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Abstract

Linear structural equation models with latent (unmeasured) variables are used widely in
sociology, psychometrics, and political science. When such models have a unidimensional
(pure) measurement model (Gerbing and Anderson 82, 88; Scheines 92) they imply constraints
on the measured covariances which can be used to either confirm unidimensionality or find
submodels which are unidimensional. Assuming unidimensionality, the causal relations among
the latent variables can be partially determined by examing other (related) constraints on the
measured covariances. In this paper I prove first that unidimensionality is detectible from
constraints on only the measured covariances no matter what the structure among latent
variables, and second that in a structural equation model with a unidimensional measurement
model, for any three latents Tj, Tj, and Tk, pTi,Tj = 0 and pTi,Tj.Tk = O only if certain
constraints hold on only the measured covariances.




1. Introduction

Linear structural equation models with latent variables are discussed in Bollen (89) and are used
widely. When such models seek to model relations among the latent variables, they must
specify measures for each latent so that some contact exists between theory and data. When
multiple measures for each latent are given, such models imply testable constraints on the
covariance matrix of measured variables. It is through these constraints that different structure
among latent variables can be detected.

It is straightforward to represent, without loss of generality, a structural equation model with a
directed graph. The graph contains a directed arrow from A to B just in case A is a direct cause
of B, and moving from a graph to its corresponding system of equations involves simply
specifying each effect as a linear combination of its immediate causes, including an independent
error (Glymour, et.al, 87, Spirtes, Glymour, and Scheines, 93).2 Structural equation models
are typically divided into two parts: the "measurement model,"” and the "structural model."
Roughly, the structural model involves only the causal connections among the latent variables,
and the measurement model the rest, e.g. the connections between latent and measured

variables. Consider the graph in figure 1, in which the T variables are latent, the Y variables are
measured, and the € and  variables are error terms.3

20ne can extend the directed graph representation of structural equation models to include undirected edges, which
represent unexplained correlations. In the formal analysis of the directed graph, these undirected edges are replaced
with a new variable which is set to be a cause of both variables connected by the undirected edge.

3For purely illustrative purposes, one might imagine that this model applies to married, male Navy pilots. 13
might express the pilots level of job satisfaction, 774 how challenging he finds his career, 771 how traditional a
family the pilot comes from, and 72 how supportive the pilot's spouse is toward his Navy career. The Y
variables might be questionaire responses.
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Figure 1

In this case the structural model isthe maximal subgraph involving only T and £ variables, and
the measurement model its complement, eg. figure 2.
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Intuitively, ameasured indicator is pure, or unidimensional, if its only causal contact with the
rest of the variablesin the system is through its latent  So in the measurement model above, for
example, all indicators are pure except for Yi, Y2, Y4, Y5, and Y13. In what follows | make
these notions precise and prove that unidimensionality is detectible, asis 0 and Ist-order d-
separation among |atent variables that have a pure measurement model.*

2. Unidimensional Measurement Models

As in (Spirtes, Glymour, and Scheines, 93), a directed graph G with vertices V represents a
causal structure S for apopulation of units when the verticesin V denote the variablesin S, and

“D-separation is a graph theoretic relation given by Pearl (1988). For pseudo-indeterministic systems, X and Y
ared-sparated by Z only if X and Y arc independent given Z (Spirtes, Glymour, Scheines, 93). Theorder of the
d-separation isthe cardinality of die separting set

°page4’.
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there is a directed edge from A to B in G if and only if A is a direct cause of B relative to V.
We call a directed acyclic graph that represents a causal structure a causal graph.

Let G be a causal graph over T U V U C. G is a latent variable model if
1) T is a set of latent variables, and
2) V is a set of measured variables such that each member of V is the direct effect of at least
one member of T and V is the cause of no member of T U C,
3) C is a set of latent variables disjoint from T such that each C € C is either a common
cause of some T € T and some V € V, or is a common cause of Vj, Vje V,
4) foreach X € T U V U C, X is a linear combination of its immediate causes in G and an
error variable Ex such that for all i,j, Ej, E; are independent and Var(Ej) # 0, and
5) V can be partitioned into V(T;) such that for every Tj € T, IV(Tj)! > O, and for every V
€ V(Tj), Vis adirect effect of Tj € T.

A measure Ve V(T) is almost pure just in case

i) V is the cause of no variable in V/V, and either

ii) V is a direct effect of Tj only, or

iii) V is the direct effect of Tj, and there is a C € C, such that C is a common cause of T;j
and V only, and no other L € T U C is a cause of Tj.

A measure Ve V(Tj) is pure just in case V is almost pure and is an effect of Tj only.
T

T
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\% \Y% /
o2 5 Y
V1:Impure, V2- V4:Pure, VS5: Almost Pure

V is impure if it is not almost pure. G is an almost pure latent variable model if it is a
latent variable model and every Ve V is pure or almost pure. G is a pure latent variable
model if it is a latent variable model and every Ve V is pure. G is a unidimensional latent
variable model if it is either pure or almost pure.

A measure can be impure for four reasons, which are exhaustive but not exclusive:




(i) If V e V(TO and thereis atrek between V and Tj * Ti that does not contain T or any
member of VIV then we say V islatent-measured impure.

(i) If V, X € V(Ti) and thereisatrek between V and X that does not contain any member
of T then V and X are intra-construct impure.

(i) If V e V(Ti) and Z € V(Tj) i*], and there is a trek between V and Z that does not
contain any member of T then we say that Vi and V2 are cross-construct impure.

(iv) If thereisaC € C that isthe cause of both Ti and someV € V(TO, and there exists
some other R G T U C that isacause of Ti, then we say V is nuisance impure.
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Figure 3




Theorem 1: If G is a latent variable model, then every V € V is either almost pure, latent-

measured impure, intra-construct impure, cross-construct impure, or nuisance impure.

Proof: By assumption G contains edges from each latent T; to each V € V(Tj). Let B be the
subgraph of G that contains only these edges. The proof is an induction on the number of edges
that need to be added to B to get to G.

Basis case: All indicators are pure in B, so this case is trivial.

T T T
C 1 2 3 C2
vV 'V VvV
o2 5 %Y s 7 %

Figure 4: Beginning graph B

Induction: We assume that n-1 edges have been added to B to form Bj,.1, and thatall Ve Vin
Bp-1 are either almost pure, latent-measured impure, intra-construct impure, cross-construct
impure, or nuisance impure. We need to show that an additional edge E;, will not cause any V
in By, to fall outside of these categories.

First suppose that the additional edge Ey, is out of some Tj € T. Then there are three cases:
1) Ep is from Tj to Tj,
2) Ey is from Tj to some V ¢ V(Tj), or
3) E,is from Tjto some Ce C

If Ej, is from Tj to Tj, then the only possible change in status is V € V(Tj) such that thereisa C
that is a cause of V and of Tj. But V would then be nuisance-impure. If Ey is from Tj to some
V ¢ V(T)), then V is latent-measured impure. Suppose finally that E; is from Tj to some C
C. This will change nothing save through some other connection involving C. Edges from C
to some Tj# T; will produce in effect an edge from Tj to Tj, and thus produce nothing new.
Edges from C to some V € V(T)) create a redundant path from T; to V and are indistinguishable
from a single edge from Tj to V (figure 5).




Figure 5

Edges from C to some V e V(T0 make V latent-measured impure in virtue of Ti -> C -> V.
Edgesinto C (figure 6) will create no new treks from E, because these edges and E, will collide
atC.

"'"""C

E,
e B
Vl ‘V2
Figure 6

Edges from C to some other C2 € C will only change things in combination with edges
connected to C2, which reduces to the casesjust considered.

Next consider an edge E,, into some Ti e T. By assumption no edge is alowed fromany V e
V to Ti, so the only possibilities are edges from T} * T{ or from some C € C. Edges from
from Tj * Ti will change no V. If E,is from C into Ti, then again E, will only change
something in combination with an edge involving C, and this case is similar to the one
involving C above.

Next consider an edge En out of some C € C. If Enisfrom Cto Ti then we are covered by the
preceding two paragraphs. Two edges, one from C to some Vi € V(TO and one from C to
some V2 e V(Tj), i *j make both Vi and V2 cross-construct impure. 1f i =j then both Vi and
V2 areintra-construct impure. Edges from C\e C to C2 e C will produce impurities only in
combination with other edges connected to Ci and C2, and the argument here is the same as
two paragraphs back. Edgesinto some C e C can only befrom X e T uC. In either case
they are aready covered above.
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Next consider an edge E,, out of some V € V. No edge out of Vmay gotoanyXe TuC.
If Ep is from Vi € V(Tj) to Vo€ V(Tj),i# j, then both V1 and V7 will be cross-construct
impure. If i =j, then both V1 and V> are intra-construct impure.

Finally, consider an edges E,, into some V € V. If the edge is from some other V2 € V, then
both V and V2 are impure, either intra-construct or cross-construct. If the edge is from C € C,

then only other edges out of C can make indicators impure, and all those cases are covered
above. If V € V(Tj) and the edge into V is from Tj ¢ V(T}), then V is latent-measured impure.

Q.E.D.

3. Unidimensionality and Tetrad Equations

Based on the partition of V, we can use different types of tetrad equations to detect impure
indicators. Let Tyxyz stand for the tetrad equation pwx * pyz = pwy * Pxz-

T T; Tj
w X Y Z w X Y yA
4x0 3x1
T; T; i T; Ty
w X Y Z W X Y Z
2x2 1x2x1
Figure 7

If W.X,Y,Z € V(Ti), then Twxyz, Twxzy, and Twyzx are 4x0 tetrad equations. If W ,X,Ye
V(Ti) and Z € V(Tj), i # j, then Twxyz, Twxzy, and Twyzx are 3x1 tetrad equations. If
W.,Xe V(Tj) and Y,Z € V(Tj), i # j, then Twyzx is a 2x2 tetrad equation. If We V(Tj),
X,Y € V(Tj), and Z € V(Tx), i #j #k, then Twyzx> Twxzy, and Twyzx are 1x2x1 tetrad
equations.
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A latent variable model G is parameterized by <¢, D>, where ¢ is a vector of the linear

coefficients and D the distribution over the exogenous variables. A latent variable model G
linearly implies a tetrad equation Tyxzy if G implies Twxzy for every value of <¢, D>.

Theorem 2: If G is a latent variable model which linearly implies every 3x1 tetrad equation
among V, then for every Tj € T, and every V € V(T;) such that IV(T;)l 2 3, V is almost pure
or for every Tj € T/Tj, Tj and Tj are independent.

Proof: By reductio. Suppose that G is a latent variable model which linearly implies every 3x1
tetrad equation, and that there is some V € V(T;) such that IV(Tj)! = 3, V is not almost pure and
there is some Tj e T/T;, such that Tj and Tj are dependent.

By theorem 1, V is either i) latent-measured impure, ii) intra-construct impure, iii) cross-
construct impure, or iv) nuisance impure. In each case I will show a contradiction.

t-M
First suppose that V is latent-measured impure. Then there is a trek between V and Tj # T; that
does not contain T; or any member of V\V. By hypothesis IV(Tj)l 23,so0letV, X, Y €

V(T), and Z € V(Tj).

i
V X Y Z

Figure 8

By assumption the 3x1 tetrad equation Tyxzy: Pvx * Pzy = Pvz * Pxy is linearly implied by G.
By the tetrad representation theorem, Tyxzy is linearly implied by G if and only if there exists in
G either a XZ(T(V,Z), T(Y,X), T(V,X), T(Z,Y)) choke point or a VY(T(V,Z), T(Y,X),
T(V,X), T(Z,Y)) choke point. Such a choke point exists trivially if one of V-X, Z-Y and one
of V-Z, X-Y are not even trek connected. X-Y are trek connected because of the X-T;-Y trek,
and V-Z are trek connected because of the V-Tj-Z trek. If there is a non-trivial XZ(T(V,Z),
T(Y,X), T(V,X), T(Z,Y)) choke point or a non-trivial VY(T(V,Z), T(Y,X), T(V,X), T(Z,Y))
choke point, it must be Tj, because Tj is the only variable on the path from the source of the
T(Y,X) trek: X-T;-Y to either X or Y. The trek between V and Tj can be extended into a trek
between V and Z because the Tj -> Z edge is out of Tj, but by the fact that V is latent-measured
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impure Ti is not anywhere on this trek. But both the XZ(T(V,2), T(Y,X), T(V,X), T(Z,Y))
chokepoint andthe VY (T(V,2), T(Y,X), T(V,X), T(Z,Y)) chokepoint mustinclude avariable
that is on al treks between V and Z, thus Ti cannot be a choke point and we have a
contradiction.

| ntra-Congtruct

Next suppose that V isintra-construct impure. Then thereis some X such that V, X e V(Ti)
and there is atrek between V and X that does not contain T{. IV(Tj)l £3, soletV, X, Y e
V(Ti). By hypothessthereisaTj such that Tj, Ti are dependent Let Z € V(T)).

T
A |
vV X Y Z
A\

Figure 9

Again by hypothesisthe 3x1 tetrad equation Xyxae Pux * Pzy = Pvz* Pxy islinearly implied by
G, and agan ether thereis atrivid XZ(T(V,2), T(Y,X), T(V,X), T(Z,Y)) or VY(T(V,2),
T(Y,X), T(V,X), T(Z,Y)) choke point, or Ti must be the choke point Since Tj,Ti are
dependent and thus trek-connected, none of V-X, Z-Y, V-Z, X-Y aretrek disconnected, so Ti
must be the choke point. But thereis atrek between V and X that does not contain Ti, so Ti
cannot be the choke point

Cross-Condiruct ‘
Next suppose that V is cross-construct impure. ThusV e V(TO and Z e V(T)) 17, and there

isatrek between V and Z that does not contain any member of T. IV(Ti)l 3, soletV, X, Y
€ V(Ti).

T T;
N
VXY Z
S~

Figure 10
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Again by hypothesisthe 3x1 tetrad equation Xyxa» Pux * Pzy = Pvz * Pxy islinearly implied by
G, and again ether there is a trivial XZ(T(V,2), T(Y.,X), T(V.X), T(Z,Y)) or VY(T(V,2),
T(Y,X), T(V,X), T(Z,Y)) choke point, or Ti mug be the choke point. Since there is a trek
between V and Z, neither of V-Z or X-Y aretrek disconnected, so T{ must be the choke point
But thereisatrek between V and Z that does not contain T{, so T| cannot be the choke point

Nuisance
Finally, suppose that V isnuisance impure. Thusthereisa C e C that isthe cause of both Ti
and someV € V(Ti), and thereexists someother R e T u C that isa cause of Ti.

SupposeR=TjeT. ThenletV, X, Y e V(TOand Z € V(Tj), and Tj isa cause of Ti.

\./J\. J,

v X Y
Figure 11

By hypothesisthe 3x1 tetrad equation Xyxa= Pvx * Pzy = Pvz * Pxyislinearly implied by G, and
again dther thereis a trivial XZ(T(V,Z), T(Y,X), T(V.X), T(Z,Y)) or VY(T(V,Z), T(Y,X),
T(V,X), T(Z,Y)) choke point, or Ti mugt be the choke point Sincethereisatrek between Ti
and Tj, the choke point cannot be trivial, so it mugt be Ti. Ti isnot a XZ(T(V,Z), T(Y,X),
T(V,X), T(Z,Y)) chokepoint because Tj isthe only variable on the path from the sour ce of the
V-Ti-Tj-Z trekto Z. Tiisnot aVY(T(V,Z), T(Y,X), T(V,X), T(Z,Y)) choke point because C
istheonly variable on the path from the sour ce of the V-C-T{-X trek to V.

Suppose R = C2e C. Therearetwo cases. Either 1) C2isalso acause of some X e V(TO,
or 2) C2isthecause of someZ € V(Tj). Incase 1 (figure 12), let Tj bethevariable such that
Ti, Tj aredependent by hypothesis, and let Z € V(Tj). IftheTi-Tj trek isinto Ti, then this case
reducesto thelast, so the only casethat remainsisTi ->Tj.

JN [
7l

(1)
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Figure 12

Astonishingly, we can assume that the 3x1 tetrad equation Tyxzy: Pvx * Pzy = Pvz * Pxy is
linearly implied by G, and again either there is a trivial XZ(T(V,Z), T(Y,X), T(V,X), T(Z,Y))
or VY(T(V,Z), T(Y,X), T(V,X), T(Z,Y)) choke point, or T; must be the choke point. Since
there is a trek between Tj and Tj, the choke point cannot be trivial, so it must be Tj. Tjcannot
be a XZ(T(V,Z), T(Y,X), T(V,X), T(Z,Y)) choke point, because C3 is the only variable on the
path from the source of the Y-Tj-C2-X trek to X. Tj cannot be a VY(T(V,Z), T(Y,X), T(V,X),
T(Z,Y)) choke point, because Cj is the only variable on the path from the source of the V-Cj-
Ti-Z trek to V.

In case 2 (figure 13), C; is the cause of some Z € V(Tj).

T. T.
¢, iw
AN,
vV X Y \Z
(2)

Figure 13

The 3x1 tetrad equation Tyxzy: Pvx * Pzy = Pvz * Pxy is linearly implied by G, and again either
there is a trivial XZ(T(V,Z), T(Y,X), T(V,X), T(Z,Y)) or VY(T(V,Z), T(Y,X), T(V,X),
T(Z,Y)) choke point, or Tj must be the choke point. C2 is a common cause of every pair
involving V,X,Y and Z, so the choke point cannot be trivial and it must be Tj. Tjcannot be a
XZ(T(V,Z), T(Y,X), T(V,X), T(Z,Y)) choke point, because C; is the only variable on the path
from the source of the V-Tj-Ca-Z trek to Z. Tjcannot be a VY(T(V,Z), T(Y,X), T(V,X),
T(Z,Y)) choke point, because Cj is the only variable on the path from the source of the V-Cj-
Ti-X trek to V.

Q.E.D.




4. Structure Among the Latents
For convenience | restate the definitions of amost pure and pure.

A measure VE V(TOisalmost purejustin case
1) V isthe cause of no variablein V/V, and either
ii) V isadirect effect of Ti only, or
iii) V isthe direct effect of Ti, and thereisaC e C, such that C is acommon cause of Ti
and V only, and no other L € T u C isacause of T{.

A measure Ve V(TOispurejustincaseV isamost pure and is an effect of Ti only.

Theorem 3: If G is an amost pure latent variable model in which [V(Ti)l ~ 2 for every i, J
e V(Ti), L e VCI3), |,K € VCI2), then latents Ti and T3 are d-separated given T2 if and only
if G linearly implies pjipLK = PJLPH = PXplL-

@

\

J I K L

Figure 14

Lemma 3.1: If G is an amost pure measurement model, and X e V(TO then Ti is a non-
collider on every undirected path connecting X toany Y e T u V\{X} inG.

Proof: If G is an amost pure measurement model, then X is pure or almost pure. In either
case X is an effect only. If X is pure, then it is an effect of Ti only so Ti is a non-collider on
any undirected path involving X.

If X is amost pure then it is still an effect only but thereisa Ci e C that is a direct cause of
both X and Ti. There cannot be an edge between Ci and any Tj € 1\Ti or between Ci and any
Y € V\X, because the Ci -> X edge could always be concatenated to such an edge to form a
trek that would make X impure. There cannot be an edge connecting Ci to some other C2 e C,
because in that case C2 would also be the cause of some Tj G T\Ti or to some X* e V\X, in
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which case again X would be impure because of the trek between X and Tj that is not through
T;. So all paths connecting X to any V € T U V\{X} must go through T;j. If C; is a cause of
T; then nothing else can be a cause of Tj, so all other edges involving T; are out of Tj, and
therefore there is no path on which Tj is a collider if any of its indicators are almost pure but not
pure. Q.E.D.

Corrolary 3.1.1: If G is an almost pure measurement model, and X € V(T}), then Tj is on
every trek connecting X and Y € T U VW\{X} inG.

Lemma 3.2: If G is an almost pure latent variable model in which [V(Tp| = 2 for every i, J €
V(T1), L € V(T3), LK € V(T3), then latents Ty and T3 are d-separated given T2 only if G
linearly implies pyipLK = PILPKI = PIKPIL-

Proof. Because I and K are almost pure indicators of T2 in G, by lemma 3.1 T d-separates I-
K. By similar reasoning T3 d-separates J-I, J-K, L-I, and L-K. By lemma 3.1, T; and T2 are
non-colliders on every undirected path connecting J and L. Since T and T3 are d-separated
given T, then J and L are d-separated given T. In general X and Z are d-separated given Y if
and and only if G linearly implies pxzy = 0. Hence G linearly implies py1 = 0, and pj1 = pyT,
* prTy. Similarly:

PIK = PITy * PKT2,

PIL = PIT2 * PLTy

PIK = PIT2 * PKTy,

PIL =PIT, * PLTy>

PKL = PKT3 * PLT,

Hence G linearly implies:
PIL* PLK = PIT; * PITy * PKT, * PLTH,
PIK * PIL = PIT * PKT * PITy * PLT,
PIL * PIK = PITy * PLT, * PIT, * PKT,

and thus pj1 * pLK = pJK * PIL = PIL * PIK. Q.E.D.

Lemma 3.3: If G is an almost pure latent variable model in which |V(Tj)| = 2 for every i, J €
V(T1), L € V(T3), LK € V(T?), then latents T and T3 are d-separated given T if G linearly
implies pyT*pLK = PIL*PKI = PIK*PIL.
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Proof. Suppose that G linearly implies pji*pLK = PIL*PKI = PK*PIL but Ti and T3 are not
d-separated given T2. By the Tetrad Representation Theorem,® if G linearly implies pji * puc =
PJL*PKI then either there is an IL(T(l,J),T(L,K),T(L,J),T(I,K)) choke point, or there is a
JK(T(1J),T(L,K),T(L,J),Ta,K)) choke point

Let T(I,K) bethe trek consisting of theedgesfrom T2to | and T2 to K. Supposefirst that there
isan IL(T(1,J),T(L,K),T(L,J),T(I,K)) choke point The choke point is either | or T2 because
those are the only verticesin I(T(l,K)). I is not the choke point because it does not lie on any
trek between L and K. Hence T2 is the choke point Similarly, if there is a
JK(T(1,),T(L,K), T(L,J),T(l,K)) choke point it is T2. Hence, in either case T2 is a choke
point

There are two ways that Ti and T3 might fail to be d-separated given T2. Either thereis atrek
between Ti and T3 that does not contain T2, or thereis some undirected path U between Ti and
T3 such that T2 is adescendent of every collider on U, and T2 is not anon-collider on U,

First assumethat thereis sometrek between Ti and T3 that does not contain T2. Then thereisa
trek between Jand L that does not contain T2. But then T2 is not a choke point, contrary to
what we havejust proved. Now assume that there is some undirected path U between Ti and
T3 such that T2 is a descendent of every collider on U, and T2 is not anon-collider on U. In
that case U d-connects Ti and T3 given T2. Again there are two cases.

Supposefirstthat T2isan IL(T(I1J), T(L,K), T(L,J), T(l,K)) choke point Let C be the collider
on the undirected path U that is closest to T3.

6 )ﬁ@*’@
VAN

J I K L

U(T3,C) does not contain any colliderson U except C because Cisthe closest collider to T3 on
U; hence U(T3,C) is atrek between T3 and C There is a vertex W on U(T3,C) that is the

®See (Spines, Glymour, and Scheines 93), chapter 6.
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source of a trek between T3 and C. W # C because W is not a collider on U, but C is. Hence
U(W,T3) contains no colliders on U. It follows that U(W,T3) does not contain T, because T
is not a non-collider on U. Hence there is a trek T(K,L) between K and L whose K branch
consists of the concatenation of U(W,C), a directed path from C to Ty, and the edge from T, to
K, and whose L branch consists of the concatenation of U(W,T3) and the edge from T3 to L.
Because neither U(W,T3) nor the edge from T3 to L contains Ty, T3 is not in L(T(K,L)), and
hence is not an IL(T(,J), T(L,K), T(L,J),T(I,K)) choke point, contrary to our hypothesis.

A similar argument shows that if there is some undirected path U between T and T3 such that
T, is a descendent of every collider on U and T3 is not a non-collider on U, then there is no
JK(T@,J), T(L,K), T(J), T(,K)) choke point. Therefore T and T3 are d-separated given T.
Q.E.D.

Theorem 3 follows immediately from lemmas 3.2 and 3.3.
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