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Introduction

It is usually assumed in game theory that agents who interact strategically

with each other are rational, know the strategies open to other agents as well as

their payoffs and, moreover, have common knowledge of all the above. In some

games, that much information is sufficient for the players to identify a "solution"

and play it. The most commonly adopted solution concept is that of Nash

equilibrium. A Nash equilibrium is defined a combination of strategies, one for

each player, such that no player can profit from a deviation from his strategy if the

opponents stick to their strategies. Nash equilibrium is taken to have predictive

power, in the sense that in order to predict how rational agents will in fact behave,

it is enough to identify the equilibrium patterns of actions. Barring the case in

which players have dominant strategies, to play her part in a Nash equilibrium a

player must believe that the other players play their part, too. But an intelligent

player must immediately realize that she has no ground for this belief. Take the case

of a one-shot, simultaneous game. Here all undominated strategies are possible

choices, and the beliefs supporting them are possible beliefs, even if this game has a

unique Nash equilibrium. The beliefs that support a Nash equilibrium are a subset

of the beliefs that players may plausibly have, but nothing in the description of the

game suggests that players will in fact restrict their beliefs to such a subset.

We only know that if each player plays her part in the equilibrium, and each

expects the others to play their part, each player behaves correctly in accordance

with her expectations and each has confirmed the others' expectations. In other

words, the beliefs that support a Nash equilibrium are always correct beliefs, that is,

they are mutually consistent. It may seem that equilibrium play would be

guaranteed were the players to have common knowledge of their beliefs.2 But it is

easy to think of examples in which the players start out with mutually inconsistent

beliefs, and common knowledge of their respective beliefs will only generate

deliberational cycles (Bicchieri 1993). To attain predictability, we thus need to

specify some mechanism through which beliefs become correct (i.e., mutually

consistent). For example, in the absence of direct knowledge of each other's beliefs,

the players will have to infer them from observed actions, or at least they must be

able to restrict the class of beliefs an opponent may plausibly entertain. One way to

2 One could argue that the real key is common knowledge of actions, not of beliefs. If I know
your beliefs, I don't necessarily know what action you will choose since you may be indifferent
between two or more actions. Here we focus on games where the players never move
simultaneously, so this indifference issue never really arises.



restrict the class of possible beliefs is to consider only beliefs that are plausible or

rational in a substantive sense. In the normal form representation of a game,

however, belief rationality is just a matter of internal consistency. The focus is on

how a belief coheres with other beliefs that one holds, while it is irrelevant how

well founded it is.

A substantive interpretation of belief rationality involves assessing whether

a belief is justified, and one way to do it is by identifying those beliefs that are the

outcome of a rational process of belief formation. The extensive form representation

of the game, by specifying the causal structure of the sequence of decisions and the

information available at each decision point, is the proper setting for modeling the

process of belief formation. I shall also argue that a satisfactory theory of belief

formation must tell how players would change their beliefs in various hypothetical

situations, as when confronted with evidence inconsistent with formerly accepted

beliefs. The theory of belief revision I propose is based on a principle of minimum

loss of informational value. The informational value of a proposition reflects its

predictive and explanatory potential, and this is a function of what players want to

explain and predict. The criterion of informational value presented here induces a

complete and transitive ordering of the sentences contained in a belief set. So a

player who revises her beliefs rationally, in accordance with that theory, will

eliminate first those beliefs that have low informational value.

To predict the outcome of someone's belief revision process one has to know,

among other things, the revisor's rules for belief revision, as well as her

explanatory and predictive interests. I shall assume that the rules for belief

revision, as well as the criterion of informational value, are shared by the players.

The rules for belief revision specify a criterion of equilibrium selection; if this

criterion identifies a unique equilibrium as the solution for the game, then players

who have common knowledge of rationality, of the shared rules for belief revision

and the shared criterion of informational value can identify their equilibrium

strategies. In this case, players' beliefs will be both correct and common knowledge.

The case of a unique Nash equilibrium is straightforward, since whenever

there is a unique solution for the game this solution is a fortiori the one selected by

belief revision. The interesting case is that in which there are multiple Nash

equilibria, some of which might be implausible in that they involve "risky"

strategies and the implausible beliefs that those strategies will be played. Various

"refinements" of Nash equilibrium have been proposed to take care of implausible

equilibria, as well as to attain predictability in the face of multiple equilibria. These



refinements correspond to different ways to check the stability of a Nash

equilibrium against deviations from equilibrium play. The players are supposed to

agree to play a given equilibrium, and then ask what would happen were they (or

their opponents) to play an off-equilibrium strategy. If the players decide that they

would play their part in the equilibrium even in the face of deviations, then that

equilibrium is stable (or plausible). Stability, however, is a function of how a

deviation is being interpreted. A player may deviate from an expected equilibrium

because she is irrational, because she made a mistake, or perhaps because she wants

to communicate something to the opponents. An equilibrium that is stable under

one criterion may cease to be stable under another. Different refinements propose

different interpretations for deviations, and there is no clear sense of how to judge

their plausibility and, when two or more interpretations are possible, how to rank

them.

When facing another player's deviation, a player has to modify her beliefs,

but the current refinements of Nash equilibrium fail to specify criteria of belief

revision that would restrict players' explanations of deviations (off-equilibrium

beliefs) to a "most plausible" subset. In this paper, I first introduce a set of simple

and plausible restrictions that any off-equilibrium belief should satisfy. I then

show that such plausible explanations of deviations are the result of a rational

process of belief revision, that is, a process of belief revision that minimizes the loss

of useful information. The theory of belief revision I propose succeeds in

generating a ranking of interpretations of deviations, hence it also generates a

ranking of the most common refinements. When several interpretations are

compatible with a deviation, the one that requires the least costly belief revision (in

terms of informational value) will be preferred. A consequence of the theory of

belief revision presented here is that it leads players to interpret deviations,

whenever possible, as intentional moves of rational players, thus providing a strong

theoretical justification for forward induction arguments.

Threats

To model belief formation, it is useful to consider the dynamic structure of

games, the order in which players move and the kind of information they have

when they have to make a choice. Briefly, the extensive form of a game specifies

the following information: a finite set of players i = 1, ... n, one of which might be

nature (N); the order of moves; the players' choices at each move and what each



player knows when she has to choose; the players1 payoffs as a function of their

moves; finally, moves by nature correspond to probability distributions over

exogenous events. The order of play is represented by a game tree T, which is a

finite set of partially ordered nodes t 6 T that satisfy a precedence relation denoted

by M<".3 The information a player has when he is choosing an action is represented

using information sets, which partition the nodes of the tree. Since an information

set can contain more than one node, the player who has to make a choice at an

information set that contains, say, nodes t and t1 will be uncertain as to which node

he is at.4 If a game contains information sets that are not singletons, the game is

one of imperfect information, in that one or more players will not know, at the

moment of making a choice, what the preceding player did. Finally, the games I

shall consider are all games of perfect recall, in that a player always remembers

what he did and knew previously.

Figure 1 is a simple example of a two-players extensive form game. In this

particular game there is an initial starting point, or initial node, at which player I

has to move. If he chooses L, the game ends with both players getting a payoff of 1.

If I chooses R instead, it is player IFs turn to move, and she can choose between

actions 1 and r. If the choices of R and 1 are taken , then both players net -1. If

instead R and r are chosen, player I gets 2 and player II gets 0.

3 The relation < is asymmetric, transitive, and satisfies the following property: if t < tM and tf <
t" and t * t\ then either t < t1 or t1 < t. These assumptions imply that the precedence relation is
only a partial order, in that two nodes may not be comparable, and that each node (except the
initial node) has just one immediate predecessor, so that each node is a complete description of
the path preceding it. When a node is not a predecessor of any node we call it a "terminal node".

4 If t and t' belong to the same information set, we require that the same player moves at t and t1.
Also, a player must have the same set of choices at each node belonging to the same information
set.
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The equilibrium (L,l) is not implausible if player II believes that L is played

and, in turn, player I believes that II selects 1, even if strategy 1 is weakly dominated

by r.5 Nash equilibria are often equated with self-enforcing agreements. That is, if

the players agree to play a given pair of strategies and no one has an incentive to

deviate from his agreed-upon strategy (provided he believes the opponent is

sticking to the agreement), then that pair of strategies is a Nash equilibrium.

Suppose the two players of the game in figure 2 can meet before playing and agree

to play the strategy profile (L,l). Is (L,l) a self-enforcing agreement? Yes, if each

player believes that the other will stick to his part of the agreement. But what

should be also asked is whether the agreement is reasonable. An agreement is

unreasonable if a player cannot justify the claim that it will be honored except by

adapting unreasonable expectations about what his opponent is likely to do or her

reasons for doing it.

We are supposing that player II tells player I that, come what may, she will

play I. So it is understood that, were I to play R, both would net -1. Now consider the

extensive form game of figure 1. If player I were to play R instead of L, would II

stick to the original agreement and respond with 1? Clearly if II were to reach her

decision node, she would choose the payoff maximizing action r. Since player I

knows that II is rational, he should never play L, for he will always get a higher

payoff by playing R instead. It follows that even if in the normal form the

equilibrium (L,l) is supported by a set of consistent beliefs, it is clearly

unreasonable in the extensive form representation of figure 1. There, it involves

the irrational expectation that player II, once she is called upon to play, will still

choose to play 1.

The example is meant to show that what constitutes a reasonable commitment

to play a Nash equilibrium is affected by what one supposes will be another's action

out of equilibrium, i.e., what reaction one expects if one deviates from the

equilibrium path. Note that a Nash equilibrium does not involve any prescription

(or restriction) about out-of-equilibrium behavior. The only restrictions imposed

are those on equilibrium actions (i.e., that they are best replies). At first sight, the

concern with out-of-equilibrium behavior seems paradoxical: if both players play a

Nash equilibrium, actions which lie out of the equilibrium path are never

performed, since by definition the information sets at which they would be chosen

* A strategy is weakly dominant if it gives a player payoffs that are greater or equal to the
payoffs of any other strategy.
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are never reached. Then of course any action out of the considered equilibrium

path is admissible, since it remains an intention that will never be carried out.

Indeed, if the equilibrium (L,l) is played, it does not really matter what player II

does, since she will never have to choose.

One traditional justification for Nash equilibrium is that it is an agreement

that holds up despite the absence of an enforcement mechanism. When multiple

equilibria are present, an important step toward predictability is to rule out those

equilibria that are not robust to potential deviations, since they constitute

agreements that we would not expect rational players to hold. To illustrate the point,

suppose you and I agree to meet in an hour at the campus cafeteria. Since you have

every reason to expect me to be there, any question about what you would do if I

were not to be met at the appointed time seems futile. But assume now that you

threaten me by saying that, if I am even five minutes late, you will immediately

leave the cafeteria without eating. From the viewpoint of our being there on time,

what you would do under different circumstances is irrelevant and, more to the

point, all sort of behaviors are admissible. On closer scrutiny, however, what you

would do if I were not there on time does matter to my decision of whether to hurry

or not. We know each other very well, so I know that in an hour you will be

hungry, and since there is only that cafeteria around, your threat is hardly

believable. Therefore I can take my time. These considerations are obviously

relevant to our original agreement. Since we both know that your threat is not

credible, we may still agree to meet at the cafeteria, but be flexible as to the amount

of time either of us might spend waiting for the other.

Note that the original agreement-plus-threat is an equilibrium, since if we

both believe the other will fulfill the terms of the agreement, neither of us has an

incentive to deviate. Our beliefs are both internally consistent and correct (indeed,

each of us does what she is expected to do), but are they plausible? If we do not find

them plausible, neither is the agreement that they support. To establish whether

the original agreement is sensible, we have to ask what would happen out of

equilibrium (that is, in case one of us "deviates" by breaking the agreement). In the

present case, considering the hypothetical situation (from the viewpoint of the

original agreement) in which I am late leads us to conclude that you will still go into

the cafeteria and eat, and therefore it rules out an agreement in which the

latecomer is penalized. In other words, we check the reasonableness of an

agreement by considering what would happen if one or more of the parties were to

deviate from it. Hence one should ask not only whether it is sensible to honor an



agreement were the other party to honor it, but also whether the other party would

find it in her interest to honor the agreement were one to break it. This reasoning

highlights the importance of the credibility of the threats supporting an

equilibrium; if our agreement is based upon my threat to retaliate if you do not

perform a given action, I'd better make sure that you believe my threat. That is, it

must be evident to both of us that I will honor my end of the agreement (and thus

punish you) in case you defect.

Backward Induction

The methodology employed here is more complex than that used to verify that

an agreement is a Nash equilibrium. In the latter case, one asks whether it would be

in one's interest to deviate from the prescribed course of action in case everybody

else honors the agreement. In our example, a player asks whether the other player

would honor the agreement were he to break it. In figure 1, for example, player I

may wonder what would happen if, after agreeing to play the equilibrium (L,l), he

were to deviate and play R instead. Player I wants to know whether it is sensible to

deviate from the intended course of action, given the foreseen reaction of the

opponent. In the simple game of figure 1 it is easy to predict that player II, being

rational, will respond to R with strategy r. The problem is that there are many

games in which it is not so obvious what the opponent's reaction to a deviation

would be. It all depends on how one's deviation is explained. A first step in deciding

whether a Nash equilibrium is a sensible agreement thus consists in placing

restrictions on out-of-equilibrium actions, a step which corresponds to restricting

the set of possible explanations for those actions. Such explanations constitute what

I call "out-of-equilibrium beliefs". Out-of-equilibrium beliefs are the beliefs (on the

part of herself and other players) that the player now thinks would explain a given

off-equilibrium choice.

If restricting out-of-equilibrium beliefs is a necessary step in deciding

whether an equilibrium is sensible, and thus in predicting behavior as precisely as

possible, one may wonder whether the same goal would be accomplished by

considering only those equilibria that do not involve irrational (i.e. dominated)

actions. The rationale for this proviso is as follows: since off-equilibrium choices

are relevant only when they affect the choices along the equilibrium path, it seems

reasonable to ask that an off-equilibrium choice that is weakly dominated should be

ruled out, since it is as good as some other strategy if the opponent sticks to the
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equilibrium, but it does worse when a deviation occurs. In figure 1, player I knows

that player II is rational and since rational choice is undominated, he knows that II

will never play a dominated strategy if she were to reach her decision node; this

consideration rules out the equilibrium (L,l) as a plausible self-enforcing

agreement. Considering only undominated actions means that out-of-equilibrium

beliefs should satisfy the following condition:

(R) When considering a deviation from a given equilibrium, a player should not

hold beliefs that are inconsistent with common knowledge of rationality.

All that condition (R) tells us is that whenever a player has a weakly

dominated strategy he should not be expected to use it, and that no one should choose

a strategy that is a best reply to a dominated strategy. In other words, it must be

common knowledge that weakly dominated strategies will not be used. In many

games, common knowledge of rationality is not even needed to rule out dominated

strategies. In figure 1, for example, player I has to know that II is rational in order

to predict her choice, but no further knowledge is needed on his part. And player

II, being the last one to choose, need not know anything about Fs rationality, since

what happens before her decision node is irrelevant to her choice, given that she

has one. To decide whether a strategy is dominated is not always such a simple

matter. In those games in which iterated elimination of dominated strategies applies,

whether or not a strategy gets to be dominated may depend on one's beliefs about the

opponent's choices and beliefs. That is, if we eliminate a number of (dominated)

options for the opponent, this affects what is dominated for us. But in order to

eliminate an opponent's dominated strategy, a player must know (or at least be

reasonably certain) that the opponent is rational and, depending on the round of

elimination, that several iterations of "He knows that I know that ... he is rational"

and "I know that he knows that ... I am rational" obtain. This is why we say that

successive elimination of dominated strategies involves more information than one

round of elimination.

In this paper I am only considering extensive form games. How does

successive elimination of dominated strategies work in such games? Or, to put it

differently, how much information does a player need in order to decide that a

given strategy is dominated? Consider the following two-players game form:



11

Fig. 3

Suppose it is optimal for each player to play "d" at every decision node. Then

an optimal strategy for player I is to play "d at node x and d at node j " , even if "play d

at node j" is a recommendation he will never have to follow, given that he plays d at

his first node and thus ends the gained How does player I decide that playing "d" at

node j is optimal? The decision is straightforward if the outcome of "d" is better than

any possible outcome I might obtain by playing "a" (and leaving the choice to

player II at node z). However, if one of player IFs successive choices (at node z)

might get I a better payoff than playing "d" at j does, it would matter to player I what

6 Note that in games in which a player has to move at least twice, one of them chronologically
after the other, a strategy has to specify actions even after histories which are inconsistent with
that very strategy.
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he expects that II would do at node z, were I to play "a" instead of "d" at node j . In

conjecturing II's future intentions, player I must consider that, if he has reached

node j , this means that II did not choose "d" at node y; hence what I believes II will

do at node z depends on how he explains II's choice of "a" at node y. Unless the

outcome of playing "d" at node y is inferior to any other outcome II might obtain by

playing "a", her choice will depend on what II herself believes I would choose at

node j , given that he played "a" at node x. So player I's strategy at node j may have

to include an assessment of the beliefs II has at node y regarding I's future play. In

this light, it becomes apparent that what constitutes an optimal choice for a player

might depend upon his beliefs about the opponent's play (and beliefs). As an

example, think of II's choice at node z. Suppose that the payoff to II that comes from

playing "d" is greater than what II gets by playing "a". If rational, II will certainly

choose "d". Suppose further that were II to choose "aM at z, it would yield an outcome

that I prefers to the outcome of choosing "d" at node j . Then I's best reply to player

II's choice of "a" at z would be to play "a" himself at node j . Whereas "d" would be I's

best choice at node j if II is expected to play "d" at z. At node j , "dM dominates "a" for

player I if he expects II to play "d" at node z, otherwise "a" dominates "d". It clearly

matters to I's decision that "d" dominates "a" at node j whether or not he knows that

II is rational.

As I mentioned at the outset, condition (R) might even be stronger than

necessary for most games. In fact, in finite, extensive form games of perfect

information the number of levels of mutual knowledge of rationality that is

sufficient for the players to infer a solution is finite, the number depending on the

length of the game (Bicchieri 1992). In such games, (R) guarantees that each player

will play her part in the backward induction equilibrium. Backward induction in

fact excludes implausible Nash equilibria, since it requires rational behavior at all

nodes.

Forward Induction

Up to now I have considered extensive form games of perfect information. In

such games there are no simultaneous moves, and at each decision point it is known

which choices have been previously made. In these games backward induction does

two quite different things: a) it involves a computational method that, in the

absence of ties, determines a single outcome, and b) it excludes all implausible Nash

equilibria, since it requires rational behavior even in those parts of the tree that
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are not reached if the equilibrium is played. Using backward induction thus allows

us to winnow out all but the equilibrium points that are in equilibrium in each of

the subgames and in the game considered as a whole.7 More generally, we may state

the following backward induction condition:

(BI) A strategy is optimal only if that strategy is optimal when the play begins at

any information set that is not the initial node of the game tree.

Coupling conditions (R) and (BI) guarantees that unreasonable equilibria are

ruled out, thereby leading to greater predictive power. In the game of figure 1, for

example, (BI) rules out strategy 1 for player II. Strategy 1 is a best reply to L, but it

is not a best reply to R. Condition (R) requires beliefs to be consistent with common

knowledge of rationality, where a definition of rationality includes admissibility

(i.e. a player will not choose a dominated action).8 Together with (BI), (R) implies

that a self-enforcing Nash equilibrium must be consistent with deductions based on

the opponent's rational behavior in the future. Future behavior, however, may

involve out-of-equilibrium behavior, for when the equilibrium is played no further

choices may take place. As I mentioned at the outset, out-of-equilibrium actions and

beliefs need to be restricted to ensure predictability. Condition (R) provides such a

restriction since it implies that out-of-equilibrium actions must be restricted to the

set of undominated actions, so the only deviations that matter are those that can be

interpreted as intentional choices of rational players.

Note that in the games considered thus far the same epistemic conditions

ensure that deductions based on the opponent's behavior in the future (backward

induction) agree with deductions based on the opponent's rational behavior in the

past (forward induction). With backward induction, the fact that a node is reached

does not affect what happens there. That is, we can ignore the earlier part of the

tree in analyzing behavior at that node. With forward induction, on the other hand,

deviations from an equilibrium are taken to be 'signals', intentional choices of

rational players.9 So if a node is reached one asks why a deviation occurred, and

' A subgame is a collection of branches of a game such that they start from the same node and the
branches and the node together form a game tree by itself.
° Under act/state independence, rationality as admissibiiity is entailed by rationality as
expected utility maximization: a strictly dominated action is not a best reply to any possible
subjective assessment, therefore an expected utility maximizer will never choose it.
9 Kohlberg and Mertens (1986) characterize a forward induction argument as follows: "a subgame
should not be treated as a separate game, because it was preceded by a very specific form of
preplay communication - the play leading up to the subgame." (p. 1013).



14

one tries to give an explanation that is consistent with maintaining that the

deviating player is rational. This is not the unique interpretation of deviations that

makes them compatible with rational behavior, though. A deviation might be due to

a mistake, or it might be possible that one of the players has an incorrect model of

the game. These alternative explanations and their shortcomings will be discussed

later. My concern in what follows is with the general applicability of criteria such

as (R) and (BI) to different classes of extensive form games. Consider the following

game:

Fig. 4

This game is one of imperfect information, in that player 1, when it is his

second turn to move, is unable to discriminate between z and z\ i.e., he does not

know what player 2 did before. The set {z, z1} is called the information set of player

1, and is denoted by a dotted line. The backward induction approach fails here, since

at l's information set there is no unique rational action; in z player 1 should play 1

and in zf he should play r. There is no way to define an optimal choice for player 1

at his information set without first specifying his beliefs about 2fs previous choice.

The backward induction algorithm fails because it presumes that such an optimal

choice exists at every information set, given a specification of play at the successors

of that information set. Even if backward induction is not defined in a game like the

one in figure 4, the idea of working from the end of the game upwards can still be
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exploited. If there exist subgames, one can ask whether an equilibrium for the

whole game induces an equilibrium in every subgame. This suggests that condition

(BI) can still apply even when the backward induction procedure is not defined.

A refinement of Nash equilibrium that applies condition (BI) to games of

imperfect information is the subgame perfect equilibrium (Selten 1965). A subgame

perfect equilibrium is a Nash equilibrium such that the strategies when restricted to

any subgame form a Nash equilibrium of the subgame. In figure 4, the subtree

starting at y constitutes a game of its own. Since the game is non-cooperative, there

are no binding commitments, hence behavior at node y is only determined by what

comes next. At node y player 2 will choose R2, which leads to a better payoff

whatever 1 does. Knowing that 2 is rational, 1 will assign probability 1 to z\ and

thus play r. (rR2) is the only equilibrium for the subgame starting at node y, hence

(RirR2) is the only sensible (i.e., subgame perfect) equilibrium, whereas (L1IL2),

though a Nash equilibrium, cannot induce an equilibrium in the subgame starting

at y.

Subgame perfection succeeds in excluding certain types of equilibria by

defining a subclass of equilibria that all satisfy the (BI) requirement, but it may fail

to rule out unreasonable equilibria when there are no subgames. Moreover, even

when there are subgames, subgame perfection may be too weak a criterion, in that

(BI) may not lead to a definite prescription of play. Consider the following game:

Fig. 5
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In the subgame starting at y player 2 has no dominant strategy, so player 1

can assign any probability to z and z\ Both (L2O and (R2O are Nash equilibria of

the subgame. Hence (R1IL2) and (LirR2) are both subgame perfect even if, as I

argue below, one would think that (R1IL2) is more plausible. Here the (BI)

condition does not help in deciding what to do, but condition (R) does. Since by

assumption rationality is common knowledge and Rir is dominated by Li(that is, Rir

yields at best a payoff of 1, while Li yields 2), it is common knowledge that 2 does not

expect 1 to play Rir. Therefore it is common knowledge that, since 1 would never

choose Rir, if 1 picks Ri, he must be planning to follow that with 1. Anticipating

this, 2 should choose L2. Knowing that, player 1 will always play R 1 . 1 0

Whereas in the normal form condition (R) entails iterated elimination of

dominated strategies, in the extensive form it constrains the possible interpretations

of deviations. In particular, it requires beliefs to be consistent with sensible

interpretations of a player's deviation from equilibrium, where a "sensible

interpretation" is one that makes the deviation compatible with common knowledge

of rationality. In Figure 5, if player 2 gets to play, then player 1 must have foregone

the payoff of 2 in favor of playing Ri. The only equilibrium in the subgame that

yields a payoff greater than 2 to player 1 is (L2O, hence 2 should deduce from the

fact that node y is reached that 1 is planning to choose 1 at his next information set.

If so, then 2fs best reply is L2 and player 1, anticipating player 2's reasoning, will

conclude that it is optimal for him to play Ri.

What I have just described is a forward induction argument which, when

coupled with condition (R), suggests that we interpret deviations as signals. For this

interpretation to be consistent with rationality (and thus not to violate (R)) ,

however, there must exist at least a strategy that yields the deviating player a payoff

greater or equal to that obtained by playing the equilibrium strategy. Restricting

deviations to undominated actions leads to the following iterated dominance

requirement:

(ID) A plausible equilibrium must remain plausible when a (weakly) dominated

strategy is deleted.

1 0 For (R1IL2) to obtain, common knowledge of rationality is not even needed. It is sufficient
that player 2 knows that 1 knows a) that player 2 is rational, and b) that player 2 knows that 1 is
rational.
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Coupling conditions (R), (BI) and (ID) merges the two seemingly different

motivations behind the program for refining Nash equilibrium. The first

motivation is to restrict out-of-equilibrium behavior, and hence to rule out

deviations that do not have plausible explanations. The second motivation is to rule

out equilibria that involve weakly dominated strategies and are therefore threat-

vulnerable. The two motivations are only superficially different. If we think of

restricting out-of-equilibrium beliefs, a very plausible restriction is to ask that

beliefs be consistent with common knowledge of rationality. Common knowledge of

rationality in turn implies that no player should ever be expected to choose a

(weakly) dominated strategy. So equilibria that involve weakly dominated strategies

should be ruled out.

Ref inements

In the game of figure 5, I used a forward induction argument and interpreted

player l's choice as a signal to player 2. A question this argument raises is whether

it is really so evident that there always exists a unique rational inference to draw

from a player's off-equilibrium action. The same behavior, in other words, could be

explained in several ways, all of them compatible with a player being rational. A

typical such case is that of non-cooperative games of imperfect information with

multiple Nash equilibria. To identify a subset of "plausible" Nash equilibria, we

have to check that a Nash equilibrium is robust to deviations. Even if we consider

only those deviations that are consistent with common knowledge of rationality,

there might be more than one way to make a deviation compatible with rational

behavior. In this case further conditions should be imposed on out-of-equilibrium

beliefs to obtain, whenever possible, a "ranking" of all the plausible explanations of

deviations. To be able to eliminate all but one equilibrium and thus recommend a

unique strategy for every player, game theorists must recommend a uniquely

rational configuration of beliefs.11 To do so, it is not enough to assume beliefs to be

internally consistent. It must be further assumed that belief-rationality is a

property resulting from the procedure by which beliefs are obtained, and it must be

shown that there exists a rational procedure for obtaining them.

Game theorists have proposed various refinements of the Nash equilibrium

concept to deal with this problem. Unfortunately, none of them succeeds in picking

1 * Note that a family of permissible belief states would also do the job, provided its elements all
determine the same equilibrium choice.
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out a unique equilibrium across the whole spectrum of games (van Damme 1983,

1987). Within the class of refinements of Nash equilibrium, two different

approaches can be identified. One solution aims at imposing restrictions on players1

beliefs by explicitly allowing for the possibility of error on the part of the players.

This approach underlies both Selten's notion of 'perfect equilibrium' (Selten 1975),

and Myerson's notion of 'proper equilibrium1 (Myerson 1978). The alternative

solution is based instead upon an examination of rational beliefs rather than

mistakes. The idea is that players form conjectures about other players' choices, and

that a conjecture should not be maintained in the face of evidence that refutes it.

This approach underlies the notion of 'sequential equilibrium1 proposed by Kreps

and Wilson (Kreps and Wilson 1982). All of these solutions are defined by means of

examples next. For the moment, let us say that they all impose restrictions on

players' beliefs, so as to obtain a unique rational recommendation as to what to

believe about other players1 behavior. This supposedly guarantees that rational

players will select the equilibrium that is supported by these beliefs. Both

approaches, however, fail to rule out some equilibria which are supported by beliefs

that, although coherent, are intuitively implausible.

My objection concerns the nature of the restrictions imposed on players'

beliefs. The specification of the equilibrium requires a description of what the

agents expect to happen at each node, were it to be reached, even though in

equilibrium play most of these nodes are never reached. The players are thus

assumed to engage in counterfactual reasoning (from the viewpoint of the

equilibrium under consideration) regarding behavior at each possible node (Shin

1987; Bicchieri 1988). For example, if in equilibrium a certain node would never be

reached, a player asking himself what to do were that node to be reached is in fact

asking himself why a deviation from that equilibrium would have occurred. If in

the face of a deviation he would still play his part in the equilibrium, then that

equilibrium is "robust", or plausible. The following game illustrates the reasoning

process through which the players come to eliminate implausible (i.e., imperfect)

equilibria:
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Fig. 6

The game has two Nash equilibria in pure strategies, (c,L) and (aJR). Selten

rejects equilibrium (c,L) as being unreasonable. To see how this conclusion is

reached, let us follow the reasoning imputed to the players. In so doing, I expound

Selten's well-known concept of perfect equilibrium.

Suppose that during preplay communication the players agree to play (c,L).

Whether or not lfs choice of c is rational depends upon what he expects that 2 would

do if he played a or b instead. For suppose that, contrary to 2's expectations, she is

called to decide. Will she keep playing her equilibrium strategy? Evidently not,

since L is strictly dominated by R. Thus, for any positive probability that a or b are

played by 1, player 2 should minimize the probability of playing L. This reasoning

will in fact take place even before the unexpected node is reached, since a rational

player should be able to decide beforehand what it is rational to do at every possible

node, including those which would occur with probability zero if a given

equilibrium is played.

The players are reasoning counterfactualiy, asking themselves what they

would do if a deviation from equilibrium were to occur, and understand that every

information set can be reached, with at least a small probability, since it is always

possible that a deviation from equilibrium play occurs by mistake. A sensible
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equilibrium will therefore prescribe rational (i.e., maximizing) behavior at every

information set, since an equilibrium strategy must be optimal against some slight

perturbations of the opponent's equilibrium strategies. ^ However, not all perfect

equilibria are plausible, as the following example illustrates

Fig. 7

There are two equilibria, (c,L) and (a,R), and they are both perfect. In

particular, (c,L) is perfect if player 2 believes that 1 will make mistake b with a

higher probability than mistake a, but where both probabilities are very small,

while the probability of 1 playing c will be close to one. If this is what 2 believes,

then she should play L with probability close to one. But why should 2 believe that

mistake b occurs with higher probability than mistake a? After all, both strategies a

and c dominate b, so that there is little reason to expect mistake b to occur more

frequently than mistake a. Equilibrium (c,L) is perfect, but it is not supported by

More precisely, a perfect equilibrium can be obtained as a limit point of a sequence of equilibria of
disturbed games in which the mistake probabilities go to zero. Thus each player's equilibrium strategy is
optimal both against the equilibrium strategies of his opponents and some slight perturbations of these
strategies (Selten 1975).
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reasonable beliefs. The apparent limitation of the idea of perfectness is that

restrictions are imposed only on equilibrium beliefs, while out of equilibrium

beliefs are unrestricted: a player is supposed to ask whether it is reasonable to

believe the opponent will play a given Nash equilibrium strategy, but not whether

the beliefs supporting the other player's choice are rational.

Let us compare for a moment the games of figures 6 and 7. In figure 6, the

equilibrium (c,L) is ruled out because player 1 cannot possibly find any out-of-

equilibrium belief supporting it. Player 2, facing a deviation, would never play the

dominated strategy L. In Figure 7 instead, when player 1 wonders whether 2 will

keep playing L in face of his deviation, he can attribute a belief to player 2 that

would justify her choice of L (in this game, 2 must believe that b has a greater

probability than a). But player 1 does not ask whether the beliefs he attributes to

player 2 about the greater or lesser likelihood of some deviation are at all justified.

This, however, is a crucial question, since only by distinguishing those deviations

(and out-of-equilibrium beliefs) that are more plausible from those that are less

plausible is it possible to restrict the set of equilibria in a satisfactory way.

In order to restrict the set of equilibria, restrictions need to be imposed on all

beliefs, including out-of-equilibrium ones. A player, that is, should only make

conjectures about the opponents1 behavior that are rationally justified, and he

should believe that his opponents expect him to provide such a rational justification.

It might be argued, for example, that a rational player will avoid costly mistakes.

Thus a proper equilibrium need only be robust with respect to plausible deviations,

meaning deviations that do not involve costly mistakes (Myerson 1978). In the game

of figure 7, if player 2 were to adopt this criterion she would assign deviation b a

smaller probability than deviation a, and so she would play R with as high a

probability as possible. This reasoning rules out equilibrium (c,L) as implausible.

An objection to this further refinement is the following: while this

refinement rightly attempts to restrict out-of-equilibrium beliefs, it only partially

succeeds in doing so. There are cases in which one mistake is more costly than

another only insofar as the player who could make the mistake has definite beliefs

about the opponent's reaction. As the following game illustrates, these beliefs

require some justification, too:



22

Fig. 8

Here both (a,R) and (c,L) are proper equilibria. If a deviation from (c,L) were

to occur, player 2 would keep playing L only if she were to assign a higher

probability to deviation b than to deviation a. If player 1 were to expect 2 to behave

in this way, mistake b would indeed be less costly than mistake a. In this case

strategy L would be better for player 2. Thus b is less costly if 1 expects 2 to respond

with L, and 2 will respond with L only if she can expect 1 to expect her to respond

with L. But why should 2 be expected to play L in the first place? After all, strategy

b is strictly dominated by c, which makes it extremely unlikely that deviation b will

occur. So if a deviation were to occur it would plausibly be a and then player 2

would choose R. Hence the equilibrium (c,L) is unreasonable.

These examples suggest that for an equilibrium to be sensible, out-of-

equilibrium beliefs need to be rationally justified. A player who asks himself what

he would do in the face of a deviation must also find good reasons for that deviation

to occur, which means explaining the deviation as the result of plausible beliefs on

the part of both players. Hence a "theory of deviations" must rest upon an account

of what counts as a plausible, or rational, belief.

Belief-rationality, however, cannot reduce to coherence, or to the condition

that a conjecture ought not to be maintained in the face of evidence that refutes it.
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These minimal rationality conditions are exploited by the sequential equilibrium

notion (Kreps and Wilson 1982), which explicitly specifies beliefs at information

sets lying off the equilibrium path. Briefly stated, a sequential equilibrium is a

collection of belief-strategy pairs, one for each player, such that (i) each player has

a belief (i.e., a subjective probability) over the nodes at each information set, and

(ii) at any information set, given a player's belief there and given the other

players' strategies, his strategy for the remainder of the game maximizes his

expected payoff. More specifically, suppose that a given equilibrium is agreed upon

and a deviation occurs. When a player finds herself at an unexpected node she will

try to reconstruct what went wrong, but usually she will not be able to tell at which

point of her information set she is. This uncertainty is represented by posterior

probabilities on the nodes in her information set. When she acts so as to maximize

her expected utility with respect to these beliefs, the player assumes that in the rest

of the game the original equilibrium is still being played. A sequential equilibrium

has the property that if the players behave according to conditions (i) and (ii), no

player has an incentive to deviate from the equilibrium at any information set. The

problem with sequential equilibrium is that nothing is assumed about the

plausibility of players1 beliefs; that is, an equilibrium strategy must be optimal with

respect to some beliefs, but not necessarily reasonable beliefs. So in the games in

figures 6, 7 and 8 both Nash equilibria are sequential, since if player 1 chooses c,

then any probability assessment by player 2 is reasonable. Such minimal rationality

conditions are obviously too weak to rule out intuitively implausible beliefs.

A possible solution to the problem of eliminating implausible beliefs lies in

combining the heuristic method implicit in the 'small mistakes1 approach with the

analysis of belief-rationality characteristic of the sequential equilibrium notion.

The 'small mistakes' approach features the role of anticipated actions off the

equilibrium path in sustaining the equilibrium. In so doing it models the players as

engaged in counterfactual arguments which involve a revision of their original

belief that a given equilibrium is being played.13 For this process of belief change

1 3 Selten and Leopold (1982) have explicitly discussed the role of counterfactual reasoning in
decision theory and game theory. Their model is a variant of the Stainaker-Lewis theory of
counterfactuals, which identifies the proposition expressed by a counterfactual conditional with
a set of possible worlds and provides a selection function that selects the most similar world in
which the conditional is true (Stainaker 1968; Lewis 1973) Since the function selects among the
possible worlds that make the antecedent of the conditional true the one which is "closest" or
"most similar" to the actual world, it presupposes an ordering of possible worlds in terms of
similarity with the actual world. The difficulty with this theory lies in the arbitrariness of the
notion of similarity among worlds.
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not to be arbitrary, it must satisfy some rationality conditions. Belief-rationality

should be a property of beliefs which are revised through a rational procedure. If

there were a unique rational process of belief revision, then there would be a

unique best theory of deviations that a rational player could be expected to adopt,

and common knowledge of belief-rationality would suffice to eliminate all equilibria

which are robust only with respect to implausible deviations.

Modeling Belief Changes

In the foregoing examples, I eliminated implausible equilibria by checking

each equilibrium's stability in the face of possible deviations. This method, which is

common to all refinements of Nash equilibrium, is supposedly adopted by the

players themselves before the start of the game, helping them to identify, whenever

possible, a unique equilibrium. My counterexamples show not only that uniqueness

is anything but guaranteed by those solutions, but also, and more important, that an

answer to the problem of justifying equilibrium play is far from being attained.

Indeed, as the games of figures 7 and 8 illustrate, players1 expectations may be

consistent, but they are hardly plausible. Perfect, proper and sequential equilibria

let players rationalize only some beliefs, in the absence of a general criterion of

belief-rationality that would significantly restrict the set of plausible beliefs. A

criterion of belief-rationality, it must be added, would have the twofold function of

getting the players to identify a unique equilibrium as well as justifying

equilibrium play. In what follows, I shall explicitly model the elimination of

implausible equilibria as a process of rational belief change on the part of the

players (Bicchieri 1988, 1989). In so doing, my aim is twofold: on the one hand, the

proposed model of belief change has to be general enough to subsume the canonical

refinements of Nash equilibrium as special cases. On the other hand, it must make

explicit the conditions under which both the problem of justifying equilibrium play

and that of attaining common knowledge of mutual beliefs can be solved.

The best known model of belief change is Bayesian conditionalization: beliefs

are represented by probability functions defined over sentences and rational

changes of beliefs are represented by conditionalization of probability functions.

The process is defined thus: p1 is the conditionalization of p on the sentence E if and

only if, for every sentence H, p'(H) = p (H&E)/p(E). When p(E) = 0, the

conditionalization is undefined. Since in our case a player who asks himself what

he would do were a deviation to occur is revising previously accepted beliefs (e.g.,
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the belief that a given equilibrium is played), and accepting as new evidence a

sentence E' whose prior probability is zero, conditionalization is not applicable in

this context as a viable description of belief change.

Some have argued that conditionalization can be defined even if p(E) = 0, if

one takes the conditional probability p(H/E) as primitive.14 Nonetheless, it must be

noted that conditionalization only applies to changes of beliefs where a new

sentence is accepted which is not inconsistent with the initial corpus of knowledge,

while the type of belief change I shall discuss involves a sentence E that is not a

possibility, given the background knowledge of the players. The type of belief

change I want to consider requires one to accept less than one did before in order to

investigate some sentence that contradicts what was previously accepted. This type

of belief change is "nonmonotonic", because when a new belief is added to one's

stock of beliefs not all of one's previously accepted beliefs can be retained. Such

changes are fairly common in hypothetical reasoning, and have been variously

called "question opening" (Harper 1977) and "belief contravening" (Rescher 1964;

Levi 1977). Gardenfors (1978, 1982) has proposed a model of belief change that

specifically focuses on the factors governing changes of beliefs when earlier

accepted beliefs are retracted in order to add a new belief inconsistent with the

previous belief system held by the agent. In what follows I will present a similar

model to represent the virtual process of belief revision undergone by the players

before playing the game.

As is customary in the refinements literature, equilibria are taken as

reference points, and players are meant to believe that each of them can compute

the Nash equilibria of the game. We may suppose that the players are told by the

game theorist to play a particular equilibrium, or that instead preplay

communication is permitted and the players come to agree to play one equilibrium.

In both cases, we ask whether the prescription or the agreement are reasonable,

given that they are by definition self-fulfilling. Another way to put it is that we

model the players as deciding by themselves (that is, without the help of the game

theorist or communication) whether an equilibrium is robust to deviations,

repeating the procedure for every equilibrium of the game. At the end of the

process, the players are left with a set (hopefully, a singleton) of stable equilibria

that correspond to the set of reasonable, self-fulfilling agreements or prescriptions.

1 4 This argument originates with De Finetti. For an extensive defense of this idea, see Isaac Levi (1978).
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Let us assume that each player i starts this process of successive elimination

of equilibria with a model of the game, denoted by Mi0. This model is a state of

belief, representable as a set of sentences expressed in a given language L. We

assume L to be closed under the standard truth-functional connectives and to be

governed by a logic L which contains all truth-functional tautologies and is closed

under Modus Ponens. We call a subset M of L a weakly rational belief set if it

satisfies the following conditions:

Cl . M is non empty,

C2. if A € M and B e M, then A & B 6 M,

C3. if A € M and A => B is a truth-functional tautology, then B e M.

C l - C3 imply that a weakly rational belief set M is a set of sentences from the

language L which contains all logical truths of L and is closed under Modus Ponens.

Such a set consists of all the sentences that an agent accepts in a given state of

belief, where accepting a sentence means having full belief in it, or assigning to it

probability one. The initial system of beliefs is a model of the game that includes

axioms describing the rules of the game, players' strategies and payoffs and the

available solutions. The model might also include a statement to the effect that the

players have agreed upon a particular solution.

To make this point clear, consider again figure 7 and suppose that the initial

model of the game MjO (i = 1, 2) includes a statement to the effect that the

equilibrium (c,L) is being played.*^ The model will also contain the following set of

sentences:

(i) the players are rational (e.g. expected utility maximizers);

(ii) the players always play what they choose;

(iii) player 1 chooses to play c;

(iv) player 1 plays c;

For all i, we assume Mfi to be common knowledge.

To decide whether the equilibrium being considered is plausible, a player will

ask himself what the other would do if he were to reach an unexpected information

set, that is, an information set that would never be reached if the equilibrium (c,L)

It does not matter which equilibrium a player starts by considering, since she will have to repeat the
reasoning for each equilibrium.
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were played. In order to consider the possibility of a deviation, the player has to

eliminate from MjO some beliefs, so that his beliefs no longer entail the

impossibility of that deviation. The player will thus have to contract his original

belief set by giving up his belief in sentence (iv), but since he has to comply with

the requirement that a belief set be closed under logical consequence, he may have

to relinquish beliefs in other sentences as well.

In general there will be many ways to fulfill this requirement. For example,

since (iv) is implied by the conjunction of (ii) and (iii), eliminating (iv) implies

eliminating the conjunction of (ii) and (iii). This means eliminating (ii), or

eliminating (iii), or eliminating both. Besides maintaining consistency, it seems

reasonable to require belief changes to satisfy a further rationality criterion: that

of avoiding unnecessary loss of information. Assuming this further requirement,

the players face two minimal choices compatible with the elimination of (iv): either

(iv) and (iii) are eliminated, or (iv) and (ii).

A criterion of informational economy can be interpreted in several ways. If

we think of information as an objective notion, the information contained in a

corpus of knowledge is a characteristic of that corpus independent of the values and

goals of the agents, whereas informational value is the utility of the information

contained. That one piece of information is more useful than another does not mean

that it is better confirmed, more probable or even more plausible. In fact, we want

to distinguish between degrees of acceptance and degrees of epistemic importance

(Levi 1977, 1979). If we define Mi as a set of sentences whose falsity agent i is

committed to discount as a serious possibility, all the sentences in M* will have the

same degree of acceptance, in the sense that all will be considered maximally

probable, but their degrees of epistemic importance (or epistemic utility) will differ

according to how important a sentence is to inquiry and deliberation. For example,

if explanatory power is an important element in an agent's decision framework,

then a lawlike sentence will be epistemically more important than an accidental

generalization, even if their relative importance cannot be measured in terms of

truth values, since the agent will be equally committed to both insofar as they are

part of his belief system.

When Mi0 is contracted with respect to some beliefs, we obtain a new belief

set Mjl which contains less information than the original belief set. The objective

notion of information allows partial ordering of belief sets with respect to set

inclusion: if M is a proper subset of Mf, the information contained in Mf is greater

than the information contained in M. Minimum loss of information in this sense
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means eliminating as little as possible while maintaining consistency. Considering

the utility of information means eliminating first all those sentences which have

lower informational value Note that using a criterion of informational value may or

may not complete the partial ordering with respect to information: whenever M is a

proper subset of M\ the informational value carried by Mf cannot be less than that

carried by M, but it may be the same.

Whatever interpretation is attributed to the criterion of informational

economy, every contraction of a belief set will have to satisfy a minimal set of

further (weak) rationality conditions. Let us denote a contraction of a belief set M

with respect to a sentence A by M - A - Every contraction M-A must satisfy the

following conditions:

C4. M - A is a belief set,

C5. M 2 M.A .

C6. A e M - A unless A is logically valid,

C7. if A £ M, then M-A = M,

C8. if A and B are logically equivalent, M . A = M-B-

An expansion of a belief set M with respect to a sentence A, denoted by

similarly must satisfy:

C9. M + A is a belief set,

CIO. M + A 2 M ,

Cl l . if A e M, then M + A = M,

C12. if A and B are logically equivalent, M + A =

C13. if A e M, then ( M . A ) + A 2 M.

The changes of beliefs I am discussing involve accepting a sentence the

negation of which was earlier accepted; such belief contravening changes can be

analyzed as a sequence of contractions and expansions. Suppose ^A e M. Then in

order to add a belief contravening statement A, one will first contract M with
respect to -A, and then expand M-^A by A. We define M A as ( M . ^ A ) + A - Let us call the

revised belief set M A a counter/actual change of M. Indeed, when a player asks "If
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there were a deviation from the equilibrium strategy c, then..." she is asking a

counterfactual question (from the viewpoint of the model of the game she starts

with). Answering the counterfactual means first contracting and then expanding

the original model of the game. A basic acceptability criterion for a sentence of the

form, "If A were the case, then B would be the case" is that this sentence is

acceptable in relation to a state of belief M if and only if B is accepted in a revised

belief set MA which results from minimally changing M to include A (i.e., iff B e

M A ) . 1 6

It remains to be established how a revised belief set is to be constructed.

Since we want the contraction of the belief set M with respect to -A to be minimal, in
order to lose as little information as possible, we want M . ^ A to be as large a subset of

M as possible. Let us define ML^A as maximally consistent with A in relation to M iff

for every B e M and B e M-^A» - (A & B) e M.^A- SO if M . ^ A w e r e expanded by B, it

would entail ~A. Still there might be many subsets of M which are maximally

consistent with A. As the above interpretation of what a minimal change of beliefs

consists of is usually not strong enough to isolate a unique answer to the

counterfactual question, the rationality conditions we have imposed thus far on

belief sets and contractions of belief sets do not guarantee that the players will

revise their beliefs in the same way, thus ending up with the same model of play and

the same solution set.

All the contracted sets thus obtained will be proper subsets of the original

belief set, but the ordering of set inclusion will in general be partial. Wanting the

ordering to be complete is a good reason to introduce further restrictions. Another

reason for supplementing the criterion of maximal consistency is the following:

suppose that statement A is contained in a corpus of knowledge M and that there is a

statement B which has nothing to do with A. Then M will also contain both

disjunctions A v B and A v - B. If M is minimally contracted with respect to A, then

either A v B or A v ^ B will belong to M-A- If M-A is expanded by -A, ( M - A ) + ^ A will

contain either B or ^ B. Hence revised belief sets obtained from maximally

16 This is a formulation of the Ramsey test that does not involve including conditional sentences as
elements of belief sets. The idea that beliefs in conditional sentences lack truth value is advocated by I.
Levi, and has the advantage of making the Ramsey test consistent with the preservation criterion , which
says that if A is accepted in the belief set M and B is consistent with M, then A must be accepted in the
minimal change of M needed to accept B. (Levi: 1977, 1980). For an extensive discussion of these topics,
see Gardenfors (1978, 1986a).
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consistent contractions will contain too much, since for every sentence in L, either

it or its negation will be in the revised belief set. 1 7

Since different contraction strategies will differ from one another with

respect to the loss of informational value incurred, it seems reasonable to

supplement maximal consistency with a criterion of minimum loss of informational

value. In this case, it must be specified how sentences can be ordered according to

their informational value or epistemic utility. If we assume that all the sentences in

an agent's belief set have the same degree of acceptance, it will be impossible to set

them apart in terms of probability, evidential support, or plausibility. When

judging the loss of informational value engendered by a contraction, what is at issue

is not the truth value of the different items, but their relative importance with

respect to the objectives of the decision maker.

I must emphasize that the idea of an ordering based upon informational value

has both advantages and drawbacks. For one, informational value can be an

extremely subjective criterion, depending as it does on the context (for example, the

type of game being played), the individual's understanding of the situation he is in

(players may have different information about the game), and one's aims in a given

context. To be at all helpful in selecting an equilibrium, an ordering of

informational value must be shared by the players, and this fact must be common

knowledge. On the other hand, if players have homogeneous ends and a common

understanding of the situation they are in, an ordering according to informational

value seems preferable to others.- For example, it is generally assumed that players

are endowed with a common theory of the game and common knowledge of

rationality and payoffs. Since one's choice depends on what one expects the

opponents to do, one's goal is that of predicting as best as possible the opponents'

play. And because rationality is common knowledge, a deviation from equilibrium

play will generally be explained by either dropping the assumption that players

choose what they prefer, or by assuming that the deviation was intentional. This

latter assumption has the advantage of letting players predict the future moves of

the intentional deviator, something that is not easy to do when deviations are

interpreted as mistakes. In a game-theoretic context, to abandon rationality leads to

a substantial informational loss, and to allow for mistakes when alternative

explanations by intentional action are available entails a loss of predictive power.

An ordering according to informational value thus provides a way of plausibly

17 This difficulty is also pointed out in Gardenfors (1984) and in Alchourron, Gardenfors and
Makinson (1985).
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ordering refinements according to how much of the predictive power of the

original theory of the game they give away.

On our interpretation, informational value is a pragmatic concept.

Depending on the context, certain statements will be less vulnerable to removal

than others, and in any context (e.g., in any belief state) it is possible to order the

statements with respect to their epistemic entrenchment (or epistemic importance).

In a given context, epistemic entrenchment can be characterized by a complete

preorder (a reflexive and transitive relation) over sentences which tells which

sentences are more epistemically entrenched than others. This ordering influences

belief revisions in that any revision should retain more entrenched beliefs in

preference to less entrenched ones.

We write a < b to mean that sentence b is at least as epistemically entrenched

as a. Though epistemic entrenchment cannot be measured in a quantitative way,

Gardenfors (1988) has provided the following postulates for its qualitative properties

(< 1) If a < b and b < c, then a < c; (transitivity)

(< 2) If a I—b, t h e n a < b ; 1 8 (dominance)

(< 3) Either a < a A b o r b < a A b ; (conjunctiveness)

(< 4) If M is consistent, then a < b for all b iff a e M; (minimality)

(< 5) If a < b for all a, then I— b. (maximality)

Axiom (< 1) says that < is a transitive relation. Axiom (< 2) says that if a entails b,

then retracting a is a smaller change than retracting b, since the closure

requirement on belief sets means that b cannot be retracted without retracting a as

well. Axiom (< 3) says that a conjunction cannot be retracted without giving up at

least one of its conjuncts. Taken together the first three axioms imply that < is a

connected ordering. According to (< 4), sentences which are not in a belief set are

minimally entrenched in that set, and according to (< 5) a proposition is maximally

entrenched only if it is logically valid.

There are two conditions that relate entrenchment orderings to contraction

functions:

(a) a < b iff either a e M. a&b or I— a & b;

1 Q I

a I—b means that there is a proof of b from a in language L.
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(P) b e M. a iff b e M and either a < a v b or I— a.

Condition (a) says that in contracting a belief set with respect to a conjunction we

must give up the least epistemically entrenched conjunct; if both conjuncts are

equally entrenched, then both should be retracted. Condition (P) characterizes

contraction functions in terms of orderings of epistemic entrenchment.

Note that being able to order sentences by epistemic importance does not give

an ordering of sets of sentences. If a set of sentences is finite, we can identify the

informational value of the set with the informational value of the sentence which is

the conjunction of all the sentences in the set. Our contracted belief sets, however,

are not finite, in that they contain all logical truths. But since they generally are

finitely axiomatizable, we can still rank belief sets in terms of the epistemic

entrenchment of the conjunction of their axioms.

Let us now state the rules according to which a rational player will modify

her beliefs:

R l . any revised belief set satisfies Cl- C13,

R2. from the set Ui . ^ A of all maximally consistent contractions of M with respect to

-A, select the subset TR*^^ of the most epistemically important belief sets with the

aid of the criterion of minimum loss of informational value,

R3. the new contracted belief set M . ^ A W"M include all the sentences which are

common to the elements of HI*.^\, i.e., M . ^ A = ^ m * - ^ A > 1 9 ' 2 0

R4. expand the belief set M . ^ A thus obtained by adding A.

Note that R l corresponds to the weak rationality criteria imposed on belief

sets whereas R2 involves a stronger, substantive rationality criterion. It implies, for

example, that it is always possible to define an ordering of epistemic entrenchment,

however pragmatic and context dependent it may be. Furthermore, in any given

game the ordering of sentences with respect to epistemic entrenchment must be

unique, otherwise the players may never get to agree on the same interpretation of

1 9 The properties of this type of contraction function are discussed in Alchourron, Gardenfors
and Makinson (1985).
2 0 This intersection is not empty because all tautologies will be in the intersection, as well as
the rules of the game and, in general, all the statements that belong to the players1 background
knowledge.
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a deviation from equilibrium. This requirement is not too farfetched, since in real-

life situations the context in which the interaction takes place often suggests a

definite interpretation for out-of-equilibrium actions, hence for the reasons that

underlie them. R 2 says that a criterion of epistemic entrenchment may not avoid

ties, in that there might be several belief sets that are 'most important1 in this sense.

If there are ties, R3 says that the contracted belief set should include all the

sentences that are common to the "most epistemically important" belief sets. I

assume these rules to be common knowledge among the players.

Signals or Mistakes ?

Consider again figure 7. Before playing the game, the players will consider

in turn each Nash equilibrium of the game as a candidate for a solution and, for

each such candidate, ask whether it is robust to deviations. As I already mentioned,

this process of elimination of "weak" equilibria is crucial to a player's choice of a

strategy. Consider player 2. If she assumes that (c,L) is being played, a question she

will ask is whether it makes sense to keep playing L once a deviation has occurred.

Her answer (and her strategy choice) will depend on how she explains the

deviation. The model of belief revision I have just described is a way to explicitly

model the process of elimination of "weak" equilibria that leads to the choice of a

strategy. Let us assume that, besides the usual common knowledge assumptions, it is

common knowledge among the players that each player undergoes a process of

"testing" the different Nash equilibria and that both players adopt the same model

for belief revision. Moreover, the players have a shared ordering of epistemic

entrenchment, and this fact is common knowledge. It follows that each player can

replicate the reasoning (and the conclusions) of the other.

Consider, again, player 2's reasoning (in figure 7). If she considers first the

equilibrium (c,L), her initial model Mo2 will include the following set of sentences:

(i) the players are rational (e.g. expected utility maximizers);

(ii) the players always play what they choose;

(iii) player 1 chooses to play c;

(iv) player 1 plays c;
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Assuming that a deviation takes place, player 2 must decide how to contract

her original model Mo2 with respect to sentence (iv) in order to retain consistency.

If (iv) is retracted according to R2, she is left with two maximally consistent belief

sets: M' = (i),(iii) and M"= (i), (ii). In order to complete the ordering, she has to

assess which of the two contractions entails a greater loss of informational value or,

if there is a tie, she proceeds to apply R3. The last step consists in adding to the

belief set thus obtained the negation of sentence (iv). Player 2 will then choose that

strategy that is a best reply to her revised belief set.

Mf entails substantial informational loss, since eliminating (ii) introduces an

ad hoc element in the explanation of behavior. Retaining the assumptions that

player 1 is rational and chooses to play the equilibrium strategy c means explaining

a deviation as the effect of a random mistake (indeed, systematic mistakes would be

incompatible with rationality). Hence even if player 1 were to make a long series of

mistakes, they would be interpreted as random and uncorrelated, and each one

would have to be separately explained. But then any arbitrary pattern of play is

compatible with rational behavior, with the consequence of undermining the

predictive strength of a principle of rationality. Moreover, taking mistakes

seriously as clues to a basic flaw in a player's rationality or judgment might prove

advantageous. In chess, for example, bad play is unlikely to be due to transient

muddled judgment or to a persistent, random muscle twitch that impedes a player

from making the right move. What is likely is that a mistake increases the odds of

subsequent mistakes since it is a symptom of poor judgment, hence of decisions

which are less than optimal. Thinking that the next move of such a player will be

optimal may not just be a misjudgment: it may make one lose the opportunity to

exploit this pattern of play.

A further consideration weakens the plausibility of M1. In the game in figure

7, choosing this contraction (and then expanding the belief set) implies

maintaining that both equilibria (a,R) and (c,L) are sensible. But (c,L) is plausible

only if player 1 expects 2 to play L and player 2, in turn, plays L only if she expects

deviation b to occur more frequently than deviation a. In order to play c, player 1

must then believe that 2 thinks deviation b to be more likely than deviation a. If

player 2 thinks that deviation b is more likely than deviation a, she must either

believe that player 1 is irrational (since strategy b is dominated by a and c), or she

must believe that player 1 believes that she believes he is irrational. Since the

contracted belief set Mf retains the belief that 1 is rational and that he chooses

strategy c, 2 must assume that 1 plays c because he believes that 2 believes he is
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irrational. Nothing in 2's original belief set justifies this belief. M1 thus involves

arbitrary beliefs, since it does not require out-of-equilibrium beliefs to be plausible.

That consistently bad play is unlikely to be explained by muscle twitches is

prima facie an argument in favor of dropping the assumption that players are

always rational. Before giving up a rationality assumption, however, it is

reasonable to consider alternative explanations that make deviations compatible

with rational play. M" provides such an explanation. By eliminating (iii), M" allows

player 2 to interpret deviations as actions intended to influence other players'

beliefs (let us call such actions "signals"). Rational player 1 will only deviate if he

expects to get a higher payoff than what he gets by playing c. And he expects a

higher payoff only if he is reasonably sure that player 2 interprets his move as a

rational choice. The revised belief set obtained from M" entails that, facing a

deviation, player 2 will interpret it as a signal from player 1: upon reaching her

information set player 2 infers that 1 believes that she will respond with R.

Player 2 must now choose between two belief sets, M" and M1. She must decide

which of the two belief sets is the most epistemically important by weighing the loss

of informational value due to removing sentence (iii) against the loss involved in

eliminating (ii). As I pointed out, it is more costly (in terms of epistemic utility) to

assume that players make mistakes, since this assumptions weakens the predictive

(and explanatory) power of the rationality assumption. Player 2 will therefore

choose the contracted belief set M". Since the rules for belief revision and the

ordering of epistemic importance are common knowledge among the players, both

players will exclude the (c,L) equilibrium and choose (a,R).

This type of belief revision corresponds to the forward induction argument

put forth by Kohlberg and Mertens (1986) according to which a deviation should be

interpreted, whenever possible, as the intentional move of a rational player. What

the belief revision model presented here adds is a theoretical justification, based on

a definition of substantive belief-rationality, for preferring a forward induction

argument to those that focus on mistakes or rely on arbitrary probability

assignments. The belief revision model implies that the revised belief set obtained

from contraction M" gets the players to play the equilibrium (a,R) in the games of

figures 6, 7 and 8, since in each of them player 1 has a good reason for deviating

from his equilibrium strategy c. This means, from the game theorist's viewpoint,

that in all three games there exists a unique rational recommendation of beliefs

regarding the other player's behavior.
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Is it possible, just by assuming players to have common knowledge of the

rules R l - R 4 , t o predict that they will agree on the same revised belief set? The

answer is affirmative only when the ordering of sentences with respect to epistemic

entrenchment is uncontroversial. As I pointed out, this ordering is not connected

with the probabilities of the sentences in a belief state, since in any given belief

state all sentences are maximally probable and they only differ in their explanatory

power and informational value. The assumption that players are expected utility

maximizers, for example, is difficult to give up since it is a powerful explanatory

(and predictive) principle. Of the two contractions examined here, M" involves the

least loss of informational value, in that it not only avoids ad hoc explanations, but it

also extends rationality to out-of-equilibrium behavior, avoiding the implausible

beliefs entailed by M1. In this case the interpretation of minimum informational loss

is straightforward, since a statement about a regularity of behavior (i.e., 'the

players always play what they choose') is more epistemically entrenched than a

statement of less general scope (i.e., 'player 1 chooses to play strategy cf).

There is a correspondence between the rules for rational belief revision and

the principles I have put forth for eliminating implausible equilibria. In the

former examples, the equilibrium identified by the criterion of minimum loss of

informational value is the same as that which results from iterated elimination of

(weakly) dominated strategies. Note that in all three games condition (BI) does not

apply, since there are no proper subgames; hence if strategy c is expected L

remains a best reply in all three cases, because if c is played it does not really matter

what player 2 does. Condition (R) is relevant since it rules out dominated strategies

iteratively, and condition (ID) lets the players choose that equilibrium which

survives iterated elimination of (weakly) dominated strategies. Both conditions

conform to an interpretation of deviations as the result of intentional moves on the

part of rational players, hence to a way of changing one's beliefs that preserves the

ones that carry the greatest informational value.

Even if I succeeded in establishing on firmer grounds the plausibility of

forward induction, I want to stress that it cannot be concluded that this particular

model of belief revision (or, for that matter, any other model) implies forward

induction. The particular refinement one may wish to apply will always depend

upon one's hypotheses about out-of-equilibrium actions, and such conjectures in

turn depend upon the context of play, which is not captured by the formal model.

Moreover, a model of the game that includes a procedure for belief revision assumes,

in addition to common knowledge of rationality and of the structure of the game,
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common knowledge of the rules for belief revision and of a shared order of

epistemic entrenchment. There are circumstances in which such strong common

knowledge assumptions may be unrealistic. An unexpected move by a clever

opponent is easily interpreted as a signal, but what about the same move made by

someone that comes from a different culture? External considerations will lend

plausibility to the selection of sentences we include in the model of the game, as well

as to the arguments favoring some given ordering of informational value, but

obviously these will hardly be the only reasonable possibilities.

We may well ask how the theory of belief revision proposed here applies to

those cases in which there is no good explanation for out-of-equilibrium behavior,

i.e. when a deviation from equilibrium play is not explainable as an intentional

choice. Consider the following game

Fig. 9

Suppose player 2 considers first equilibrium(cL) as a candidate for a solution,

and asks what would happen were a deviation to occur. How will she contract her
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original belief set? The minimal revisions still involve deleting either sentences

(iv) (player 1 plays c) and (iii) (he chooses to play c), or (iv) and (ii) (players

always play what they choose). Now, however, eliminating (iii) and (iv), and then

expanding by -(iv), implies that player 1 chose not to play c. Since the best outcome

1 can get by deviating is a payoff of 3, which is what he could get with certainty by

playing strategy c, an intentional deviation seems unreasonable. Alteraatively, one

might argue that player 1 is really indifferent between c and a, and lets his choice

be determined by the toss of a coin. But this implies that he is quite sure that player

2 has eliminated the possibility of his playing b (which is dominated) and sees the

game as he does. Even if they share the same rules for belief revision, it is not

obvious that a rational player should be indifferent between c and a, so player l's

faith in 2's replying with R cannot be grounded in a shared view of what it is

rational to do in such circumstances. It seems that player 1, if rational, should not

be so sure of 2fs interpretation of his deviation, in which case it is safer for him to

play c.

Eliminating (iv) and (iii), and then expanding by -(iv), entails a greater loss

of informational value than the alternative revision strategy, which eliminates (iv)

and (ii), as it makes an intentional deviation from c incompatible with assuming

that player 1 is rational. The only alternative contraction involves deleting (iv) and

(ii), so that the revised belief set obtained by adding -(iv) corresponds precisely to

the 'small mistakes1 hypothesis. At this point, the choice of player 2 depends on the

probability she assigns to each deviation. If 2 believes mistake a will have a chance

of occurring greater than 4/5 she will play R, and play L if the chance of b

occurring is greater than 1/5. Since the theory of belief revision shared by the

players entails that a deviation would only occur by mistake, all the conjectures held

by player 2 are equally plausible. In this case there is no way to distinguish

between the three equilibria (c,L), (c,R) and (a,R), which are in fact all perfect,

proper and sequential. The 'small mistakes' hypothesis is therefore a special case of

our belief revision model, and it becomes plausible when deviations from

equilibrium play cannot be interpreted as signals.

It might still be argued that if a player is perfectly rational she will not be

prone to mistakes, be they temporary carelessness or confusion about what one is

expected to do (Hillas 1987). If the game is one of perfect information, a rational

player should never be expected to deviate by mistake, or because she has a

mistaken theory about the play of the game. If we follow this line of thought, we

may think unreasonable all those equilibria that depend upon players' inability to
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interpret deviations as signals. Moreover, we may assume that a deviation for which

no sensible interpretation exists never occurs. But if there are no plausible out- of-

equilibrium beliefs, then behavior off the equilibrium path should not be thought

to be possible. So for example the equilibrium (c,L) in figure 9, though self-

enforcing, cannot be supported by plausible out-of-equilibrium beliefs.

Conclusions

Until now, I have assumed that the players have the same model for belief

revision and share the same ordering of epistemic entrenchment. These

assumptions are obviously quite strong. Since any ordering of epistemic importance

is contextual, the players must have a similar understanding of the situation they

are in, and this may be too much to ask in a new environment or when the players

know very little about each other. In addition, players1 beliefs are understood to be

rational in the double sense of being consistent and of fulfilling several substantive

criteria of rationality like those embedded in the rules for belief revision. What I am

after, however, is not realism of the assumptions. I want, rather, to specify the

logical conditions under which a Nash equilibrium can be inferred from

assumptions of common knowledge of the structure of the game and of players1

mutual rationality. We know that in all those games that cannot be solved by

dominance (or iterated dominance), common knowledge of the structure of the game

and of players1 mutual rationality are not sufficient to identify one Nash

equilibrium as the "obvious solution" to the game (Bicchieri 1993). To identify (and

predict) one Nash equilibrium as the solution to the game, players' beliefs have to be

specified. Short of assuming that beliefs are correct a priori, one has to spell out the

process through which they become correct (and common knowledge), hence one

has to extend the concept of belief-rationality to include a model of how the players

revise their beliefs out of equilibrium. If the process of belief revision identifies a

unique solution to the game, then players who revise their beliefs according to that

process should be expected to agree on that solution.

We may think of a model for belief revision as part of a complete theory of

the game. Such a theory must explain, among other things, why the unexpected

may happen. And if there are reasons why unexpected actions might be chosen,

then these reasons should be part of the theory. A complete theory of the game

should then assume that players are both practically rational (e.g. they are expected

utility maximizers) and epistemically rational (e.g. their beliefs are the outcome of a

rational process of belief formation). The theory of the game proposed here
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succeeds in identifying a unique equilibrium as "the most plausible solution" in

many games in which other criteria for equilibrium selection (such as perfectness

or properness) leave a set of equilibria.
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