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Abstract

Linear structural equation models with latent (unmeasured) variables are used widely in

sociology, psychometrics, and political science. When such models have a unidimensional

(pure) measurement model (Gerbing and Anderson 82, 88; Scheines 92) they imply constraints

on the measured covariances which can be used to either confirm unidimensionality or find

submodels which are unidimensional. Assuming unidimensionality, the causal relations among

the latent variables can be partially determined by examing other (related) constraints on the

measured covariances. In this paper I prove first that unidimensionality is detectible from

constraints on only the measured covariances no matter what the structure among latent

variables, and second that in a structural equation model with a unidimensional measurement

model, for any three latents T i , Tj, and Tt, pxi,Tj = 0 and pTi,Tj.Tk = 0 only if certain

constraints hold on only the measured covariances.



1. Introduction

Linear structural equation models with latent variables are discussed in Bollen (89) and are used

widely. When such models seek to model relations among the latent variables, they must

specify measures for each latent so that some contact exists between theory and data. When

multiple measures for each latent are given, such models imply testable constraints on the

covariance matrix of measured variables. It is through these constraints that different structure

among latent variables can be detected.

It is straightforward to represent, without loss of generality, a structural equation model with a

directed graph. The graph contains a directed arrow from A to B just in case A is a direct cause

of B, and moving from a graph to its corresponding system of equations involves simply

specifying each effect as a linear combination of its immediate causes, including an independent

error (Glymour, etal, 87, Spirtes, Glymour, and Scheines, 93).2 Structural equation models

are typically divided into two parts: the "measurement model," and the "structural model."

Roughly, the structural model involves only the causal connections among the latent variables,

and the measurement model the rest, e.g. the connections between latent and measured

variables. Consider the graph in figure 1, in which the T variables are latent, the Y variables are

measured, and the e and £ variables are error terms.3

^Om can extend the directed graph representation of structural equation models to include undirected edges, which
represent unexplained correlations. In the formal analysis of the directed graph, these undirected edges are replaced
with anew variable which is set to be a cause of both variables connected by the undirected edge.
3For purely illustrative purposes, one might imagine that this model applies to married, male Navy pilots. 773
might express the pilots level of job satisfaction, tj4 how challenging he finds his career, r\\ how traditional a
family the pilot comes from, and 772 how supportive the pilot's spouse is toward his Navy career. The Y
variables might be questionaire responses.
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Figure 1

In this case the structural model is the maximal subgraph involving only T and £ variables, and

the measurement model its complement, eg. figure 2.
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Intuitively, a measured indicator is pure, or unidimensional, if its only causal contact with the

rest of the variables in the system is through its latent So in the measurement model above, for

example, all indicators are pure except for Yi, Y2, Y4, Y5, and Y13. In what follows I make

these notions precise and prove that unidimensionality is detectible, as is 0 and lst-order d-

separation among latent variables that have a pure measurement model.4

2. Unidimensional Measurement Models

As in (Spirtes, Glymour, and Scheines, 93),5 a directed graph G with vertices V represents a

causal structure S for a population of units when the vertices in V denote the variables in S, and

4D-separation is a graph theoretic relation given by Pearl (1988). For pseudo-indeterministic systems, X and Y
are d-separated by Z only if X and Y arc independent given Z (Spirtes, Glymour, Scheines, 93). The order of the
d-separation is the cardinality of die separting set
5page47.



there is a directed edge from A to B in G if and only if A is a direct cause of B relative to V.

We call a directed acyclic graph that represents a causal structure a causal graph.

Let G be a causal graph over T u V u C G is a latent variable model if

1) T is a set of latent variables, and

2) V is a set of measured variables such that each member of V is the direct effect of at least

one member of T and V is the cause of no member of T u C,

3) C is a set of latent variables disjoint from T such that each C e C is either a common

cause of some T e T and some V € V, or is a common cause of Vi, Vj € V,

4) for each X e T u V u C , X i s a linear combination of its immediate causes in G and an

error variable Ex such that for all i j , Ei, Ej are independent and Var(E0 * 0, and

5) V can be partitioned into V(Tj) such that for every Ti G T, IV(TI)I > 0, and for every V

e V(T0, Vis a direct effect of T ie T.

A measure Ve V(T0 is almost pure just in case

i) V is the cause of no variable in V/V, and either

ii) V is a direct effect of Ti only, or

iii) V is the direct effect of Ti, and there is a C € C, such that C is a common cause of Ti

and V only, and no other L € T u C is a cause of T{.

A measure VG V(Ti) is pure just in case V is almost pure and is an effect of Ti only.

VI: Impure, V2-V4:Pure, V5: Almost Pure

V is impure if it is not almost pure. G is an almost pure latent variable model if it is a

latent variable model and every Ve V is pure or almost pure. G is a pure latent variable

model if it is a latent variable model and every Ve V is pure. G is a unidimensional latent

variable model if it is either pure or almost pure.

A measure can be impure for four reasons, which are exhaustive but not exclusive:



(i) If V e V(TO and there is a trek between V and Tj * Ti that does not contain Tx or any

member of V\V then we say V is latent-measured impure.

(ii) If V, X € V(Ti) and there is a trek between V and X that does not contain any member

of T then V and X are intra-construct impure.

(iii) If V e V(Ti) and Z € V(Tj) i*j, and there is a trek between V and Z that does not

contain any member of T then we say that Vi and V2 are cross-construct impure.

(iv) If there is a C € C that is the cause of both Ti and some V € V(T0, and there exists
some other R G T U C that is a cause of Ti, then we say V is nuisance impure.

V2: Latent-Measured Impure

A /\\
V V

1 2
V V V

3 4 5

V3, V4: Intra-construct Impure

1 2 ' 3 4 5

V2.V3: Goss-construct Impure V5: Nuisance Impure

Figure 3



Theorem 1: If G is a latent variable model, then every V e V is either almost pure, latent-

measured impure, intra-construct impure, cross-construct impure, or nuisance impure.

Proof: By assumption G contains edges from each latent Ti to each V € V(Ti). Let B be the

subgraph of G that contains only these edges. The proof is an induction on the number of edges

that need to be added to B to get to G.

Basis case: All indicators are pure in B, so this case is trivial

A
V V

1 2

c
2

Figure 4: Beginning graph B

Induction: We assume that n-1 edges have been added to B to form Bn-i, and that all V e V in

Bn-i are either almost pure, latent-measured impure, intra-construct impure, cross-construct

impure, or nuisance impure. We need to show that an additional edge En will not cause any V

in Bn to fall outside of these categories.

First suppose that the additional edge En is out of some Ti e T. Then there are three cases:

l)En isfromTitoTj,

2) En is from Ti to some V € V(T0, or

3) En is from Ti to some C e C

If En is from Ti to Tj, then the only possible change in status is V € V(Tj) such that there is a C

that is a cause of V and of Tj. But V would then be nuisance-impure. If En is from Ti to some

V £ V(Ti), then V is latent-measured impure. Suppose finally that En is from Ti to some C €

C. This will change nothing save through some other connection involving C. Edges from C

to some Tj * Ti will produce in effect an edge from Ti to Tj, and thus produce nothing new.

Edges from C to some V e V(T0 create a redundant path from Ti to V and are indistinguishable

from a single edge from Ti to V (figure 5).
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Figure 5

Edges from C to some V e V(T0 make V latent-measured impure in virtue of Ti -> C -> V.

Edges into C (figure 6) will create no new treks from En because these edges and En will collide

atC.

Figure 6

Edges from C to some other C2 € C will only change things in combination with edges

connected to C2, which reduces to the cases just considered.

Next consider an edge En into some Ti e T. By assumption no edge is allowed from any V e

V to Ti, so the only possibilities are edges from Tj * T{ or from some C € C. Edges from

from Tj * Ti will change no V. If En is from C into Ti, then again En will only change

something in combination with an edge involving C, and this case is similar to the one

involving C above.

Next consider an edge En out of some C € C. If En is from C to Ti then we are covered by the

preceding two paragraphs. Two edges, one from C to some Vi € V(T0 and one from C to

some V2 e V(Tj), i * j make both Vi and V2 cross-construct impure. If i = j then both Vi and

V2 are intra-construct impure. Edges from C\e C to C2 e C will produce impurities only in

combination with other edges connected to Ci and C2, and the argument here is the same as

two paragraphs back. Edges into some C e C can only be from X e T u C . In either case

they are already covered above.
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Next consider an edge En out of some V € V. No edge out of V may go to any X e T u C .

If En is from Vi € V(T0 to V2 € V(Tj), i * j , then both Vi and V2 will be cross-constract

impure. If i = j , then both Vi and V2 are intra-construct impure.

Finally, consider an edges En into some V € V. If the edge is from some other V2 e V, then

both V and V2 are impure, either intra-constract or cross-constract If the edge is from C € C,

then only other edges out of C can make indicators impure, and all those cases are covered

above. If V € V(T0 and the edge into V is from Tj e V(Ti), then V is latent-measured impure.

Q.E.D.

3. Unidimensionality and Tetrad Equations

Based on the partition of V, we can use different types of tetrad equations to detect impure

indicators. Let Xwxyz stand for the tetrad equation pw* * pyz = Pwy * Pxz-

T

/A\
W X Y Z

4x0

Ti Tj

A A
W X Y Z

2x2

Ti ^

/A 1
W X Y Z

3x1

Ti Tj

/ A
W X Y

1x2x1

Tk

\
Z

Figure 7

If W,X,Y,Z € V(T0, then xWxyz, *wxzy, and xw y z x are 4x0 tetrad equations. If W,X,Ye

V(Tj) and Z e V(Tj), i * j , then xWxyz> twxzy, and xWyzx are 3x1 tetrad equations. If

W,Xe V(Ti) and Y,Z e V(Tj), i * j , then xw y z x is a 2x2 tetrad equation. If We V(T0,

X,Y € V(Tj), and Z e V(Tk), i * j * k, then xWyzx, tWxzy, and xWyzx are 1x2x1 tetrad

equations.
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A latent variable model G is parameterized by «|>, D>, where <|> is a vector of the linear

coefficients and D the distribution over the exogenous variables. A latent variable model G

linearly implies a tetrad equation Xwxzy if G implies Xwxzy for every value of «|>, D>.

Theorem 2: If G is a latent variable model which linearly implies every 3x1 tetrad equation

among V, then for every Ti <= T, and every V € V(Ti) such that IV(Ti)l > 3, V is almost pure

or for every Tj € T/Ti, T{ and Tj are independent

Proof: By reductio. Suppose that G is a latent variable model which linearly implies every 3x1

tetrad equation, and that there is some V € V(T0 such that I V(Ti)l > 3, V is not almost pure and

there is some Tj € T/Ti, such that T{ and Tj are dependent

By theorem 1, V is either i) latent-measured impure, ii) intra-construct impure, iii) cross-

construct impure, or iv) nuisance impure. In each case I will show a contradiction.

Latent-Measured

First suppose that V is latent-measured impure. Then there is a trek between V and Tj * Ti that

does not contain Ti or any member of V\V. By hypothesis IV(Ti)l £ 3, so let V, X, Y €

V(T0,andZ€ V(Tj).

T. T.

V X Y Z

Figure 8

By assumption the 3x1 tetrad equation xVxzy- pvx * pzy = pvz * pxy is linearly implied by G.

By the tetrad representation theorem, Xyxzy is linearly implied by G if and only if there exists in

G either a XZ(T(V,Z), T(Y,X), T(V,X), T(Z,Y)) choke point or a VY(T(V,Z), T(Y,X),

T(V,X), T(Z,Y)) choke point Such a choke point exists trivially if one of V-X, Z-Y and one

of V-Z, X-Y are not even trek connected. X-Y are trek connected because of the X-T{-Y trek,

and V-Z are trek connected because of the V-Tj-Z trek. If there is a non-trivial XZ(T(V,Z),

T(Y,X), T(V,X), T(Z,Y)) choke point or a non-trivial VY(T(V,Z), T(Y,X), T(V,X), T(Z,Y))

choke point, it must be Ti, because Ti is the only variable on the path from the source of the

T(Y,X) trek: X-T{-Y to either X or Y. The trek between V and Tj can be extended into a trek

between V and Z because the Tj -> Z edge is out of Tj, but by the fact that V is latent-measured
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impure Ti is not anywhere on this trek. But both the XZ(T(V,Z), T(Y,X), T(V,X), T(Z,Y))
choke point and the VY(T(V,Z), T(Y,X), T(V,X), T(Z,Y)) choke point must include a variable
that is on all treks between V and Z, thus Ti cannot be a choke point and we have a
contradiction.

Intra-Construct
Next suppose that V is intra-construct impure. Then there is some X such that V, X e V(Ti)
and there is a trek between V and X that does not contain T{. IV(Tj)l £ 3, so let V, X, Y e
V(Ti). By hypothesis there is a Tj such that Tj,Ti are dependent Let Z € V(Tj).

T i T j

/A I
V X Y

Figure 9

Again by hypothesis the 3x1 tetrad equation Xyxzy- Pvx * Pzy = Pvz * Pxy is linearly implied by
G, and again either there is a trivial XZ(T(V,Z), T(Y,X), T(V,X), T(Z,Y)) or VY(T(V,Z),
T(Y,X), T(V,X), T(Z,Y)) choke point, or Ti must be the choke point Since Tj,Ti are
dependent and thus trek-connected, none of V-X, Z-Y, V-Z, X-Y are trek disconnected, so Ti
must be the choke point. But there is a trek between V and X that does not contain Ti, so Ti
cannot be the choke point

Cross-Construct
Next suppose that V is cross-construct impure. Thus V e V(T0 and Z e V(Tj) i?tj, and there

is a trek between V and Z that does not contain any member of T. IV(Ti)l ^ 3, so let V, X, Y

Figure 10
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Again by hypothesis the 3x1 tetrad equation Xyxzy- Pvx * Pzy = Pvz * Pxy is linearly implied by

G, and again either there is a trivial XZ(T(V,Z), T(Y,X), T(V,X), T(Z,Y)) or VY(T(V,Z),

T(Y,X), T(V,X), T(Z,Y)) choke point, or Ti must be the choke point. Since there is a trek

between V and Z, neither of V-Z or X-Y are trek disconnected, so T{ must be the choke point

But there is a trek between V and Z that does not contain T{, so T| cannot be the choke point

Nuisance
Finally, suppose that V is nuisance impure. Thus there is a C e C that is the cause of both Ti

and some V € V(Ti), and there exists some other R e T u C that is a cause of Ti.

Suppose R = Tj e T. Then let V, X, Y e V(T0 and Z € V(Tj), and Tj is a cause of Ti.

V X Y

Figure 11

By hypothesis the 3x1 tetrad equation Xyxzy- Pvx * Pzy = Pvz * Pxy is linearly implied by G, and

again either there is a trivial XZ(T(V,Z), T(Y,X), T(V,X), T(Z,Y)) or VY(T(V,Z), T(Y,X),

T(V,X), T(Z,Y)) choke point, or Ti must be the choke point Since there is a trek between Ti

and Tj, the choke point cannot be trivial, so it must be Ti. Ti is not a XZ(T(V,Z), T(Y,X),

T(V,X), T(Z,Y)) choke point because Tj is the only variable on the path from the source of the

V-Ti-Tj-Z trek to Z. Ti is not a VY(T(V,Z), T(Y,X), T(V,X), T(Z,Y)) choke point because C

is the only variable on the path from the source of the V-C-T{-X trek to V.

Suppose R = C2 e C. There are two cases. Either 1) C2 is also a cause of some X e V(T0,

or 2) C2 is the cause of some Z € V(Tj). In case 1 (figure 12), let Tj be the variable such that

Ti, Tj are dependent by hypothesis, and let Z € V(Tj). If the Ti-Tj trek is into Ti, then this case

reduces to the last, so the only case that remains is Ti -> Tj.

Ti

I
V Y X

(1)
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Figure 12

Astonishingly, we can assume that the 3x1 tetrad equation xVxzy: Pvx * Pzy = Pvz * Pxy is
linearly implied by G, and again either there is a trivial XZ(T(V,Z), T(Y,X), T(V,X), T(Z,Y))
or VY(T(V,Z), T(Y,X), T(V,X), T(Z,Y)) choke point or Ti must be the choke point Since
there is a trek between Ti and Tj, the choke point cannot be trivial, so it must be Ti. Ti cannot
be a XZ(T(V,Z), T(Y,X), T(V,X), T(Z,Y)) choke point because C2 is the only variable on the
path from the source of the Y-Ti-C2-X trek to X. Ti cannot be a VY(T(V,Z), T(Y,X), T(V,X),
T(Z,Y)) choke point because Ci is the only variable on the path from the source of the V-Ci-
Ti-Z trek to V.

In case 2 (figure 13), C2 is the cause of some Z e V(Tj).

V X Y

(2)

Figure 13

The 3x1 tetrad equation Xyxzy- Pvx * Pzy = Pvz * Pxy is linearly implied by G, and again either
there is a trivial XZ(T(V,Z), T(Y,X), T(V,X), T(Z,Y)) or VY(T(V,Z), T(Y,X), T(V,X),
T(Z,Y)) choke point or Ti must be the choke point C2 is a common cause of every pair
involving V,X, Y and Z, so the choke point cannot be trivial and it must be T{. Ti cannot be a
XZ(T(V,Z), T(Y,X), T(V,X), T(Z,Y)) choke point because C2 is the only variable on the path
from the source of the V-Ti-C2-Z trek to Z. Tj cannot be a VY(T(V,Z), T(Y,X), T(V,X),
T(Z,Y)) choke point because Ci is the only variable on the path from the source of the V-Ci-
Ti-XtrektoV.
Q.E.D.
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4. Structure Among the Latents

For convenience I restate the definitions of almost pure and pure.

A measure V€ V(T0 is almost pure just in case

i) V is the cause of no variable in V/V, and either

ii) V is a direct effect of Ti only, or

iii) V is the direct effect of Ti, and there is a C e C, such that C is a common cause of Ti

and V only, and no other L € T u C is a cause of T{.

A measure Ve V(T0 is pure just in case V is almost pure and is an effect of Ti only.

Theorem 3: If G is an almost pure latent variable model in which |V(Ti)l ^ 2 for every i, J

e V(Ti), L e VCI3), I,K € VCI2), then latents Ti and T3 are d-separated given T2 if and only

if G linearly implies pjipLK = P J L P H = PJKpIL-

Figure 14

Lemma 3.1: If G is an almost pure measurement model, and X e V(T0 then Ti is a non-

collider on every undirected path connecting X to any Y e T u V\{X} in G.

Proof: If G is an almost pure measurement model, then X is pure or almost pure. In either

case X is an effect only. If X is pure, then it is an effect of Ti only so Ti is a non-collider on

any undirected path involving X.

If X is almost pure then it is still an effect only but there is a Ci e C that is a direct cause of

both X and Ti. There cannot be an edge between Ci and any Tj € 1\Ti or between Ci and any

Y € V\X, because the Ci -> X edge could always be concatenated to such an edge to form a

trek that would make X impure. There cannot be an edge connecting Ci to some other C2 e C,

because in that case C2 would also be the cause of some Tj G T\Ti or to some X1 e V\X, in
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which case again X would be impure because of the trek between X and Tj that is not through

Ti. So all paths connecting X to any V e T u V\{X} must go through Ti. If Q is a cause of

T{ then nothing else can be a cause of Ti, so all other edges involving Ti are out of Ti, and

therefore there is no path on which Ti is a collider if any of its indicators are almost pure but not

pure. Q.E.D.

Corrolary 3.1.1: If G is an almost pure measurement model, and X e V(T0, then Ti is on

every trek connecting X and Y e T u V\{X} in G.

Lemma 3.2: If G is an almost pure latent variable model in which |V(Ti)l ^ 2 for every i, J €

V(Ti), L e V(T3), I,K € V(T2>, then latents Ti and T3 are d-separated given T2 only if G

linearly implies pjipLK = PJLPKI = pJKpIL-

Proof. Because I and K are almost pure indicators of T2 in G, by lemma 3.1 T2 d-separates I-

K. By similar reasoning T2 d-separates J-I, J-K, L-I, and L-K. By lemma 3.1, Ti and T2 are

non-colliders on every undirected path connecting J and L. Since Ti and T3 are d-separated

given T2, then J and L are d-separated given T2. In general X and Z are d-separated given Y if

and and only if G linearly implies pxz.Y = 0- Hence G linearly implies pji = 0, and pji = pjT2

*pIT2- Similarly:

PJK = PJT2 * PKT2>

PJL = PJT2 * PLT2>

PIK = PIT2 * PKT2>

PIL = PIT2 * PLT2>

PKL = PKT2 * PLT2-

Hence G linearly implies:

PJI * PLK = PJT2 * PIT2 * PKT2 * PLT2>

PJK* PEL = PJT2 * PKT2 * PIT2 * PLT2»

PJL * PDC = PJT2 * PLT2 * PIT2 * PKT2>

and thus pji * pLK = PJK * PlL = PJL * Pnc Q.E.D.

Lemma 33: If G is an almost pure latent variable model in which |V(T|)I ^ 2 for every i, J e

V(Ti), L € V(T3), I,K e V(T2), then latents Ti and T3 are d-separated given T2 if G linearly

implies pji*pLK = PJL*PKI = PJK*PlL-
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Proof. Suppose that G linearly implies pji*pLK = PJL*PKI = PJK*PIL but Ti and T3 are not

d-separated given T2. By the Tetrad Representation Theorem,6 if G linearly implies pji *puc =

PJL*PKI then either there is an IL(T(I,J),T(L,K),T(L,J),T(I,K)) choke point, or there is a

JK(T(IJ),T(L,K),T(L,J),Ta,K)) choke point

Let T(I,K) be the trek consisting of the edges from T2 to I and T2 to K. Suppose first that there

is an IL(T(I,J),T(L,K),T(L,J),T(I,K)) choke point The choke point is either I or T2 because

those are the only vertices in I(T(I,K)). I is not the choke point because it does not lie on any

trek between L and K. Hence T2 is the choke point Similarly, if there is a

JK(T(I,J),T(L,K),T(L,J),T(I,K)) choke point it is T2. Hence, in either case T2 is a choke

point

There are two ways that Ti and T3 might fail to be d-separated given T2. Either there is a trek

between Ti and T3 that does not contain T2, or there is some undirected path U between Ti and

T3 such that T2 is a descendent of every collider on U, and T2 is not a non-collider on U,

First assume that there is some trek between Ti and T3 that does not contain T2. Then there is a

trek between J and L that does not contain T2. But then T2 is not a choke point, contrary to

what we have just proved. Now assume that there is some undirected path U between Ti and

T3 such that T2 is a descendent of every collider on U, and T2 is not a non-collider on U. In

that case U d-connects Ti and T3 given T2. Again there are two cases.

Suppose first that T2 is an IL(T(IJ), T(L,K), T(L,J), T(I,K)) choke point Let C be the collider

on the undirected path U that is closest to T3.

U

U(T3,C) does not contain any colliders on U except C because C is the closest collider to T3 on

U; hence U(T3,C) is a trek between T3 and C There is a vertex W on U(T3,C) that is the

6See (Spines, Glymour, and Scheines 93), chapter 6.
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source of a trek between T3 and C. W * C because W is not a collider on U, but C is. Hence

U(W,T3) contains no colliders on U. It follows that U(W,T3> does not contain T2, because T2

is not a non-collider on U. Hence there is a trek T(K,L) between K and L whose K branch

consists of the concatenation of U(W,C), a directed path from C to T2, and the edge from T2 to

K, and whose L branch consists of the concatenation of U(W,T3) and the edge from T3 to L.

Because neither U(W,T3> nor the edge from T3 to L contains T2, T2 is not in L(T(K,L)), and

hence is not an IL(T(I,J),T(L,K), T(L,J),T(I,K)) choke point, contrary to our hypothesis.

A similar argument shows that if there is some undirected path U between Ti and T3 such that

T2 is a descendent of every collider on U and T2 is not a non-collider on U, then there is no

JK(T(IJ), T(L,K), T(L,J), T(I,K)) choke point Therefore Ti and T3 are d-separated given T2.

Q.E.D.

Theorem 3 follows immediately from lemmas 3.2 and 3.3.
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