
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



Regular Search Spaces (I):

Horn and Normal Clauses

by

Alberto Momigliano and Mario Ornaghi

December 1993

Report CMU-PHIL-45

Philosophy
Methodology
Logic

Pittsburgh, Pennsylvania 15213-3890



Regular Search Spaces (I): Horn and Nor-
mal Clauses1

Alberto Momigliano
Department of Philosophy
Carnegie Mellon University
15213 Pittsburgh PA, USA
mobile@lcl. emu .edu

Mario Ornaghi
Dipartimento di Scienze delTInformazione
Universita' degli studi di Milano
Via Comelico 39/41, Milano, Italy
ornaghi@imiucca.csi.unimi.it

1 Introduction

This is the first part of an attempt to provide a proof-theoretic foundation for
logic programming based on the notion of regular search spaces, a simple logical
framework where many logics can be expressed and guaranteed to enjoy an analog
of the very features that make Prolog successful. Very roughly, a system is regular
if, during search, no backtracking on substitutions is required.

In this first report we limit ourselves to a proof-theoretic reconstruction of logic
programming, both for definite and normal programs. This leads us to a better
understanding of negation-as-failure (NF) [Cla78].

This approach permits anyway to single out some of the features, namely
regularity, that we maintain relevant for any theoretically well-founded extension
of Prolog, much in the spirit of [Mil91]. Eventually, in the second forthcoming
part, we shall embark in a generalization and abstraction of the nice properties
of 5ZrZ}-resolution leading to the full formulation of the theory of regular search
spaces.

Historically, the great majority of the papers on logic programming, in particu-
lar on its extensions, has been carried out in a semantic way. Unfortunately these
semantics, being most of the times limited to term models, tend to hide proof-
theoretic contents. Moreover, the procedural aspects are traditionally expressed
in a refutational style. We prefer a more direct approach that by-passes, where
possible and meaningful, this pseudo semantic/refutational style. We feel that
many features that are rather cluttered in this framework instead become natural
consequences of a proof-theoretic reading.

Basically two proof-theoretic approaches have been pursued in the literature,
as outlined in [Hal90] - see section 5 for a more detailed discussion:

1A version of this document will appear in Extensions of Logic Programming, Dickhoff R. (ed.), Lecture Notes
in Computer Science n.?, Springer-Verlag 1994. . _

University Libraries
Carnegie Mellon University
Pittsburgh PA 15213-3890



1. Clauses as axioms and some sequent calculus to infer goals [Mil91].

2. Clauses as rules [Hal90]: programs should be seen as set of inference rules
(inductive definitions) for the derivation of (not necessarily ground) atoms.

We think of our approach as a blend of the two. We introduce the concept
of most general proof tree (mgpt), which corresponds to a SL-D-derivation; i.e.
9 is a computed answer substitution for PU{<- G} iff there exists a mgpt for
9G with axioms from P, with no open assumption. Mgpt's are SLD-derivations
upside-down, where the root is the goal to be proven, the assumptions are the
intermediate goals there in and 9 is the restriction to the free variables of G of the
composition of mgu's along the branch. Mgpt's axe based on the notion of axiom
application rule (AAR), which easily generalizes to more complex definitions of
clauses and goals. Then we begin to formulate the concept of regular search space
for which search strategies like Prolog's sure complete. Therewith, introducing
AAR's-systems for negative goals and rules, we offer an analysis of iVF, which
clarifies its intrinsic incompleteness due to the fact that, in general, it gives rise
to a non-regular search space. Moreover, the safeness condition on the selection
function is lead back to the usual proviso on parameters of the 3-left rule.

For regular programs NF can provide correct bindings for open negative queries.
Otherwise, regularity can be achieved, through splitting. This can be the basis of
a simplified synthesis technique in a spirit close to [Bar90].

This report is organized as follows: in section (2) we develop the proof-theory
of definite programs, based on the notion of most general proof tree and of continu-
ation. The following section (3) makes the connection between AAR's and Prolog
computations: soundness and completeness axe proved w.r.t. success and finite
failure. In section (4) we present our proof-theoretic reconstruction of SLDNF-
resolution and we prove the latter to be sound w.r.t. the former. Regular splitting
is proposed as a solution to the problem of evaluating open negative queries. Even-
tually (5) we conclude with a review of the other existing proof-theoretic studies
and with a note on future work.

2 The SLD-System

We associate to a program a suitable set of axioms and we formulate a rule sld to
apply such axioms, that we call the axiom-application rule (AAR) for the SLD-
system.

Definition 2.1 sld is the rule which applies Horn axioms V(Ai A • • • A An —• B)
to goals 9B, giving rise to sequences of new goals 9AU . . . , 9An. The result of an
application will be represented by a proof configuration such as:

sld9AX" 9An V(AX A - • • A A n -> B)
9B

where the major premise V(Ai A • • • A An -> B) is the applied axiom, the pos-



sibly empty sequence of the minor premises 9A\,..., 6An represents the new goals
and the conclusion 9B is the starting goal.

Note that if we have in mind a Horn program, facts give rise to configurations
where the sequence of minor premises is empty i.e., n = 0.

Next we inductively introduce the notion of proof tree (pt), which corresponds
to a branch of a SLD-tree.

Definition 2.2 An atom A is a proof tree. If IIi :: 0Ai,..., IIn :: 9An are proof
trees, then the following is also a proof tree:

nx nn
--- 0An

6B

where II :: A is the linear notation for a proof tree with root A. We say that
a formula is an assumption of a proof tree if it is a minor premise in some leaf.
The root of a proof tree is called its consequence. The axioms of a proof tree axe
the ones appearing as major premises. A proof tree is a proof of B from a set A of
axioms iff B is its consequence, its axioms belong to A and it has no assumption.

Property 2.1 If II is a proof tree and 9 is a substitution, then 0(11) is a proof
tree.

This property allows us to introduce the following pre-ordering (intuitively to
be read as IIi is less general or more instantiated than II2) and equivalence relation
among proof trees:

Definition 2.3 IIi < n2 iff there is a 6 such that na = 0(II2); IIi = II2 iff nx < II2

and n2 < n i ; Cone(n) = {IT | IT < II}.

Note that this ordering can be seen as a sort of lifting to proof trees of the usual
subsumption ordering among substitutions; remark also that equivalent proof trees
axe identical modulo renaming of variables.

Using <, we can give a notion of most general proof tree among similar trees,
where similarity is characterized as follows.

Roughly speaking, two proof trees are similar if they can be derived, starting
from the root, by two axiom-application sequences that apply the same axioms
in the same order, but possibly involving different substitutions. Similarity is
crucial, because axiom-application sequences represent derivations of an idealized
interpreter, that searches for proofs U :: 0C starting from 'goals' C. We will show
that regularity, namely the existence of a most general proof tree among similar
trees, is the property which makes SLD-Kke search strategies complete .

Our analysis of the SI,jD-system is the starting point for a study of more general
AAiJ-systems. Therefore we define similarity in the general case, where nothing
is assumed on the number and on the behaviour of the AAR's of a system.

Definition 2.4 An axiom/rule-occurrence in a pt II is a triple (p,Ax,R) such
that p is a path from the root to a node where Ax is the major premise applied



by R. We say that two proof trees III, II2 are similar, written III ~ II2, if either
they axe two atoms with the same predicate symbol or they have the same (non
empty) set of axiom/rule-occurrences.

Since the SLD-system is endowed with just one rule, namely sld, we shall
suppress reference to rule until Section (4)

Similarity is an equivalence relation. We will call similarity classes the corre-
sponding equivalence classes. With Sim(TX) we will indicate the similarity class
induced by a proof tree II. The following regularity property holds.

Property 2.2 III ~ n2 iff there is a proof tree II such that III < II and n2 < II.

Proof. The direction from right to left is trivial. Conversely, we proceed by
induction on the number of axiom occurrences applied in Hi, n2 .
Basis. There are 0 axiom occurrences. In this case, III and II2 are two atoms with
the same predicate symbol, say r. Then III = r(t) and II2 = r(£'); then II = r(x).
Step. There are n + 1 axiom occurrences, {ox,..., on+i}- Let Ok be a top axiom-
occurrence of some axiom Ax = V(Ai A • • • A An —> B), as shown in the following
figure:

0iAy OxAn Ax 02Ar- 02An Ax

I \ F2

Fi is similar to F2, since both have axiom occurrences {01,... ,on+i} — {o*}; by
inductive hypothesis, there is a proof tree F such that Fi = o^F and F2 = (T2T. Let
H be the top formula occurring in F, in the place of 0XB in Fi (and of 82B in F2);
we have: 0XB = (J\H and 02B = a2H. We can assume that H and B have disjoint
sets of variables, so that: (0X U ax)B = {0X U <Ji)H and (02 U (J2)B = (02 U <T2)H,
hence there is a mgu 8 of B and H, and we have: 9X U G\ = fiXS and 62 U a2 =
for some /J>i,fi2. Then we can build the proof tree II:

8A\ - - - 8An Ax
8H
8Y

II is similar to III and n2, and one easily sees that IIi = j^II and n2 = /i2H (we
can assume that the variables of F do not occurr in A\,..., An, B). This concludes
the proof of the induction step. D

Note that the above proof relies not only on the similarity of the two proof trees,
but also on the fact that the application (by sld) of Ax preserves comparability.
This does not hold w.r.t. a more general kind of AAR's, e.g. the ones related to
negation as failure, as shown in section 4.

Property 2.3 For every set S of similar proof trees, there is a II such that S C
Cone(II).

Proof. Assume, by absurdum, that for every II there is a II* in S such that
II* ^ II and let IIQ be a pt in the similarity class containing S: there is a pt



Ill in S such that III % n0 . By regularity they have a similar upper bound, say
Ai. Note that Ai cannot be a renaming of IIo. Consider II2 ^ Ai: by the same
reasoning, they axe bounded by A2. Iterating the process we create an infinite
chain n o ,AiA 2 . . . , where n0 = #oAi, Ax = #iA2 , . . . But this is not possible,
since the term complexity order on pt's is well-founded. Q

Property 2.4 For every II, Cone(II) C Sim(II).

The similarity relation allows us to introduce the notion of most general proof
tree, which corresponds to a SLD-branch where only mgu's axe used.

Definition 2.5 We say that II is a most general proof tree (mgpt) if it is a maximal
element among similar trees, i.e. Cone(II) = Sim(JT).

By the regularity property (2.2), every similarity class Sim(IL) contains a max-
imal element unique up to renaming. On the other hand minimal elements among
similar trees axe ground proof trees, but in general there axe incomparable minimal
elements with respect to <.

Now we target the formalization of how a Prolog computation can be extended,
that is we try to capture the idea of the resolvents of a given goal.

Definition 2.6 II2 is a continuation of III, denoted Eli ^ II2, iff there is an initial
subtree II3 of n2 , that is with the same root, s.t. II3 < III.

Assuming that the root is the goal to be proved, a continuation is a possible
(not necessarily single-step) extension of a 5L2)-derivation, i.e. in our language,
of the (open) assumptions of the goal to be proven. This extension may introduce
new substitutions, as shown in the following picture, where a proof tree II is con-
tinued into a bigger proof tree containing 011 as an initial subtree.

The :< relation is clearly a partial ordering w.r.t. the equivalence relation = and
the immediate successors under this ordering of a pt essentially correspond to all
possible resolvents of the current goal. Thus the notion of continuation captures
the search aspect of logic programming. This characterization is further refined by
the notion of most general continuation and canonical continuation and by their
properties that we list below.

Property 2.5 II < II' entails II ^ II'.

Definition 2.7 Let II, II* be a pt's and II ^ II*. We say that II* is a most general
continuation (mgc) of II iff, for every continuation II' of II similar to II*, II' < II*.



Property 2.6 For every continuation II' of II, there is a mgc II* of II such that
II' < IT.

Definition 2.8 A one-step continuation selecting an assumption Hi and applying
an axiom Ax of the form V(Ai A • • • A A* —• B) s.t. aB = a Hi is of the following
form:

GA\ - • • erAk , Ax
a Hi
aU

We say that a one-step continuation is canonical iff a is a most general unifier
(assuming the usual standardization apart).

The following relations hold between subsumption and continuation, embodying
the reason why search may be conducted exclusively on mgc's or on mgpt's and
no backtracking on substitutions is required, contrary to what we will see in the
section (4).

Property 2.7 If Hi < U2 and IIi X n3, then II2 d n3 .

Property 2.8 Let IT be a one step continuation of II. II' is a mgc of II iff it is a
canonical continuation.

Property 2.9 If II is a mgpt, then its mgc's are mgpt's. In particular, its canon-
ical continuations are mgpt's.

We conclude this section considering the consequences of the above properties
with respect to the following search problem. Let A be a set of axioms, T(A)
the set of the pt's with axioms from ,4, and II :: C be a pt of T{A). Search for
a continuation II* :: QC 6 T(A) of II, such that 11* is a proof. One easily sees
that the notions of mgpt, mgc and all the related properties hold even though we
consider T(A), instead of the class of all proof trees. Thus one obtains:

Property 2.10 If IIi is a mgpt of T(A), then, for every II2 such that nx ~ II2, if
there is a II s.t. n2 d II, then IIi ^ II.

Proof. Since II is a mgpt, then II2 < Hi. Apply (2.7). D

Property 2.11 Let II be a mgpt of T(A) and Hi be an assumption of II. If
for every canonical continuation II' of II selecting Hi there is no proof in T(A)
continuing II', then there is no proof in T(A) continuing II.

Proof. By absurdum, let us suppose that there is a pt II* continuation of II.
Then there is a subpt n of II* that is a one step continuation of II selecting H{.
Hence ft is similar to n'. But, by (2.9), n; is a mgpt and, by (2.10), n* is a
continuation of n'. D

Property (2.10) more properly refines what we mean by "avoiding backtracking
on substitutions". (2.11) shows that, by using canonical (i.e. most general) contin-
uations, during the search the selection of the assumption Hi may be completely



non deterministic. (2.10) and (2.11) allow also to state that a search strategy like
the one of Prolog is complete in the search spaces for T(A). But (2.10) and (2.11)
axe based on the regularity property (2.2), which may not hold in an arbitrary
search space. This remark will be the basis of a next document, where we discuss
regular search spaces (i.e. search spaces satisfying (2.2)) for a very general kind of
axioms. In next section we discuss the case of Horn axioms.

3 Prolog Computations and the SLD-System

Eventually we link the 5LD-system to Horn programs: to a program P corre-
sponds a set of axioms, indicated by Ax(P), in the obvious way. For example, let
us consider the following program SUM:

sum{X,s(Y),s(Z)) : -sum{X,Y,Z)

and the corresponding axioms Ax(SUM):

Axl VX.sum(X,0,X)
Ax2 VX, r, Z.sum(X, Y, Z) -+ sum(X, s(Y), s(Z))

Examples of proof trees IIo, IIi and II2 using Ax(SUM) are:

sum(Xi 0,5(0)) Ax2 Axl Axl

sum(X, 5(0), 3(3(0))) Axl 5«m(0,0,0) Ax2 sum(s(0), 0,5(0)) Ax2

sum(X, 5(5(0)), 5(5(5(0))) 5t»m(0,5(0),5(0)) Ax2 5«m(5(0), 5(0), 5(5(0))) Ax2

5um(0,5(5(0)), 5(5(0))) 5t*m(5(0), 5(5(0)), 5(5(5(0)))

n0 has assumption sum(X, 0,5(0)) and consequence sum(X, 5(5(0)), 5(5(3(0))));
IIi and n2 are proofs (of their consequences). IIi and n2 are similar, since they
have the same set of axiom occurrences {([1], Ax2), ([0,1], Ax2), ([0,0,1], Arl)}
(paths axe represented by sequences of numbers, in the usual way); the following
proof tree is the mgpt in their similarity class:

Axl

sum(X,0,X) Axl

sum{X, 5(0), s(X)) Ax2

5ixm(X, 5(5(0)), s(s(X)))

Now we address the following problem: given a program P and an atomic
formula C, search for a proof H :: 0C. From now on, in this section, we will call
C a goal We give the following definition.

Definition 3.1 Consider a program P and a goal C and let T(P) be the set
of the proof trees with axioms from Ax{P) and T(P, C) be the set of the proof
trees II :: 6C with axioms from Ax(P). Define Gen(P) and Gen{P,C) to be the
corresponding sets of mgpt's.



Example 1 Let us consider the following program P2 (see [Llo87], pp. 56-7).

Axl p(X,Z)+-q(X,Y),p(Y,Z).
Axl p(X,X).
AxZ q(a, b).

Then these are all finite trees in Gen(P, C) for the goal p(X, b):

q(X,V) p{V,b)Ax\
p(X,b)

AxZ

q(a, b) p(6,6) Axl
p(a, b)

AxZ g(b,U)p(U,b)Ax
) Axl

AxZ q(b,b)p(b,b) Axl

q(X,b) p(b,b)Axl

/AxZ Ax2

q(a,b) p(b,b)Axl
p(a, b)

The success nodes Si, S2 contains proofs and the proof tree in the failure node F
has open assumptions, but no continuation. The oval boxes show the canonical
continuations obtained by choosing the leftmost assumption. The rectangles show
the canonical continuations selecting other assumptions. By (2.11), selecting other
assumptions we obtain more proof trees, but the success set remains the same.
Then we can stop at F*, taking it as a failure node. O

As last step, consider the quotient Gen(P, C)/ = under equivalence, that is
renaming of variables. This passage is required since each resolution step considers

2 From now on, we shall only quote the program, with the obvious axiomatic version.



variants of the input clauses to ease unification. We claim that (Gen(P, C)/ =, -<)
corresponds to every SLD-tvee for PU {«— C} under each selection function, i.e., it
contains every possible derivation. In fact, given opportune duplications of nodes
with more than one parent, it can be looked at as a tree s. t.

• the root is C

• every axiom comes from Ax(P)

• every node is an equivalence class [II :: 0G], with II :: OC £ Gen(P, C)

• every child of a node is obtained by a canonical continuation applying an
axiom of Ax(P).

Proposition 3.1 0 is a computed answer substitution for P U {*— C} iff there is
a II :: OC G Gen(P, C)/ =, with no open assumption.

Proof. Two straightforward inductions, respectively one on the length of the
SLD-refutation and the other of the most general proof tree. •

As a corollary of the above construction, we obtain Lloyd's lemma on the in-
dependence of the computation rule (selection function), see [Llo87] theorem 9.2.
This result establishes a sort of Church-Rosser property for SLD-resolution; if
P U {<— C} is unsatisfiable then, whichever be the atoms selected in the inference
steps, a refutation is reached. In this context it just stems from the fact that
Gen(P,C) is a regular search space and from property (2.11) of regular search
spaces (indeed, a SLjD-derivation of P U {<— C} with current goal <— H\,... Hn

corresponds to a derivation of a proof tree II :: OC with assumptions i?i , . . . ifn;
apply (2.11) to II :: OC). In this way, we can consider search trees built using a
given selection function, where a selection function F is a function which associates
to every proof tree II a fixed assumption in a leaf, called the assumption selected
by F and denoted by F(II). We require that F(II) depends only on the axioms
applied in II, i.e. that for any similar II, II', F(IV) and F(Uf) select the same leaf.

Definition 3.2 Let F be a selection function. A F-proof-sequence is a (possibly
infinite) sequence [n0], [Hi],..., [IIn],... such that (for i > 0) II1+i is a canonical
continuation of II, selecting the assumption F(TLi). An F-search tree for a program
P and a goal C is a subtree of (Gen(P, C)/ =, -<) built from F-proof sequences in
T(P,C).

The independence result says that the proofs (i.e., pt's without assumptions)
contained in (Gen(P, C)/ =, ^) and the ones contained in a complete F-search tree
(namely a F-search tree such that the leaves contained therein have no continua-
tions) are the same. Of course, the former contains more proof trees than the ones
in F- search trees. In particular, it contains, for every rule F, the corresponding
complete F-search tree.

This correspondence can be also applied w.r.t. finite failure: a finitely failed
F-search tree for a program P and a goal C is just a finite and complete F-search
tree for P, C such that all the leaves contained therein axe proof trees with open



assumptions. Nevertheless, given the asymmetry of finite failure w.r.t. derivability,
the independence result does not hold anymore: a SLD-tree can be finite under a
selection function F\ and infinite under another function 2*2- We have to impose
a fairness condition [Llo87] on the selection function to ensure that we find a
finitely failed tree if one exists. Fairness can be characterized as follows.

Definition 3.3 A F-proof-sequence is fair if it is finite or every (instance of an)
atom appearing in it is selected by F. A jF-search tree is fair if every F-proof-
sequence is fair.

Proposition 3.2 If there is a finitely-failed fair F-searchtree for a program P and
a goal C, then every [II :: 9C] 6 (Gen(P, C)/ =, ^) has open assumptions.

Proposition 3.3 There is a finitely-failed fair F-search tree for a program P and
a goal C i f fPU{*-C}hasa finitely-failed SLD-tiee.

The notion of fairness can be made more explicit with the following example of
fair selection function F*: F*(II) is the leftmost among the assumptions of II with
minimal height.

4 The SLDNF-System

For our treatment of SLDN F-iesohition, we need a new AAR to apply the neg-
ative (only-if) part of the Completion axioms [Cla78], together with a suitable
notion of negative goals. To distinguish positive and negative goals, we introduce
a new symbol hp, used in a way similar to sequent calculi where P is a list of
existential parameters (eigenvariables), as originally suggested by Kleene. When
the rules do not update this list, we shall simply omit it. Moreover, we need an
AAR to switch a negated positive goal into a negative goal and a negated negative
goal into a positive one.

Positive Goals and the Positive Rule. Positive goals are of the form h L,
where L is a literal. When L is an atom A, the (+)-rule (or positive rule) allows
to apply axioms corresponding to normal clauses, in the following way:

h 9LX . . . h 9Ln, \/{Lx A • • • A Ln -* A) V(A)

\-6A

Negative Goals and the Switch and Weakening Rules. The negative goals
are of the form F h, where F is a list of literals Li , . . . ,Ln . There axe several
possible configurations: let us start from the switch ones. To switch a negated
positive goal into a negative goal or a negated negative goal into a positive one we
apply the switch rule (s):

9A h , V(-.A -+ - .B) , , h 9A , V(-.B -> - A ) , .
(s) (s)

H 0 B 0 £ F h



Whenever B = A, the rule is said to be restricted (to axioms of this form).
Intuitively, the restricted switch rule can be seen as mirroring the evaluation steps
of a goal selecting a negative literal under NF: the goal succeeds since h A fails
(on the left hand side) and the goal fails since h A succeeds (on the right hand
side). Note, however, that under the same proviso the rule corresponds to -»-R
and -«-L in the sequent calculus with primitive negation. The weakening rule (w)
is:

T h, V(-»A -+ true) , x(w)

To achieve a uniform treatment, we have expressed the rules (s) and (w) as AAiTs,
even if they have a logical character.

Negative Goals and the Negative Rule. Next, we need a suitable nega-
tive rule (-) to apply the only-if part of the completion. First we show how (-)
can be derived in minimal logic, starting from the identity and freeness axioms
(see the Equality Theory in [Cla78]) together with the completed definitions of
the predicates involved in a logic program (ibidem). Secondly, we explain (-) in a
simplified case.

• Rule derivation. We derive our AAR (-) inside the minimal sequent calculus.
Let us start with the identity axioms (idl),(id2) and the substitution rules,
(ul) and (u2) which derive from the freeness axioms. Note that this equational
theory can be shown to be complete and decidable ([Kun87], Theorem 5.5).

(idl) \~t = t
(id2) tl=t2,L(t1)\-L(t2)
(ul) t\ = t2 h Eq((j) if a is an idempotent mgu of *i, t2 and Eq(cr) is the

conjunction of the equations obtained from the bindings in a
(u2) t\ = t2 h if no unifier of t\, t2 exists

Now, assume the completed definition of a predicate p(x) of the form

Va;(p(:r) <-• 3ui(x_ = tx A Mi) V 3u2{x_ = t2 A M2))

Here we are assuming that p(x) is defined by two clauses with body M\,M2\
it is clear how to extend it to the general case. Consider the direction —>, that
we call the failure axiom of p(x). Thanks to that, we can build proof trees of
the form shown in the following, where a is a list of terms and, for the sake
of this example, we suppose that <j\ is a mgu of a, t\ and that a, t2 do not unify.

1 — (•)

3*h(a = li A Mi), T h au^a = t2 A M2), T h, FAx(p)



Let FAx(p) denote the failure axiom of p(x): (f) can be derived from p(a) h
3ux(a = tx A Mi) V 3u2(a = t2 A M2). The (3X) rule are iterated 3-left appli-
cations, where the involved eigenvariables are mentioned below the turnstile;
(*) can be obtained by one or more applications of the identity rules, without
introducing substitutions (in particular no substitution arises on the eigen-
variables).

The above derivation lives in the minimal sequent calculus, thanks to the
identity and failure axioms. Remark that we view the identity rules as a
"logical" part that is common to every program to be executed in any calculus
with unification: thus this proof depends in an essential way from the failure
axiom Fax(p). It is summoned in the second of the following derived AAR's.

• The Negative Rule. (-) is a derived rules whose form depends on the following
exhaustive unification possibilities, given the proviso on the eigenvariables
decorating h:
ax unifies with tx and t2,
a2 unifies with tx but not with t2,
03 unifies with t2 but not with tx;
04 does not unify with tx nor with t2 .

FAx(p) <TiMi,(TiT K l fp FAx(p)

FAx(p) FAx(p)

The dependence on al9 a2, 03, a^ destroys the regularity property (2.2), since
different forms of proof trees may correspond to the same axiom/rule occur-
rences: hence they are similar, though uncomparable, pt's.

Finally, to every normal program P we associate a set Comp*(P) of completion
axioms:

• Success axioms. For every clause of P, the corresponding success axiom:
SAx(A : -Lu . . . , !„ ) =def V(LX A - A L n ^ A )

• Failure axioms. For every predicate symbol p(x), the corresponding failure
axiom:
FAx(p) =def V(p(x) -> 3ux(x = tx A Mi) V • • • V 3uk(x =tkA Mk))
If k = 0 (i.e. no clause contains p{x) in the head), FAx(p) is Vx.-»p(x) and
the corresponding AAR is the obvious one.

A SLDNF-proof tree II with axioms from Comp*(P) is a pt which uses the
rules (+), (-) to apply the axioms of Comp*(P) and restricted (s) and (w) to
apply the corresponding logical axioms. We say that a goal is an assumption of
a SLDNF-pvoof tree, if it occurs in some leaf. SLDNF-proofs will be SLDNF-
proof trees without assumptions.



The set of SLDN F-proof trees is an example of what we will call a non-regular
search space, since property (2.2) does not hold. Before better analysing non-
regularity, we relate S LDN F-pioois to standard SLDNF resolution. Let us con-
sider finitely failed SLDNF-tvees and S LDN F-vefutations with a safe selection
function (only ground negative literals are selected), as defined in [Llo87]. We
claim the following result.

Theorem 1 Let P be a normal program and L a literal. If there is a finitely failed
SLDNF-tree for PU{<- L}, then there is a SLDNF-proof U with axioms from
Comp*(P) which is a continuation of L K If there is a SLDNF-refutation of
PL) {<r- L}, then there is a SLDNF-proof H, with axioms from Comp*(P), which
is a continuation ofVL.

Proof. By induction on the rank of the finitely failed SLDNF-tree or of the
SLDiVF-refutation.

• Basis for finitely failed trees. Let n be the tree on the left below for the goal
<— A, matching with unifiers crtl , . . . , Cin the clauses i?tl <— M t l , . . . , S tn <—
Mln, and then finitely failing as suggested by the dots. The corresponding
SLDNF-proof is shown on the right. Note that every continuation applies
the failure axiom of the selected atom and that all the leaves axe axioms (i.e.
there is no assumption and our pt is a proof).

<7inMin h,

Remark that no substitution on the root of the proof tree arises from this
construction, i.e. the root remains the staxting goal A K

• Basis for refutations. Let Go, Gi , . . . , Gn, (with clauses C\,..., Cn and sub-
stitutions 0i,..., 9n) be a refutation, with Go = <— L. Staxting with i = 0,
associate to Go,...,G t (where Gt = {L t l , . . . ,Llfc }) a pt with assumptions
h l , - p . . . , h Lik , as follows:
Step 0. Associate h L to Go;

Step i; + 1- Let II :: h £,L be the pt associated to Go,.. . , Gt at step z, and
let G;+i be obtained applying Ct to the selected atom A; build the canonical
continuation of the pt, selecting the corresponding assumption h A and ap-
plying SAx(Ci) (for every step k, 8k = 9i'-9k and the assumptions of the
pt correspond to Gk). Remark that the goal proved by the final pt is the
instance by Sn of the staxting goal.

• Step for finitely failed trees. Let n be a finitely failed SLDNF-tree of rank
k + 1, with root <— L. Starting from the root of TT, for every node where the
selected literal Lm is positive, translate it as in the basis. If Lm = -<A, we
may have the following cases.



1. We are in a leaf of TT, Lm = -»A (with A ground) and there is a SLDNF-
refutation of rank k of P U {<— A}. By inductive hypothesis, we have a
SLDNF-proof II of h A (A is ground and no substitution modifies it). Build
the continuation replacing the goal containing the selected literal by the proof:

n
HA, V ( ^ i - » ^ A )

2. We axe in an intermediate node of TT (there is a finitely failed tree for
P U {<— A}, hence there is no refutation of rank k for P U {<— A}). Build the
continuation:
T h, V(-A -> irue) , x(w)

Step for refutations. We proceed as in the basis, by Step 0 and Step i + 1,
provided that the selected literal Lm is positive. But in Step i + 1 we may have
im = -iA. In this case, there is a finitely failed tree of rank k for P U {<— A}.
By inductive hypothesis, we have a SLDNF-pvooi U :: A k Then we can
build the proof:

h - A

and replace with this proof the assumption h -»A of the pt built at step
i.
Remark that the goal proved by the final pt may be more instantiated than
the starting goal only if at least a positive literal has been selected.

•

SLDNF-resolution works in an unsafe way if open negative goals axe selected.
In our model, we can distinguish two different causes for that:

(a) soundness problems (substitutions on existential parameters)

(b) completeness problems (non regularity of the search space).

As far as (a) is concerned, this corresponds to the fact that a substitution on
the existential parameters (eigenvariables) may be introduced in some continuation
step, as shown by the following example (taken from [Llo87], pp. 93-94).

Axl p <— -^q(X)
Ax2 q(a)

In standard Prolog, using an unsound selection function, the goal <— -ip succeeds
(since •— p fails), although it is not a logical consequence of the completion of



the program. In our model, safeness is enforced not by an external condition
on the selection function, but by the usual proof-theoretic proviso on existential
parameters, i.e., that they cannot be instantiated by substitutions, as the following
pt shows. Once we have obtained the goal h g(u), with existential parameter u,
we cannot continue our proof tree in a sound way; so we do not obtain any proof
of -tp. This shows that we have a natural way to distinguish proofs of negated
goals (where such a proof has no assumptions) from proof trees with assumptions
that cannot be continued. The latter corresponds to unprovability.

00

w

With respect to (b), we show that there are S LDN F-proofs which are not
achievable by usual SLDiVjF-resolution, namely that the search strategy is in-
complete w.r.t. the problem of finding S LDN F-pvoofs. We show that this kind
of incompleteness is due to the non-regularity of the rule (-).

Let us consider the following example.

Axl even(O).

Ax2 even(s(X)) : — ^even(X)

Its completion contains the obvious success axioms and the following failure axiom:

FAx(even) =def Vx.(et;en(x) ->x = 0V 3u(x = s(u) A

and a SLDNF-proof of I—*even(s(0)) is:

Axl
•(+)I- euen(O), ->euen(O) —»• ->euen(O)

i rAx(euen)

euen(5(O)) h -^et;en(5(O)) -»• ,„ ,„ , ,
(s)

On the other hand, if we start from I—«et;en(X), we obtain a finitely failed (non
safe) tree. In our attitude, this tree represents the following search steps for a
SLDNF-proof:



I—*even(X)

even{X) h VX.(^even(X) — ^even(X))
(s)

I—*evcn(X)

h FAx(even)

even(O) h VX.(-*tven(X) —• -»cven(X))

The final proof tree is sound (no binding on existential parameters arises), but
it is not a proof: we have the improvable assumption K Then, we ought not
interpret failure as negation: here we do not reach any proof. The situation is
different from the previous ground case, where search successfully reaches a proof
of I—>even(s(0)).

As one can see, we do not arrive at a solution since no backtracking is made
on substitutions: indeed, starting from I—*even(s(X)) we would have attained a
solution. The need to backtrack on substitutions is due to the non regularity of
the search space. If only ground negated goals axe selected, then failure rules are
regular, since no further instantiation is possible.

Thus, to get completeness w.r.t. the problem of finding SLDNF-proofs, back-
tracking on substitutions is needed. One could suspect that there are further
reasons of incompleteness, namely the lack of backtracking on the rules (+), (-),
(w), (s) and on the formulae in negative goals.

One easily sees that no backtracking on the selected rule is required (indeed,
for every literal I in a goal, only one of (+), (-), (w), (s) can be used). On the
contrary, backtracking on the selected literal (in a negative goal) could be needed,
due to the rule (w), which deletes a negated formula -«A from the goal, or (s),
which switches it to a positive goal and deletes the others: in both the cases,
the deleted literals could be the source of success.3 But, looking at the proof of
Theorem 1, one sees that the needed backtracking is implicitly performed by a
SLDiVF-interpreter: first an attempt is made to apply the rule (s) and (w) is
applied only when this attempt fails.

Therefore the reason of incompleteness is the non regularity of (-). To recover
regularity, we may split the failure axiom of a predicate. For example, we split
FAx(even) in:

FAx(even(Q)) =def even(O) —• true
FAx(even(s(X))) =def VX.(even(s(X)) -+ ^even(X))

Then, by FAx(even(0)), our search fails, but by FAx(even(s(X))) it is successful
by backtracking on the axioms. This corresponds to the fact that, for searches

3If rules on negative goals do not delete or add formulae, one can prove an independence result on the selected
formula.



only using natural numbers, the above split axioms give rise to a regular search
space. Splitting failure axioms in ground instances always gives rise to regular
search spaces. The problem is that, in general, there are infinitely many ground
instances, i.e., we obtain a regular but infinite axiomatization. This is analogous to
what is (theoretically) suggested in [Apt88], where the grotmd instantiation of the
program is adopted to obtain answers to negative open queries. On the contrary
a regular splitting of the failure axioms is finite, if it exists, even for programs
with infinite Herbrand universe. One possibility is to identify a covering of the
ground terms of the language, i.e. a finite set of terms such that every other term
is obtained through instantiation of the elements of the covering. In the example
above, {0,s(X)} is a covering for the natural numbers. Let us proceed one step
further: consider the < relation defined as follows

Axl 0<X
Axl s(X) < s(Y) +-x<y

A covering for pairs of numerals is {(0,X), (s(X),s(Y)), (s(X),0)} This induces
the following regular splitting of the failure axioms:

Axl 0 < X -• true
Axl s(X) < s(Y) -+ X < Y
Ax3 s(X) < 0 -> false

Note that if we dispose of the redundant first axiom, this procedure could be
looked at as the synthesis of the complement of the predicate defined in the original
program, namely here the 'greater' relation.

Axl s(X) <c s(Y) «- X <c Y
Axl s(X) <c 0

Hence, when the covering creates implications with false as consequent, they can
be turned into the base case of the complement of the predicate. This is very
closely related to the notion of intensional negation developed in [Bar90]. It is not
clear yet how general this method might be.

Last we remark that, since failure rules do not introduce unifying substitu-
tions (as shown in the proof), dangerous substitutions can arise only if a positive
assumption h A is selected in a continuation step, and the related unification mod-
ifies the existential parameters of some failure rule; but this cannot happen (using
new names when possible) if no open negated formula is selected in a continuation.
This is particularly true for definite programs and open negative queries: as no
switch is possible after the initial one, no soundness problem can arise. Moreover,
if we control that no link is made on existential parameters, then we may select
open negated goals, as it is well known.

5 Related Work

In this section we review (some) papers related to our approach.



5.1 Resolution

• Gallier [Gal86] gives a general presentation of resolution theorem proving as
derivation in certain sequent calculi: the given set of clauses is presented as
a sequent where every cedent is exclusively composed of atoms: the goal is
to derive the empty sequent by means of different versions of the cut rule,
to which various refinements of resolution correspond. The starting point is
CNF: every such clause -»Ai V • • • V -»An V B\ V • • • V Bm can be put in the
so-called Kowalski's normal form A\ A • • • A An —• B\ V • • • V Bm. This looks
like a sequent. Then just take clauses as sequent axioms and try to derive the
empty sequent, alias the empty clause. The only relevant rule (apart from
factoring) is a cut with unification, where F, A are possibly empty sets of
atomic formulae and 9 = mgu(A, A').

F h A , A A' ,F 'hA'
(6 — cut)

0(F,F'h A, A')

From this perspective, logic programming is linear resolution on definite clause
with selection function. It is easy to enforce it by syntax, where the first
premise is the program clause and the second the goal.

T\~A A',AK
(sla — cut)

A h )

More recently Snyder [Sny91] has embedded these systems in a two-sorted
paramodulation calculus, in order to cope with equality, and the only rules
are those for equality - namely, identity, left and right paramodulation.

• The Simplified Problem Reduction Format [Pla88] is a Gentzen system that
employs sequents of the form F h A to perform theorem proving in the non
Horn fragment. Inferences rules are generated from the input set of clauses
as follows. Given a Horn clause H <— H\,..., Hn we associate the inference
rule

r h g r n r
rt-H

For e a c h n o n - H o r n c l ause Hu-,Hm < - Lu..., L n , t h e r e is t h e fol lowing
splitting rule

Fh U
(split)

In a refutational setting U can be taken as to be empty, and a set of clause
is unsatisfable if the empty sequent h can be derived. It is easy to show that
the two rules are derivable in Gallier's calculus through a sequence of cuts
and contractions.



• Fitting [Fit90] among other things, stresses the similarities between resolution
and tableaux systems, where the usual operation of semantic tableaux a' la
Smullyan axe seen as skolemization steps until resolutions steps are applicable,
i. e. the atomic level has been reached for some node. The beauty of Fitting's
book lies in the demonstration of the essential parenthood that links all those
calculi, at the price of a somehow unfamiliar formulation of them.

5.2 Logic Programming

The first step is to view, through simple classical equivalencies, Horn clauses posi-
tively as rules and goals as existentially closed conjimctions of atoms to be proved
by the former. Historically this can probably be dated back to Gabbay and Reyle
[Gab84]. As mentioned before, we can distinguish among two approaches:

1. Clauses as axioms (programs as theories) and some form of Gentzen sequent
calculus to infer goals, as it is very clearly expressed in a series of papers by
Miller et al. [Mil91]. This approach is also motivated by the enlarged language
in consideration (hereditary Harrop formulae), where every connective and
quantifier is allowed by the syntax, though not arbitrarily.

2. Clauses as rules [Hal90]: Horn (and beyond) programs should be seen as set
of inference rules for the derivation of (not necessarily ground) atoms. This
view is coherent with the idea of programs defining a continuos mapping
on the lattice of Herbrand interpretations: then logic programs can be seen
as inductive definitions of such interpretations. A formal system C(P) is
associated to a program P consisting of rules somehow similarly to what has
been done above. Differently from us, they define a specialized calculus, called
linear derivation, which proves pairs of the form (C?, 0), and demonstrate it
to be sound and complete w.r.t. C(P). A linear derivation is essentially a
SZr-D-derivation upside-down, in a structure-sharing, forward chaining style,
i.e. where substitutions are split from goals. This intermediate calculus is
required to actually compute the answer substitution. The rest of the paper
is dedicated to enlarge the paradigm of logic programming with the notion of
higher-order rules; this is connected with the possibility of having implications
as goals, which is also a feature of Miller's approach. This is also the basis
of the sequel of the paper, where [Hal91] a definational approach to logic
programming is sketched:

W.r.t. negation-as-failure Stark [St92a] has (independently) given a sequent
formulation of Clark's completion that is very close to ours. His calculus NF(P)
consists of

• Clark's equality and freeness axioms

• Negation rules (our switch rules)

• cut rules, where S is a set of equations and F of literals.



s,rh A ŝ rT

• Program rules from P, divided into positive and negative introduction. For
example, given the above program for even we have:

X\-even(X)

E h even(<) E h euen(t)

t = O,rh t = s(X),-even(X),T h

euen(i),r h

Much more is however contained in Stark's thesis; to quote a few, he shows that
a sequent is provable in NF(P) iff it is true in all 3-valued model of the comple-
tion. Furthermore a completeness result is proved w.r.t SLDNF- resolution for
program satisfying the cut-property [St92b].

Harland [Har92] proposes a sequent calculus based on intuitionisic logic that
directly incorporates NF without referring to the completion. The usual rules, re-
stricted to deal with Horn logic, induce a positive derivability relation; furthermore,
he introduces a negative system of disprovability, denoted by h~ with judgments
of the type: if a conjunction fails then so does one of the conjuncts and so forth.
The two systems are interlinked by the rules for NF, which corresponds to our
switch rules (s+) (s-).

( )

r h- -.F

Structural rules have a paramount importance in this calculus: due to the
nonmonotonic nature of NF, in the positive fragment weakening is restricted to
introduce only already provable formulae on the left, resulting to be dual to con-
traction. In the negative system structural rules, cut included, are not eliminable.

Remark that this is not stricltly a calculus of finite failure, since sequents of the
form p *— p h" p are provable, although with the essential use of weakening. Of
course, due to the recursion-theoretic complexity of unprovability, every such an
axiomatic formulation is bound to be incomplete. Moreover the boundary seems
fuzzy, as, for example, p is independent from the program p <— q, q <— p.

The calculus without structural rules is shown [Har91] to be sound and complete
w.r.t. finite failure and SLDiVF-resolution (extended to the first-oder hereditary
Harrop formulae). Having to model the operational behavior of NF, both the
positive and the negative system make explicit references to unification, Skolem
functions and so forth. Still, the system is not meant for proof search and requires
a relative complement algorithm to provide answers to open negative queries.



6 Conclusion and Future Work

Concluding, we believe that our proof-theoretic interpretation gives a clear ex-
planation of some well known phenomena and suggests some interesting research
directions. From our original goal of giving a proof-theoretic reconstruction of
logic programming, as started in [Orn92], we are now in the position of proposing
a significant enrichment of the logic programming paradigm. This alone is a good
evidence of the fruitfulness of the this paradigm.

Moreover, this parabola is been common to other researchers: by stressing the
constructive features of logic programming [Mil91] has formulated the notion of
uniform proof. Similarly, [Hal90], [Hal91] has devised a definational approach to
logic programming.

Analogously, from our analysis of SZrD(JV-F)-resolution, we have started to
elicit the properties (regularity, closure under substitutions et al.) that can turn
any axiom-application rules system in a Prolog-like programming language. We
axe developing our work towards a general theory of regular AAR's system. This
will accomplished in a following companion report.

References

[Apt88] Apt K.A. , Blair H. A. &: Walker A. Towards a Theory of Declarative
Knowledge, in: Foundations of Deductive Databases and Logic Programming.
Minker J. (ed.) Morgan Kaufmann 1988.

[Apt90] Apt K.A. Logic Programming, Handbook of Theoretical Computer Science,
(Leuween J. ed.), Elsevier 1990.

[Bar90] Barbuti R. , Mancarella P. , Pedreschi D. & Turini F. A Transformational
Approach to Negation in Logic Programming, Journal of Logic Programming,
pp. 201-228, 8, 1990.

[Cla78] Clark K.L. Negation as Failure in: Gallaire & Minker (eds.), Logic and
Data Bases, Plenum Press, New York, 1978.

[Fit90] Fitting M. First-Order Logic and Automated Theorem Proving, Springer-
Verlag, 1990.

[Gab84] Gabbay D. M. &; Reyle U. N-Prolog: an Extension of Prolog with Hypo-
thetical Implications: 1 Journal of Logic Programming, 4, pp. 319-355, 1984.

[Gal86] Gallier J. Logic for Computer Science, Foundations of Automatic Theorem
Proving, Harper & Row, New York, 1986.

[Hal90] Hallnass L. k, Schroeder-Heister P. A Proof Theoretic Approach to Logic
Programming: Clauses as Rules, Journal of Logic and Computation, vl no.
2. pp. 261-283, 1990.

[Hal91] Hallnass L. Sz Schroeder-Heister P. A Proof Theoretic Approach to Logic
Programming: Programs as Definitions Journal of Logic and Computation,
v.l no. 5. pp. 635-660, 1991.



[Har91] Harland J. On Hereditary Harrop Formulae as a Basis for Logic Program-
ming, PhD Thesis, Edinburgh 1991.

[Hax92] Harland J. Towards a Static Proof System for Negation as Failure.
Citri/TR-92-49, University of Melburne, 1992.

[Kun87] Kunen K. Negation in Logic Programming. Journal of Logic Program-
ming, 4, pp. 289-308, 1987.

[Llo87] Lloyd J.W. Foundations of Logic Programming, Second Extended Edition,
Springer-Verlag, Berlin, 1987.

[Mil89] Miller D. A Logical Analysis of Modules in Logic Programming, Journal
of Logic Programming, pp. 79-108, 1989.

[Mil91] Miller D. , Nadathur G. , Pfenning F. , Scedrov A. Uniform Proofs as a
Foundation for Logic Programming, The Annals of Pure and Applied Logic,
v.51, pp. 125-157, 1991.

[Orn92] Ornaghi M. Sz Momigliano A. A Proof-Theoretic Reconstruction of Logic
Programming, (Abstract), F. Pfenning (ed.), Workshop on Proof and Types,
JICSLP92, Washington 1992.

[Pla88] Plaisted D.A. Non Horn Logic Programming without Contrappositives,
JAR, 4 pp. 287-325, 1988.

[She88] Shepherdson J.C. Negation in Logic Programming in: Foundations of De-
ductive Databases and Logic Programming, Minker J. (ed.), Morgan Kauf-
mann, 1988.

[Sny91] Snyder W &; Linch C. Goal-Oriented Strategies for Paramodulation, RTA
R.Book (ed.), Springer-Verlag LNCS, vol. 488, 1991.

[St92a] Stark R. The Proof-Theory of Logic Programs with Negation. PhD Thesis,
University of Bern, 1992.

[St92b] Stark R. Cut-Property and Negation as Failure, Technical Report, Univer-
sity of Bern, 1992.


