflect "as accurately as possible the actual logical reasoning
involved in mathematical proofs".2 They capture the logical structure of
arguments by incorporating inferences from and to complex formulas with
characteristic principal connective. The rules for the logical connectives, in

the case of sentential logic A, V, ->, and -i, are consequently divided into
"Elimination", i.e. E-, and "Introduction", i.e. I-rules. (The considerations
will be extended to predicate logic in section 6.) I give only the rules for
negation, because they are formulated here in a way that is not in the
standard (Gentzen-Prawitz) mould. The negation elimination rule -iE is the
distinctive rule of classical logic and is needed, for example, to prove the law
of excluded middle and Peirce's law; the introduction rule -̂ 1 captures the
form of indirect argumentation as used in the Pythagorean proof of the
irrationality of ¥2.

Generally, E-rules specify how components of assumed or established
complex formulas can be used in an argument; I-rules provide conditions
under which complex formulas can be inferred from already established com-
ponents. This leads directly to the formulation of very intuitive strategies.

1 The work reported here continues the metamathematical investigations basic for the Carnegie Mellon
Proof Tutor, see [Sieg and Scheines]. The motivation for formulating ic-calculi comes directly from our
joint work on automated proof search; cf. notes 7 and 8.
2 Gentzen in his "Investigations into logical deduction", [Szabo], p. 74.

The strategies exploit, that the structure of nd-proof can be made to depend
crucially on the syntactic context provided by assumptions and conclusions:
The nd-calculi share, as Prawitz [1965] discovered, important metamathe-
matical properties with sequent calculi. For the statement of the first of these
properties recall that the premise of an E-rule with the characteristic
connective is called major premise; a proof is called normal, when, roughly
speaking, no formula occurrence in the proof is both the conclusion of an I-
rule (or of -iE) and the major premise of an E-rule. The first central property
was established by Prawitz using a special sequence of "reductions" to
transform arbitrary proofs into normal ones:

Normalization Theorem,3 Any proof of G from a in the nd-calculus can be
transformed into a normal proof leading from a to G.

Here a is a sequence of formulas. The second central property for the nd-
calculus is a structural property of certain proofs: normal proofs D leading
from a to G have the subformula property; i.e., every formula occurring in D
is (the negation of) either a subformula of G or of an element in a.

Despite the naturalness of nd-calculi, the part of proof theory that deals
with them has hardly influenced developments in automated theorem
proving. For that the proof theoretic tradition rooted in Herbrand's work and
Gentzen's work on sequent calculi has been more important. The keywords
here are resolution and logic programming. From a purely logical point of
view this is prima facie peculiar: It is after all the subformula property of
special kinds of derivations4 that makes resolution and related techniques
possible; and normal derivations in natural deduction calculi have that very
property (with the minor addition mentioned above). Why is it then that nd-
calculi have not been exploited for automated proof search? The answer to this
general question lies, it seems to me, in answers to three crucial questions: (1)
How can one specify through a calculus exactly the normal proofs? (2) How
can one construct a search space that allows the formulation of strategies for
finding such proofs? and (3) How can one prove the termination of search
strategies?

3 Prawitz formulated the theorem only for a part of the classical calculus. The (strong) normalization
theorem for the full calculus was established by Stalmark (1991).
4 Derivations in Herbrand's calculus and derivations in the sequent calculus without cut have the
subformula property: they contain only subformulas of their endfbrmula, respectively endsequent.

In the case of sequent calculi the analogues to these questions have
direct answers: Use calculi without the cut rule; invert systematically their
rules; prove their completeness! In this rough description of automated
deduction based on sequent calculi the syntactic normalization or cut-
elimination procedure is not mentioned, since the semantic completeness
proof for the cut-free part is fundamental; algorithms for finding cut-free
derivations are refinements of strategies used in that proof. Such strategies
realize the heuristic idea of searching for semantic counterexamples and yield
trees a such that either one of afs branches allows the definition of a counter-
example to "a has G as a logical consequence" or a constitutes a cut-free
derivation of the sequent -i(x,G.5 In the case of nd-calculi normal proofs are
also sufficient to obtain all logical consequences from given assumptions.
However, this fact has not been established directly: Its proof combines the
completeness theorem for the calculus with the normalization theorem. In
order to obtain a direct proof of the fact and an answer to (1) intercalation
calculi are introduced. They provide frameworks for answering (2), and
completeness proofs for these calculi answer (3).

2. Ic-calculi (for sentential logic). The broad problem is this: How can we
derive a conclusion or goal G from assumptions <|>i,... ,<|>n? Or, more vividly:
How can we close via logical rules the gap between G and the <|>i, ... ,<j>n? This
question is at the heart of spanning search spaces via ic-calculi. The basic
rules of such calculi are reformulations of those for Gentzen's nd-calculi, but
it is the preservation of inferential information and the restricted way in
which the rules are used to close the gap (and thus to build up derivations)
that is distinctive. I will discuss at first only classical sentential logic;
however, the considerations will then be extended to predicate logic and can
be used to treat non-classical logics, for example, intuitionistic logic.6

The intercalation rules operate on triples of the form a;P?G. a is the
sequence of available assumptions; G is the current goal; |3 is a sequence of

formulas obtained by A-elimination and -»-elimination from elements in a.
To facilitate the description of rules and parts of search trees let us agree on

^ -HI consists of the negated formulas in a.
6 That was done for sentential logic by Cittadini in his M.S. thesis written in May 1991; see [Cittadini 1992].
The case of intuitionistic predicate logic and other non-classical logics will be considered in a joint paper
with Cittadini, "Intercalation calculi for non-classical logics".

some conventions. Lower case Greek letters a, p, y, 8, ... range over finite
sequences of formulas; as syntactic variables over formulas I use <|>, y , %,...; p,
a, x, ... range over trees. At first I consider only formulas in the language of

sentential logic with the connectives -% A, V, -»; (1 will be used as an

auxiliary symbol). <|>€a expresses that (j) is an element of the sequence a; a,P is

short for the concatenation a*p of the sequences a and P; a,(J) stands for the

sequence a*«t», where « | » is the sequence with <{> as its only element. There

are three kinds of ic-rules: those corresponding to E-rules for A, V, ->; those

corresponding to I-rules for A, V, ->; finally, rules for negation. Let me list the

rules of the first kind, i.e. I-rules.

I A { : a;p?G, ((J iA^ap, ^ a p => a;p,<t>i?G for i = l o r 2

I v : a;p?G, (j>iV(()2^ap, <t>i$<*P> ^ a p => a,(|)i;p?G AND a,(()2;p?G

l -> : a;p?G, <|>i->(|>2€ap, <|>2$ap, <|>i*G => a;p?<t>i AND a;P,<t>2?G

The side conditions of these rules help us to avoid "repeating questions":

a;p?G is the same question as a*;p*?G just in case the sets of formulas in the

sequences a,P and a*,p* are identical. Now I formulate the rules that

correspond to inverted introduction rules, i.e. t-rules.

t A : oc;p?<|>iA<j>2 = > <x;P?<t>i A N D oc;p?<t>2

tVj : a;p?<t>iv<(>2 => cc;p?<|)i for i=l or 2

t - > : a;p?<t>i-M(>2 = > a,<t>i;p?<t>2

The rules for negation are split into three, where 1 is considered as a place-
holder for (the conjunction of) a pair of contradictory formulas; this purely
auxiliary role of i accounts for the restriction <|)*1 in the first rule:

=>

i i : a;P?-<(> =>

) => a;p?9 A N D a;P?->cp

In the last rule F(a) is the class of all PROPER subformulas of elements in a;
clearly, L? is inapplicable in case T(a) is empty. F(a) is always finite; and
that is crucial for the finiteness of the search space. Operations 0 leading to
smaller and yet sufficient classes can be specified; cf. section 5. The different
calculi we are considering are distinguished through the operation 0, and I
denote a particular calculus by IC(O).

Remark: Intuitionistic versions of ic-calculi are obtained by using the rule

cc;p?<|), <t>̂ l = > a ; p ? l (ex falso quodlibet) instead of l c . For the classical

systems *-> can be weakened to: a;p?G, <|>i-H>2€ap, <l>i€aP> <|>2$aP =>

a;P,<t>2?G; but this formulation, as Cittadini noticed, is too weak for
intuitionistic logic (and unnatural for proof search in the classical case).

3. The problem space. The ic-calculus provides the underpinning for

specifying informal approaches to proof search: Its rules are used to construct

a search space that contains all possible ways of closing the gap between a and

G via the ic-rules. In this space we search for a gap-closing subtree that

determines, in turn, a unique normal nd-derivation from a to G; if the search

fails, the search space contains enough information to yield a semantic

counterexample. This sketch of the completeness proof for the ic-calculus

shows the family resemblance to completeness proofs for the sequent calculus

without cut. The difference can be put sharply as follows: In the case of the

sequent calculus, one tries to find a semantic counterexample and, if that

search fails, one actually has found a proof; in the case of the ic-calculus, one

tries to find a proof and, if that search fails, one has a counterexample.

As an example of how the intercalation rules are used to build up the

search space for a question a;?G, let me show the search tree for the question

?Pv-iP. It is partially presented in Diagram 1 of the Appendix. We start out by

applying three intercalation rules to obtain three new questions, namely, ?P

OR ?-.P OR, proceeding indirectly, -•(Pv--P);?l. That the branching in the tree

is disjunctive is indicated by D. Let us pursue the leftmost branch in the tree:

To answer ?P we have to use lc and, because of the restriction on the choice

of contradictory pairs, we have only to ask -"P;?P AND -«P;?->P. B indicates

7 A sequent proof is far from reflecting the structure of ordinary arguments. Thus, we have here and in
the case of resolution based procedures the non-trivial problem of finding associated nd-proofs. Cf.
Shanin e.a., but also Andrews and Pfenning. The issue is also addressed in implementations of, e.g.,
NUPRL and ISABELLE. Bledsoe's way of using nd-methods is not systematic in the logical setting.

that the branching is conjunctive here. In the first case only l c can be applied
and leads to the same question we just analyzed: Using -iP as an assumption,
1 has to be proved. Thus we close this branch with a circled N, linking it to
the same earlier question on the branch. In the second case the gap between
assumptions and goal is obviously closed, so we top this branch with a circled
Y. The other parts of the tree are constructed in a similar manner. But the
tree is not quite full: At the nodes that are distinguished by arrows the
additional contradictory pair consisting of P and -.P has to be considered. At
nodes 2 and 3 the resulting branches do not help in closing the gap; at node 1,
in contrast, the resulting subtree is of interest.

The darkened branches of Diagram 1 contain enough information for
the extraction of derivations in a variety of styles of natural deduction. For
our calculus we can easily obtain corresponding derivations; namely, first

p v

PV-.P

Pv--P

The second derivation is analogous to this one, except that the roles of P and
-«P are interchanged; finally, the derivation that emerges from the undrawn
part at node 1 is this:

PV--P

Pv--P

The (full) search or ic-tree is specified inductively by applying the ic-
rules to the initial question or to the "non-terminal" leaves of an already
obtained partial search tree. In either case one addresses questions of the form
a*;p*?G*. We call a branch determined by a*;P*?G* a left-^-branch, if an

earlier question on that branch is the left consequence of J-», and distinguish
two main cases:

1. G* is different from 1 and (i) cc*;p*?G* is not on a left-»-branch, then

apply intercalation rules in all possible ways, e.g., in the order IAJ, IA2 , !-»,

Iv , I A , t->, tv l f tv2 , and finally either Ij or l c , unless G*€oc*,p*; in

this case close with Y; (ii) a*;P*?G* is on a left->-branch and does not repeat

an earlier question, then proceed as under (i); (iii) oc*;p*?G* is on a left-»-
branch and does repeat an earlier question, then close with N.
2. G* is 1: apply ly with q>€F(a*), unless F(a*) is empty or there is a
question ai;Pi?l on the branch determined by oc*;P*?l with F(a*)=F(oci);
in these cases close with N.
The point of N-closing branches is to avoid repeating questions. Due to the
side conditions for the rules, they all guarantee that the generated questions

are new — except for *-» and If: in the unless-case in (2) no new assumptions
have been added; consequently, all the questions that could be asked by going
indirect at this point are being asked on branches emerging from the node
with cci;pi?i. (That this restriction is correct and not too restrictive is of
course shown by the considerations below.) — The ic-tree is constructed in this
way for questions a;?G; its branches constitute sequences of subquestions for
a;?G of the form <OCJ;PJ?GJ>J€|, where I is a subset of N. Such sequences
satisfy the obvious conditions: (i) cco;po?Go *s a»?G, and (ii) for any i>0 the
element a,;pj?Gj is obtained from the immediately preceding subquestion as
(one of) the conclusion(s) of an ic-rule. Due to the finiteness of F, the restric-
tive condition for J->, and the complexity reducing character of the remain-
ing I- and t-rules all sequences of sub-questions are finite; as the ic-tree is
also finitely branching we have the first part of the following proposition:

Proposition. The ic-trees for questions a;?G are finite, and their branches are
closed with either Y or N.

Proof. Because of the above observations, only the second part of the proposi-
tion has to be established. So assume that a particular leaf with question
cc*;p*?G* is not closed with Y. Then we must have, first of all, that neither a
l-rule, nor a t-rule is applicable; ij and lc are also not applicable. So either
we are in case (l)(iii), or G* is i! But then the construction is terminated,
because a question is repeated or if is not applicable, and the branch is closed
with N. Q.E.D.

Every branch in an ic-tree is finite and is topped by either a circled Y or
N. This assignment to the leaves can be extended to the whole tree and
determines a unique value for the original question; the value of a question
a;p?G is indicated by [a;p?G]. In the next two sections I will show two facts:
(1) If Y is assigned to the root of the ic-tree, then there is a normal derivation
leading from the assumptions to the goal of the question; (2) If N is assigned
to the root of the ic-tree, then there is not only no normal derivation, but no
derivation at all: The ic-tree contains enough information to show that the
inference from a to G is semantically invalid.

4. Extracting Normal Proofs. We saw through the Pv-^P-example, how an nd-
proof can be read off from a properly chosen partial ic-tree whose root
evaluates to Y. To formulate the underlying general fact properly I define
first the notion of an ic-derivation.

Definition. An ic-derivation for the question a;p?G is a subtree x of the ic-tree a
for a;p?G satisfying: (i) a;p?G is the root of x, (ii) all branches of x are Y-closed
branches of a, and (iii) to every node in x (that is not a leaf) exactly one ic-rule
is applied to obtain its successor(s).

One can easily extract ic-derivations from ic-trees that evaluate to Y. Let a be
the intercalation tree for the question oc;?G and assume that [a;?G] = Y. We
can determine from a a canonical Y-subtree x as f(dp(a)), where dp(a) is the
depth of a and f a function defined recursively as follows:

f(0) = a;?G
• e(f(n)) if some branches of f(n), viewed as a

subtree of a, are still open
f(n) otherwise

e extends the open branches of the tree f(n) by their "left-most Y-expansions"
in a. More explicitly, the open branches of f(n) are open branches of a and are
consequently expanded by ic-rules; at least one of these rules must have a
(pair of) conclusion(s) evaluating to Y; choose the left-most such rule applica-
tion in each case. — The main point for sure is this: from an ic-derivation we
can construct uniquely an associated nd-proof. For the proof of this fact I
reformulate the rules for negation ever so slightly:
l c : oc;p?G, cp € f(a,--G) => a,->G;p?cp AND a,-"G;p?->(p ,
1J: a;p?-iG,(p€f(a,G) => a,G;p?q> AND a,G;p?-cp.

8

Note also, for the sake of expositional completeness, that the corresponding
reformulation of ex falso quodlibet for the intuitionistic calculus is given by:
oc;p?G, cp € f (a) => a;p?cp AND a;P?->cp.

Proposition. For any I, a, p, G: if I is an ic-derivation for oc;p?G, then there is a
uniquely determined normal nd-proof Dj leading from a,p to G.

Proof (by induction on the height of I). If hg(I)=l, the ic-derivation simply

consists of the question a,"P?G with G£a,p, as I evaluates as Y. Dj is the nd-

proof consisting of the node G. - If hg(I)>l, distinguish cases as to the ic-rule

that is applied to a;p?G in I. The induction hypothesis asserts: for any ic-

derivation J with hg(J)<hg(I) there is a uniquely determined normal nd-proof

Dj answering the question at the root of J.

IAS: The immediate subtree Ji of I has root a;p,<]>j?G; by induction hypothesis

there is a uniquely determined normal nd-proof Dji leading from assump-

tions in a,p,<)>j to G. If Dj{ contains any occurrences of fa as open assumptions,

then replace those occurrences by

The resulting normal proof of G from a,P is the associated nd-proof Di.
4v: The immediate subtrees Ji of I have roots <x,<|>j;p?G for i=l or 2; by
induction hypothesis there are uniquely determined normal nd-proofs Djj

leading from oc,<|>j,p to G. The associated normal nd-proof Di of G from a,p is:

fa]

Q G

G
This construction is proper, as Iv has as its major premise an element of cc,p
and G is the endformula of Dij.

*-»- The immediate subtrees Ji and J2 of I have roots am,fl?fa, respectively
<x;P,<(>2?G; by induction hypothesis there are uniquely determined normal nd-
proofs Dja and Dj2 leading from a,p to fa, respectively from a,p,(t)2 to G. Use

and the fact that (f>i —><J>2̂oc,p to construct a normal proof D of fa from

assumptions in a,p.

If Dj2 contains any occurrences of <J>2 as open assumptions, then replace those
occurrences by D. This construction yields the normal proof Dj of G from
assumptions in a,{3.

Now let me treat the t-rules. IA: The immediate subtrees Ji of I have
roots a;p?Gi, for i=l or 2, and G is (Gi AG2); by induction hypothesis there are
uniquely determined normal nd-proofs Dj{ leading from a,(3 to Gi. The nd-
proof Di is obtained by joining Djj and Dj2 via A-introduction.

tVj: The immediate subtree Ji of I has root a;P?Gi and G is (GiVG2); by induc-
tion hypothesis there is a uniquely determined normal nd-proof Djj leading

from a,p to Gi. The normal nd-proof Di is obtained by v-introduction.

t->: The immediate subtree J of I has root a,Gi;p?G2 and G is (Gi->G2); by
induction hypothesis there is a uniquely determined normal nd-proof Dj

leading from a,Gi,(3 to G2. The nd-proof Di is obtained by -^-introduction
with Gi and G2.

Finally, I treat the rules for negation. 1J: The immediate subtree J [J-,]

of I has root a,Gi ;p?[->]cp, where G is -1G1 and cpef; by induction hypothesis
there are uniquely determined nd-proofs Dj and Dj^ leading from cc,Gi,P to

cp, respectively -»cp. The nd-proof Dj is obtained by applying -i-introduction to
infer G. l c : This final rule is treated in the same way as the previous
negation rule. Q.E.D.

The nd-proof Di uses exactly the same rules as I. The structural similarity
between ic-derivations and nd-proofs is even more apparent, when the latter
are represented graphically by Fitch-diagrams; consider the examples in
Diagram 2 of the Appendix. Then the ic-derivations can actually be viewed as
prescriptions for constructing isomorphic Fitch-diagrams. (For the imple-
mentation of proof search in the Proof Tutor, Scheines and I chose Fitch-
diagrams to represent nd-proofs, not Gentzen-Prawitz-trees; cf. Notes 1 and 8.)
Joining the proposition and the earlier observation concerning the extraction
of ic-derivations from ic-trees we have:

10

Proof extraction theorem. For any a and G: If the intercalation tree a for a;?G
evaluates as Y, then a normal nd-proof of G from assumptions in a can be
found.

It is extremely easy to obtain the interpolation theorem (and other

metamathematical results); the argument is a modification of that for the

proof extraction theorem.

Interpolation theorem. For any a, G: if G is a logical consequence of a, then there
is an interpolating formula F together with normal nd-proofs Dp and Dp,G/
such that Dp leads from a to F, and Dp,G leads from F to G.

The theorem follows from the next proposition, when observing (with the
counterexample extraction theorem established in the next section) that — on
account of the fact that G is a logical consequence from a — the ic-tree for the
question a;?G evaluates as Y and thus contains an ic-derivation answering
the question a;?G.

Proposition: For any I, a, P, G: if I is an ic-derivation for a;p?G, then there is a
uniquely determined interpolant F, an nd-proof Dp leading from oc,P to F, and
an nd-proof Dp,G leading from F to G. Furthermore, Dp and Dp,G are normal.

5. Extracting Counterexamples. By the evaluation of ic-trees we know that a
question a;?G obtains the value Y or N. In case the value is Y we can
determine an associated normal proof. In case the question has value N, we
have as an immediate consequence: "The search failed!" But that only means
that the particular possibilities of building up derivations — as reflected in the
construction of the ic-tree ~ do not lead to a proof establishing G from
assumptions in a. We will do better: a specially selected branch in the ic-tree
can be used to define a semantic counterexample to the inference from a to G.
Clearly, if the question cc;?G evaluates to N, so does the question a,G';?l,
where G1 is ^G if G is not a negation and is its unnegated part otherwise. So
we establish:

Counterexample extraction theorem. For any a and G: If the intercalation tree a for
a,Gf;?l evaluates as N, then it contains a canonical refutation branch p that
determines a valuation v with v*=<|> for all <|>€a,G\ (That is, v is a counter-
example to the inference from a to G.)

1 1

As the ic-tree a evaluates to N it will be quite direct to see that the following
construction leads to a branch p through a if F(a,G') is non-empty. If this set
is empty, a,G' consists only of sentential letters, and the valuation v, defined

by vtP iff P€OC,G\ is a counterexample. If the set of proper sub-formulas of
the elements of a,Gf is non-empty, we need a more sophisticated argument
and, naturally, some auxiliary definitions. The finite set F(a,G') for the
negation rule ly can be enumerated (without repetition) by <HJ>J€|, where l:=
{i | l<i<n}; let Ho be G1. For i€| define first of all

K(P,i) = f \&.. (i<k<n A H\& P A -,Hk« P) if there is such an
^ 0 otherwise

The sequence of nodes of p (and more) is determined as follows:

p*(0) = <x;?G

oto = a,G'

K(OCO,1)

ao;?l
if 0<m:

p*(2m) = f am-i;?Hx(a0,m) if [am-i;?Hx(ao,m)] =
otherwise{ am-i;?I

«m-i,--

vi , ->Hx(aO,m) if goal of p*(2m) is Hx(ao,m)
if goal of p*(2m) is -iHx(aO,m)

X,(ao,m+1) = K(am,X(ao,m))
p*(2m+l) = am;?l

Let v be the smallest m with X,(ao,m+l)=O; then av = av+i, and the refutation
branch p is the restriction of p* to {m I mS2v+l}. Let me illustrate and clarify
this construction through Diagram 3 in the Appendix: At each step in select-
ing the next node of the canonical branch p one or the other indicated
possibility of proceeding must obtain (as long as the set of assumptions can be
properly extended), because not both conclusions of if with the contradictory
pair Hk and -iHk can be evaluated as Y. (In case both are evaluated as N,
choose the leftmost.) So we have selected a branch p through the ic-tree a
that is N-closed, all of whose nodes evaluate to N, and whose "closing node",

12

indicated by the checkered rectangle, is such that no rule other than if is
applicable. Application of that rule with any formula in F(a,Gf), in particular
with Ho, leads to the canonical closing indicated in the diagram.

Let T:= {<)> | <f>€av+i}; thus, r consists of all the formulas appearing on
the l.h.s. of the question mark at pfs top node. The set F has important
syntactic closure properties and this can be exploited to define a valuation that
will serve as a model for a, G1. We establish first the closure properties.

Closure lemma. For all formulas \|/:

(i) \|/ is a subformula of an element in F => y € r or -i\j/ € r , but not both;

(i i) \jf is —i—i<J>i, —i—i<J>i^r =>

(i i i) \ | / i s (<1>IA<J>2) , (<|>iA<t>2)€r = > <j>i€F a n d

\\f i s -I(<|>IA<|>2), -«(<l>iA<|>2)€r = > -i<j>i€r or

(iv) Yis(<t>iV<l>2) , (f a v ^ ^ F => <)>i€r or <J>2€F;

\ j / is —i(<t>iV<|)2) , - i (<hv<|>2)€r => —i<J>i€r a n d

(v) \|/is((l)i^(()2),((|)i-^(|)2)^r =>

V is- i^i-xfc) ,-i(<t>i->4>2)€r => <|>i€r and -i<J>2€F.

Proof, (i) is direct from the construction of F. (ii) is an almost immediate
consequence of (i): Assume —i-i^F and, to obtain a contradiction, <j)i$F; from
the second assumption and the first part of (i) it follows that -i<j>i£ F. But that
together with the first assumption contradicts the second part of (i). — Now
let me establish (iii) to emphasize the pattern of argumentation. We have to
show:
(*) (<l>iA<|>2)er=> ^er and
and

(**) -i(4>iA<te)€r =>-.<t>i€F or
For (*) assume ((^lA^JeF and <(>i$r (the case <t>2$F is symmetric); by (i)
Given these conditions we can close the branch as follows, applying lAa to the
left node above the checkered one :

13

This contradicts the fact that the checkered node is evaluated as N. (**) is
established in an analogous way applying tA instead of IAJI Assume that
-i(<|>iA<|>2)€r, - i ^ r , and -i<|>2$r; from the last two assumptions and (i) follows

, and the branch can be closed as indicated in the next diagram.

r - ? ±

Q.E.D

14

Now define a valuation by v^P iff Per . Using this valuation and the closure
lemma we can prove the Proposition: for every §€T, vtty. Hence v is a model
for a, G1; this concludes the proof of the theorem concerning the extraction of
counterexamples. Putting these considerations together, we have a complete-
ness theorem for classical sentential logic in the following form:

Completeness theorem. The ic-tree for the question a;?G allows us to determine
either a normal proof of G from a or a branch that provides a counterexample
to the inference from a to G.

This yields, as far as I know, the first semantic proof of the normal form

theorem for a natural deduction calculus.

Normal form theorem. If G can be proved from assumptions in a, then there is a
normal proof of G from a.

Remark. For proof search it is important that the ic-tree be pruned — without
losing completeness. One way of achieving that is by restricting the formulas
with which contradictory pairs can be formed; one can do that in at least three
(successively more restrictive) versions using positive, strictly positive, and
directly available negations only. The definitions of positive and strictly
positive subformulas are given in the Appendix. In the first modification
P(a) is the class of all positive subformulas of elements in a.

i P : a;p?l, -»cp€JJ(a) => a;j3?cp AND a;p?--(p.

In the second modification S (a) is the class of all strictly positive subformulas
of elements in a.

=>

In the final formulation a negated formula must be directly available; the
bracketed part leads clearly to immediate Y-closure.

I D : a;P?l, -«(pea,P => a;f3?cp [AND a;p?^cp].

To establish completeness for each of the resulting variants of the ic-calculus
it suffices to show that the modified ic-trees (built up by the t- and l-rules, lc ,
ii , and one of the modified rules 1Q) allow the extraction of a counterexample

15

in case [a;?G]=N. The construction of a canonical refutation branch involves
now not only the indirect rules, but all the other rules. In defining such a
branch one has to make sure that the appropriate version of the closure
lemma can be established. For the calculus involving Ip that means, for
example, that clause (i) is replaced by (lj>): y is a positive subformula of an
element in T => y € r or -i\|f € r, but not both. It should be noted that the
rule that prunes the full ic-tree most, i©, is not the most useful for proof
search: The other rules direct the search in significant ways.

6. Problem space for predicate logic. The metamathematical considerations
for sentential logic can be extended to predicate logic. To that end I use the
following formulation of the E- and I-rules for the quantifiers; note that
writing <|>t assumes that t is free for x in <|>x or, alternatively, that some bound
variables in (j>x have been renamed. For V we have the rules:

VE VI
(Vx)([)x <fcx

<|>t (Vx)<|>x

Applications of the I-rule must satisfy the restriction that x does not have a
free occurrence in any assumption on which the derivation of <|>x depends.
Note that the inference from tyx to (Vy)<J>y, for sufficiently new y, is a derived
rule. — For 3 we have the rules:

3E 31

() J 1 r| ^t
n (3x)<|>x

with the usual restriction on the E-rule, namely, y must not have free
occurrences in r| or (3x)<|>x nor in any assumption (other than <))y) on which
the proof of (the upper occurrence of) T| depends.

To build up ic-trees one applies now also quantifier rules "to close the
gap between assumptions and conclusion" in the ic-format. In the formula-

16

tion of the ic-rules T(y,G) denotes the finite set of terms occurring in the
formulas of y,G.

IV : a;p?G, (Vx)())x€a,p, t€T(a,p,G), <|>rtap => a;p,<|>t?G

13: a;p?G, (3x)<j>x€ap, y is new for a,(3x)<|>x,G, and there is no t€T(a,p,G)
with(|)t€ap => a,<|>y;p?G

tV : a;p?(Vx)<|>x, y is new for a,(Vx)())x => a;p?<)>y

t 3 : a;p?(3x)<)>x, t€T(a,p,G) => a;p?<|>t

Ic-trees are specified inductively as in the case of sentential logic: if a*;p*?G*
is an open question, all possibilities of intercalating formulas are considered.
In case G* is different from i (and the question is not a repeat question) one

proceeds, e.g., in the order IV, l & i , l&2> *->, ^ 3 , I v , t V , t & , t->, t 3 ,
tvl> tv2> a R d finally either l i or i c ; in case G* is 1 we apply L? with F
containing all proper subformulas of a* (where subformulas of quantified
formulas are taken only with terms in T(a*,p*,l)). Branches are closed with
Y and N under the same conditions as before. In general, however, ic-trees
will not be finite. Thus, at every stage of construction there may be an open
question at some leaf; to evaluate finite partial ic-trees a* a third value U is
assigned to such a leaf. Given the valuation vG*, the value of the question at
a*'s root is determined by recursion on a* following Kleenefs scheme [IM, p.
334] for three-valued logic:

[N] a * = vo*(N) if N is a leaf of a*

in case N is the unique successor of M

[N]G* = [M]G*

in case N is at a conjunctive branching,

[N]o* f Y if for all immediate predecessors M of N: [M]G*=Y
if for some immediate predecesor M of N: [M]G*=N
otherwise

in case N is at a disjunctive branching,

17

[N]o* = (* N if for all immediate predecessors M of N: [M]O*=N
if for some immediate predecesor M of N: [M]a*=Y
otherwise

The full ic-tree a for a;?G is defined in stages as follows: Co is a;?G; an+i is an

if [a;?G]an is either Y or N, otherwise an+i is obtained from an by expanding
each open branch by all applicable rules. Three possibilities can arise: (1) for
some n€N [a;?G]an=Y, (2) for some n€N [a;?G]an=N, and (3) for all n€N
[oc;?G]an=U. In the first case a normal derivation can be associated with a
subtree of an — by selecting an ic-derivation and by proving (inductively) that
each ic-derivation determines a unique normal derivation of G from
elements in a. In the second case we can construct a finite canonical
refutation branch as in sentential logic and define from it a counterexample.
The third case, whose treatment is clearly crucial to complete this sketch of
the completeness proof, requires additional considerations.

7. Completeness and normal form. The extraction of a counterexample from
an infinite ic-tree requires some circumspection: Instead of constructing a
refutation branch directly, we determine first a particular infinite subtree of
the ic-tree and then apply Konig's Lemma to this canonical refutation tree.

Counterexample extraction. For any a and G: if the intercalation tree a for a;?G is
such that for every natural number n [a;?G]an=U, then a contains an infinite
refutation branch p that determines a structure Tt with H ^ , for all <|> in a,
and M -̂»G. Thus, ft is a counterexample to the inference from a to G.

The reason for having to cut down the ic-tree a to the canonical refutation
tree x is this: Refutation branches have to satisfy suitable closure conditions,
and it is trivial to construct infinite branches of a that don't. So we define x
in such a way that all of its infinite branches satisfy the closure conditions.
The pertinent considerations extend those for sentential logic with variations
on familiar Henkin and "fair" tableaux constructions; thus I emphasize only
the crucial points.

The construction of x (as a subtree of the intercalation tree a) for the
question a;?G proceeds in two waves: The first aims for "sub-maximization"
with respect to a given finite set of formulas, whereas the second introduces

18

new subformulas by witnessing — through instances with new variables —
existential and negated universal formulas that occur on the l.h.s. of ?. We
start out the construction of the binary tree x (using conventions and
definitions from the sentential case) with the first wave for the enumeration
of the proper subformulas of formulas in a,Gf (where immediate sub-
formulas of quantified formulas are taken only with terms in T (a , G \ l) :

x(0) = a;?G

oco = a,G'

X(ao,l) = K(OO,1)

x(l) = cxo;?l

Now let 0<m; at level 2m we extend each open branch (i.e. its leaf evaluates
as U) with a question of the form p;?l at its leaf by

P;?H P ; ? - H

if both questions p;?H and p;?-«H evaluate as U; if only one of them evaluates
as U, then the branch is extended at just that question. One of these cases
must hold, because the question p;?l has value U. (Clearly, as before, H is the
first element in the given enumeration that extends p properly.) At the next
level 2m+l, every open branch is extended by applying the appropriate nega-
tion rule. After finitely many steps this construction cannot be continued.
However, at least one branch in the tree constructed so far has to be open for
extensions by rules other than If, as for all n€N [a;?G]an=U. In sentential
logic, we saw, that cannot happen; the resulting set of formulas T is
deductively closed in the sense of the earlier Closure Lemma. Here, some of
the F's associated with leaves cannot satisfy the closure conditions

(3 x)(|>x € r => <|>t€r for some term t
and
-<(Vx)(|)x € r => -<<l>t€r for some term t

In the first case the rule ^3 is applicable (with a canonically chosen new
variable); in the second case we are able to extend the branch in the following
way (and also with a canonically chosen new variable):

19

P;?4>a

p;?(Vx)(j)x

The right extension closes with Y, whereas the left one remains open. This

brings us to the second wave: We apply 13 in all needed cases and then

perform the above analysis on those -«(Vx)<|>x for which no negated instance is

available. The first wave can be repeated now for an extended set of formulas

and so on, obviously! We obtain in this way an infinite, binary subtree x of

the ic-tree; Konig's Lemma applied to x yields an infinite branch p. Define Fp

= (V I V occurs on the l.h.s. of ? in some question on p}; this set has all the

appropriate closure properties needed to serve as the basis for the

counterexample definition. Let T(rp) consist of all terms that occur in some

formula of Fp. (Subformulas are defined with respect to this set of terms.)

Closure lemma. For all formulas \|/:

(i) \j/ is a subformula of an element in Fp => V^Fp or -lyeFp , but not both;

(ii) vis-i-i<|>i,-i-i<|>i€rp = >

(iii) \|/is(<hA(f>2) ,(<l>iA(|>2)€rp => 4>i€rp and

V is -.(<l>iA<t>2), -i(<|>iA<k)€rp => -i<h€rp or

(iv) v is (4>iv4>2), (4>iv4^2)€rp => <|>i€rpor

y is-i(<t>iv<t>2) ,-i(^iv^2)€rp =>

(v) \|^is (<t>i-^<t>2), (<t>i-^ct>2)^rP =>

(vi) \|f is (3x)<|>x , (3x)(|)x€rp => 4>t€rp for some term t€T(rp);

\j/is-,(3x)(|)x,-n(3x)(l)x€rp => -i(()t€rp for all terms t€T(rp);

(vii) \\f is (Vx)<|>x , (Vx)(^x€rp => (()t€rp for all terms t€T(rp);

\|/is-.(Vx)(t>x,-i(Vx)(|)x€rp => -i<(>t€rp for some term t€T(rp).

20

The definition of a structure Tt from Fp is now standard, and we obtain a
completeness theorem for classical predicate logic in the form:

Completeness theorem. The ic-tree for the question a;?G allows us to determine
either a normal nd-proof of G from a or a branch that provides a counter-
example Tt to the inference from a to G.

So we have a semantic argument for the normalizability of nd-proofs; and
from ic-derivations we can construct not only nd-proofs, but also as in the
case of sentential logic interpolants to obtain the interpolation theorem.

Normal form theorem. If G can be proved from assumptions in a, then there is a
normal nd-proof of G from a.

Remarks (continuing remark in section 5)8. (1) The indirect rule ly can be
restricted as before: to positive, strictly positive, and directly available
formulas. For proof search it is best to balance width and depth of vision,
most likely accomplished (in the case of classical logic) by focusing on negated
positive subformulas. (2) For the search algorithm the language of predicate
logic is expanded by "new free variables" and Skolem (and Herbrand)
functions as done, for example, in Fitting's book. It is in this expansion that
quantifiers are eliminated during the search in a "canonical" way. To direct
the search we use heuristics employed for sentential logic together with two
novel features, namely an appropriately narrow concept of "positive
canonical subformula" and a unification algorithm for quantified formulas,
see [Sieg and Kauffmann].

8. So what? This work is to address, ultimately, the question of finding
proofs in mathematics with logical and mathematical understanding. If one
looks at Georg Polya's writings on mathematical reasoning and heuristics one
realizes quickly that his most general strategies for argumentation are simple
logical ones. Clearly, logical formality per se does not facilitate the finding of

° Quite sophisticated strategies are involved in the algorithm underlying the Carnegie Mellon Proof Tutor
that searches automatically for nd-proofs in sentential logic; that program was developed by Richard
Schemes and myself with assistance from Jonathan Pressler and Chris Walton. Presently we are
redesigning it in collaboration with John Byrnes, and we have extended the search algorithm to predicate
logic along the lines sketched here. For details, in particular concerning heuristics, see [Sieg and
Schemes].

21

proofs. Logic within a natural deduction framework does help, however, to
bridge the gap between assumptions and conclusions by suggesting very
rough structures for arguments, i.e. logical structures that depend solely on
the syntactic form of assumptions and conclusions. This role of logic, though
modest, is the starting-point for moving up to subject-specific considerations
that support a theorem.

Proofs provide explanations of what they prove by putting their con-
clusions in a context that shows them to be correct. The deductive organiza-
tion of parts of mathematics is the classical methodology for specifying such
contexts. This methodology has two well-known aspects: the formulation of
principles, i.e. axioms, and the reasoning from such principles; the latter is
mediated through logical inferences and subject-specific lemmata. Heuristic
considerations and "leading mathematical ideas" for particular parts of
mathematics have to be found and properly articulated. Saunders MacLane
(1934) suggested to include in the scope of logic such a structure-theory of
proofs: this extension of the traditional role of logic and, in particular, of
proof theory interacts directly and, I am convinced, fruitfully with a sophis-
ticated, automated search for humanly intelligible proofs.

22

APPENDIX

In this appendix I give first a definition used in the Remark at the end of

section 5; then three diagrams are drawn that complement the text of sections

3 and 5.
Positive and strictly positive subformulas of a given formula are

defined by induction; indeed, for the first concept one defines simultaneously,
when <(> is a positive subformula of \\f [<(>€P(\|/)] or <|> is a negative subformula of

], namely by the rules,

(i) <Msy => <|) € P

(ii) (a) y i s -«Yi, <l>€N(\|fi) =>

(b) \|/is - .y i , <|>€P(Vi) =>

(iii) (a) y i s V I A X ^ , ^ P (\ | / I) |

(b) \\fis Y IA \ | / 2 , <(> € N(\jf!) uN(\|f2) =>(()€ N(\|/),

(iv)(a) \|/is \Ki\A|/2, c() ̂ P(Vi)uP(\|/2) =>

(b) \JMS

(v) (a) \|/is

(b) \|/is Vi-^\|/2, <t>€N(yi) =>

(c) y i s \|/i-*\|/2, ^ P (V i) u N (\ | / 2) =>

Finally, (J) is a strictly positive subformula of y [(j) € S (\|/)] if and only if it can be
obtained by just the rules (i), (iii)(a), (iv)(a), and (v)(a).

Diagram 1 illustrates the construction of an ic-tree in an interesting case,
namely the proof of tertium non datur. Diagram 2 contains Fitch diagrams
for the three proofs of tertium non datur discussed in section 3. Prawitz
(1965, 98-99) asserts that already Jaskowski introduced this representation in
the late twenties. In any event, for computer implementation Fitch diagrams
are convenient for the representation of nd-proofs: they reflect dependencies
as graphically as trees do, but are easier to put on a screen and avoid the
duplication of parts of proofs necessary in tree representations. Finally,
Diagram 3 illustrates the construction of canonical refutation branches
discussed in section 5.

23

?(Pv-P)

Diagram 1

24

-.(P V-.P)

-,P

PV-nP

1

p

PV-nP

1

PV-.P

(P V-.P)

p

PV-nP

1

-nP

PV-.P

1

PV-nP

-•(P V-.P)

p

PV-.P

1

-,p
-,p

PV-.P

1

p

1

Diagram 2

25

a
v

.1)

'X(ao,2)

Diagram 3

26

References

Andrews, P. "Transforming matings into natural deduction proofs"; 5-th
Conference on Automated Deduction"; New York, Berlin: Springer-Verlag
1980,281-292.

Bledsoe, W. "Non-resolution theorem proving"; Artificial Intelligence 9
(1977), 1-35.

"The UT natural-deduction prover"; Technical Report, Depart-
ments of Mathematics and Computer Science, University of Texas, April 1983.

Cittadini, S. "Intercalation calculus for intuitionistic prepositional logic";
Carnegie Mellon Technical Report PHIL-29, Philosophy, Methodology, and
Logic; 1992,34pp.

Fitting, M. First-order logic and automated theorem proving; New York,
Berlin: Springer-Verlag, 1990.

Gentzen, G. "Untersuchungen iiber das Logische Schliefien I, II"; Math.
Zeitschrift 39 (1934), 176-210 and (1935), 405-431.

Herbrand, J. Logical Writings, W. Godfarb (ed.); Cambridge: Harvard
University, 1971.

Kleene, S.C. Introduction to Metamathematics; Groningen: Wolters-
Noordhoff Publishing, 1952.

MacLane, S. "Abgekiirzte Beweise im Logikkalkiil"; Ph. D. thesis, University
of Gottingen, 1934.

"A logical analysis of mathematical structure"; The Monist
(1935), 118-130. (The paper was read to the American Mathematical Society on
December 28,1933.)

Nevins, A.J. "A human oriented logic for automatic theorem proving"; J.
ACM 21 (1974), 606-621.

Pfenning, F. "Proof transformations in higher-order logic"; Ph.D. thesis,
Carnegie Mellon University, 1987.

Prawitz, D. Natural Deduction - proof-theoretical study; Stockholm:
Almsqvist & Wiksell, 1965.

Shanin, N.A. e.a. "An algorithm for a machine search of a natural logical
deduction in a propositional calculus"; Izdat. "Nauka", Moscow, 1965.
Reprinted in: Siekmann and Wrightson (eds.), Automation of Reasoning,
volume 1, New York, Berlin: Springer-Verlag, 1983, 424-483.

27

Sieg, W. and Kauffmann, B. "Unification for quantified formulae11; Carnegie
Mellon Technical Report PHIL-44, Philosophy, Methodology, and Logic; 1993,
11pp.

Sieg, W. and Schemes, R. "Searching for proofs (in sentential logic)"; in
Philosophy and the computer, L. Burkholder (ed.); Boulder, San Francisco,
Oxford: Westview Press, 1992,137-159.

Stalmark, G. "Normalization theorems for full first order classical natural
deduction"; J. Symbolic Logic 56 (1991), 129-149.

Szabo, M.E. The collected papers of Gerhard Gentzen; Amsterdam: North-
Holland Publishing Company, 1969.

28

