
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



Table of Contents i

Table of Contents
1. Introduction and Summary 3

1.1. Data Memory 3
1.2. Production Memory 3
1.3. Control 4
1.4. The Interpreter 4
1.5. Extensions 4
1.6. Prerequisites 4
1.7. Manual Organization 4

2. Overview of PSRL Representation 7
2.1. Production System Architecture 7
2.2. Multiple environments for production system execution 9
2.3. Rule Structure 9
2.4. Left-hand-side element schemata 10
2.5. Match variable schema 13
2.6. Right-hand-side element schemata 13

3. Representing Rules in PSRLOPSS Notation 15
3.1. An example: Mapping from OPS8 to schemata 15
3.2. OPS8 language definition overview 19
3.3. Working Memory and Production Memory declarations 20
3.4. Left-hand-side elements in OPS8 22

3.4.1. Notations for element forms 22
3.4.2. Details on restriction forms 24
3.4.3. Summary of OPS5-OPS8 differences 26
3.4.4. Vector attributes 27
3.4.5. Relations in templates 27
3.4.6. Efficiency hints for Left-hand-sides 27

3.5. Right-hand-side elements in OPS8 27
3.5.1. Details on actions 29
3.5.2. Functions 33

4. User Commands for PSRL0PS8 37
4.1. Loading the PSRL system 37
4.2. Style of Use 38
4.3. Complete grammar for commands 39
4.4. On-Line help 40
4.5. Loading, translating and running rules 41
4.6. Controlling execution: the recognize-act cycle 44
4.7. Working Memory and Production Memory Commands 46
4.8. Debugging and tracing 47
4.9. User interface 50
4.10. User-defined actions and functions 53
4.11. Internal implementation details 53

5. Applications and Comparisons 55
5.1. Applications of PSRLQpS8 55

5.1.1. Caiifsto 55



ii Table of Contents

5.1.2. HI-RISE 56
5.1.3. KBGraphics 56

5.2. Comparisons to other systems 57
6. Conclusions 61

6.1. Future developments 61
7. APPENDICES 63

7.1. Listing of psrl.init file 63
7.2. Proposed PSorts Package 63
7.3. Basics 66
7.4. Selected Auto Factory Rules 81
7.5. Syntax Tests 87

Index 105



List of Figures in

List of Figures
Figure 2-1: ps-architecture Schema

psrl-ops8 Schema
production-system Schema
envi ronment Schema
rule Schema
Ihs-element Schema
<template> Schema
psrl-instance Schema
match-variable Schema

rhs-element Schema

Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 2-9:
Figure 2-10:
Figure 2-11:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:
Figure 3-9:
Figure 3-10:
Figure 3-11:
Figure 3-12:
Figure 3-13:
Figure 3-14:
Figure 3-15:
Figure 3-16:
Figure 3-17:
Figure 3-18:
Figure 3-19:
Figure 4-1:

make Schema
autosel Schema
beg Schema
begd Schema
begdt Schema
begc2 Schema
begc2t Schema
begc3 Schema
begc3t Schema
begai Schema

bega2 Schema
bega3 Schema
clock Schema
make Schema
Remove Schema
modify Schema
halt Schema
bind Schema
cbind Schema
write Schema

user-action Schema
Figure 4-2: userexa2 Schema

8
8
8
9

10
10
11
11
13
13
13
15
16
16
17
17
17
18
18
18
19
19
21.
30
31
31
31
32
32
32
53
53

iii



Abstract

PSRL is a production-rule interpreter based on the primitives and knowledge representation of
the SRL/1.5 language. It adds a procedural capability to SRL's declarative features, and may
become the basis for a complete control environment for SRL users. The current version includes a
facility for converting OPS5 rules into PSRL schemata. They can then be run with an SRL database
context as the working memory. Many OPS5 debugging and tracing functions have been
implemented in PSRL. Being based on SRL gives PSRL advantages over OPS5 in allowing relations
among data elements, user-defined inheritance of values, default values, automatic type-restriction
testing on values, and the availability of meta-information on schemata, slots and values. In addition,
the user has SRL demons, a large database capability and SRL contexts for considering alternative
models. PSRL encourages hierarchical organization of small modular sets of rules, each with its own
control strategy. SRL demons can be used to control the execution of rule sets. PSRL is
implemented so that its facilities can be reconfigured in the service of a variety of problem-solving
architectures.



Introduction and Summary

Ff

Acknowledgments

Mark Fox, Pat Langley, and Mark Wright were co-authors of the Preliminary Design of PSRL,
and this paper borrows from some sections of that document. Digital Equipment Corporation is the
primary supporter of this research. Michael Greenberg wrote the first version of the PSRL matcher
code. Elaine Kant provided useful comments on the introductory overview of PSRL. The users
whose projects are mentioned here have provided valuable feedback on the system, well before the
manual was finished; in particular, Mary Lou Maher, Joe Mattis and Arvind Sathi have helped to make
PSRL more useful.. The last three have also supplied written descriptions that were used to construct
the chapter on applications. I am grateful to Mary Lou Maher, Arvind Sathi, Duwuru Sriram and
Stephen Smith for many helpful comments on the manual. Jill Fain, Duwuru Sriram, Mark Fox, and
Arvind Sathi provided crucial assistance in the comparisons of PSRL to ROSIE and LOOPS.



Introduction and Summary 3

1. Introduction and Summary
PSRL combines the production system approach of data-directed control [13,14, 5,15] with

the features of SRL, the Schema Representation Language of Fox, et ai [8,16]. SRL is a Lisp-based
declarative formalism for representing complex, structured objects and their interrelations. Rules in
PSRL are expressed in an extension of Forgy's OPS5 [6] language syntax, P$RLOpS8, and many of
the OPS5 user commands are available, so that the running environment of PSRL is similar to that of
OPS5.1 Since rules are translated into schemata, and operate with respect to schemata, the PSRL
environment also includes the full set of SRL commands and utilities. PSRL is much less efficient
than OPS5 (it is currently run interpretively, with an optimizing compiler still being planned), so that it
is impractical to deal with large rule sets. Instead of executing rules in large sets, they are partitioned
into small packets that are stored in schemata, organized using SRL relations, and triggered by SRL
demons.

Given the variety of ways of operating within SRL (including a version of OPS5 with an interface
for transferring data to and from SRL schemata), PSRL seems most appropriate for monitoring and
manipulations that involve bringing together and combining information in an associative, pattern-
directed way, from a number of schemata. PSRL is less appropriate for single-schema operations
and operations where specific schemata (as opposed to classes or sets with similar properties) are
used. It is currently being used in a high-rise building design system, in a project management system
with heuristic rules, and in a knowledge-based graphics system (these are described in more detail
below).

1.1. Data Memory
PSRL rules access and manipulate schemata within the scope of entire SRL database contexts,

inheriting considerable representational power from SRL. An SRL user can define new relations
among objects, allowing various kinds of information to be inherited automatically and according to
user-defined constraints. SRL contains facilities for automatically checking the validity of values, and
for executing procedures (demons) as a result of schema operations. The SRL database system
provides automatic swapping of schemata to disk files, so that very large collections of them are
manageable. Thus PSRL rules can deal with a much larger and more permanent database than is
possible in OPS5. Databases are usually built up by other means, with PSRL applied to the resulting
mass of data to perform bookkeeping, maintenance, and communication operations.

1.2. Production Memory
PSRL interprets rules whose syntax closely resembles that of OPS5. A translator takes the

OPS5-like rules and builds schemata to represent them internally. Rules are grouped into sets, and
stored in "production-system" schemata, whose names can be assigned to global variables or stored
inside a user's schemata and demons. Features have been added to extend the syntax beyond OPS5:
allowing specific, named schemata to be matched; allowing schemata to specify direct relationships
to other schemata (OPS5 only allows indirect pointers); and allowing restrictions to be placed on
class names and on element variables. Element variables (the ones in braces surrounding condition
elements) can be used freely inside elements, for matching and modification purposes. The user can
specify that inheritance of values is to be allowed in matching and that matching is to be done with
respect to particular contexts within an SRL database.

"OPS5 is well teown; QPS6 existed as a design only; GPS7 is currently only an experimental implementation in Pascal, tor
thePERQ.



4 Production Memory

PI A direct link to Lisp functions is provided in the 'eval' action function, which takes a Lisp
S-expression, substitutes values for OPS variables, and then evaluates it. The OPS5 Lisp interface is
not implemented, since SRL functions provide equivalent power, in combination with the eval action
function. Demons can be attached to classes of schemata to provide another sort of procedural
escape. Using either the eval function or demons, a user can readily have rule-sets executed
recursively from within the actions of rules.

1.3. Control
Rule sets can be invoked by demons attached to schemata, or by Lisp function calls. Each rule

set has associated with it a control function that determines what style of conflict resolution is to be
used during its execution. A number of options are supplied, and the user can code others, as
needed. Some examples of existing control functions are: cycling repeatedly through a list, going
back to the beginning after each successful rule firing; sequencing through a list, executing all
possible matches of each rule, then going on to the next; stopping execution after one rule has fired;
and cycling through the list of productions in reverse order.

1.4. The Interpreter
Most of the tracing and debugging facilities available in OPS5 are also provided to PSRL users.

In addition, SRL-proficient users can attach special-purpose demon functions for monitoring and
tracing purposes, as needed.

1.5. Extensions
Many problem-solving architectures other than the basic production system recognize-act

cycle are possible, using the basic modules of PSRL. PSRL also compares favorably with other
similar systems such as LOOPS [1] and ROSIE [4], especially in regard to making full use of the power
of SRL

1.6. Prerequisites
Some familiarity with the OPS5 language [6] will be helpful, but not required, here. The basic

prerequisite is familiarity with Al programming, pattern matching and production systems [2,3,15],
and with the SRL/1.5 language and concepts [16], Examples, especially the extended one in Chapter
3, are intended to be helpful to production-system novices in reviewing the central concepts.

1.7. Manual Organization
Chapter 2 discusses PSRL from the standpoint of its representation as SRL schemata. Most *

system aspects are described declaratively, and the schemata precisely delineate the full power of
expressions in PSRL. Dealing exclusively with PSRL at the SRL level, however, seems cumbersome
in comparison to the P S R L Q ^ notational level, as described in the later chapters. Chapter
3 introduces the PSRL0PS8 notation, first presenting an extended example of how an OPS8 rule is
represented as SRL schemata, and then proceeding with full details on various declarations and on
the options available for expressing rules in OPS& Chapter 4 gives details on the user commarcis
available in PSRL. The first few sections fill in details on loading and running the system, and on
setting up the control of rule set execution. Then come details on tracing, debugging and user
interface.



Manual Organization 5

Chapter 5 briefly sketches several developing systems that are using PSRL, in order to illustrate
some of the possibilities. It also compares PSRL to several other rule-based representation systems.
Chapter 6 indicates some directions for further development of PSRL.

Chapter 7 contains several illustrative runs of PSRL, showing examples of execution of most of
the important PSRL commands. These appendices are intended to present selected features of the
system in a natural user-oriented ordering, in contrast to the main chapters whose organization is
along logical, structural, or taxonomic lines.



6 Overview of PSRL Representation

PI



Overview of PSRL Representation 7

2. Overview of PSRL Representation
The main concepts involved in production systems are:

• Production system: a set of rules that are considered together as a procedure for
performing a data-directed computation;

• Production, or Rule: a condition-action (or IF-THEN) pair, specifying a data condition
under which the action of theVule is performed;

if

• Condition, or left-hand-side (LHS): a pattern or abstraction specifying a data state or a
class of possible data states;

• Action, or right-hand-side (RHS): a sequence of data manipulations to be performed;

• Architecture: the combination of a pattern matcher for conditions, procedures for
executing actions, a conflict resolution or other control procedure, and various
parameters that affect the operation of the interpreter; and

• Environment: the combination of architecture, production system, working memory, and
other database parameters that are involved with the execution of a production system.

In PSRL, SRL schemata are used to specify all of the above. The current implementation does
not make use of the last two schemata while it is running, since only one value is available for each
slot. Later versions, however, are expected to use them for a variety of special-purpose
configurations.

This chapter will sketch the concepts of PSRL at the SRL level. The progression is generally
from high-level schemata, such as production system architecture, to low-level ones, such as
templates. As mentioned above, users of PSRL will probably prefer to do most manipulation at the
PSRLQpS8 level (see Chapter 3), due to its greater convenience - many schemata can be involved in
the SRL definition of even a single rule, making it cumbersome to work at that level. So the purpose
of this chapter is to provide some insight as to how rules and systems can be represented internally,
as a basis for understanding how the pSRLO p S 8 notation is interpreted. Some readers may prefer to
skim this and refer back to it at later points for clarification.

2.1. Production System Architecture
The slots of a ps-architecture schema, Figure 2-1,2 specify the functions that the PSRL

interpreter should use to interpret rules according to that architecture. The LHS-MATCHER (left-hand-
side-matcher) is applied to the ' i f or 'condition' parts of rules to determine which conditions are
satisfied by the current state of the database. The RHS-EXECUTER is a function to perform the right-
hand-side actions of rules. The CONFLICT-RESOLUTION slot has a function for choosing among the set
of matched rules, for a subset of rules whose actions are to be performed. The repeated application
of the functions specified in the ps-architecture as just described is the traditional recognize-act
cycle of production systems.

Urn fonts used here are as in other SRL reports: 'bold for schema names* SMALL CAPITALS for slot names* and italics for facet



8 Production System Architecture

PI

{{ ps-architecture
LHS-MATCHER:
RHS-EXECUTER:
CONFLICT-RESOLUTION: }}

Figure 2-1: ps-archjtectu re Schema

As mentioned above, the current PSRL0PS8 interpreter does not make use of the
ps-architecture schema, but simply operates according to psrl-ops8, shown in Figure 2-2. The
above description of the recognize-act cycle is only an approximation, as regards the current
implementation.

{{psrl-ops8
is-A: "ps-architecture"
LHS-MATCHER: fire-m

RHS-EXECUTER: fire-X
CONFLICT-RESOLUTION: update-conflicts}}

Figure 2-2: psrl-ops8 Schema

Each set of PSRL rules (each 'method5 or 'PS module') is organized by a schema that is an
instance of the one shown in Figure 2-3.

{ { production-system
RULE-SET:

restriction: (set (or (type "instance" "rule")
(type "instance" "production-system")))

NUMBERS:
CONTROL:}}

Figure 2-3: production-system Schema

The value of the RULE-SET slot names the rules that are contained in the specific system; the set
of elements is taken to be ordered. If an element of a RULE-SET is a production system rather than a
rule, then that production system is interpreted (its entire RULE-SET is processed according to its
CONTROL dot) whenever a rule would be, in that position in the set. The NUMBERS slot specifies
numerical parameters controlling the interpretation of the rules in the production-system, as in the
Langfey's PRISM system [9]. It is unused at present The CONTROL slot specifies a function for the
recognize-act cycle for the given production-system. A number of different possibilities are
currently available, described*in Section 4.6. A detailed example of a production system is given m
Section 3*1-



Multiple environments for production system execution 9

2.2. Multiple environments for production system execution
PSRL will eventually allow multiple environments in which rules are evaluated (Figure 2-4). An

environment would include all the 'dynamic5 aspects of PS execution, in contrast to production-
system, rule, etc., which define relatively 'static' aspects. In fact, the environment is the only place
that such dynamic information is placed, in order to cleanly separate it from rules and other static
entities. Think of rule sets as functions, while environments specify the data to which the functions
are applied - there could obviously be more than one such application going on at the same time in a
computation. Thus, separate activations of the same set of production rules would be specified by
different environments. Each environment would maintain its own rule set, in its production-system
schema, and its own conflict set. The user would define environments, activate and deactivate them,
and delete them. (A later version may allow parallel execution.) In the current version of
only one environment is active, and it is specified internally rather than using a schema.

{{environment
PS-ARCHITECTURE:

PRODUCTION-SYSTEM:

CONTEXT:

AGENDA:

STATUS: } }

Figure 2-4: environment Schema

The slots in an environment would indicate how one would start up and run a PS. One slot
would contain an instance of the ps-architectu re schema, described above. Another would contain
the name of a production-system, which includes a set of rules. The CONTEXT slot would indicate the
SRL database context in which interpretation of the rules would take place.3 The AGENDA and STATUS

slots would hold other information regarding the dynamic execution within an environment, namely
currently uncompleted actions within the rule-set (used, for example, when a rule-set's execution is
pre-empted or suspended by that of another rule-set) and the current execution status (e.g., active,
suspended, or completed).

2.3. Rule Structure
A rule is specified as an instance of the rule schema, Figure 2-5. The PSRL-LHS slot contains a

set of elements that are interpreted as conditions, being instances of Jhs-element. The PSRL-RHS

slot contains a set of dements, instances of rhs-element, that are interpreted as actions to be
executed - an "<action>11 is one of a set of predefined schemata (including user-defined ones).
Details on these appear in the next sections. A third slot is added by the current interpreter,
PSRL-VARIABLES, whose value is a list of the match variables in the rule, alphabetized.

3
In version 13, if wilt be the name of the working memory context as described lit the ^SRL-CONTEXT global1 variable,

described below; rules will be stored m contexts according to the variable $PSRL«RULE-CQNTEXT.



10 Rule Structure

PI

{{ rule
PSRL-LHS:

restriction: (set (type "instance" "Ihs-element"))
PSRL-RHS:

restriction: (set (type "psrl-action" "<action>"))}}

Figu re 2-5: ruIe Schema

2.4. Left-hand-side element schemata
The PSRL-LHS slot of a rule is filled by an ordered set of instances of the Ihs-element schema

(Figure 2-6).

{{Ihs-element
TEMPLATE:
NEGATION:

restriction: (or t nil)
default: nil

SCHEMA-VARIABLE:

INDEX:

restriction: (or t nil)
default: t

MATCH-SET:}}

Figure 2-6: Ihs-element Schema

The TEMPLATE slot contains a schema that is to be matched against all schemata in the current
PSRL context. Slots and values in a template act as a pattern, successfully matching all schemata
that have similar slots and values, along with others not mentioned in the template. The NEGATION slot
can reverse the logical sense of the match, if filled with a 'tJ value: the Ihs-element will succeed in
matching whenever the template does NOT have any matches, and vice versa. When a match
succeeds, the schemata that matched are bound to the value of the schema-variable slot if it is an
instance of match-variable (described in Section 2.5). That binding can then be used in later
templates within the same left:hand-side. If the variable was bound previously, its binding, a schema
name, is checked to ensure that it matches the present template. This allows a schema to be
obtained in a relational slot in one schema and then matched in detail in a later template, e.g., to force
It to have some further properties. Other match features exist, and will be described in Section 3.4.
(The example in Section 3.1 may also be helpful.)

The INDEX slot, unused at present, may be used in a future PSRL version to improve matching
efficiency, by enabling the recording of possible matches. The list of matching schemata would be
stored in the MATCH-SET slot.

A template is an image of a schema, with variables allowed in some or all of its slot values, and



Left-hand-side element schemata 11

with different restrictions, defaults, etc. specifiable on the slots. A sketch of a template is given in 2-7.
In real applications, the "<xxx>" schema names would be replaced by names of actual corresponding
types of schemata. Templates, for instance, have unique names generated by the PSRLOPS8

translator.

{{<template>
TEMPLATE + INV: "<lhs-element-containing-this>f'
PSRL-INSTANCE:

 <f<element-class-to-be-matched>M

<SLOTI>:
 M<match-variable>"

range: <range-spec>
<SLOT2>: <value>
etc.}}

Figure 2-7: <template> Schema

A relation must be included that links a template with the class of schemata that it can match;
the default relation to serve this purpose is psrl-instance, shown in 2-8. (The user can change the
relation to be used, by setting the variable $psrl-instance, as described in Section 4.5.) The
psrl-instance relation has a limited transitivity and is used internally in PSRL in such a way as to limit
the search paths associated with it, in the hope of making psrl-instance efficient enough to be used
in its role as a syntactic relation. The <element-class-to-be-matched> in a template can be an existing
SRL schema, or it can be specified with the PSRLORS8 literalize declaration.

{{psrl-instance
is-A: "relation11

INCLUSION: "is-a-inclusion-spec"
FUNCTION: is-a-fn
TRANSITIVITY: (step "psrl-instance" all t)
INVERSE: "psri-instance + inv"}}

Figure 2-8: psrl-instance Schema

Two important features that templates may have are: a <range-spec> that restricts the values to
be matched in the slot; and a <match-variable> to be bound to the matched value, or whose binding (if
it is already bound) serves to restrict any further bindings. A slot with empty value specifies to the
matcher that the slot must be defined, but may not yet have a value. The presence of a <match-
variable> or other expression or <rangespec> implies that the slot must have a value in order to
match.

A schema matches a template if the schema has all of the relations specified in the template
and if values of other slots in the template match the corresponding ones in the schema. Values
match if they are identical or if a variable from the template is either unbound (it will be bound after
matching) or bound to the identical value. If there is a range attached to any of the slots, those must
also be satisfied by the value in the schema (which is the value bound to the match variable, if any).
There is a special value, ' { } \ that allows a slot in a template to match any value at all in the schema,
including the case where a slot is defined but has no value.



12 Left-hand-side element schemata

PI The process of matching and the ways of specifying rule elements will be clarified in later
chapters, by way of examples (see, e.g., Sections 3.1 and 3.4).

A range-spec is an expression specified by;4

range-spec

atomic-value

schema-name

constant-symbolic-atom

* (AND range-spec )
a (OR range-spec*)
* (NOT range-spec*)
s (QUOTE atomic-value)
• (* atomic-value)
s (<> atomic-value)
» (<a> atomic-value)
s (< atomic-value)
8 (> atomic-value)
8 (< s atomic-value)
8 (> s atomic-value)
s (FUNCTION Lisp-function-name)
* (FUNCTION Lisp-lambda-expression)
s (TYPE schema-name schema-name)
s atomic-value

* constant-symbolic-atom
* variable
* number

». SRL/1.5-double-quoted-schema-name

: * SRL/1.5-schema-name-without-double-quotes

These terms are not defined formally here: Lisp-function-name, Lisp-fambda-expression,
number, variable, SRL/1.5'double-quoted-schema-name and
SRL/I.S-schema-name-without-double-quotes. A number is a Franz Lisp or Common Lisp number.
A variable is an atom beginning with '<* and ending with *>', as in OPS5.

Range-spec expressions serve the same purpose as corresponding elements of the OPS5
language, testing matched values with various logical (AND, OR, NOT) predicates, as in SRL
restrictions, and arithmetic ( = , O, < = >,<,>,< = , > = ) predicates as in OPS5, which are described
more fully in Section 3.4.2. When match-variables occur in the expressions, their bound values are
substituted before the predicates are evaluated, except inside a QUOTE list. The FUNCTION option
allows a one-argument function to be evaluated, given as its argument the current value being
matched. If the function returns a non-nil value, the match succeeds and continues. (There are
user-callable functions for accessing values of match-variables, as described in Section 3A2 f so that
predicates can obtain other arguments from the matching context.) The TYPE option uses the SRL
function r-test.

These §rafitnnar conventions (cf. OPS5 manual) are used here: an italics typefont is used for non-terminals in the grammar,
ibis typtfofit is used for itera! symbols; superscript asterisk (*) means 0 or more of the item; superscript plus (+} meam
one or more.



Match variable schema 13

2.5. Match variable schema
Schemata that are to be considered variables during pattern matching must be instances of the

match-variable schema, Figure 2-9. (There is a function to declare such schemata, described in
Section 4.11, but PSRL_Ops8 uses its grammar to declare most variables implicitly, so the user doesn't
usually need to be concerned about declaring them.) The VALUE slot is used to store a variable's
binding. The TYPE slot is unused, but may be used later for specifying other semantics of variable
matching. More on the process of matching and the use of variables is given in Section 3.1. See also
Section 3.4.

{{match-variable
VALUE:
TYPE: }}

Figure 2-9: match-variable Schema

2.6. Right-hand-side element schemata
The PSRL-RHS slot of a rule is filled by an ordered set of instances of the rhs-element schema

(Figure 2-10). The PSRL-ACTION slot has the name of the action to be done, e.g., "make" or "modify".
There is a predefined set of such 'generic1 actions that can fill the PSRL-ACTION slot, and the user can
define others by creating corresponding schemata. Many actions include a PSRL-INSTANCE slot for
various purposes, usually to-name a schema class. The PSRL-INTERP-FN slot names a function used to
interpret the action - interp-action interprets an arbitrary action (by dispatching to other
interpretation functions).

{{ rhs-element
PSRL-ACTION:
PSRL-INSTANCE:

PSRL-INTERP-FN: interp-action}}

Figure 2-10: rhs-element Schema

An example of a generic action schema is in Figure 2-11. It has two of the slots described for
the rhs-element schema, and one new one, PSRL-MAKE-NAME, which indicates the name of the
schema to be made (an option of the PSRLQpS8 syntax, to be described in Section 3.5.1).

{{make
PSRL- INSTANCE:

PSRL-MAKE-NAME:

PSRL-INTERP-FN: interp-make}}

Figu re 2 - 1 1 : make Schema



14 Right-hand-side element schemata

Notice that conditions and actions in PSRL are not parallel in their definitions. Conditions are
PI two-level structures (Ihs-element and template), while actions are a single level. Actions however

must fit into a set of pre-defined classes, while conditions express patterns on arbitrary schemata.

The full set of actions is given below, in Section 3.5.1.



Representing Rules in PSRLOPSS Notation 15

3. Representing Rules in PSRLOPSS Notation
The first section of this chapter introduces the syntax of PSRL rules by an extended example

that covers the main features. The.second and succeeding sections will define formally and
semantically the PSRLOPS8 notation. Some aspects of the ways that the language can be used,
namely those that are parameterized by Lisp global variables, are postponed until Chapter 4, where
user commands are discussed. What is focussed on here is the external notation and its default
translation and interpretation.

3.1. An example: Mapping from 0PS8 to schemata
This section illustrates the structure of PSRL rules and the correspondence to the pSRLOPS8 by

going through a translation of a PSRLOpS8 rule. Along the way, some features of the language syntax
are introduced. The practical aspects of how to execute rules are postponed until Chapter 4.

The rule to be used, named beg (short for begin), is taken from a simple auto factory simulation
written in OPS5. The rule, as it appears in this section, has been augmented slightly with a couple of
other features for illustrative purposes. Appendix 7.4 includes a run with this rule and others
executing in PSRL. The production-system containing the rule is shown in Figure 3-1. This
schema is usually created automatically when a rule file is loaded (see Section 4.5), and its slots are
filled as rules are defined using 'p' forms and control declarations. These declarations and
commands are described in Section 4.5, but this schema can be taken as given for the purposes of
this section.

{{ autose!
INSTANCE:

 tf production-systemfi

RULE-SET:
 ttbuy2" "beg" "clu" "eng" "end"

CONTROL: fire-sequence}}

Figure 3 - 1 : autose I Schema

The beg rule, in its OPS8 format, is the following:
[p beg
{ (clock traad going ttimer <t>) <c>}
- (automac tmod busy ^machine engine)

(steel twhat scrap ^amount > 4)
— >

(bind <n>)
(make auto tmod order tserial <n>)
(modify <c> ttimer (compute <t> + 1)) ]

This rule recognizes that the clack is running (first condition element) and that there is no
currently busy machine making an engine (second condition element). Under these conditions, if
there is enough scrap steel (third element), the rule fires, creating an order to manufacture an auto. It
also updates the clock's time by adding one (this is an extra action not contained in the original beg
rule). The rule's schema is in Figure 3-2.



16 An example: Mapping from OPS8 to schemata

{{beg
INSTANCE: " ru le"

PSRL-LHS: "begd" "begc2" "begc3H

PSRL-RHS: "begat" "bega2" "begaS11

PSRL-VARIABLES: '(<C>" "<n>" "<t>'f}}

Figure 3-2: beg Schema

The first condition in the Ihs is
{ (c lock tfnod going t t imer <t>) <c>}

whose translation is shown in Figures 3-3 and 3-4. The first schema (begd ) records the element
variable, <c>, in the SCHEMA-VARIABLE slot, and points to the second schema (begdt) , using the
TEMPLATE slot. The second schema has a slot for each of the OPS5 attributes (preceded by 't').
There is also a PSRL-INSTANCE slot5 for the class name, 'clock1, and an inverse pointer from the
template back to the Ihs-element schema.

In the process of executing a production system containing the beg rule, this condition element
will match all schemata in the current SRL database context that are related to the clock schema by
the psrl-instance relation, and that have the atom 'going' in their MOD slot and any value at all in
their TIMER slot After matching, the match-variable <t> will be bound (i.e., will have as the value of its
VALUE slot) to the value of the TIMER slot of each matched schema. Also the variable <c> will be
bound to the name of the schema matched. If more than one schema matches this first condition
element, then the other condition elements in beg will be matched in turn using each distinct
assignment of values to match-variables.

{ { b e g d
INSTANCE: "Ihs-element"
TEMPLATE: "begdt"
SCHEMA-VARIABLE: "<C>"}}

Figure 3-3: b e g d Schema

As mentioned above, this relation for templates can be changed by the user.



An example: Mapping from OPS8 to schemata 17

{ {begd t
TEMPLATE + INV: "begd "
PS RL-INSTANCE: "dock"
MOD: going
TIMER: "<t>"}}

Figure 3-4: begc 11 Schema

The second element in the Ihs is,
- (automae tmod busy tmachine engine)

whose translation is in Figures 3-5 and 3-6. The new feature in this element is the negation, indicating
that the match will succeed if this element's match fails, i.e., if there are no database schemata
matching it This is indicated by the NEGATION slot with value ft\

begc2
INSTANCE: "Ihs-element"
TEMPLATE: Mbegc2tw

NEGATION: t}}

Figure 3-5: begc2 Schema

{{ begc2t
TEMPLATE + INV: "begc2*
PSRLINSTANCE: "automac"
MOD: busy
MACHINE: engine}}

Figure 3-6: begc2t Schema

The third element in the Ihs,
(steel twhat scrap tamount > 4)

has another new feature, the comparison of numerical values. The condition states that the instance
of the steel schema to be matched must have an AMOUNT slot value greater than 4, and this
expression is stored on the range facet of that slot in begc3t, Figure 3-8. Notice that the slot AMOUNT
has as its value the atom '{}', which in OPS5 and PSRLOpS8 will match to any value. In some cases, a
user will want to bind the value matched here (e.gM something greater than 4) to a variable, so that the
variable name would take the place of the'{}', and the pattern would be expressed as 'tamount {<x> >
4}\



18 An example: Mapping from OPS8 to schemata

begc3
INSTANCE: "Ids-element"
TEMPLATE: "begcSt"}}

Figure 3-7: begc3 Schema

begc3t
TEMPLATE + INV: Hbegc3"
PSRL-INSTANCE: "steel"
WHAT: scrap
AMOUNT: {}

range: (> 4 ) } }

Figure 3-8: begc3t Schema

The right-hand-side or action part of the beg rule starts out,
- -> (bind <n>)

which is an action that binds the variable <n> to a new 'random' schema. (It can bind other values, if
they are specified as expressions following the variable name, but in this case a default expression
analogous to (gensym) is assumed, since nothing is given.) The schema for this action is in Figure
3-9, and has the action name "bind" as the value of the PSRL-ACTION slot, n<n>" as the value of the
VARIABLE slot, and no value for the RHS-TERMS slot These slot names are specific to the bind action -
each PSRLopgg action has its own particular set of slots, though some share the same ones, and ail
have the PSRL-ACTION slot naming the particular action involved.

{{ begai
PSRL-ACTION: "bind"

VARIABLE: "<n>M

RHS-TERMS: }}

Figure 3-9: begat Schema

The second action of beg is
(make auto t i iod order t s e r i a l <n>)

whose translation is in Figure 3-10. The make action creates a schema with a gensym'd name that is
PSRL-IMSTANCE of the value of the PSRL-INSTANCE slot in the action schema (auto in this example).
Other slots in the action schema specify slots and values to be created in the new schema. When the
values are match variables (<n> in this case), their bound values from the match or from bind actions
are f led in.



An example: Mapping from OPS8 to schemata 19

bega2
PSRL-ACTION: "make"
PSRL INSTANCE: "auto"

MOD: order
SERIAL: "<n>M}>

Figu re 3-10: bega2 Schema

The third action,
(modify <c> t t i m e r (compute <t> + 1 ) )

is another type, modify, and is shown in Figure 3-11. The modify action works on an existing
schema, specified by the value in the PSRL-INSTANCE slot; in this case it would be the value bound to
<c>, i.e., the schema that matched the first Ihs-element The other slots of the modify action schema
indicate the slots in the modified schema that are to be changed, and their values specify new values
in the changed schema. In this case, there is a compute expression to be evaluated, whose result will
become the TIMER slot in the changed schema.

{{ begaS
PSRL-ACTION: "modify"
PSRL-INSTANCE: "<C>"
TIMER: (Compute "<t>" + 1) }}

Figu re 3 -11 : bega3 Schema

3.2. OPS8 language definition overview
As mentioned several times in the above discussion, pSRLO p S 8 is based directly on OPS5. The

grammar presentation below, in particular, is closely modelled on that of OPS5. Thus, for those
readers who are familiar with OPS5, there are accompanying summaries of the differences of detail.
PSRL is intended to be a compatible extension of OPS5, with the exception of some actions and
matching features that are not appropriate in the SRL environment. Thus most of the differences here
are new features that have been added.

All aspects of the PSRLOPS8 notation are precisely described in a BNF grammar. The following
grammar conventions (cf. OPS5 manual) are used here: an italics typefont is used for non-terminals
in the grammar; t h i s typefont is used for literal symbols; superscript asterisk (*) means 0 or more
of the item, separated by spaces; superscript plus (+) means one or more.

program,6
The following is the top level of PSRL^^p^, listing the types of things that can occur in a

6

Some QPS5 constructs arc reoognizad and Ignored: strategy external literal



20 OPS8 language definition overview

OPSS-entity

comment

literalize
vector-attribute
production-rule
production-system-name
control-
( setq parameter Lisp-expression )
( debugging-command )
( action-command )

comment

- ; any-string'terminated'by-newline.

All of the above 0PS8-entity's except Lisp-expression are defined in this chapter and the next.
Lisp-expression is not defined formally in this manual, and is included to emphasize that PSRLQpS8

files are interpreted using the standard Lisp read conventions.

3.3. Working Memory and Production Memory declarations
Working Memory in PSRL is loosely defined: rules access and manipulate an entire SRL

database context, and thus the context would correspond to conventional Working Memory (WM).
But for debugging purposes, a more restricted definition of WM is used, namely those schemata that
have been created by the "make" action (either at the top level or inside rules). During matching, the
SRL function r-find is used to access schemata, and recall that r-find depends on the presence in
schemata of SRL relations.

Several features in PSRL make WM more powerful representational^ than is the case in OPS5:

• SRL schemata are fundamentally more powerful than OPS5 attribute-value lists; in
particular, a wider variety of types is available as values of slots, including lists of values,
attachment of meta-information and restrictions, default values, and inherited values; in
most cases, the PSRLOPS8 notation does not yet exploit the full power of SRL; in
particular, the matching of more than the first element of a list value is not yet supported
(and its semantics is not understood, due to SRL's own lack of semantics for list values);
in some other cases, e.g., inheritance, the power is not obtained notationally but through
global variables.

• Relations can directly connect schemata, with a schema name appearing as a value in a
slot whereas in OPS5, WM elements are not named and can point to each other only
indirectly through a shared symbol.

• Several WMs can be defined within a single SRL database by using the context facility;
rules would match one or the other depending on a global variable to be described
below,

• Very large databases are possible, since SRL has automatic swapping of schemata to
disk when they exceed available main memory; while efficiency would prohibit PSRL
access to huge databases, judicious subdivision into contexts would make handling a
large database feasible.

Classes of WM schemata (for use in templates and in actions) are declared, as in OPS5, by a



Working Memory and Production Memory declarations 21

literalize declaration,

literalize : := ( l i t e r a l 1ze class-name slot-name )
Such declarations should be executed before rules and WM-initializing commands are loaded, to be
described in more detail in Chapter 4. In this, class-name and slot-name are Lisp symbolic atoms or
numbers. The effect of a literalize is to define a general schema and its slots to represent the class of
elements. For instance,

(literalize clock mod timer maker)
defines the schema in Figure 3-12. Notice that a PSRLOpS3 user can modify such schemata after
defining them7 (e.g., adding slots or attaching demons that could be inherited by instances), which is
not possible in OPS5. There are some internal side-effects of a literalize, on the class-name's atom
(not the schema).

{{ clock
PSRL-INSTANCE; "literalize11

MOD:

TIMER:

MAKER: }}

Figure 3-12: clock Schema

Also as in OPS5, a slot whose value is to be treated as a list must be declared with a vector-
attribute declaration, as follows: -

vector-attribute : : * ( vec to r -a t t r ibu te slot-name* )

For example,
(vector -a t t r ibute Items)

• • •
( l i t e r a l i z e checker name balance Items)

declares the value of the Items' slot to be considered a list of values. Such a declaration has internal
Lisp effects, and no schemata are created, but schemata for the attributes declared are modified with
a vector-attribute slot. The order of appearance of vector-attribute and literalize declarations is not
significant; the declaration applies to all other declarations, making any use of 'items' (for example) as
an attribute in a literatize have the special interpretation. The number of vector-attributes in an
element is not restricted to one, as in OPS5.

General note: it is not necessary or correct for a user of PSf?LQpsa fo put
double-quotes ("} around names in rules and declarations that are known to he
schema names, EXCEPT in the case of ordinary values of slots. Variables are
always automatically translated to schemata, as are atoms that appear in other
locations inside elements and in declarations. Values of relations are
automatically translated to schema names.

Chapter 4 will discuss ways to change the interpretation of WM, along with display and
debugging commands.

Or ihey can be set up previously in a users database, since the iterfitke declaration mil not disturb ar* ex*simg schema.



PSRL: An SRL-Based Production Rule System

Reference Manual for PSRL Version 1.2

Michael D. Rychener

CMU-RI-TR-85-7

Intelligent Systems Laboratory
The Robotics Institute

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

December 1984

Copyright © 1985 Carnegie-Mellon University

This research has been supported by Digital
Equipment Corporation.


