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Abstract

Uniform proofs systems have recently been proposed [Mil91] as a proof-theoretic founda-
tion and generalization of logic programming. In [Mom92a] an extension with construc-
tive negation is presented preserving the nature of abstract logic programming language.
Here we adapt this approach to provide a complete theorem proving technique for
minimal, intuitionistic and classical logic, which is totally goal-oriented and does not re-
quire any form of ancestry resolution. The key idea is to use the GOdel-Gentzen
translation to embed those logics in the syntax of Hereditary Harrop formulae, for which
uniform proofs are complete. We discuss some preliminary implementation issues.

1. Introduction

In this paper we present a novel approach to general theorem-proving that exploits the

notion of uniform proof, introduced by [Mil91] as a proof-theoretic foundation and

generalization of logic programming. Uniform proofs formalize the notion of goal-oriented,

syntax-directed derivations: every time a compound goal is inferred, its main connective is

introduced. If operations on atoms are restricted to backchaining, we obtain a language that

very elegantly extends Prolog.

Whilst uniform proofs have extensively been studied and used in the logic programming

environment, at first sight they seem unfit to form the basis of theorem-proving in full

(classical) logic, since their syntax is restricted to Hereditary Harrop formulae ('fohh1 in

their first-order incarnation, which is the object of this paper); moreover, the provability

relation involved is essentially intuitionistic (if not minimal).

1 The materials contained in this paper have been presented in several seminars at the Department of
Engineering, University of Salerno, Department of Philosophy, University of Bologna, Department of
Computer Science, University of Milano, Italy and at the Summer School on "Proofs and Computations",
Marktoberdorf, Germany.
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The philosophy advocated here is that general theorem proving, as resolution with

subsumption [Wos91], may not be effective for every class of problems. For certain classes

of formulae, specialized procedure may be more productive. This is the case, most of the

times, with Horn logic, which admits the very efficient goal-oriented, totally input

procedure that underlies Prolog. We aim to extend this approach first to fohh. Then we

would like to follow the spirit of Stickel's PTTP [Sti88] and Loveland's Near-Horn Prolog

[Lov88], enlarging the deductive power of the calculus, without losing the uniformity

property. This is achieved in two steps:

1. The original formulation was deprived of any form of negation. In [Mil89] and

[Mom92a] an extension with constructive negation in the sense of [Tro88] is presented

preserving the nature of abstract logic programming language. It comes in three flavors:

minimal negation, which requires essentially no extension to the operational semantics

of uniform proofs, intuitionistic and classical negation: the latter instead involve a

significant departure to the way we are inclined to view logic programming languages,

since it introduces a new way of proving atoms, namely by deriving a contradiction.

2. The final ingredient is then to embed full logic in fohh with negation through the Godel-

Gentzen negative translation [Tro88]. We thus obtain a completely input, goal-oriented

procedure in the style of logic programming for minimal, intuitionistic and classical

logic, with no need of factoring or any form of ancestry resolution, at the cost of

essentially incorporating the law of "reductio ad absurdum" (RAA), in the terminology

of [Tro88], though restricted to atoms.

To be more precise, the negative translation maps classical and intuitionistic derivability into

minimal, for which no extension to uniform proofs is required. Nonetheless, this entails

double-negating every atom. This is equivalent, from a logical point, to having RAA as a

new rule to be applied only to atoms. Moreover the latter can, in some circumstances, be

less redundant from a procedural standpoint. Hence in this paper we shall implement

classical logic through uniform proofs with RAA.

Historically most of research on theorem-proving has concentrated on methods to derive

contradictions from set of clauses [Rob65]. While this may be suitable in many cases, as

pointed out for instance in [And81], the distribution laws may create combinatorial

explosions in the number of clauses (see for example Andrews* Challenge, problem 34 in

[Pel86]). Although these redundancies can be partly eliminated with the introduction of new
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predicate symbols, the original structure of the goal with all the information contained

therein is irremediably lost On the other hand, non-clausal methods [Ble77], for instance

based on natural deduction, are experiencing different kind of riddles. As far as the latter is

concerned, a significant part of the problem lies in the management of the v-E and 3-E rules,

due to the well-known problems with permutability [Kle52]; for example, while the theory

in [Sie92] dictates the use of the classical v-E, the implementation uses a form of resolution.

This is not the case, since the pure fragment of natural deduction (&, z>,V) can be dealt

within the framework of logic programming, as already implicit in [Gab84].

Our approach aims to find a convincing balance between the two; due to the rather generous

syntax of fohh, we need a very limited amount of clausification: namely removing from the

formulae in the set of axioms disjunction and existential in favor of conjunction, universal

and negation by way of the well-known equivalencies. The structure of the proof remains as

close as possible to those in logic programming (i.e., it is a uniform proof), with the notable

difference that atoms are proved not only through backchaining, but with the required rule

for negation. Furthermore, for classical logic, skolemization can reduce the amount of

conversion, and relative negative complexity of the problem. As in the case of Near-Horn

Prolog, the technique is best suited for near Harrop problems, i.e. where the majority of

clauses is in the allowed syntax and only a limited number of disjunctions is present.

Performances do degrade gracefully in proportion to the amount of clausification. Thus for

something like the pigeon-hole problem this method would not be the first choice.

After this introduction, the rest of the paper is organized as follows. Section 2 is devoted to

preliminaries, while in section 3 we demonstrate the method. In section 4 we briefly review

related systems. Finally we conclude with some preliminary remarks on implementation

issues and limitations.

2. Preliminaries on Uniform Proofs and Negation

Minimal logic (M) can be formalized in natural deduction by assuming a language with no

negation connective and a primitive constant that denotes a not provable formula, say _L

Then, given a first-order formula B, -iB is defined as BuJL: the usual rules for the other

logic operators are retained, while no other property of the negation sign is assumed other

than those inherited as specialization from modus ponens and implication introduction.
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To obtain intuitionism from minimal logic one adds the so called Duns Scotus law (DSL):

1
B

It is well known that classical logic can be obtained adding RAA:

n
1
B

Due to monotonicity, now DSL is a derived rule. What is remarkable is that in general the
adjoining of RAA, whenever restricted to atoms, to a constructive1 system preserves this
property; this fact is an immediate consequence of the normalization theorem.

Uniform proofs can be roughly characterized in natural deduction as derivations whose
branches are all in expanded normal form [Pra65]. This allows us to see a proof as a search
procedure that works its way out in a bottom-up fashion from compound to atomic formulas
successively eliminating the main connective. The idealized interpreter for compound goals
is described by the following search instructions: any triple < D,G,I- >, whose provability
relation satisfies those principles, is called an abstract logic programming language [Mil91].

AND: PI- G1&G2 only if Pl-Gl and PI-G2
OR: PI-GlvG2 only if Pl-Gl or PI-G2
INSTANCE: PI-3xG only if there is a term t s.t PI-[t/x]G
AUGMENT: PI-Dr>G onlyifD,PI-G
GENERIC: PI-VxG only if PI-[a/x]G for a new parameter 'a1

1 we identify constructive systems with those logics satisfying OR and INSTANCE (see below). This is
probably limiting. See [Tro88].



Note that this only partially specifies the behavior of the interpreter: uniform proofs are not

required to describe a specified course of action for atoms: every constructive move is

generally welcomed. Thus there is no reason to built some particular choice in the system,

although in overwhelmingly many cases this is best described in terms of backchaining:

atoms either succeed because they are instances of clauses in the program or when an

implicational clause, i. e., a "rule" with matching head is come across; then the procedure is

reentered. For complete theorem proving, on the other hand, we have to supplement the

traditional method to prove atoms with negative reasoning.

Following [Mom92a], we adopt the following language:

D::= ALUG3DIVxDIDl&D2Dl^D2l-iG

G::= ALUGl&G2IGlvG2IVxGBxGIDz>GIDl<-»D2l-iD

Negation, being camouflaged implication, is executed through the AUGMENT/backchain

operation (see below); the evaluation of -JD consists in the assumption of D and in the

attempt to prove falsehood from the enlarged program. Therefore the complement of a

negated goal has to be a definite clause since it will dynamically join the program:

analogously negative definite clauses are negation of goals since in backchaining mode are

bound to become new goals. What follows is a suitable formulation of the uniform proof

system, where we explicit the rules for minimal negation and enclose RAA.

Formally, atoms are dealt with through the notion of immediate implication that avoids the

necessity of referring to an infinitary notion of program as resulting from its closure under

substitution with all the terms of the language. Alternatively, the immediate implication rules

correspond to the left rules in the sequent calculus for conjunction, implication and universal

quantification, restricted to an atomic succedent

PI-GlPI-G2 Pl-Gi,i = l,2 P K a / x ] G •»'ctgnvariable

PI-G1&G2 PI-G1VG2 PI-VxG

PI-[t/x]G D,PI-G D,PI-1
PI-3x.G PI-D3G PI—,D
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PI-D13D2PI-D23D1 -A,PI-1

PI-D10D2 Pl-A

PI-D»A, DeP Pl-D»±, DeP

Pl-A»A Pl-A Pl-l

PI-[t/x]D»A PI-Di»A Pl-G Pl-G PI-D»A
PI-VxD»A PI-Di&D2»A PI-^G»J_ PI-(G3D)»A

For a very simple illustration of the method, which nevertheless requires both minimal and

classical negations, we prove Pellettier's no. 4 (for the sake of brevity, we omit the

immediate implication steps).

p.

p,

-ip, -1

- ip , - .

- .p, - ,

-.p, -1

- ip , -1

- 1

q, (-ip 3 q)

q, (-ip 3 q)

q, (-ip 3 q)

q, (-ip 3 q)

q, (-.p3q)

q, (-ip 3 q)

(-ip3q)

l-p
1-1
l--.p

l-q
I-J.
l-p

l-(-nq3P)

l-(-np3q)3(-nq3p)

Of course in real life, we would have stopped the computation before the last two steps,
declaring success when any kind of goal, not only atoms, is also found on the left of the
turnstile.

From now on we denote this provability relation without RAA with fl-f, otherwise with
fl-RAAf- It is easy to show a proof-theoretic Soundness and Completeness wrt natural

deduction for the minimal calculus. Completeness instead relies on the normalization

theorem for M. Everything is easily extendable to uniform proofs with DSL w.r.t.

intuitionistic logic, provided we may reduce every application of DSL to an atomic

inference.

For proofs of results stated here, please refer to [Mom92b].



Theorem 2.1 (Soundness and Completeness ). Pl-G iff there is a natural derivation n in

minimal logic of G from assumptions P, denoted II::

Clearly 1-RAA' is sound but not complete; for example no uniform proof of A v -iA exists.

We remedy this difficulty in the next section.

3. Extending Uniform Proofs to Full (Classical) Logic

Thus, we have slightly extended Miller's original system, which was limited to fohh (hohh)

without negation and intuitionistic provability. Yet what we have is a proof system for a

weird logic, which is essentially the restriction to the allowed syntax of the intermediate

constructive logic obtained adding atomic RAA to intuitionism [Mig89]. We are still fairly

distant from a complete method. Yet, due to the availability of negation we are able to adopt

the Godel-Gentzen negative translation [Tro88] of classical logic into intuitionism to show

an embedding of minimal, intuitionistic and classical logic into fohh. Note that we cannot

simply replace disjunctions and existentials because the provability relation underlying

uniform proofs is not classical.

We define a mapping *: Form —> Form as follows

±*=±
A*=TL(A)

(M&N)* = M*&N*

(MvN)* = - I ( - M * & - I N * )

(Mz>N)* = M*z>N*

(Mf*N)* = M*f->N*

(VxM)* = VxM*

(3xM)* = -.Vx-iM*)

TC(A)=A

In C atoms are preserved, while for M and I, we adopt the double negation translation. This

is due to the unavailability of RAA. A variant (Gentzen's) would cancel implications:
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(MIDN)* = - I ( M * & - I N * ) . This may be useful in compiling away implications with T>f

head, as with the equivalencies reported in [Mil91], thus simplifying the immediate

implication steps; in addition, it may ease the location of contradictory pairs (see the example

below).

Several optimizations are possible: we may discard n+3 negations for n+1. This shows that

double negation can be restricted to positive goals. Indeed, if we are dealing with theories

with decidable atoms, it is possible to set A*=A, also for M and I. Moreover, as far as C is

concerned, skolemization may be used to remove existentials without increasing the

'negative1 complexity of the formula.

Now, before giving an example, we outline the (proof-theoretic) completeness proof.

Fact For all first-order formula M, M* is a fohh clause.

Lemma 3.1 If ri:: TI-LN, then n*::r*l-M N*.

Theorem. 3.2 IL iD- ,^ N implies r*l- N*. n : : I 1 - c N implies T*l- RAA N*.

Example: Let us sketch the derivation of Pelletier's no.30. The first step is the conversion

to fohh (in the Gentzen format); thereafter the fixed premises are left implicit in the rest of

the derivation.

-iFa ,-iGa -Ja,... I—Ja

-iFa ,-iGa -Ja,... I- Ga =>-Ja

-iFa ,-iGa -Ja,... I-Fa Ga,-ila,.. I- -Ja

,-iGa -Ja,... I-JL -Ja,... I- Ga =>-Ja

-Ja,... I- -i(-iFa & -iGa) -Ja,... I- Ha

-Ja,... I- -i(-.Fa & -iGa) &Ha

Vx-.(-,(-nFx & -TGX) &Hx),Vx((Gx =>-iIx) =>. Fx,Vx((Gx 3-TIX) 3 . Hx) I-Ia

Vx-i(-,(-iFx & -nGx) &Hx),Vx((Gx 3-nIx) z>. Fx,Vx((Gx 3^Ix) z>. Hx) I-Vxlx

Vx(Fx v Gx =>.-,Hx),Vx((Gx 3-Jx) 3 . Fx&Hx) I-Vxlx

Thus we have a compilation technique for the aforementioned logics into a goal-oriented

system, once we agree either to extend uniform proofs with RAA or to double-negate
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atoms. Though clearly the proof system is not likely to have a feasible lower bound on the

length of derivations, since it can polynomially simulate classical logic, this approach has

some appeal; given this balance between the 'naturality' of the proof system and the minimal

quantity of conversion to the required syntax, we manage to preserve most of the

information given by the logical structure of the goal and axioms.

4. Related Work

Our approach to theorem proving can either be seen as an extension of logic programming

or a refinement of sequent calculus. As the latter is concerned we are prescribing a goal-

oriented bottom-up linear evaluation strategy enforced by the uniformity condition. By

means of the negative translation, we are able to avoid the case analysis required by the v-L

rule and its potentially high backtracking cost, as in the classical example p v q I- q v p.

More in general, we avoid all the problems caused by the non-permutability of rules

[KleS2], by restricting to a permutably problems' free fragment of the calculus.

For the former perspective, our method has apparent analogies with the recent attempts to

import in the field of ATP techniques from logic programming. The seminal and more

successful system is Stickel's PTTP [Sti88], which is intended as a brute-force, very fast in

LIPS theorem-prover. It supplements SLD-resolution with the model elimination rule. This

entails keeping track of the ancestors of the goal, loosing one of the key feature of Prolog.

Moreover, due to the directionality of SLD-resolution it requires the inclusion of the

contrappositives of the clauses, causing a notable increase in the size of the program.

Lovelandfs nH-Prolog [Lov88] can be seen as a way of incorporating case analysis in SLD-

resolution; the evaluation of non Horn problems demands each time the invocation of a

restart rule, until the stack of unsolved (deferred) heads is empty. Without requiring

contrappositives it simulates case analysis with different runs of essentially the Prolog

engine. Unfortunately naive nH Prolog is incomplete and the new versions (Progressive nH

and Inheritance Nh) have a less intuitive and efficient description. Plaisted [Pla88] instead is

concerned with a difficult attempt to use versions of the cut rule backwards leading to a

problematic guessing of its premises. For a comparison, see [Ree92].

Though developed independently, our method turned out to have a very tight relationship

with N-Prolog [Gab84], which is a complete implementation of positive intuitionistic logic.
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By defining disjunction classically and allowing a restart rule, Gabbay shows it to be

complete for full classical logic as well.

Another close relative goes under the name of disjunctive logic programming (see [Min91]

and references therein). It aims to deal with full clausal logic by extending the tools for Horn

Logic. In particular the procedural semantic, called SLO-resolution, extends the SLD-step

by having a selection function choose a clause in the current goal and trying to find a clause

whose head subsumes it; if successful, the goal is incremented by the body, without

deleting the selected clause. This approach, that seems fairly expensive, since the

subsumption test is already NP-complete, has not been advocated, as far as I know, for

theorem proving.

It has been recently observed, among others, by Murthy [Mur93] that the double-negation/A

embedding can be seen as a CPS-translation of the correspondent proof terms. Although he

rules out the Godel-Gentzen interpretation as too complicated, a simple proof relying on the

admissibility of the Markov principle shows that this it actually induces a CPS-translation.

In this context the CPS-translation is in charge of the transformation of any normalized

proof I1::F, for any F to a uniform proof FI*::F*. Making uniform is CPS-translating. If

this is true, we may then use the CPS-translation backwards to recover the original natural

deduction format of the proof. But this has more important consequences from a type-

theoretic perspective: we may use uniform proofs to derive mechanically specifications and

have programs (proofs) already in a machine-oriented form as the CPS style. We have to

investigate this together with the relationship with the so-called "direct method" [Sch92];

here programs are extracted from classical proofs (in atomically decidable theories), without

any roundabout, from the (V, z>-fragment) of minimal logic, with the other connectives

being defined as usual.

5. Implementation Issues and Conclusions

While the procedure is clearly absolutely deterministic (at least as Prolog is considered to

be), the main problematic point is the detection of contradictory pairs to fire the negation

rule. Clearly the notion of goal-oriented-ness tends to break down as we move away from

the Harrop format: every negative sentence is a candidate for backchaining and the indexing

of predicates that proved to be so effective in Prolog is not achievable. Thus, it seems that

we are lead back to the original problem of resolution. On the other hand let me remark that
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this situation is much more local to the proof. Moreover, since uniform proofs are per se

normalized, the subformula property holds [Pra65]. Contradictory pairs have only to be

searched among the subformulae of the current program and goal. Although this is not a

conclusive answer, heuristics can be developed to locate the more promising ones; some

(extraction strategies) have already been tested in the context on the intercalation calculus

[Sie92], others (weighting) can be inherited from resolution theorem provers.

A possible limitation of the method could be detected in the need to reach the atomic level in

every proof. Arguably, though sensible from a programming point of view, where atoms

are procedures, sometimes we would rather stay at higher level: for instance, if dealing with

elementary part of set theory, we may wish not to unfold the definition, say, of 'subset1 and

hold it to its property of being a partial order. Nevertheless, nothing prevents us, on the

responsibility of the user, to declare those definitions as atomic and forbid their expansion.

Another questionable feature may seem our neglect for intuitionistic proofs. In first,

sometimes we may recover the latter from a classical one after execution, just by checking

whether the assumptions of RAA have been used, as the following trivial example shows;

here q is assumed, but not used and thus it can be canceled:

p, -ip I- q.
p l-^p3 q.

Moreover the whole procedure seems to be neatly amenable of some parallel implementation

in the spirit of or-parallelism. Looking for a proof of G from P, we may run a uniform

proof for G* from P*; every time we hit an atom, for which there is a backchaining clause,

we branch three different processes looking respectively for a minimal, intuitionistic or

classical uniform proof. Of course, this can be done sequentially too, by making more

complicated the backtracking procedure.

The proof system is very easily implementable on the top of every logic programming

language that supports fohh (hohh), as XProlog or Elf [Pfe91]. Indeed, the current SML

(naive) implementation is a simple modification of the interpreter for XProlog described in

[E1191]. We follow Stickelfs steps modifying the interpreter by building in V-unification
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with the extended occurs check for soundness and depth-first iterative-deepening search

instead of unbounded depth-first to make the search strategy complete. The application of

the method to higher-order logic is next
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