
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Unification for Quantified Formulae

by

Wilfried Sieg and Barbara Kauffmann

December 1993

Report CMU-PHIL-44

Philosophy
Methodology
Logic

Pittsburgh, Pennsylvania 15213-3890

Unification For Quantified Formulae

Wilfried Sieg and Barbara Kauffmann

Department of Philosophy
Carnegie Mellon University

Pittsburgh, PA 15213

wsl5@andrew.cmu.edu; tel.: 412-268-8565
bklk@andrew.cmu.edu; tel.: 412-268-8047

University Libraries
Carnegie Mellon University
Pittsburgh PA 15213-3890

Abstract. Unification for a first order language is a method that attempts to make terms of the language
~ via appropriate substitutions - syntactically identical. The method can be applied directly to quantifier-
free formulae and, in this paper, will be extended in a natural and straightforward way to quanfifiedfornudae.
The main issue is the treatment of bound variables. Our method is based on a canonical renaming of the
bound variables occurring in the input formulae, so that every binding is associated in a special way with a
distinct variable. Then, unification works as usual by treating logical connectives like functors and bound
variables like constants. Our work is meant to help limit the search of theorem proving algorithms, in
particular of those that search directly for natural deduction proofs.

0. Introduction. Modern automated theorem proving started with work in the late fifties

and early sixties that is broadly represented in the volume Automation of Reasoning

[SW83]. However, the underlying logical techniques went frequently back to pioneering

work in the late twenties and early thirties. That work, in particular Herbrand's and

Gentzen's, was motivated by foundational concerns connected with Hilbert's Program.

Such concerns were replaced by one crucial problem related to the efficient use of

Herbrand's fundamental theorem, namely the choice of terms for the instantiation of

quantifiers and the identification of contradictory pairs of literals. Herbrand [H71, p. 148]

introduced unification already for that very purpose, and Robinson [R65] incorporated

unification via his resolution rule directly into a machine-oriented deductive system. The

central question of the unification problem for a first order language L is this: Given terms t

and t' of L, is there a substitution or term-assignment c such that sub(a,t) and sub(a,tf) are

syntactically identical? (Here A,x.sub(a,x) is the unique extension of a to all terms.) A

substitution that allows such an identification is called a unifier for t and t\ Robinson

presented a particular unification algorithm and established that, if the algorithm yields a

unifier at all, then it is a most general unifier (or mgu).

Unification is not only crucial for resolution, but in fact for any refutation method —

whether based on the sequent calculus, semantic tableaux, or mating, to name just some

possibilities (compare [GMW79], [F90], [A81].) We use unification for automated proof

search, i.e. in algorithms that search directly for natural deduction proofs in classical first

order logic (see [SS89], [SS92], [K93]). The basic tenet is that searching for a proof of a

proposition from given assumptions should not necessarily resort to the atomic level. Thus,

we have to solve the unification problem simultaneously for terms and quantified formulae,

or for q-terms; if we denote by "quantified terms" the general category of syntactic

expressions including terms as well as formulae. As the main technical device for our

solution we introduce the three place C-substitution operation subc and formulate the

generalized problem for q-terms e and e1 as follows:

• Is there a substitution a such that subc(a,id,e) = subc(o,id,e')?

That means, informally, does a make e and e1 identical modulo renaming of bound

variables? — The spirit of our solution (though developed independently) is in line with

Snyderfs general strategy in [S91, p. 4]: by examining what it should mean for two

expressions to be "the same11 after a unifying substitution, the appropriate extensions or

modifications of the (Herbrand-style) unification method suggest themselves naturally.

Our solution is clearly not tied to the particular motivation from automated proof search, but

can be used in theorem proving algorithms based on refutation methods or, for that matter,

in quite different contexts, where unification is a useful tool; see [KK89]. Finally, the

simplicity of our approach should be compared to the complexity of the proposal made by

Staples and Robinson in [SR88] and [SR90].

1. C-substitution. The first order languages L we use consist of the following symbols:

universal and existential quantifiers: V, respectively 3; variables xn, n e N; sentential

connectives including -i, A, V, ->; for each n € N, countably many n-place relation symbols

and n-ary function symbols. Terms t, t\ ... and formulae A, A1, ... are inductively

defined as usual, but taken to be in prefix notation; q-terms e, e\ ... are either terms or

formulae. It can be shown that q-terms have a unique presentation uei... en, where u is a

variable (with n=0), a logical connective, a relation or function symbol of the appropriate

(number of) arguments. Thus, we can give recursive definitions and inductive arguments

for q-terms considering three cases: e is a variable, e is of the form @ei... en (where @ is a

sentential connective, a relation or function symbol), or e is of the form Qxne
f (where Q is

either the universal or existential quantifier). The following expressions are examples of q-

terms: the atomic formula Ptx ... t^ the conditional ->AAA ! VAA\ and the quantified

statement QxnA. The set of free variables of a q-term e is denoted by FV(e).

A term-assignment a is a function from the set V of all variables to the set of terms,

such that the set of variables xn for which a(xn)*xn is finite; this finite subset of V is called

the support of o, briefly sup(a). The term-assignment with empty support is obviously the

identity function id on V. The set of variables FV(a) of a term-assignment a is the set of

variables occurring in the terms a(xn) for xne sup(a). A term-assignment for variables can

be uniquely extended to a substitution operation on all terms. We will use a to indicate a

term-assignment or its uniquely associated extension; indeed, following common usage,

we will call term-assignments also substitutions. Given substitutions a and r\, their

composition or\ is defined by oti(xn)=a(Ti(xn)) for all variables xn. A substitution a is

called idempotent iff CG = a.

To extend substitutions not only to terms, but to q-terms, we use modified term-

assignments &xn; the latter have value a(xm) for variables different from xn, and they have

value t for xn. The replacement operation rep(a,e) is defined by:

1. rep(a,xn) = a(xn);

2. rep(a,@ei ... en) = @rep(a,eO ... rep(a,en);
3. rep(a,Qxn e) = Qxn rep(aXn

v e).

This operation replaces all free occurrences of a variable in a q-term e by its a-value, but

leaves bound occurrences untouched. From a logical point of view, however, rep is an

incorrect "substitution operation" for q-terms e involving quantifiers: it allows the

replacement of free variables in the scope of a quantifier by terms that contain the quantified

variable. We have two well-known choices: either we require terms a(xn) to be free for xn

in e, or we rename bound variables in such a way that this requirement is always satisfied.

We take the second alternative and define the substitution operation sub(a,e) with minimal

and canonical renaming of bound variables. Let d e be "a restricted to e" so that ole(xn) =

a(xn), if xneFV(e), and ole(xn)=xn otherwise. sub(a,e) is defined as follows:

1. sub(a,xn) = a(xn);

2. sub(a,@ei ... en) = @sub(a,ei) ... sub(a,en);

3. sub(a,Qxne) = f Qxn sub(aXn
ve) if xneFV(ale) or xneFV(e)

[Qxm subCa^^e) otherwise

where xm is the first variable that does not belong to FV(de)uFV(e).

Considering id for a we have the operation sub(id,e) that renames the bound variables of e.

Finally, the C-substitution operation subc(a,x,e) performs a substitution and generates a

canonical renaming relative to a context given by a set C of variables.

1. subc(a,t,xn) = fx(xn) ifxnesup(x)

I a(xn) otherwise

2. subc(a,x,@ei ... en) = @subc(a,x,ei) ... subc(a,x,en)

3. subc(a,x,Qxne) = Qxmsubc(a,xXmxn,e), where xm is the first variable whose

subscript is greater than the subscripts of all variables

in CuFV(e)uFV(a)uFV(x).

subc(id,id,e) yields a canonical renaming of bound variables in e relative to the context C.

That this renaming has the desired logical effect is shown by the next lemma.

Lemma 1.1. Let e be a q-term and a, x substitutions, and assume that C is a finite set of

variables such that (i) sup(a)uFV(e)uFV(a) is included in C and (ii) the subscripts of

variables in FV(x) are all greater than those of elements in C; then we have:

subc(a,x,e)=rep(a,subc(id,x,e)).

Proof. The proof proceeds by induction on q-terms e; the case that e is a variable follows

directly from the definitions, the case that e is of the form @ei ... en from induction

hypothesis. The case that e=Qxnei is the critical one; here we have by definition
(l)subc(a,x,Qxnei)=Qxmsubc(a,xXmxn,ei),

where xm is the first variable with subscript greater than the subscripts of variables in
CuFV(x); by induction hypothesis we have:

(2)Qxmsubc(a,xXmxn,ei)=Qxmrep(a,subc(id,xXmxn,ei)).

As xm is not in sup(a), c=aXmxm and thus by definition of rep:

(3)Qxmrep(a,subc(id,xXmxn,ei))=rep(a,Qxmsubc(id,xXmx11,ei)).

By choice of m and definition of subc:

(4)rep(a,Qxmsubc(id,xXmxn,ei))=rep(a,subc(id,x,Qxnei)).

The claim follows from (l)-(4). Q.E.D.

The lemma insures that subc behaves on a q-term e as replacement does on the canonically

renamed q-terms e*=subc(id,id,e), because subc(o,id,e)=rep(a,e*). — The operation

subc will be used for the unification of q-terms e and e1, where the context C is provided

by the set FV(e)uFV(ef). Indeed, we call e and ef unifiable if and only if there is a term-

assignment o with subc(a,id,e)=subc(a,id,e') and C=FV(e)uFV(e'); the substitution a is

called a unifier for e and e1.1 In section 3 we present a unification algorithm for q-terms,

whose output determines a unifier a for e and e\ indeed an mgu. Where a unifier a for e

and e1 is a most general unifier for e and e1 if a is more general than any other unifier TI for

those q-terms; i.e., for some substitution x, we have r\=To. But first we should convince

ourselves that subc(a,x,e) is an operation providing an appropriate identity criterion for the

"unifiability of q-terms" by considering a few (typical) examples.

1 The role of the second argument is similar to that of the "binding states" in [SR88] and [SR90]: the
substitution x keeps track of information on bound variables.

To re-emphasize, we want to find a unification algorithm mainly for automated proof

search and use unification extensively, in order to be able to fill the gap between goal and

premises without necessarily resorting to the atomic level. Let us make this point clearer

with an example. Suppose we want to derive the goal G=vVxnPxnfgxmguRxnxm (where

the free variables in G are taken to be existentially quantified) from a set of propositions S

containing A=vVxnPxnfxjgxmRguxm (where the free variables of A are taken to be

universally quantified). We would like to recognize the provability of G from S in one step

without decomposing G and A, since a substitution o exists, namely {<Xj,gxm>, <xm,u>,

<xn,gu», such that subc(a,id,G)=subc(a,id,A). Notice, that the values of A,x.subc(a,id,x)

for A and G are syntactically identical expressions; i.e., we consider formulae to be

unifiable, if the application of subc for a suitable term-assignment yields syntactic

identities! That corresponds perfectly to the ordinary understanding of bound variables as

refelected graphically in Bourbaki's way of indicating bindings. Based on this

understanding, the following examples show when a unification algorithm for q-terms

should succeed and when, instead, it should fail:

1. QxnPxn and QxmPxm should unify.

2. QxnPxn and QxmPa should not unify.

3. QxnPxm and QxmPxn should unify, but not with Qx^Px^.

4. QxnQxnPxnxn and QxnQxmPxnxm should not unify.

5. QxnQxmPxnxm and QxmQxnPxnxm should not unify.

Note that in the last case unification should fail even though the two formulas are logically

equivalent, as our approach to quantificational unification is not modulo quantification

theory. It will be interesting to explore the efficiency of proof search procedures, when

invoking unification algorithms with built-in logical identities (like the one in 5).

2. An equational calculus. The work in this section is preliminary to that in section 3,

where we present Martelli and Montanari's unification algorithm [MM 82] extended to q-

terms. In rough outline the algorithm proceeds as follows. Given e and ef, it constructs

sets of equations, starting from the equation between the renamed q-terms subc(id,id,e)

and subc(id,id,e') with C=FV(e)uFV(ef) and then transforming sets according to the rules

formulated below, until it fails or until it cannot apply any transformation rule. In the latter

case the output will be a system of equations that determines a unifier.

We introduce four transformations on systems of equations. Note that the distinction

between bound and free variables (of the input formulae) can be made by looking at their

I

subscripts, since the q-terms we are considering have been renamed. Bound variables are

of the form xn with n>k, where k is the successor of the largest number used as a subscript

of a free variable occurring in the input q-terms; v/hiltfree variables are of the form xn with

n<k. (As above, ei=ej expresses that the q-terms ei and ej are syntactically identical,

whereas ep=ej denotes an element of a system E of equations.)

(1) Exchange.
{e=xn}uE => {xn«e}uE, if e is not a variable.

(2) Equation Elimination.

{xn«xn}u E => E.

(3) Q-Term Reductions.

{@e! ... en=@e\ ... e ' J u E => {e^e ' j , ... , en~e'n}uE;2

{Qxnei-Qxne2}uE => {ei~e2}uE.

(4) Variable Elimination.

{xn«t}uE => {xn«t}u{<xn,t»E3, provided n<k and xn does not occur in t;

furthermore, t must not contain any variable xm with m>k.

We want to show that the application of these transformation rules to the singleton

E={subc(id,id,e)« subc(id,id,ef)} leads to a system of equations that determines a unifier

for e and e1 (if e and e' are indeed unifiable). If we can find a term-assignment a such that

rep(a,subc(id,id,e))=rep(a,subc(id,id,ef)), then we are done, as by Lemma 1.1 the latter

equation holds if and only if subc(cJ,id,e)=subc(cr,id,ef), i.e., e and e' are unifiable. — We

call a set of equations E* derived from E iff it has been obtained from E by successive

applications of the rules (1) through (4). Finally, a is called a solution for E iff

rep(a,ej)=rep(a,ek) for every equation ej«ek in E; E and E' are equivalent iff E and E'

have the same set of solutions. Now we can formulate and prove the following theorem.

Theorem 2,1. Any system E* of equations derived from an equation E between

canonically renamed q-terms is equivalent to E.

Proof (by induction on the number of rule applications). Exchange and equation

elimination preserve obviously equivalence to E. Let us consider the remaining rules.

2 Note that in case n=0, the set of new equations is clearly empty.
3 This indicates replacement of t for xn throughout E.

Assume E* has been obtained from a derived set of equations E by a q-term reduction;

this transformation replaces equations of the form @et ... en«@e'1 ... e'n in E1 by

equations e^e^, ..., en«e'n and those of the form Qxnei«Qxne2 by ei«e2. But any

solution a for Ef is a solution for E* and vice versa, as rep(a,ei)=rep(a,efi) for all i iff

rep(a,@e! ... en)=iev(o,@e\ ... e'n), respectively rep(a,Qxnei)=rep(a,Qxne2), recalling

the proof of Lemma 1.1. Therefore, E* and E1 are equivalent; but by induction hypothesis

E1 is equivalent to E, thus E* is equivalent to E.

Assume now that E* has been obtained from E'=E"u{xn«t} by variable elimination,

where xn is a free variable (i.e., n<k) and does not occur in t; furthermore, t must not

contain any variable xm with m>k. This transformation replaces xn by t in all equations of

E" and yields E* by joining {xn«t} to {<xn,t»E". Solutions for Ef are clearly also

solutions for E*. So let a be a solution for E*; as E* contains the equation xn«t, a is a

solution for it and also for all equations in E" not containing xn, as the latter equations

occur unchanged in E*. For equations u«v of Etf containing xn, E* will have

corresponding equations u'«v' with {<xn,t>}(u)=uf and {<xn,t»(v)=vf. But then

rep(a,u)=rep(a,u') and rep(a,v)=rep(a,vf). Thus, every solution for E* is also a solution

for Ef (and thus E* is, as above, equivalent to E). Q.E.D.

A system E* of equations is in solved form iff the following two conditions are

satisfied: (a) every equation is of the form xn«t, where n is less than k and the subscripts j

of all variables occurring in t are less than k and different from n; (b) if xn is the left

member of some equation, then it does not occur in any other equation of E*. The

equations of such an E* obviously determine a term-assignment a by setting a(xn)=xn, if

xn does not occur on the left-hand side of any equation in E*, and a(xn)=t, if xn«t is in E*.

If E* is in solved form (derived from E={subc(id,id,e)«subc(id,id,e')} for q-terms e and

e1) the a just defined is actually an idempotent mgu for the input q-terms. After all, a is a

solution for E* and, by Theorem 2.1, of E; thus a is a unifier for e and e\ Because of

condition (b) for systems of equations in solved form, a must be idempotent and, because

of (a), an mgu. So we have:

Theorem 2.2. Let E* be derived from E={subc(id,id,e)«subc(id,id,ef)} for arbitrary q-
terms e and ef; if E* is in solved form, then it determines a solution a that is an idempotent
mgu for e and e\

Having established that a derived set E* of equations in solved form determines a unifier,

we formulate now an algorithm that decides the unifiability of two q-terms and provides an

idempotent mgu in case the decision is positive. Indeed, the algorithm U will transform the

initial equation between the canonically renamed q-terms systematically into a system of

equations in solved form, if the q-terms are unifiable; if they are not unifiable, the algorithm

will end with "failure".

3. The unification algorithm U. The algorithm U constructs a sequence of systems

of equations starting from {subc(id,id,e) « subc(id,id,e')} by applying the following

operations:

1. select an equation of the form t« xn and apply exchange;

2. select an equation xn « t ,

a. if t = xn, apply equation elimination;

b. if t * xn

i. if xn is a bound variable, i.e., n>k, then fail;

ii. if xn or a bound variable occurs in t, then/a//;

iii. if xn occurs in some other equation, apply variable elimination;

3. select an equation of the form e « e\

a. If the root symbols (function, predicate, connective or quantifier symbols4) or their

arities are different, then/a//;

b. otherwise, apply term reduction;

4. If none of the previous operations can be applied, then stop .

An example will highlight the crucial features of U. Consider q-terms

and e'=VxgPx5hxgX5. A canonical renaming of all bound variables leads to q-terms

e*=Vx9Pchx9X3 and e'*=Vx9Px5hx9X5 and the initial set of equations{e*«e'*}. U applies

term reduction to get {Pchx9X3~Px5hx9X5>. Both terms start with the same predicate

symbol P, so U applies term reduction again to obtain {c«X5, hx9X3«hx9X5> and uses

exchange to rewrite the first equation as xs~c. Variable elimination with xs«c applied to

{hx9X3«hx9X5, X5«c} and subsequent term reduction for hx9X3«hx9C yields the set {X9=X9,

X3«c, X5«c}. U drops the first equation from the set by equation elimination to obtain

E*={X3=c, X5«c}. No other rule can be applied, so U will stop with the set of equations

E*. Note that E* is in solved form.

We consider a quantifier symbol Q together with the first occurrence of the variable xn bound by Q, i.e., Qxn.

Theorem 3.1 (Termination and correctness of U). Let E be the system of equations

{subc(id,id,e)«subc(id,id,e')} for arbitrary q-terms e and c1; U applied to E always

terminates: if U terminates with failure, then e and e1 are not unifiable; otherwise, U

terminates with step 4 and presents a system E* of equations in solved form that is

equivalent to E.

Proof. U applies rules of the equational calculus, unless U meets one of the exit

conditions. If U exits through one of the failure points 2.b.i, 2.b.ii, or 3.a, then U

terminates and the terms e and e1 are obviously not unifiable. Otherwise only steps 1., 2.a,

2.b.iii, or 3.b are applied. We claim that in this case E is eventually transformed into a

system E*, such that none of these steps is applicable, and U terminates on account of 4.

As E* is derived from E, E* and E are equivalent by Theorem 2.1. And because of the

termination condition, E* must be in solved form. That establishes the correctness of U

also in this case — if U indeed terminates.

To establish termination of U under the stated circumstances, it suffices to show that

any sequence of steps 1., 2.a, 2.b.iii, or 3.b must be finite, when started with an

application to E. For that purpose we associate with any set E1 of equations a triple of

natural numbers cp(Ef)=<ni,n2,n3>, where ni is the number of free variables with more

than one occurrence, n2 is the number of occurrences of function symbols, relation

symbols, and of logical connectives (i.e., quantifiers as well as sentential connectives),

and n3 is the number of equations that are either of the form xn«xn or of the form t«xn with

xn a free variable and t a non-variable term.

The lexicographic ordering > of triples of natural numbers is a well-ordering; thus, the

finiteness claim has been established, as soon as we have shown that any single application

of steps 1., 2.a, 2.b.iii, or 3.b to an equation Ef leads to an equation E" with cp(E')>

cp(EM). Recall that <ni,n2,n3> ><n!i,n'2,nf3> holds if at least one ni>n'i, for l<i<3,

and all nj=n j for 0<j<i<3. Now consider the various possible steps applicable to Ef:

step 7. of U, exchange, reduces only the number n3 of equations of the form t«xn, leaving

all the other factors unchanged, so cp(E')>cp(EM);

step 2.a of U, equation elimination, reduces the number n3 of equations of the form xn«xn,

may reduce ni, but does not effect n2, thus we have in any case cp(Et)>cp(Ett);

2.b.iii of U, variable elimination, reduces ni and may increase n2, but even if n2 is

increased, we have that cp(Ef)>cp(Eff);

3.b of U, term reduction, reduces n2 and may increase n3, but even if n3 is increased, we
have that cp(Et)>cp(EM). Q.E.D.

4. Final remarks. First, Martelli and Montanari's algorithm has been modified only to

treat bound variables. It seems to be clear that other algorithms, e.g. from [PW78], can be

modified in a similar way; our way of proceeding provides a case study. The complexity

of the original algorithm is not essentially increased. Indeed, even the addition of canonical

renaming does not change the overall complexity, as that procedure is only linear in the

input.

Second, our goal was to limit the search for theorem provers, in particular for those

used in automated proof search. From that, the need of an algorithm for the unification of

quantified terms arose. Our proposal to use a canonical renaming seems to be a very natural

way of treating bound variables in this context. Indeed, after renaming, our unification

algorithm behaves as a usual unification algorithm for terms, treating quantifiers as functors

and bound variables as special constants.

Acknowledgments. We would like to thank Alberto Momigliano and Frank Pfenning

for interesting suggestions and fruitful conversations.

References.

[A81] P. Andrews, Theorem Proving via General Matings, JACM 28 (2), pp.193-214.

[F90] M.Fitting, First-Order Logic and Automated Theorem Proving, Springer-Verlag,
1990.

[GMW79] M.J.C.Gordon, R.Milner and C.P.Wadsworth, Edinburgh LCF: A Mechanised
Logic of Computation. Springer LNCS 78, 1979.

[H71] J. Herbrand, Logical Writings, W. Goldfarb (ed.), Harvard University Press,
Cambridge 1971.

[K93] B.Kauffmann, A Unification Algorithm for Quantified-Formulae, Master Thesis,
Department of Philosophy, Carnegie Mellon University, May 1993.

[KK89] K.Knight, Unification: a Multidisciplinary Survey, ACM Computing Surveys,
Vol.21, No.l, pp.93-124, 1989.

[MM76] A.Martelli and U.Montanari, Unification In Linear Time and Space: A Structured
Presentation, Istituto Di Elaborazione Delllnformazione (Pisa), B76-16,1976.

[MM82] A.Martelli and U.Montanari, An Efficient Unification Algorithm, ACM
Transaction on Programming Languages and Systems, Vol.4, No.2, pp.258-282, 1982.

[PW78] M.S.Paterson and M.N.Wegman, Linear unification, Journal of Computer and
System Sciences, Vol.16, N0.2, pp.158-167, 1978.

10

[R65] J.A.Robinson, A Machine-oriented Logic Based on the Resolution Principle,
JACM, Vol.12, No.l, pp.23-41, 1965.

[SS89] W.Sieg and R.Scheines, Automated Proof Search (in sentential logic), in:
Philosophy and the Computer, L. Burkholder (ed.), Westview Press, 1992, pp. 137-159.
[The paper was presented to Conference on Computing in Philosophy, Pittsburgh, 1989.]

[SS92] W.Sieg and R.Scheines, Searching for Proofs (in predicate logic), manuscript,
December 1992.

[SW83] J. Siekmann and G. Wrightson, Automation of Reasoning (Classical Papers on
Computational Logic 1957-1966), vol. 1, Springer-Verlag, 1983.

[S91] W.Snyder, A Proof Theory For General Unification, Birkhauser, Boston, Basel,
Berlin, 1991.

[SR88] J.Staples and PJ.Robinson, Efficient Unification Of Quantified Terms, The
Journal of Logic Programming , No.5, pp. 133-149, 1988.

[SR90] J.Staples and PJ.Robinson, Structure Sharing for Quantified Terms:
Fundamentals, Journal of Automated Reasoning , No.6, pp.115-145,1990.

11

