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Abstract

In this paper we characterize the well-known computational complexity classes of the polynomial
time hierarchy as classes of provably recursive functions (with graphs of suitable bounded complexity) of
some second order theories with weak comprehension axiom schemas but without any induction schemas
(Theorem 6). We also find a natural relationship between our theories and the theories of bounded
arithmetic S? (Lemmas 4 and 5). Our proofs use a technique which enables us to "speed up" induction
without increasing the bounded complexity of the induction formulas. This technique is also used to
obtain an interpretability result for the theories of bounded arithmetic 5^ (Theorem 4).

1. Introductory remarks

Our work is motivated by Daniel Leivant's pioneering work in introducing polynomial time computable

functions in theories with the comprehension schema for quantifier-free positive formulas, presented in [11].

Leivant uses new function symbols and Herbrand - Godel equations to represent algorithms. We take a

different approach which enables us to obtain easily characterizations for a broader collection of computa-

tional complexity classes (Theorem 6) and to relate very naturally the theories we introduce to the theories

of bounded arithmetic 5^ (Lemmas 4 and 5). This is accomplished by using theories which contain com-

prehension schemas for formulas with limited quantifier complexity but with no limitation on the logical

connectives used in these formulas, and by treating algorithms as partial recursive functions with suitably

definable graphs. Such representation of algorithms is along the lines of the usual method of approaching

the problem of determining the class of provably recursive functions of a theory. For the purpose of delin-

eating various computational complexity classes our formalism has some advantages over the original one

* This paper is dedicated to Alan G. Mallinger, M.D., Associate Professor of Pharmacology at the University of Pittsburgh
Medical School, who enabled me to work and enjoy life again. The content of the first three sections of this paper was presented
in the technical report [8].
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used by Leivant, since it allows us to delimit easily every level of the polynomial time hierarchy, and to

relate in a straight forward way the theories we introduce to the theories of bounded arithmetic S^. On

the other hand, Leivant's original approach has initiated important research in the treatment of polynomial

time computability by means of recursion theory and A-calculus.

In this paper we deal with second order theories of binary strings; the notation and definitions which we

do not introduce ourselves are from Buss's [1], Cook's [3], Ferreira's [5] and Leivant's [11]. We first specify

the languages of our theories.

The first order language with equality Lb includes two binary relation symbols x C y and x =^ y with the

intended meanings "x is an initial segment of y" and "the length of x is smaller or equal than the length of

y" respectively, as well as the constant symbol e denoting the empty string. The function symbols of Lb are:

S°(x) and Sl(x) for the two successor functions which "concatenate 0 and 1" respectively to the end of a

string*, x 0 y for the function which concatenates the string y to the string x, x 0 y for the function which

concatenates the string x to itself length of y many times and the symbol x \ y for the function which, if

y -< x, produces the initial substring of the string x of length equal to the length of the string t/, or just the

string x if x ^ y. The symbols in Lb we call basic symbols. We denote the term S°(S°(. ..S°(e)...)) with

m iterations of S°(x) by m and the term w 0 (w 0 . . . (w 0 w) • • •) with m iterations of 0 by wm .

The language \J\ is a two sorted language; the first order variables of L| range over binary strings

while the second order variables range over sets of binary strings.2 The only symbol of a mixed sort is the

membership relation E. The language L| also contains all symbols of the language Lb for the first order

part. In particular, the equality is also restricted to strings only; we do not have the equality symbol for the

sets of strings. These are all symbols of L^; thus, the only atomic formulas of this language which involve

the second order variables are of the form t(x) E X, where t(x) is a term of the language Lb.

The language L| is sufficient to formulate a theory which can be easily "bootstrapped", i.e. a theory in

which one can prove the basic properties of a few basic definable predicates and functions, and in which one

can introduce (by suitable definitions) all other polynomial time computable functions, providing that the

1 We do not have symbols for 0 and 1 in our language, but only the symbols for the corresponding successor functions.

2 The presence of boldface letters in the notation for a notion indicates that this notion involves second order objects. When
working with a model of a theory whose language contains second order variables for sets of strings, we will sometimes use
"real" sets of strings rather than just elements of the second order part of the domain of the model. Thus, such objects do not
have to be coextensional with any "internal" sets of the model. To stress this fact, we will usually call such sets collections or
classes of elements.



comprehension schema is sufficiently strong. Roughly speaking, such a comprehension schema corresponds in

strength to the induction schema of Buss's S% in the context of the theories of bounded arithmetic. However,

for the purpose of a proof-theoretic analysis of our theories (see [10]), it is important for us to consider some

theories which do not have a comprehension schema of such strength. Thus, we will also consider theories

formulated in languages which are obtained by extending the languages L | and Lb by adding a set of new

function symbols. Two examples of such languages are \f2 and IP obtained from the languages L | and Lb

respectively by adding a (purely first order) function symbol for every polynomial time computable function;

for the purpose of a Herbrand style proof-theoretic analysis of theories with weak set existence principles, as

presented in [10], one further extends these languages by addition of new function symbols of mixed types.

Definition 1 Let L be a language extending the language L* and L a language extending the language Lb.

1. The set of sharply bounded formulas, or S Q formulas (HQ formulas), of the language L (L) is the

least closure of the set of atomic formulas of L (L) for Boolean connectives and sharply bounded first

order quantifiers Vi C< and 3x C t, where t is an arbitrary term of the language L (L).

2. The set of bounded formulas of the language L (L) is the least closure of the set of atomic formulas of

L (L) for Boolean connectives, sharply bounded quantifiers and bounded first order quantifiers Vx ^ t

and 3x ^ t.

Notice that by the above definition no second order quantifiers are allowed in sharply bounded or bounded

formulas of the language L, but such formulas can contain second order free variables, since the set of atomic

formulas of L also includes second order atomic formulas. In the case of L?j or L | , the only second order

atomic formulas are of the form t(x) G X where t{x) is a purely first order term. It is easy to see that if a

formula <p is a £Q formula of the languages Lb or 17, then it defines a predicate which is decidable by a

polynomial-time Turing machine, while S Q formulas of the languages L| and lf2 define predicates which

are decidable by polynomial time Turing machines with the oracles for the set parameters involved (see [4]

for the details). We can now define our base theory C6 and its extension Cp.



2. Theories C* and Cp

We will not attempt to find the weakest possible base theory which allows us to prove that the basic

predicates we define have the properties needed to carry out our constructions. Rather, we choose a theory

(to be denoted by Cb) which allows an elegant development of the basic tools. The main axioms of our

second order theories of binary strings with weak set existence principles are comprehension axioms. If $

is a class of formulas of a language L, then the <$-comprehension axiom schema consists of axioms

( * - CA:) (Vy)(Vy )(3X)(V*)(* eX~<p(x,y, Y)),

where (p is an arbitrary formula of the class $ not containing variable X.

We recall that a function / (x , y), mapping sequences of binary strings into binary strings, is defined by

limited recursion from functions g(x), ho(x, y, z), Ai(x, y, z) and fc(x, y) if:

/ (x ,e) = g(x)

f(x,S°(y)) = ho(x,y,f(x,y))\k(x,y),

f(x,Sl(y)) = hl{x,y,f{x,y))\k{x,y).

Thus, for such a function f(x, y) and all x and y, / (x , y) ^ fc(x, y).

Definition 2 1. Theory BASIC is a finite open first order theory of the language Lb which contains

just a few axioms3 expressing elementary properties of the functions and relations of Lb .

2. Theory BASIC? is an open first order theory of the language 1/ which contains all axioms of BASIC

and the definitions of all polynomial time computable functions by composition and limited recursion.

3. Theory Cb is a theory of the language \J\ which consists of the axioms of BASIC and the compre-

hension axiom schema for the class of s|? formulas of the language L | .

4. Theory Cp is a theory of the language L^ which consists of the axioms of BASICP and the compre-

hension axiom schema for the class of £ Q formulas of the language lf2.

3 Instead of specifying yet another finite set of simple open axioms, we leave it to the reader to see from the further arguments
what axioms should be included in our base theory. Roughly, these axioms are binary string versions of Buss's induction-free
fragment of bounded arithmetic BASIC and so we use the same notation for our system.



Definition 3 Let M be a model of a theory T of a language LDLh
2 such that T extends Ch.

1. We denote by Str(M) the first order part of the universe of M, while Set(M) stands for the second

order part of the universe of M . Thus, Set(A4) is the collection of "internal" sets of M .

2. Ind(Ai) is the collection of all elements of Set(M) which contain the empty string and are closed

under the two successor functions, i.e. if we define

Ind(U) * e G U A (Vy) (y G U -> (S°(y) G U A S\y) E U)) ,

then lnd(M) = {U G Set(M) \ M \= Ind(U)}. Elements of Ind(jVf) we call inductive sets.

3. We denote by W the intersection of all sets from Ind(A4), i.e. if we define

W(x) * (W)(Ind(U) - x G (7), (1)

then W = {x e Str(M) \ M J= W(x)}.

4- A function h : (Str(Af ))k •-• Str(Af) ^na< necessarily an interpretation of a function symbol of the

language or even definable in M at all) has polynomial growth rate if there exist natural numbers m, n

such that for every sequence s= ( s 0 , . . . , s*) of elements of Str(A^) and every sequence S of elements

of Set(M) it holds that h(s, S) =̂  (s0 0 . . . 0 sk)
m 0 n .

5. C\{M) is the collection of all elements of Set(.M) which contain the empty string e and are closed

for all functions f with polynomial growth rate. Thus, C1(A4) is the collection of all elements V G

Set(M) such that e G V and such that for all s G V, all S G Set(.M) and any function f with

polynomial growth rate also fM(s,S) G V. We then define

W = {x I (VX)(X G Cl(M) ^xeM X)}.

6. Ml is the first order part of the structure M. Thus, Ml consists of the set Str(A^) together with

the interpretations of the purely first order symbols of the language L.

The class W is the collection of all "number-like" sequences, i.e. W is defined in a way analogous to the way

in which the set of natural numbers is defined in, say, ZF set theory. In fact, W has properties analogous

to the properties of the set of natural numbers. For example, from the definition of W it is clear that e G W

and that W is closed for both successor functions. Moreover, we will show that W is an "initial segment" of

5



the universe (Lemma 1) closed for all functions with polynomial growth rate (Lemma 2) and that induction

for I)|? formulas of the language L£ holds for elements of W. If T contains the comprehension schema for

all £jj formulas of the whole language L, then the induction schema also holds for all Sg formulas of the

language L (Theorem 1).

On the other hand, since the collection Cl(M) is a collection of objects closed under infinitely many

functions, not necessarily themselves definable in M, it is not immediately clear that W is definable in M

at all, but we show that W = W in any theory extending the theory Ch. Since C\(M) C Ind(Af), clearly

W C W; thus, we only have to prove the other inclusion. Notice also that W need not be coextensional

with any element of Set(A^).

Lemma 1 Let W(x) be as in Definition 3.3; then

C61- (Vz)(Vy ^ x)(W(x) -> W(y)).

Thus, W(x) defines a complete binary subtree of the complete binary tree consisting of all sequences of the

universe.

Proof: Assume that for two strings a, 6 we have (b ^ a) A W(a) A ~^W(b). This means that there exists an

element U such that both Ind(U) and 6 §* U hold. We now use an instance of the comprehension schema

to obtain the set V = {x \ (By C b)(y eU A x ^ y)}. Then clearly e £V. Assume x G V, and let y G U

be such that x ^ y and y C 6; since 6 ^ [/, we have y db. Thus,

b^a (2)

for i = 0,l- Since y G U and Ind(U) hold, we get that 6 \ S°(y) is in U. Consequently, both S°(x) and

S1(x) are in V, which, together with e eV, implies Ind(V). On the other hand, (2) implies that for all

x G V, x < a. Thus, a £ V, which contradicts our assumption that W(a) holds. •

In the course of the proof of the next Lemma, we develop a technique that can be quite appropriately

called the "speed-up" induction method. We now briefly describe this method applied to the (more common)

formalism of the theories of bounded arithmetic. Roughly speaking, given a formula <f> and an element a

such that <j> satisfies the premise (induction hypothesis) of the L-induction axiom for the formula <j> up to

the value \a\, i.e. such that

( ( ) ( ^ ) - . ^ ( x + l ) ) (3)

6



the speed-up induction method enables us to replace this formula <j>{x) by another formula ip(x) such that

(Vx < |a|)(V>(z) —• <t>{x)) and such that ip(x) satisfies all instances of (prima facie) much stronger induction

hypotheses: for every polynomial time computable function /

A (Vx < |a|)(V>(x) - tf(/(x))). (4)

It is important that if the formula <p is a 2o(S?) formula (i.e. built from Ej formulas by using Boolean con-

nectives and sharply bounded quantifiers; see Definition 8), then the formula tp produced by our construction

is also a X)Q(SJ) formula.

The speed-up induction method is, when interpreted model-theoretically, very closely related to the cut-

shortening method.4 The cut-shortening method, useful for many purposes (see e.g. [13] and [12]), was

originally introduced by R. Solovay in [13]. Of course, here even if <f> satisfies (3), <j> does not necessarily

define a cut in the standard sense, since (Vx,y < \a\)(y < x A<f>(x) —> <j>(y)) need not necessarily hold. Also,

it is possible that <f>(x) holds for all x < |a|, and, moreover, that the set {x | (Vy < x)</>(y)} has a top

element > \a\. Replacing formula <j> by another formula which does define a cut complicates applications

of this technique in proof-theory (see [2]). Also, Solovay's cut-shortening technique increases the quantifier

complexity of the formula which defines the shortened cut by addition of unbounded quantifiers. Solovay's

technique has been modified to suit applications in bounded arithmetic by P. Pudlak in [12]. His version

of the cut shortening technique, if applied to a cut defined by a bounded formula I(x), produces a cut

which is closed for all polynomial time computable functions, but this cut is defined by a bounded formula

which has higher bounded quantifier complexity than the formula /(x). This makes Pudlak's version of the

cut-shortening technique (formulated for binary strings) impossible to use in the proof of our Lemma 2, since

we would get formulas for which we do not have comprehension axioms. The speed-up induction technique,

formulated for formulas of the language of bounded arithmetic, will also be used in the proof of Theorem 4

to obtain an interpretability result; other applications can be found in [2] and [9].

Lemma 2 Let M be a model of a theory T of a language L D L j such that T extends the theory Cb and

let W and W be as in Definition 3.3 and 3.5. Then also W C W, and consequently W = W.

4 The fact that the speed-up induction method is related to the cut-shortening method was pointed out to me by S. Buss;
instead of having this model-theoretic interpretation in mind, my motivation was the induction axioms themselves. I want to
thank Sam Buss also for reading this manuscript and an early version of it, and for making many helpful suggestions.



Proof: Let x0 be an arbitrary element of W and let T be an arbitrary element of Ind(Al). We have to

show that x0 G W; for this it is enough to show that x0 G T. Consider the formula 0(z, x0) such that

O(z, x0) = (Vx C xo)(Vy C xo)((y C x) A (x ^ y 0 z) A (y G T) — (x G

Claim 1 T/ie following are true in M :

(i)

(V*)(Vu =* z)(6(z,x0) - 6(tt,*o));

(it) for an arbitrary natural number m,

, x0) — 9(z <g> m, xo)).

Proof: Part (i) of Claim 1 follows immediately from the axioms of BASIC and the definition of 0 . To

prove (ii), assume 0(z,xo) and fix arbitrary substrings x and y of xo such that x ^ y® (z0m) . If m == 0

or m = 1, Claim 1 is trivial, thus, we can assume that m > 2. Consider the sequence tOi..., tm, such that

to = y and t t+i = x0 f (t, (B z) for all i < m; we now apply 0(z,xo) m times instantiating its quantifiers

with the pairs (tt-,$t-+i) to get part (ii) and thus finish the proof of Claim 1.

Consider the formula ^(iu,xo) such that

*(ti;, x0) = (Vzi C xo)(Vz2 C xo)((z2 ^ z\ ® u>) A 0(zi, x0) — 0(z2, xo)).

Claim 2 77ie following are true in M.

0)

(Vu»)(Vt> ^

(ii) for all natural numbers k and n,

»(e, x0) A (Vu>)(*(to, x0) -H. (̂tx;fc 0 n, x0)),

Proof: Part (i) of this claim again follows from the axioms of BASIC and the definition of \P. To prove

(ii) notice that ^(e:, x0) holds trivially. Assume ^(W.XQ), and let zuz2 and w be arbitrary elements such

that the antecedent of the corresponding instance of the matrix of V(wk 0 n, x0) holds. If w is £, S°(e) or

51(e), then the Claim we are proving follows from (ii) of Claim 1. One can prove in BASIC that there is



a natural number p such for any other string w, wk 0 n ^ t i / . Thus we consider the sequence vo = z\ and

Ui+i = 2̂2 f (vi ® w) f°r a^ 0 < i < p. Using ty(tu,x0) we get 0(t;t-,xo) —* 0(v,+i,xo) for all i < p, which

implies ^(tx;p,x0). Now we just use part (i) to get part (ii) and finish the proof of Claim 2.

Notice that we have not used the assumption that T is inductive in the proofs that our formulas have

the closure properties stated in Lemmas 1 and 2. If T is not inductive, then 0(z,xo) holds only for z = e>

and so, since for all w we have e <8> w = e, ^(w, xo) holds for all w, in which case the four properties given

in Lemma 1 and Lemma 2 trivially hold.

Finally, to prove Lemma 2, we note that 0(z, xo) and *£(«;, xo) are SQ formulas. Thus, the compre-

hension axiom for rp implies that there is an element Xy £ Set(Ai) such that (Vw)(w £ X* «-»• \£(u;,xo)).

Since for all functions / with polynomial growth rate there are natural numbers k and n such that

f(w,Y) ^ wk 0 n, Claim 2 implies that if u; 6 Â * then f(w,Y) £ A" ;̂ also, clearly e £ X* (all of

this this easily generalizes to functions with several first order variables). Thus, Xy belongs to Cl(Af).

Since W is the intersection of all U such that U £ C\(M) and since by our assumption XQ £ W, we have

xo £ Xy , i.e. the following is true in A4:

C xo)(V22 C xo)((z2 ^ z\ 0 x0) A 0(zi, x0) — 0(z2,

Take 2:2 = xo and z\ = xo f 5° (5); then from the last formula it follows that

M\=e(x0 \S°(e),xo)-*Q(xo,xo).

But clearly

(Vx C xo)((x £ T) - ((5°(x) £ T) A (5x(x) £ /*))) - 0(xo f S°(e), x0).

Thus, since .T7 is inductive (and this is the only place in this proof in which we use this fact), 0(xo,xo)

holds, i.e. for all initial segments x and y of xo we have

(y Q x) A (x ̂  y 0 x0) A y £ T - • x £ T.

Taking x = xOj y = e and using the fact that e £ T, we get x0 £ T\ this, as we noted, implies (2) of our

Lemma 2. •

Corollary 1 Let M be a model of a theory T of a language L D L| , such that T extends the theory Cb.

Then W ts an initial segment (i.e. a complete binary subtree of the first order part Str(M) of the universe

of M.) which is closed for all functions with polynomial growth rate.

9



Proof: This is an immediate consequence of the following facts: (i) W is an initial segment of the whole

first order part of the universe of M (Lemma 1); (ii) W = W (Lemma 2); (iii) W is closed for all functions

with polynomial growth rate because it is the intersection of sets which have this property. •

Definition 4 Let T be a theory of a language L; then the following set of conditions we denote by C.

1. The language L of the theory T extends the language \J\.

2. Theory T extends the theory Cb; thus, T contains the comprehension schema for all EQ formulas

of the language JJ\ .

3. It is provable in T that every /i(x, X) £L has polynomial growth rate, i.e. if x — ( x 0 , . . . , x*) then

T h (vx)(Vx)(/i(x, x) ^ (x0 e . . . e **)m e R).

Corollary 1 enables us to introduce the following definition.

Definition 5 Let M be a model of a theory T of a language L such that T satisfies condition C.

1. W1 15 the substructure of the first order part Ml of the structure Ai which consists of the set W

together with the restrictions of the interpretations of the purely first order symbols of the language L

to the set W .

2. W2 is the substructure of M. whose domain is the pair of sets (W,Set(.M)) together with the restric-

tions of all relations and functions of the language L to the sub-universe (W,Set(jM)).

Clearly, the structure W2 satisfies all universal consequences of the theory T, while the structure W1

satisfies all purely first order universal consequences of T. In particular, if T is our theory C6 (Cp) , then

W1 satisfies all axioms of BASIC (BASIC? ).

Let <p be an arbitrary formula; then <pw denotes the formula obtained from <p by relativizing all first

order quantifiers of <j> to the universe W defined by the formula W(x). Thus, if <p is of the form (Vx C t) 9,

(Vx ^ t) (9, (Vx) (9, (3x C t) 9, (3x ^ t) 9, or (3x) 9, then <pw is of the form (Vx C t)(W(x) — 0w),

(Vx ^t)(W(x) ^ 9W), (Vx)(W(x) -+ 9w)y (3x Ct)(W(x)A9w), (3x ^t)(W(x)A9w) or (3x)(W(x)A9w)

10



respectively. Thus, for an arbitrary formula <p(x, X), an arbitrary sequence s of elements of W and an

arbitrary sequence 5 of elements of Set(M), W2 |= <p(s, S) if and only if M \= <pw (s, S).

Condition (3) of C implies that all terms of the language L define (provably in T ) functions with

polynomial growth rate. Combining this with the closure properties of W given by Lemmas 1 and 2, the

following Lemma can be easily proved by an induction on the complexity of bounded formulas.

Corollary 2 Let T be a theory of a language L satisfying conditions C. Then all bounded formulas of

the language L are absolute between the universe and the substructure W2, i.e. for an arbitrary bounded

formula <p with free variables X,x

T h (VX)(V£) f / \ W{xt) -+ (<p(x,X) ~ <pw(x,X)) ] .

We now formulate a strengthening C* of the set of conditions C for theories extending our base theory Cb .

Definition 6 Let T be a theory of a language L. We denote by C* the set of conditions consisting of

conditions (1) and (2) together with the the following strengthening (3*) of the condition (3) of C.

3*. Theory T contains the comprehension axiom schema for all S Q formulas of the whole language L .

Examples of theories satisfying condition C* are our theories Cb and Cp. Also, some of the theories

defined in [10] in the course of a proof-theoretic analysis of theories C*(£f) also satisfy condition C* . We

now want to show that in any model of a theory T satisfying condition C* the corresponding structure W2

satisfies an appropriate fragment of induction. Thus, W indeed resembles the set of natural numbers as

defined in set theory, not only by its definition but also by its properties.

Definition 7 The polynomial induction schema for a class of formulas $, denoted by $ — PIND, is the

following schema:

4>{e, y, Y) A (Vx)(^(a:) y, Y) -> (*(S°(*), y, Y) A ̂ ( x ) , y, Y))) - (V*M*, if, Y), (5)

where <p(x, y, Y) is a formula from the class &.

11



Theorem 1 Let T be a theory satisfying conditions C* and let <p be a SJ? formula of the language L, with

free variables xiyo1... 1yniYoi... tYk; then T proves

(Vy)(VY)(Vx)(^(x) A <p(e, y, Y) A (Vs -< x)(^(s, y, Y) -> (^(5°(«), y, Y) A ̂ (5X(5), y, Y))) - p(x, y, Y)).

Notice that parameters y need not be in W.

Proof: Let XQ be an arbitrary element of W; consider the formula ((x ^ xo) A ip{x,y,Y)) V (xo < x).

This formula is clearly also a S Q formula of the language L and so using the comprehension axiom we get

a set X which contains e and which is closed for both successor functions. Since x0 G W we get x0 G X,

and so vK^o) holds. •

Corollary 3 Ze< theory T be a theory satisfying conditions C*; then T proves the induction schema for

all S Q formulas of the language L relativized on W .

Proof: Using the closure properties of W (Lemma 1) and the absoluteness of bounded formulas (Corollary

2), it is easy to see that induction relativized on W follows from Theorem 1. •

Thus, if M is a model of the theory Cp, our remark after Definition 5 together with Corollary 3 imply

that W1 is a model of the theory PTC A, introduced by Ferreira in [5] (see also [4]).5 If T is our theory C*,

then W1 satisfies only a weak fragment of the theory PTC A consisting of the axioms of BASIC together

with the induction schema for sharply bounded formulas of the language Lb. In this theory one cannot

define all polynomial time functions; see our remark after Corollary 6.

The above propositions provide us with the basic properties of the predicate J^(x) which defines the

collection of the "number-like" sequences in theories extending our base theory C*. Thus, these propositions

provide an adequate "bootstrapping" of our base theory Cb, and we are now ready to characterize all the

levels of the polynomial time hierarchy as classes of provably recursive functions (with graphs of suitable

bounded complexity) of theories extending theory C*.

5 Essentially, PTC A is a binary-string version of Cook's theory P V. Cook was the first to introduce polynomial time
computable functions in a formal theory containing definitions by composition and limited recursion of such functions (see [3]).
However, instead of a theory for binary strings {0,1}* , Cook defined an arithmetical theory and in the definitions by limited
recursion he used strings {1,2}* corresponding to the dyadic notation of a natural number.
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1

3. Delineating the Polynomial Time Hierarchy

We now define some extensions of our base theory C6 which will be used to delineate the levels of the

polynomial time hierarchy of functions. Intuitively, a stronger comprehension schema allows us to construct

and prove convergence of algorithms which have more complex properties (recall that sets can be seen as

extensions of properties in Frege's sense). On the other hand, having stronger comprehension implies having

more sets in the second order part of the universe (the first order part i.e. the collection of all binary strings

remains the same); this in turn places further restrictions on what sequences are "numbers", because there

might be more sets in Ind(A^), so their intersection W might be smaller. Intuitively, this is not surprising:

some sequences which could be treated as "numbers" for simpler algorithms might be too long to allow

more complex procedures to be correctly performed on them. Recall that by our Lemma 2, in any theory

extending C* the collection of "numbers" W is the collection of sequences of "sufficiently small" length.

Thus, in our foundational approach, to secure the convergence of more complex algorithms we add more

sets, which automatically appropriately redefines the universe of the number-like sequences W, restricting

it to only those that are sufficiently short to allow performing these more complex algorithms. This is why

we feel that our approach is quite natural and intuitive from the foundational perspective. For models A of

purely first order theories of bounded arithmetic such as 5^, in order to get a model in which more complex

algorithms are convergent, we must either take a cut in A which satisfies stronger induction or replace

the whole structure A by another one satisfying such stronger induction. However, from the foundational

perspective, this approach does not seem to be suggested either by the usual definitions of the set of natural

numbers or of an algorithm.

To delineate various computational complexity classes we must suitably restrict the class of formulas

which are allowed to appear in the comprehension schema. There are several ways to do so; here we present

one of them, based on limiting not only the bounded quantifier complexity, but also the appearance of the

second order parameters in the formulas allowed in the comprehension schema. This approach appears to

be the simplest one which results in theories of an appropriate strength. Another approach will be presented

in the second part of this paper.

Definition 8 Let L be a language extending the language Lb. The classes of (purely first order) E*, II*

and EQ(E* ) formulas are defined (simultaneously) inductively as follows:

13



1. The classes of EQ ; HQ and £o(£o) formu^as are a^ eQua^ t° ^e ^easi sei of formulas which contains

all first order atomic formulas and which is closed for all Boolean connectives and sharply bounded

quantifiers 3x C t(y) and Vx C t{y).

2. The class of E*+1 is the least set of formulas containing all EQ(E*) formulas which is closed for A,

V, sharply bounded quantifiers and bounded existential quantifiers 3x =3: t(y).

3. The class of H*+1 formulas is the least set of formulas containing all EQ(E*) formulas which is closed

for A, V, sharply bounded quantifiers and bounded universal quantifiers Vx =3: t(y).

4. The class of £ Q ( E * + 1 ) formulas is the least set of formulas containing all E*+1 and n*+1 formulas

which is closed for all Boolean connectives and sharply bounded quantifiers.

Definition 9 Let L be a language extending the language \jh
2. The class O / S Q ( E J ) formulas of the language

L is the least set of formulas which contains both first and second order atomic formulas of the language

L and (purely first order) E* formulas which is closed for all Boolean connectives and sharply bounded

quantifiers.6

Definition 10 Let T be a theory of the language L such that T satisfies condition (C*); then T(Ef) is the

theory obtained from T by adding the comprehension schema for the class of purely first order Ej formulas

of the language L.

Clearly, T(£$) is just T itself.

Lemma 3 Let T be a theory as in Definition 10, and let T(S^(Ef)) be the theory obtained from the theory

T by replacing the comprehension schema for the class of SQ formulas of the language of T; with the

comprehension schema for S Q ( E * ) formulas of the same language. Then the theory T(Ef) and the theory

( E * ) ) have the same set of consequences.

Proof: Clearly, theory T(Ej) is a sub-theory of the theory T(S^(Ef)), since all instances of both schemas of

T(Ef) are also instances of the comprehension schema of the theory T ( E Q ( E * ) ) . In the other direction, con-

sider an instance of the comprehension schema for a SQ (E*) formula 0(x, t/, Y), and let ^fc(^, z, y), k < n,

6 Notice that the difference between Dj(Ef) and Sj*(£f) formulas is that the former are purely first order formulas, while
the latter ones include second order atomic formulas in the set of formulas which we close for Boolean combinations and sharply
bounded quantifiers.
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be all E* sub-formulas of the formula 0(x,y, Y), such that 0 is built from atomic formulas and formu-

las il)k{x,z,y), k < n, using only Boolean connectives and sharply bounded quantifiers. We now con-

sider purely first order formulas *l>*k{v,y) such that T h xl>k{x,z,y) <-• ipl((x, (z)),y), where (z) stands

for (zi, (z2 , . . . , (zm-i, zm)). . .) . We now fix parameters y, Y and apply instances of the E* comprehen-

sion schema for all formulas i/>l(v,y) to obtain sets Xk such that for all v, v G Xk «-• V^^?!/)- Let

J? = ^o,...Xn, and let the formula Q*(xyy,X1Y) be obtained from the formula Q(x1yyY) by replacing

subformulas tl>k{x, z, y, y) by formulas (x, (z)) G Xk . We now apply the instance of the SQ comprehension

schema for the formula 0*(x, y, X} Y) to obtain a set Xe* such that for all x, x G Xe* <-> 0*(ar, y, X, Y).

Clearly, for such a set X and ail x, x G A'e* <-> 0(x,y,X,Y). I

In this section we will also establish some natural connections between our theories and a version of the

well known fragments of bounded arithmetic Sx
2, formulated for binary strings.

Definition 11 Sj is a theory of the language Lh obtained from the theory BASIC by adding the polynomial

induction schema for the class of Ef formulas of the language L\,.

Thus, for i > 1, S2 is basically a binary-string version of the fragments of bounded arithmetic S\ as

introduced by Buss in [1]. On the other hand, if we add to BASICP the polynomial induction schema for

So formulas of the language IP, we get Ferreira's PTC A, while his PTCA+ (see [5] and [4]) is obtained

by adding to BASIC9 the Ej-PIND induction schema. Theories S*2 (with a different notation) were also

introduced in [6].

We now formalize the notion of a provably recursive function for our theories C6(Ej). This notion

certainly applies to functions of mixed type (usually called functionals); however, since here we are primarily

interested in characterizing classes of the polynomial time hierarchy, we will restrict ourselves to purely first

order functions. In the second part of this paper we deal with functions of mixed type, where the second

order variables range over functions of arbitrary growth rate, rather than over sets. However, for that reason,

the comprehension schema will be restricted in a different way.

Definition 12 The set of all finite binary strings B = {0,1}*, together with its usual operations and

relations is called the standard first order structure of binary strings and is denoted by B1.

Definition 13 A function f(x) : Bk -» B is Ej -definable in the theory C*(Ej) if there is a Eb
{ formula
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<pj(x,y) such that the following holds:

C»(Ej)h

B1 \=

Note that by our absoluteness result (Corollary 2) the first condition is equivalent to

C»(E,*) h (Vs)( / \ W(Xi) -> (3\y)(W(y) A w ( * , y)))-

We use the usual definitions of the notions from bounded arithmetic, except that here numbers are replaced

by binary strings. In particular, D?+1 is the collection of all functions computable in polynomial time with

a E*-oracle (see [1]), and a function f(x) is E*-definable in the theory 5 j if there exists a E* formula

<Pf(x,y) such that S* h (V£)(3!y) *>/(*, y) and Bl \= (Vf )^ (* , / (* ) ) •

Theorem 2 For all i > 0 theories C6(Ej) and S*2 ^
ave ifie same classes of Ef -definable functions.

To prove Theorem 2 we need several lemmas.

Lemma 4 For any model Ai of the theory C*(E*), the corresponding structure W1 is a model of the theory

Sx
2. Thus, theory Sl

2 is interpretable in the theory

Proof: As we noted after Definition 5, axioms of BASIC hold in W 1 . Thus, it suffices to show that also

C*(E,^) h (Ef - PIND)W . First of all, our absoluteness result and the closure properties of W (Lemma 2)

imply that it is enough to prove in C6(E*) that for any x0 6 W ,

<p(e, y) A (Vt)(<p(t, y) - (*>(S°(*), v) A <f(Sl(t), y))) - ^ o , y). (6)

We now fix values for parameters y and use the corresponding instance of the E*-comprehension axiom

schema to get the set X^g such that X^j = {x \ <p{x, y)}. Then (6) is equivalent to

(e e x^) A (vt)((* e Xyj) - ((s°(t) e x^g) A (5 X (0 E X,,^))) -> (x0 E

which immediately follows from the fact that XQ E W .

Corollary 4 For any formula a of the language of £%, if S\ h <r then C6(E*) h <rw.
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The converse of Lemma 4 is also true. Unfortunately, with a definition of C6(Et-) in which the comprehension

schema asserts the existence of infinite sets, we must use an expandability property of models, rather than

interpretability of theories. One can replace our comprehension schemas by ones that assert only the existence

of appropriately defined finite sets, i.e. by schemas of the form

(Vy)(VY)(Vz)(3X)(Vx)(x G X «-> (x < z) A y>(x, y, Y))

where <p is a formula of the appropriate class not containing variable X. However, this approach would

make our definition of W awkward and is not very useful in any other way, except that such theories are

in fact interpretable in the corresponding theories S2 • This can be easily proved using the partial truth

predicates /it- for E* formulas which we use in the proof of Theorem 4.

Lemma 5 Any model A of Sl
2 is expandable to a model A2 of C6(E*) with the same first order domain

by adding only a suitable set of second order objects.

Proof: Let A be any model of 5^. Consider the class of all subsets of A which are parametrically definable

in A by EQ(E*) formulas, i.e. formulas which are the closure of Ej formulas for Boolean connectives and

sharply bounded quantifiers. This class of sets we take as the second order part Set(^4) of the universe for a

structure A2 of the language L| whose first order universe is the universe of A. The structure A2 satisfies

the axioms of C*(E*) because EQ(E*) formulas are closed for Boolean operations and sharply bounded

quantifiers. Moreover, in such a structure W is the whole first order part of the universe, because Sl
2 proves

induction for EQ(E*) formulas (see [7]). Thus, the only set containing the empty sequence and closed for

successor functions which belongs to our collection of EQ(E^) parametrically definable sets is the whole

universe, which implies that W is equal to the whole universe. •

Corollary 5 For any first order formula a, if C*(Ef) h aw , then S*2 h c.

Proof: Immediate consequence of the previous Lemma and the Completeness Theorem. •

From Corollary 4 and Corollary 5 we get the following Theorem.

Theorem 3 Let (p be a E* formula, then
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if and only if

As an immediate corollary of the previous theorem and the binary string version of the Main Theorem of

Buss's [1], in the form proved by Ferreira in [6], we get the main result of this paper:

Corollary 6 For all i > 1, Ej -definable functions of the theory C6(Ef) are exactly Df functions.

For i = 0, it is easy to see that our technique of building models of theories with comprehension axioms from

models of bounded arithmetic (Lemma 5) and the main Theorem from Section 2 of Chapter 2 in Ferreira's [5]

imply that the structure W1 in models of C6 satisfies only a weak theory, in which not all polynomial time

functions are definable. This is why, in order to have a theory with a comprehension schema for EQ formulas

only, which is sufficiently strong to delineate the class of polynomial time computable functions, we have to

extend the language JJ\ by adding a symbol for every such function and thus obtain our language lf2 and

theory Cp . In fact, in [10] we further extend the language \72 by adding a new mixed type function symbol

for every function computable in polynomial time with oracles for the set-variables.

Finally, we want to explain our choice of the classes of formulas allowed in the comprehension schemas

of the theories C6(E*). It is easy to see that addition of the comprehension schema for all SJj* formulas

(i.e. all formulas obtained from the first and second order atomic formulas closing for Boolean operations,

both sharply bounded quantifiers and existential bounded quantifiers) to C* produces a theory (which we

denote by C6(S^)) in which every instance of the comprehension schema for bounded formulas is provable.

In this theory for any bounded formula (p with a EQ -matrix rp we can replace the inner-most bounded

quantifier and the matrix, say (3x ^ t(y))tp(x1 y) with (t/o,..., t/jt) £ X$ , where X^ is obtained by applying

the appropriate instance of the S^ comprehension schema. We can repeat this procedure until we get a

EQ formula. It is not difficult to show that if we have comprehension for all bounded formulas, then W

satisfies 52 (=\Ji E uS^) and so all functions from all levels of the polynomial time hierarchy are provably

recursive in this theory. On the other hand, since any model of S2 can be expanded to a model of C6(E??)

by adding all sets parametrically definable by bounded formulas (due to the induction schema, the only set

in Ind(At) is just the whole first order universe and so W is equal to the whole universe). Thus, we get

that the T\-definable functions of C6(S^) are exactly the functions from all levels of the polynomial time

hierarchy. This is why, in older to get a theory whose E*-definable functions are exactly the functions from
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the ith level of the polynomial hierarchy (: > 1), restriction of the bounded quantifier complexity of the

formulas allowed in the comprehension schema is not enough.

Another way to restrict the comprehension schema is along the lines of Leivant's original work. Let S "̂1"

be all formulas obtained as the closure for Boolean operations, sharply bounded quantification and bounded

existential quantification of atomic first and second order formulas, but in which all second order atomic

formulas appear positively7. Consider a theory which, besides the axioms of BASIC has the Comprehension

Schema for all S^ + formulas of Lh
2] denote it by C6(S^+) . Then Ej-definable functions of this theory

are again only polynomial time computable functions. To see this, consider any model of S%, and notice

that the collection of all sets parametrically definable by E{ formulas (with the usual definition of such first

order formulas) satisfy S ? + Comprehension (the positiveness requirement is here crucial). Again, the only

definable set in Ind(A4) is the whole universe, and thus we get that for any model A of S% there is a

model of C6(S^+) with > t a s W . But this clearly implies that all Ej-definable functions of C6(S^+) are

E{ -definable functions of S% , and thus polynomial time computable functions.

4. Interpretability and Fragments of Bounded Arithmetic

In this section we want to give another application of the speed-up induction method, this time to obtain

(essentially) an interpretability result. Even though an analogous result also holds for the comprehension

theories which we considered in the previous section, we formulate and prove it for more familiar theories of

bounded arithmetic.

To make our proofs easier, we will use E* — LIND rather than E* — PIND to axiomatize S^. Buss

proved in [1] that over S\ these two axiomatizations are equivalent. Recently this result was improved by

replacing S\ by BASIC (see [2]); thus we have no loss of generality. Recall that in BASIC we can prove

that ((x,y>)! = x, ((x,y))2 = y and ((x)i,(x)2) = x. Thus, in BASIC, every formula for every value of

its parameters is equivalent to a formula of the same bounded quantifier complexity which contains only one

parameter. Let BASIC* be the set of axioms of BASIC (as introduced by Buss in [1]) together with the

following simple extra axioms: |x • y\ < \x\ + |y|, |x| < x.

7 Informally, these are formulas such that after we push all negations inside to the atomic subformulas and cancel double
negations, all second order atomic subformulas will have no negations in front of them.
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Theorem 4 For every i > 1 there exists a E*+1 formula Q,(iy, v) such that for every model M of BASIC*

either M [= Sl
2 or there exists an element c E \M\ such that the set fli(c) = {z \ M \= Q,(z,c)} is closed

for all functions of Lb and is a model for S^, with functions and relations of M restricted of to S~fc,(c).

Proof: Let #n(x) be a sequence of terms defined inductively as follows: #°(x) = x,

x#(#*(a;)). Then one can find an appropriately defined E* formula /it- and a finite fragment F2
l of S*2

(see [7] for the details) such that one can prove in F2
{ that m has the properties of a partial truth predicate

for the class of E* formulas. By this we mean that for every E* formula tp(x, y) there exist natural numbers

e^ and m^ such that:

F* I- (V*)(Vy)(Vz)((z > #m*{{x,y))) - (V(x,y) - *(?*, («,»>,*)))• (7)

Thus, we let {<r5 | s < n} be a finite set of formulas such that

1. For all s < n (the universal closure of) the formula crs is the E* — LIND induction axiom for a

formula (j>s(x,y), i.e. as(x1y) is of the form

2. The (universal closure of the) formula an is the induction axiom for the formula <j>n = /it(e, (x, y), z)

with e, t/, z as parameters.

3. Fi = BASIC* U {<TP | p < n}.

Let M \= BASIC* . If A^ |= i^ t n e n f°r arbitrary %l> there exists a number m^, such that (7) holds. Consider

an instance of the Ef — LIND induction axiom for the formula V>, with y and a as fixed parameters:

, y) A (V* < |a|)(V>(*, y) - tP(x + 1, y)) -+ ^(|a|, t/). (8)

Let z = #mV'((|a|, y)). Then (Vx < |a|)(^(x, y) ^ /x,(e^, (x, y), z)), and so (8) follows from the correspond-

ing instance of an for the above value of the parameter z. Thus, in this case M \= S*2.

If M fc£ F2 then there exists at least one k < n and elements a, 6 from M such that the induction

axiom a * fails for a, 6:

(0,6) A (Vx)(^(i, ft) ->&(* + 1,6)), (9)
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and

J6). (10)

Let for j < n

ej(zf v, u) dl (V* < |v|)(Vy < \v\)((x < y) A (y < z + z) A <j>j{xy u) -> <^(y, u)) (11)

*,-(*,«,«) * (Vz < M)(v** < M)((z* < z • o A e^z,«, ti) - e^z*,«,«)) (12)

* i K « ) ^ (Vti < tO*i(M,">«) (13)

a - K ^ A * iK« ) (14)

Clearly, fit- is a H*+1 formula. Now let c = max{a,b}\ we now prove that

ft.-(c) = {m|A<|=a-(ro,c)}

is a set closed for all functions of the language of bounded arithmetic and that it defines a model of 5^; this

model we will also denote by fli(c).

Claim 3 For every g £ \A4\ set fli(g) is a cut (not necessarily proper) in the universe of the model Ai

which is closed for all functions with polynomial growth rate.

Proof: As in the proof of Lemma 2, for every two natural numbers nym one can prove in BASIC* the

universal closure of the following formulas:

u1v)^(ej(n-z1uiv)Aej(z\uiv)))) (15)

^•(n, u, v) A (Viu)(W < w)(tyj(w, ti, v) -> (*j(wn + m, ti, v) A ̂ ( u / , ti, v))). (16)

These proofs can be carried out in BASIC without using any assumptions on formulas </>j . In fact, if (9) fails

for some values of ti, v, then for these values 0;- (z, ti, t;) holds if and only if z = 0, but this implies that for

such values of ti, v, the formula *j(tu, ti, v) holds for all w. Thus, the formula *j(tu, ti, t;) always defines an

initial segment which contains all the standard numerals and is closed for the squaring function. Using the

fact tha t in BASIC* we have | * # y | = |a?|.|y| + l , \x-y\ < \z\ + \y\, \x\<x,x<y-> \x+y\ < \2-y\ = |y| + l ,

and (16), is easy to show that formula ^(|tf | , t ; , ti) defines an initial segment closed for all functions with

polynomial growth rate. This clearly implies that the same holds for the set {m | M |= tti(m,g)} for every

ge\M\. m

Thus, as in the case of W in the Lemma 1, we get the following absoluteness property of ft,-(c).
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Lemma 6 It is provable in BASIC* that for every g G \M\ all bounded formulas are absolute between

fti(g) and the whole universe M, i.e. for any value of parameters from fli(g), any bounded formula is true

in the substructure Cli(g) if and only if it is true in M.

Clearly Cli(c) satisfies all the axioms of BASIC* . We now want to show that ft,(c) also satisfies all

axioms of S2. For this purpose we first prove the following Claim.

Claim 4 One can prove in BASIC* that for every natural number j < n and arbitrary elements g, A, m

(h < g) A (m < g) A Qi(hi9) A ^(0,m) A (V* < |/i|)(^(s,m) -> ^ ( x + l,m)) - *;(|A|,ro) (17)

Proof: Assume ftt-(A,m) holds, then, since m < g, we get from (13) that *j(|A|,<7,m) holds, i.e.

(Vz < |<7|)(Vz* < |,|)((z* < z • \h\) Aej(z,g,m) - e^z ' .y .m)) .

Since h < g we get for z = 1 and z* = |/i| that 0j(l,(/,m) —• 6j(|A|,flf, m). From this and the second

conjunct of (9) we get 0j(|A|, <7,wi). For x = 0, y = |/i| we get ^j(0,m) —• ^j(|A|}m), and so the second

conjunct of (9) implies ^( | / i | ,m).

Recall that by our assumption the Ej — LIND induction axiom for the formula <f>k fails in M:

M }= «^t(0,6) A (Vx)(*fc(*. 6) - ^(a: + 1, 6)) A - .^( |o | , 6),

and that c was chosen so that a, 6 < c. Thus, the above Claim implies that the set fi»(c) is a proper cut

in M\ in particular, a ^ fit(c). Consequently, for all m G Af if m 6 fti(c) then m < c. From this and 17

we get

n,-(m, c) A fi,-(A, c) A ^ (0 , m) A (Vx < |/i|)(^(x, m) -, ^ ;(x + 1, m)) -> ^( | / i | , m). (18)

This, together with Lemma 6 implies that fl{(c) satisfies all the axioms of 5 2 , which finishes our proof of

Theorem 4. •

Other applications of the speed-up induction method can be found in [2], where it is used to demonstrate

the unprovability of consistency statements in theories of bounded arithmetic, while in [9] it is used to

establish the equivalence of certain axiomatizations of these theories.
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