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Abstract

We present an axiomatic approach for a class of finite, extensive form games
of perfect information that makes use of notions like "rationality at a node"
and "knowledge at a node." We show that, in general, a theory that is
sufficient to infer an equilibrium must be modular: for each subgame G1

of a game G the theory of game G must contain just enough information
about the subgame G' to infer an equilibrium for G'. This means, in general,
that the level of knowledge relative to any subgame of G must not be the
same as the level of knowledge relative to the original game G. We show
that whenever the theory of the game is the same at each node, a deviation
from equilibrium play forces a revision of the theory at later nodes. On
the contrary, whenever a theory of the game is modular, a deviation from
equilibrium play does not cause any revision of the theory of the game.



1 Introduction

It is generally agreed that rational choice often yields counterintuitive results
in finite, extensive form games of perfect information, as well as in finitely
iterated noncooperative games involving simultaneous moves. In both cases,
a backward induction argument leads to the paradoxical result. Even if they
grant that the conclusions of backward induction arguments can be paradox-
ical, game theorists have widely accepted the formal validity of the conclu-
sions. In this light, a typical solution to the paradox involves contrasting the
unbounded rationality usually attributed to the players with a more realistic
view of boundedly rational agents. For example, Selten [11] has suggested
that "'limited rationality" explains why people play tit-for-tat in the finitely
repeated prisoner's dilemma, and Kreps et al. [8] explain the same cooper-
ative behavior by introducing some uncertainty about the rationality of the
players.

An alternative way of dealing with the paradox is to question the very
validity of the backward induction argument itself by questioning the usual
premises of such argument. This is the line of argument adopted by Reny
[12], Binmore [7], Bicchieri [3], [4], Pettit and Sugden [10], Basu [2] and Bo-
nanno [6]. The present paper belongs to this latter tradition, as it questions
and modifies the usual epistemic assumptions made in backward induction
arguments. By "epistemic assumptions" we mean the assumptions about
what players know about each other and the structure of the game. Such
assumptions are often made only implicitly, in that the formal description
of the game does not include them. For example, it is usually implicitly
assumed that players have common knowledge of the structure of the game
and of their being rational. Reny [12] and Bicchieri [3] have argued that
under certain conditions common knowledge of rationality leads to inconsis-
tencies. Typically, this has to do with a player's inability to explain another
player's deviation from equilibrium, since such a deviation is inconsistent
with common knowledge of rationality and of the theory of the game.

In this paper we assign to each game G a theory TG such that: (i) theory
TQ is sufficient to infer an equilibrium; and (ii) theory TQ is not too strong,
in the sense that it does not give rise to contradictions as a consequence
of containing "too many" levels of knowledge as indicated by Bicchieri [3].
In doing this, it will be crucial that TQ be modular. For each subgame G'
of G, theory TG must contain just enough information about G' to infer an



equilibrium for Gr (from the point of view of G). This means, in general,
that the level of knowledge relative to G' must not be the same as the level
of knowledge relative to G. Whenever the level of knowledge at a subgame is
the same as the level of knowledge relative to the original game, a deviation
from equilibrium play forces a revision of the theory.

Note that the theory TQ is the theory that the players themselves adopt
to infer a solution. In this respect, too, we. depart from the game-theoretic
tradition. Game-theoretic models usually do not specify the players' reason-
ing, nor do they attribute a "theory" to the players, since in such models
it is the outside observer (the game theorist) who reasons to a solution; the
players themselves do not. By endowing the players with a theory of the
game, our aim is to explicitly model the reasoning that leads them to play
the backward induction equilibrium. In our model, a player is like an auto-
matic theorem prover that, from a finite set of axioms and inference rules,
can infer an action at the node at which he has to move.

In the present paper we prove that the theory of the game which is suf-
ficient for the players to infer a solution cannot be the same theory that the
game theorist uses to prove the backward induction result. In our model, the
players are only "locally rational" and, at each node, have only just enough
knowledge to choose an optimal action at that node. As a corollary, in order
to deal with the classic "paradoxes of backward induction'' it is no longer
necessary to assume that players are less than perfectly rational. It is just
enough to assume that the players have, at each node, an amount of knowl-
edge that is not sufficient to infer an optimal choice at that node. In which
case the players' behavior is not determinate.

2 The Received View: An example

As an example of what we mean by the "usual epistemic assumption" under-
lying backward induction arguments, let us consider the game of Figure 1.
It is usually assumed that the structure of the game and players' rationality
are common knowledge among them.1 By "rationality" is simply meant that
a player, when facing a decision under uncertainty, will select that action

*By "common knowledge" of p is meant that everybody knows that p, and everybody
knows that everybody knows that p, and so on ad infinitum. For a definition of common
knowledge, see Lewis [9] and Aumann [1].



Figure 1:

that maximizes her expected utility with respect to her subjective probabil-
ity over the uncertain events (in this case, the other player's moves). In the
game of Figure 1, the equilibrium (hhL) is obtained by backward induction
as follows: Given common knowledge of rationality (CKR), the following
proposition must be true

(i) "If node c is reached, player 1 will play l2"

By CKR, the truth of proposition (i) is common knowledge. Now suppose
node b is reached. Player 2 knows that proposition (i) is true, hence she knows
that if she plays i?, 1 will play /2. We then have proposition

(ii) "If node b is reached, player 2 will play U\

By CKR, proposition (ii) is common knowledge. Consider now node a.
Plaj*er 1 knows that proposition (ii) is true, so he knows that if he were to
play r1? player 2 would play L. We then have proposition

(Hi) "At node a, player 1 will play l\".

Note that proposition (iii) does not falsify (i) or (ii). (i) and. (ii) are
conditional propositions with a false antecedent, therefore they are trivially
true. They have a false antecent because, given CKR, the nodes b and c



will never be reached. In deriving proposition (i), we assume that node c is
reached. And given CKR, node c must be reached by rational play. So (i) is
a hypothetical statement that is used as part of a proof that node c cannot be
reached by rational play. It is then proved (by reductio) that player 1, being
rational, will play /]. Given our interpretation of rationality, this means that
li provides player 1 with greater expected utility than n. But given common
knowledge of rationality, this can never be established.

In other words, the answer to the question "What would happen if player
1 were to play r{r is indeterminate. For in order to answer this question,
we have to predict what player 2 will do at node t, after observing rlB What
player 2 will do depends on what she expects 1 to do if she plays R. Since
we have proved that R is an event that will not occur, and this is common
knowledge, it must also be common knowledge that both statements uIf J?,
then player 1 plays r2" and "If /?, then player 1 plays /2" are trivially true,
being material implications with a false antecedent. So at node 6, what player
2 will do remains indeterminate. Similarly at node a; since we proved that
ri is an event that will not occur, and this proof is common knowledge, it
must also be common knowledge that both statements "If n, then player 2
plays L" and "If ri, then player 2 plays IT are trivially true. It follows that
it can be proved both that player l's equilibrium choice is r\ and that his
equilibrium choice is \\.

Notice what the above line of reasoning shows: The standard argument
that the Nash equilibrium (hhL) will be played is valid. But were player 1
to ask whether he should play /1? given that 1\ is part of the equilibrium, he
would have to ask himself what would happen were he to play r\ instead,
and that question can only be answered if he can predict player 2's reaction
to ri. And as we have just said, this is something he cannot do.

We may question whether it makes sense to ask "What would happen
if player 1 were to play r{V\ Our claim is that it is a meaningful question
if we want to model players' reasoning and the deliberational process that
leads them to infer a solution for the game. Backward induction as a reductio
proof is a proof given outside the game by an external observer. If we instead
want to model how the players themselves reason to an equilibrium, we have
to model how they come to decide that a given strategy is optimal for them.
In our example, player 1 cannot decide what to choose at node a because we
have implicitly assumed that, at each node, he reasons according to the game
theorist's own theory of the game. Since this theory considers the game as



a whole, a player endowed with it will know the whole game at any node at
which she has a choice; this means that at any node the player who has to
choose at that node will know what the players choosing at previous nodes
know. In the example of Figure 1, at node b player 2 knows that ^ has been
proved to be the optimal choice for player 1 at node a. Because of that,
player 2 can infer anything from observing TV By giving the players the
same theory as the game theorist's, it is no longer possible to consider the
subtree starting at b as an independent game because what happened before
node b is no longer strategically irrelevant.

Note that the very definition of a strategy as a contingent plan of action
involves considering what to do at nodes that may never be reached, as is the
case with strategy l\l2 in the game of Figure 1. To model players' choice of an
equilibrium strategy profile must then involve modeling their deliberation at
every possible node. In other words, a specification of the solution requires
a description of what both agents expect to happen at each node, were it
to be reached, even though in equilibrium play no node after the first is
ever reached. It is thus important to provide the players with just enough
knowledge to decide, at each possible node, what is the optimal choice at that
node. Player 1, for example, has two possible choices at his first node: l\ or
TV What he chooses depends on what he expects player 2 to do afterwards.
If he expects player 2 to play L at the second node, then it is optimal for
him to play l\ at the first node; otherwise he may play 7*1. In making a
decision, what matters to player 1 is player 2's state of knowledge at node 6,
which includes what player 2 thinks of player Vs state of knowledge at node
c. Note that it is player l's knowledge of player 2's state of knowledge that
determines his choice, whereas what 1 knows that he would know were he to
reach node c is completely irrelevant to his decision problem. "What player
1 knows at node c" can therefore be interpreted as what player 1 knows at
node a about what player 2 knows at node b about player 1 at node c.

In this paper, we show that the amount of knowledge that is sufficient to
infer the backward induction solution is limited: At any node, it is sufficient
that the player who has to move at that node knows that the successive
player is rational. In our interpretation of rationality, this means knowing
that the successive player knows that the next player is rational . . . and so on
up to the end of the game. It follows that "player z's knowledge at node z"
must be interpreted as the intersection of what the preceding players know
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about player z's state of knowledge at node x.2

This definition of knowledge at a node*' may look strange, as a player
would seem to know less and less as further nodes down the tree are reached.
And indeed, were the game a truly dynamic one, this definition of knowledge
would be inappropriate. But the kind of games we are considering are static;
before playing the game, a player has to consider what to do in any possible
contingency, and chooses a strategy on the ground of such consideration. As
we already mentioned, what matters to a player is w4iat he thinks is going to
happen at successive nodes; in this sense, every subgame can be conceived as
an independent game. In such a static context, it is then quite intuitive to
think that players come to know more and more as they play larger games,
as knowledge is defined bottom-up. We now make all this precise.

3 The Theory of the Game

In general, a finite, extensive form game of perfect information G is repre-
sented by a finite tree, having an arbitrary branching factor, equipped with
a function p : G -+ {0, . . . , k) that assigns a player i (for i < k) to each
node. The branching factor of the tree is supposed to represent the number
of choices available to each player at each node. In order to make things
interesting, p is also assumed not to be injective, thereby ensuring that at
least one player gets to move more than once. Payoffs at the terminal nodes
(leaves) of the tree are represented by real-valued vectors, whose z-th projec-
tions (for i < k) represent the payoff for player i at that node.

However, there is nothing conceptual to gain in representing such gener-
ality, while there is much to lose in notational perspicuity. All the points that
we want to make can be made equally well for a restricted class of games.
Consequently, we make the following simplifying assumptions. We will re-
strict ourselves to games represented by binary trees, i.e., games in w-hich
each player has precisely two choices at each node. Conventionally, these are
referred to as "moving left" and "moving right." Morover, we will assume

2Strictly speaking, in our model it is not true that a player's knowledge at a node is
the intersection of what the preceding players know about his state of knowledge at that
node, because we use a belief operator. It is however important to stress that at each
node the players are required to move on the basis of an amount of knowledge that varies
according to the stage of the game.



only two players that move in turn in a pre-determined order. Accordingly,
payoffs at the leaves are represented by paisr of real values.

In what follows, we will be employing a notion of limited rationality:
rather than presupposing that an agent's rationality is an absolute notion,
an all-or-nothing affair, we will focus on the idea of player i being rational
at a given node, and not absolutely. We are now ready to provide our theory
of the game, in the form of axioms A1-A7 below.
CONVENTION Assume two players, 0 and 1, of whom player 0 is assumed
to move first, so that the root of the tree represents a choice for 0. Conse-
quently, TQ will be the theory of the game from the point of view of player
0. In what follows, a always denotes the root of G.
DEFINITION Theory TQ comprises the rule of Modus Ponens (from ip and
ip —> %!> infer T/?), and the following logical axiom schemata (for i = 0,1),
where Ki is a belief operator:3

A\ all instances of tautologies

Beside these axioms, we let TQ contain a description of the structure of
payoffs of the game G. This is a finite conjunction of statements of the form
7r(x) = y, where x is a terminal node (leaf) of the tree, and y = (21,22) is,
say, a pair of real valued payoffs, representing the payoff for player 0 and
player 1, respectively.
DEFINITION Call a node final if it is non-terminal but all of its children
are leaves. Let x be any non-terminal node; then xr and x\ denote its right-
hand and left-hand child, respectively. It will be useful to characterize a
class of functions max; (for i = 0,1), having as input two pairs (i.e., vectors
of length two) of real-valued payoffs and returning as output a pair of real-
valued payoffs. This class is defined as the class of all functions satisfying

3Here Ki is construed as the game-theorist's weak knowledge, i.e., probability-one belief.
The alternative is to employ strong knowledge, in the philosopher's sense—that is, at least
since Plato, justified true belief. This would mean adding an axiom schema to the effect
that Knp —• <p. For instance, this is the approach adopted in Bicchieri [5], but in a context
such as the present one, it seems to lead to unnecessary complications.



the following clauses:

max;(u,i?) € {u,t>},
maxt(u, v) = z => (z)i = max((u)t-, (t>);)

where (•),- is the projection function: ((uu... ,un)){ = u:-. The behavior
of any of the functions max,- is totally determined when there areno ties
in player t's payoffs at a node; when such ties occur, we leave open the
possibility of adopting several different choice policies, as embodied in the
different functions satisfying the above conditions.

Suppose that x is a non-terminal node. We now "lift" the function IT to
a function TT*, with domain C G and values in the real numbers. Function
7r* will be an extension of 7r, but it will not, in general, be total.4 Function
7r* is supposed to represent each player's expected utility at a node, and it
will not supply a value unless a player has the "right" amount of knowledge.
The behavior of the function is specified by the following axioms:

A\ . TT*(X) = TT(X),

for each terminal node x, and

A% Kio... tff-n(Rati7l" A RatiT") =» **(*) = niaxt-(7r*(xr), 7r*(xO),

for each non-terminal node x, where: n = h(x); i = io", io = 0 if and only if
h(x) is even, and io = 1 otherwise; and ik+\ = 1 — i*, for each k < n. (Some
of the alternatives to this axiom are explored below.) Note that the string of
leading AVs in the antecedent of A\ represents the knowledge of the player
who moves first in the game. The reason is straightforward: For the first
player to decide what to do, it is not only necessary that the others players
behave rationally, it is also necessary that he know that they so behave at
every node.

Define Rat̂ . as a propositional constant representing player z's rational
behavior at x (given our convention, i = 0 if and only if x has height h(x) = n
and n is even, and i = 1 otherwise; the height h(x) of a node x is defined as the

4The reader who is made unconfortable by the existential import usually associated
with the functional notation, might want to introduce a payoff predicate constant Pm

instead, along with an axiom to the effect that for every x there is at most one y such that
^'(*>y)> and regard any context *(^*(x)) as an abbreviation for Vy{Pm{x,y) =

8



number of links between :r and the root). The definition or intended meaning
of such a constant is given in axiom A£ below. Let Rx and Lx be propositional
constants representing player i's moving right or left, respectively, at node x
(since the player whose turn it is to move is determined by the height of the
node, it doesn't need to be explicitly indicated in Rx or Lx). Then we have
the axiom:

A% (Rx

(Ratl
x ««=• [{Rx <=> maxi(7rill(xr),7r"l(xi)) = 7r"(xr)) A

(Lx

In our definition, to be rational at a node x involves knowing that, at the
successor nodes xT and xi, 7r*(xr) and 7r*(xi) are defined. In other words, the
player who has to move at node x must know that the successive player(s) are
rational at nodes xr and xi. So, in order to be rational at a node, the player
who chooses at that node must know that the successive player is rational
and knows that the next player is rational ..., up to the end of the game.
A£ also says that, whenever there are ties, rationality is relative to a choice
policy. When there is a tie, a player can adopt any of several choice rules,
but precisely which one is not part of a rigorous definition of rationality.
For rational choice to be defined also in the case of ties, one might add a
behavioral axiom that singles out one of the possible maxt- functions speci-
fying, for example, that whenever a player is indifferent between n options,
he will randomize over them with probability 1/n. Such behavioral axioms
will, however, be ad hoc, and they certainly are not part of the definition of
rationality.

Finally, we come to the special axiom specifying precisely to what extent
the players' rationality is "common knowledge" among them. First, for each
node x we specify a sentence $x . We proceed by induction on (the tree
representing) the game. If x is a leaf, we let $ x be a propositional constant
T representing "the true'' (this is a mere technicality, intendend to take care
of "unbalanced" trees); if x is final, then $x is just Ratx, where z = 0 if and
only if h(x) is even, and i = 1 otherwise. If x is a non-final, non-terminal
node, then

< A tft-(*Xr A$X1),

where, again, i = 0 if and only if h(x) is even. Then A7, our last axiom, is



We claim that the theory TG = {Ai,..., ,47} is sufficient to infer the
equilibrium and not so "strong" as to give rise to inconsistencies.

THEOREM For each game G, theory TG is sufficient to infer ^ V . . . V £ n ,
where each E{ is a conjunction of "moves" Mtl A . . . A Mtm (where each M t j

is of the form Lx or Rx for some node x) representing the branch through G
corresponding to an equilibrium.

Proof. It suffices to show that ^ ( a ) is defined. We proceed by induction
on (the tree representing) G. If G comprises a unique final node x, then it
suffices to invoke axiom A4.

Now consider a game G, with root a, and let b and c be its children.
Let Gb and Gc be the subtrees of G with roots b and c, respectively. By
inductive hypothesis (modulo a permutation of 0 and 1), theories Tcb and
TGC are sufficient to infer that 7r̂ (fe) and TT^(C) are defined.

Now, if theories Tob and TQC were subtheories of TG, then the desired
conclusion would easily follow from the inductive hypothesis. However, this
is not so, given our construal of K{ as a belief operator, and the way our
axioms A% and A? have been formulated. It is indeed one of the characteristic
features of the present approach that if node y is a descendant of node x then
$ x does not imply $y.

There is a way around this difficulty. Theories Tcb and TGC allow us to
derive a value for TT*(6) and 7r*(c) because for each node x in Gb or Gc, they
contain the corresponding instance of axiom A\, which has the form

?i times

and $b or $c (according as x is in Gb or Gc) provides the antecedent

K0...Kn<p.

Now it is easy to verify that for each node x in Gb or Gc, theory TG contains
the axiom

K^JK^ip = * n*{x) = • • •
n+l times

(with one more occurrence of the K operator with respect to TGb or TGC).

Correspondingly, $ a will now supply the antecedent of the above formula. It
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follows that a derivation of a value for ~*(&) or ~m(c) in Tab or TQC can be
reproduced in TQ, which therefore will supply a value for Km(b) and *m(c) as
well.

All that is left to observe is that TG contains the following instance of
axiom A%:

/^(RatJ A Rat*) = ^ ?r*(a) = maxo(7r"(c),7r"(&)),

whose antecedent, in turn, is supplied by $ a . This allows us to derive a value
for 7r~(a). •

4 Alternative Accounts of Deviations

Let us take the time to explore two alternatives to our crucial axiom A%.
Clearly its intended meaning is that if player i0 has the "right" amount of
knowledge, and function 7r* is defined on the children of x, then it is defined
on x too. This seems to us conceptually correct: for player i to choose what
to do, it is necessary not only that the other players behave rationally, it is
also necessary that i know that they so behave. Hence, the string of leading
Ki's in the antecedent of A%. However, all that is needed in order to infer
the equilibrium is the consequent of A%. So it is worth considering what
would happen if we were to replace axiom Af by (i) its consequent; or (n)
the result of dropping the leading K^s from its antecedent (and modify $x

by analogously dropping the occurrence of A't). In both cases, as is clear, we
would still be able to infer an equilibrium. But the two cases would differ
between themselves, and with the current proposal, in the way deviations
from the equilibrium can be handled.

In what follows, we will analyze how the theory assigned to each node
has to be modified in the face of a deviation from equilibrium. In doing so,
it is necessary to distinguish carefully between the player whose turn it is
to move at each node, and the game-theorist who observes the game "from
the outside."' As already mentioned, we want to give an idealized account of
the game from the players7 own point of view. Now it is indeed plausible to
assume that the players be capable of revising their own beliefs (theories) in
the face of inconsistencies, but this requires that the distinction between the
level of the theory of the game (on the basis of which each player is making
a choice) and the meta-level at which belief revision takes place be drawn as
sharply as possible.

11



As we already mentioned, it is useful to resort to the following metaphor:
We shall imagine that each player is represented by an automatic theorem
prover that is supplied some theory of the game as input, and returns as
output one of the two possible moves "left" or "right." When faced with
inconsistencies, there is nothing a player can do: It is only at the meta-level
that we can start talking about belief revision. In principle, a player could
well be equipped with a meta-linguistic component, but for clarity it is best
to keep the issues distinct for the time being.

Having said this, we can now go back to the alternative formulations
of axiom Af. Recall that we considered replacing the axiom by: (i) its
consequent; or (ii) the result of dropping the leading AYs from its antecedent
(and modify $x by analogously dropping the occurrence of A*). Both cases,
as is clear, are sufficient to infer an equilibrium. This precisely means that in
either case the theory, when augmented with information to the effect that
a deviation has taken place, is simply inconsistent But at the meta-level,
what kind of belief revisions does this warrant?

Case (i) is simply classical backward induction: axiom A7 is not needed
in this case to infer an equilibrium. This theory does not leave a player
much room to maneuver in case a deviation from equilibrium is observed:
There is no natural way of revising a player's beliefs in order to accomodate
a deviation.5 The only conclusion is that the other player acted against her
own best interests for totally mysterious reasons.

Consider again the game in Figure 1, and suppose that player 2 observes
r j . Given our modified theory TQ (we have now changed axiom ^4f), both
players are able recursively to define the value of 7r*(x) at each node x, and
in particular both players know that 7r*(a) is defined. By axiom A%, if ?r*(a)
is defined, then Rat*. Observing n forces player 2 to abandon A%, i.e., to
abandon the assumption that player 1 is rational at node a.

Case (ii) is different: in the presence of an observed deviation from equi-
librium, a tentative "explanation" is available for the other player. When
player 2 observes a deviation, she is not forced to give up axiom A%: she can
now revise the theory of the game by assuming that player 1 is not rational,
at least at node a, because 7r*(a) may not be defined. In turn, ?r*(a) may be

5It is certainly possible to modify the theory to account for a deviation by giving up
the very definition of rationality at a node as given in axiom A% or, for that matter, by
changing the structure of the payoffs of the game: we do not regard these as natural belief
revisions.
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undefined if player 1 does not know (or believe) that player 2 is rational at
node b, or if 7r*(b) is not defined because player 2 does not know (or believe)
that RatJ. A deviation in case («") is therefore less costly in terms of revisions
than a deviation in case (i).

Case (ii) is on a par with the present proposal, since our version of A%
leaves open the possibility that a player's rational behavior at a node is
not known or believed by another player, which would serve equally well to
"explain" the latter's deviation at a previous node. Case (it) and our proposal
differ, however, in another, important respect. First note that in case (ii),
but not in our proposal, if node y is a descendant of node x in G, then 4>x

implies $y. It follows that if a deviation at node y is observed, it is not only
the theory $y that needs to be revised, but also $x . This is not the case
with A% as we defined it. In our theory, deviations from equilibrium play can
be dealt with locally: they might force a revision of the theories assigned to
later nodes in the game, but never of theories assigned to earlier nodes.

This extra feature, we believe, is of some import, since it gives our theory
a certain modularity. Although the theory assigned to a subgame G1 of G
is not a subtheory of TQ (given our construal of the belief operator), still it
contains enough information to allow the player that moves first in G to infer
an equilibrium for G'. Far from being a negative feature, this fact allows us to
insulate a deviation from equilibrium, preventing it from spreading upwards.
Its consequences are confined to later moves in the game, and prior moves
are unaffected.

5 Deviations in the Present Account

We now turn our attention to the way deviations from equilibrium can be
handled in the framework of our theory. First observe that there is a sense
in which theory TG, beside being sufficient for inferring an equilibrium, is
also necessary. Suppose we were to assign the same amount of information
TQ not only to a game G, but also to any subgames G' of G. Then, precisely
because TQ is sufficient to infer an equilibrium, it would make it impossible
consistently to explain a deviation from equilibrium.

Suppose for instance that we were to assign TQ as the theory of any
subgame G' of G, and let G" be such a game, which represents however a
deviation from equilibrium play. As in the above theorem, let Mi A . . . A Mm
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be a. sequence of moves from the root of G to the root of G" (this ran he
thought as representing the "previous history" of the game). Then the theory

r C ; U { M 1 A . . . A M m } ,

would be inconsistent. The player who moves first at G" has no explanation
available for such a deviation. Moreover, even from the point of view of the
player who moves first at G, the situation is totally unassessable. Indeed,
in order to determine that M\ A . . . A Mm is dominated, player 0 has to
infer what would happen, were she to move that way. This means that the
value of TT*(6) (where i = 0,1 as appropriate, and b is the root of G") has to
be determined on the basis of the theory assigned to G", and this value in
unavailable if this theory is TQ U { M I A . . . A Mm}.

This leads to the idea of assigning to each node of a tree representing a
game, as is already argued in Bicchieri [5] an amount of knowledge that is
the intersection, and not the union, of any amounts of knowledge assigned
to nodes higher up in the tree. In other words, the amount of knowledge
assigned to each node has to be defined bottom up from the leaves, precisely
as is accomplished in the recursive definition of $x above.6

Let us also recall that, as already mentioned, among the advantages of this
way of proceeding there is also the possibility of explicitly defining rationality,
a possibility that is not available if rationality is taken to be an absolute
notion. In the latter sense, as an all-or-nothing affair, rationality amounts
to an agent's always choosing the most profitable live option at each stage
of any game. Such generality is simply not expressible in our language, a
fact that only comes to the foreground when one sets out to write down the
necessary axioms explicitly.

On the contrary, the notion we employ is that of rationality at a node.
When cast in these terms, local rationality simply amounts to an agent's
choosing an action with the highest expected utility, and this is always pos-
sible as long as our functions ~M are defined. Conversely, an agent Vs being
not rational at a node x means that 7r'(x) is not defined. As is often the
case with many philosophically intriguing ideas, the notion of rationality has
certainly lost some of its metaphysical clout, gaining however in perspicuity
and rigor.

6Note that, whenever every node is reached in equilibrium, it makes no difference
whether theory TQ is assigned to every node or whether we let the theory vary according
to the node to which it is assigned.
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Similar considerations apply to the players' having common knowledge of
rationality, a common assumption in game theory. On a local construal of
rationality, assuming this kind of common knowledge amounts to saying that
the payoff of a given player at a given node is common knowledge. Since in
our axiomatization 7r*(x) is not defined unless it is defined at all lower nodes
in the tree, common knowledge of rationality means that the value of ?r*(a)
is common knowledge among the players (where a is the root of the tree).
Equivalently, since such a value is determined by $ a , we can identify common
knowledge of rationality with common knowledge of $ a .

As Bicchieri [3], Binmore [7], and Reny [12] have argued, under certain
conditions common knowledge of rationality leads to inconsistencies. As
already mentioned, this has to do with a player's inability to explain another
player's deviation from equilibrium, since such a deviation is inconsistent
with common knowledge of rationality and of the theory of the game.

In our framework, inconsistencies arise even when much less than common
knowledge is assumed. As we shall presently see, it is sufficient that the
theory of the game is group knowledge7 among the players for that theory
to become inconsistent with the statement that a deviation from equilibrium
play has occurred. There are at least three possible candidate theories to be
assigned to a node x of G. Before we describe these candidates and assess
their merits, let us suppose that, for simplicity, we have a game G with root
a, whose left- and right-hand children are denoted by b and c. As before,
player 0 moves at node a. We want to consider some combination of the
theories $a,$fe,<l>c. Notice that although $a is recursively defined in terms
of $*, and <I>C, it does not entail either one of them. This has to do with
our construal of the operators A': as belief operators for which the axiom
schemata Knp —+ ip are not assumed. Then we could consider assigning a
theory of the game to each node x of G as follows.

Case 1: we assign to each node x G G the same theory $ a . That is, we
make <J>a group knowledge among the players. Suppose that playing Ra is a
strictly dominated strategy. Then, as we already know, the theory $a A Rn

is inconsistent, and therefore of no use for the second player, were she to find
herself playing at c. Consequently, the second player has to revise her theory
of the game in such a way that the resulting theory is still sufficient to infer

'By group knowledge of p we mean that every member of the group knows p.
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an equilibrium for the subgame having c as its root. But

$a = Rat° A A'o($6 A * c ) ;

clearly $b is of no use for the second player, since it contains information
relative to a subgame that is no longer accessible. So the theory that must
be revised is Rat° A Ko{$c), neither of whose conjuncts is enough to infer
an equilibrium. Having rejected $a , player 1 has no theory of the game to
speak of; what she does at node c is undefined.

Case 2: we assign to each node x £ G the same theory $a A $& A $c.
Again, this theory is group knowledge among the players, and as before it is
inconsistent with Ra. Finding herself in the position of having to revise her
theory, player 1 cannot but reject $a . However, $c still is sufficient to infer
an equilibrium, i.e., to compute a value for ir\(c).

Case 3: we assign to each node x € G the theory $x . This is the approach
sketched above, which calls for assigning to each node x a minimal theory
that is sufficient to infer an equilibrium for the corresponding subgame. Thus,
each player finds himself choosing at each successive node on the basis of
weaker and weaker theories. In our example, this means that player 1 will
find herself to choose at node c on the basis of the theory $c (or, perhaps,
$cAi?a). No inconsistency arises, no theory revision is required.

A corollary of our model is that if player i at node x has not enough
knowledge to infer an optimal choice, then the backward induction equilib-
rium cannot be inferred, and the outcome of G remains indeterminate. This
consideration suggests that the experimental results that are often at odds
with the predictions of backward induction arguments may be formally mod-
elled as due to insufficient knowledge on the part of the players, rather than
being the result of the players' being less than fully rational.
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