NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

An Experimental Comparison of

Alternative Proof Construction
Environments

by
Richard Scheines and Wilfried Sieg

August 1993

Report CMU-PHIL-40

Philosophy
Methodology
Logic

Pittsburgh, Pennsylvania 15213-3890

An Experimental Comparison
of
Alternative Proof Construction Environments?!

Richard Scheines
Wilfried Sieg

Department of Philosophy

Carngie Mellon University

Pittsburgh, PA 15213
email: RS2L@andrew.cmu.edu

WS15@andrew.cmu.edu

Department of Philosophy Technical Report CMU-Phil-40
August 1993

'We thank Virginia Hoage, who collected the data and miraculously put it into a form we
could use.

University Libraries
Carnegie Mellon Universit
Pittsburgh PA 15213-369

Abstract

In this paper we compare computerized environments in which
students complete proof construction exercises in formal
logic. After being given a pretest for logical aptitude, three
matched groups were presented identical course material on
logic for approximately five weeks by a computer. During the
treatment, all students were required to complete several
hundred proof construction exercises. The three groups did the
exercises and the midterm in different environments. The
group with a more sophisticated interface performed better on
the midterm. Nearly all the difference in performance showed
up in the harder problems. In a follow up experiment in which
flexible strategic problem solving help was added to the
environment, performance improved slightly, but the data are
inconclusive.

1. Introduction

Formal logic is our best theory of rigorous reasoning. Because
formal logic and computation are so closely related, computer aids to
logic teaching and theorem proving have proliferated. At present there are
over 40 computer programs that help teach logic, and surely more will
follow [Croy 86, Burkholder 89]. We have spent the last few years
developing the Carnegie Mellon Proof Tutor (CPT), a computerized proof
construction environment that combines a sophisticated graphical
interface with a system for strategic help based on a complete and
cognitively natural algorithm for finding natural deduction proofs in
propositional logic [Sieg 91, Pressler 88].

CPT was built on the educational belief that students learn more
from doing the problems they are assigned when their problem solving
environment has three features. First, its interface must relieve the

student of all non-essential cognitive load. That is, it must take over
routine calculations, display the problem state informatively and reliably,
and identify errors instantly.” Second, it must allow students to traverse
the problem space in any way they wish. Third, it must provide intelligent
and flexible strategic guidance.® Although students quickly master the
syntactical constraints on logic proofs, it may take them months to
internalize the strategic subtleties of proof construction.

In this study we report on an experiment that tested the pedagogical
value of three features of CPT's problem solving environment. They are:

1) an informative and manipulable display of the problem
state,

2) the flexibility to work forwards and backwards instead of
either way alone, and

3) strategic help at any point in any problem.

We gathered data relevant to the first two features in the fall of 1989 and
the third in the spring of 1990. The fall data seem to support the utility
of the first feature and strongly support the utility of the second. The
spring data suggest that strategic help is important, but for several
reasons cannot be considered conclusive.

2. Proof Construction

In the preponderance of problems assigned in a class on formal logic,
students are asked to produce a proof of a particular conclusion from
given assumptions (premises). A proof is a series of lines, each of which
is either an assumption or the result of applying a logical “inference rule"
to previous lines. Like most problem solving tasks, one begins a proof
construction problem with a gap between what one is given (the premises)
and what one seeks (the conclusion).* The gap can be closed by inferring

2John Anderson [Anderson 85a] has shown that immediate error correction reduces the
frequency of future errors. Jill Larkin [Larkin 87] has shown that an informative and
easy to parse display of the problem state improves performance and reduces training
time.

*This point motivates most "intelligent" computer tutors, e.g. [Anderson 85b].
*See [Newell 72].

new lines from the premises, or by creating subgoals such that,
would allow one to infer a line desired (Figure 1).

if proved,

[Assumption 1] [Assumption 2| [Assumption 3
N » A »
|nference 1 |nfel’ence 2
| New Statement 11 | New Statement 2 [

\ o
Inference 3

New Statement 3

/

| Subgoal 2.1~| | Subgoal 2.2a] 1Subgoal 2.2b

P
Route 2.1 Route 2.2
AN X
ISubgoal 1a] [Subgoal 1b [Subgoal 2] [Subgoal 3|
“ P4 .
Route 1 \ Route 2 Route 3
Conclusion
Figure 1

Search

Although it is almost never taught as such, finding a proof is a search
problem. One can work forwards and search for a goal G in the forest of

lines that emanate from a set of assumptions r (Figure 2),

Proof of G

Derivation
Forest from T

Figure 2

or work backwards and search for I in the forests that /lead to G (Figure
3),

Inverse Derivation r
Forest to G
estto Proof of G
G
Figure 3

or one can confine the search to the region where the forward and
backward searches overlap (Figure 4).

Superfluous
Inverse Forest

Superfluous
Inverse Fores

Relevant Search

Superfluous

Superfiuous
Forest

Forest

G
Figure 4

All the standard problems of search arise in proof construction.
Students wander down dead ends and cannot recover, they travel in
circles, and they move laterally instead of vertically, i.e., they make
moves which are legal but which bring them no closer to a solution.

If they are explicitly taught to see proof construction as a search
problem, and if they are given a problem solving environment in which the
structure of their search is made clear, then students should learn proof
construction more easily and see its connection to other problem solving
contexts as well.

Jemporary Assumptions

Proof construction is of course more than just search. It involves
pattern matching, strategic thinking, and a skill that is somewhat special
to logic: introducing and discharging temporary assumptions. Taught
traditionally, this skill is particularly hard for many students to master.

In certain proof construction contexts one is allowed to introduce a
temporary assumption which can then be used in a corresponding sub-
proof. Once the sub-proof is finished, the assumption must be cancelled.
For example, suppose we are told that a given number is either even, or
divisible by five but greater than ten, and we are asked to prove it is not a
prime. We do so by first assuming that it is even and under this
assumption showing it cannot be prime, and then assuming it is divisible
by five and greater than ten and under that assumption proving that it is
not prime. In the subproof in which we assume the number is divisible by

1Y *

five and greater than ten, we cannot also assume that it is even.
Assumptions can be nested in complicated ways, and students often get
lost tracking them.5

3. Standard Proof Checkers

The great majority of computerized proof construction environments
are simple "proof checkers" in which only mistake correction is standard
[Pressler 88]. These programs present the premises in a column on the top
of the screen and allow the student to add to this column by entering
steps sequentially until the conclusion has been proved (Figure 5).

1 P->(Q&R) Premise

2 S->(Q&T) Premise

3 P wp

4 Q&R 1,3 ->_Elim
5 Q 4, & Elim_l
6 P->Q 3,5 ->_Intro
7 S wp

|
Figure 5

Most also calculate the conclusion of an inference and automatically
justify it appropriately, so routine calculational relief is also quite
common. Some allow working backwards as well as forwards, but most do
not.6 Since working backwards is easy on pencil and paper, and a technique
that is encouraged in almost all logic classes, those environments that do
not allow it are in some sense an impediment to good problem solving.

Very few logic programs give the student an informative display of
the problem state.?” A column of lines can represent a finished proof
adequately, but not the search for a proof. One is in essence collapsing a

SBefore we used CPT in our Introductory Logic class at Carnegie Mellon, perhaps 50% of
our students encountered serious trouble with logical dependency.

6"Symlog". by the Portararos is an example [Portoraro 87].
TThis is beginning to change. For example, see [Weston 87].

forest into a line, and so relevant structure and information are
necessarily lost. A column of lines also poorly represents the structure
of temporary assumptions.

Finally, standard proof checking programs give no strategic help.
This is like a chess tutor that checks each player's moves to make sure
they are legal, but can not itself play or give advice on where to move.

4. The Carnegie Mellon Proof Tutor (CPT)

CPT provides all the standard proof checking operations, i.e. mistake
correction and calculational relief, but it also provides an informative
display, the ability to work backwards, and strategic help.

CPT's display is novel in that it combines information about the
search along with information about the structure of temporary
assumptions. In the single column of lines used by standard proof
checkers, associated with each line y is a set of lines on which y depends.
Thus when a temporary assumption 6 is introduced, any line that depends
on 0 includes 6's line number in its dependency list. The Fitch diagram
presents a superior and graphical option for displaying logical
dependency.8 In a Fitch diagram a box is drawn for each new temporary
assumption added. Everything inside this box depends on this assumption.
When the assumption is dishcarged, the box is closed. Thus calculating
logical dependency from a Fitch diagram is as cognitively natural and easy
as deciding box containment. Consider the alternative displays of the
same proof in Figure 6.

8Many standard logic texts use a Fitch style representation. See [Kalish 80], for
example.

Co nventional Fitch - Diagram
1) (PvQ 1} Premise 1) ~(PvQ) Premise
2) P {2} Assumption _
3) PvQ {2} 2, or-Intro 2) | P. Assumption
4) P {11 23,1 -intro 3) | PvQ 2, or-Intro
5 Q {5} Assumption _
6) PvQ {5} 5, or-Intro 4) ~P 2,3,1 -intro
7N Q {1} 5,6,1 -intro _
8) -P&-Q (1} 4,7 &-intro 5) |-GL Assumption
6) |PVQ 5, or-Intro
7) ~Q 5,6,1 -intro

8 ~P&~Q 4,7 &-intro
Figure 6

Glancing at the conventional diagram, it might appear strange that lines 3
and 6 contain the same formula. It might also appear that we have derived
several contradictions, e.g. lines 5 and 7. Neither oddity seems
problematic in the Fitch diagram. One can see immediately that lines 3
and 6 occur within different boxes and thus depend on different
assumptions. One can also see that line 5 is an assumption and line 7 is
the result of an argument by reductio (-introduction) from this
assumption.

A Fitch diagram does not represent the search for a proof any better
than a column of lines, however. In CPT we have combined a tree-like
diagram of subgoals with a Fitch style diagram to give the student a "Goal
Tree. " Since the Fitch diagram is standard and used in many texts, we
provide it in parallel to the Goal Tree as a representation of "The proof"
(Figure 7).

\ A The Proof
1] P->(Q &R) Premise
21 S>(Q&T) Premise
3 P assumpt "
4| |QgR 1,3 ->_Elim g: ég :%)
5 Q 4, & Elim_|
P->Q
6 P>Q 3,5 ->_Intro
7 S
T assumpt
P
— [Q&R S —
c A
N (P>Q)&(S->Q)
Q Q
i |
Dialog Box ->_lIntro ->_Intro
Work Forwards (P ->| Q) (S !>' Q)
Choose a rule from the menu, or L 1
click on a proved statement above & I.n tro
Work Backwards |
Click on a goal in the Goal Tree, or (P->Q&(S->Q v
Click on a rule in the Goal Tree ||
L e—— |
Goal Tree

Figure 7

Students can work forwards or backwards in CPT, and they can in a
glance determine the state of their search and the logical structure of
their temporary assumptions.

Students can also request strategic help at any point in any
problem. CPT solves the problem from the point the student has left it,
and then gives the student one of three kinds of advice. It will either 1)

display its solution and the search it conducted for that solution, or 2)
allow the student to step through its search for the solution, or 3) conduct
a dialogue with the student on how to proceed towards a solution.

Having designed such a system and tested it informally on dozens of
students, our goal was to test it experimentally. In particular, we wanted
to know if the goal-tree display, the ability to work backwards and
forwards, and the strategic help objectively improved performance.

4. Methods

CPT is currently just a proof construction environment, not a logic
teacher. Before students can use it they need to learn some logic. Were
any person to teach different groups this logic, they would inevitably bias
the treatment. Fortunately, there is an entire course on logic taught
entirely by computer. The VALID program, which was developed at the
Institute for Mathematical Studies in the Social Sciences (IMSSS) at
Stanford University in the late 1960s and early 1970s [Suppes 81],
thoughtfully covers an extensive introductory curriculum, including a
system of propositional logic which is an extended system of natural
deduction. VALID is now used at perhaps half a dozen universities around
the country, including Carnegie Mellon University (CMU).

VALID alternates between introducing new logical ideas and
assigning exercises to build the skills that correspond to these ideas.
After a new idea is introduced via several screens of text, students are
presented with a menu of proof construction exercises. Upon selecting an
exercise, they are shunted into VALID's interactive proof construction
environment to complete the exercise (Figure 8). After finishing an
exercise they are returned to the menu, or, if the menu is completed, to
the main curriculum. The course is entirely self-paced, i.e.,, there is no
time limit within which a problem must be completed. There is also no
penalty for mistakes: students simply keep trying until they solve the
required number of problems and then move on to the next concept. The
great bulk of a student's time is spent actively working on exercises, not
passively reading text.

10

Problemi
>
Student selects a Main Curriculum b \C/:'glr_lijtruirt?ga
Problem 1 ' Controller < e :
Problem 1 Environment
Finished
Figure 8

VALID's proof construction environment is a standard proof checker,
and part of its curriculum introduces the environment and trains students
how to use it.

Every semester, 30-60 students take Introduction to Logic at
Carnegie Mellon from VALID. They use VALID's proof construction

environment for one brief lesson, and then use CPT instead of Valid's proof

construction environment to complete the remainder of the exercises
prior to the midterm, and to take the midterm as well.® They are exposed
to CPT for approximately five weeks. In the fall semester of 1989, we
conducted an experiment to compare three different versions of CPT.

On the first day of classes we gave all students a pre-test for
logical aptitude designed by the Educational Testing Service and given to
us by Stanford. We used the results of this test to split the class into
three groups of 11 students, equal in both the means and variances of
their pretest scores. Comparing two features, we would have liked to
have four groups, one for each boolean combination of features. But since
our sample size was small, we settled for three. Each group proceeded
through the VALID curriculum, but used a different proof construction
environment (pee) to do its exercises and then the midterm. The groups
were trained to use a standard proof construction environment by VALID,
and then trained for an extra half hour by a TA to learn their pee.

The first pee (the Forwards group) was a simulation of a standard
proof construction environment (Figure 5). Students using it could only
work forwards and were given the standard column representation of
proofs, i.e., they had neither a Fitch diagram nor a Goal Tree. The
Backwards group used a degraded version of CPT in which they could only

They receive no strategic help while completing the midterm, of course.

11,

12

work backwards from the conclusion toward the premises by subgoaling in
the Goal Tree. The third pee provided students with the full CPT interface,
which includes a Fitch diagram, a Goal Tree, and the ability to work
forwards or backwards (Figure 7). No group in the fall had any strategic
help.

The midterm exam consisted of eight proof construction problems
similar to those the students faced prior to the midterm. Two problems
were easy, three medium, and three hard (Figure 9).

Midterm Problems

From:
Derive: (P->S) > ((S>R) > (P ->R))
Easy
From:
Derive: (P->R) & (Q->9S)) >((P&Q)->R&YS))

From:
Derive: (P & Q) > (RVvS) > (P>R)v(Q->Y5))

Medium From:
Derive: (P >Q) >P) > P

From: (R<> P & Q)) & P
~S > (Q <> P) & ~R)
Derive: S

From:
Derive: (P > S) & (P & Q) > S)) <> (P Vv Q) > S)

From: ~(P & Q) & (P v Q)

~P&Q) ->S
P& -Q)->S

Derive: S

Hard

From: (Pv ~Q) -> (Rv ~S)
(PvT)
(Tv~P)->(-SvM
~(R v M)

Derive: ~S

Figure 9

Students were given three hours to complete the test. Besides
recording whether they succeeded or failed to complete a given problem,
we measured how much time it took to finish a problem, how many steps
were in the finished proof, and how many errors of logical dependency
students made. To be fair to the students, we adjusted their grades by an

13

amount equal to the difference between their group's mean and the best-

group's mean.

We collected data on the next semester's class as well. In the spring
of 1990 had 35 students and we did not split them into groups. Each
student had the full CPT interface plus our first implementation of
strategic help. They used an identical curriculum, but were given a
substantially harder midterm. The first eight problems on their midterm
were identical to the fall's (up to notational variations), but it contained
two extra problems that were harder than any given to the fall class.10
Instead of three hours to take the test, we were forced to give this group
only two and a half. We analyzed the results for all four groups, plus two
amalgams. The first amalgam, 1-way, consists of the first two groups in
the fall, i.e., the Forwards group and the Backwards group. These groups
could only work in one direction. The second amalgam, 2-way, consists of
the CPT group in the fall plus the entire spring class.

Figure 10 shows the pretest means, in percents. The Backwards
group is slightly high because 3 of the poorer students dropped out after
we had matched the groups. 1 student dropped out of the Forwards group.
Thus the sample sizes for the groups are:

r le Siz
Forwards 10
Backwards 8
CPT 11
Spring 35
1-Way 18
2-Way 46

10we added extra problems so we could distinguish between good and really gifted
students. We will compare the spring classes performance on these problems against
next fall's students.

Pre-Test
100
90
80
70 ———-q N
- — N
60 w “2 N 7
% 50— % . h é
40 AN
30 — \ ::E: \\\\\ /
20 N o 7
10 N L N
e\ B %
Forw. Back CPT Spring 1-Way 2-Way
68.3 76.3 66.1 6.6 725 664
Figure 10

Students in the CPT group, who were allowed to work forwards
and/or backwards, chose to work backwards over 46% of the time. They
exploited the extra parts of their environment that alternative groups
could not. Since each group completed over a hundred proof construction
problems over the course of five weeks with their own pee before they
took the midterm, no training effects were still operative. By the time
students took the midterm, they were solving problems in their pee as
well as they were going to.

5. Results

The results for the midterm are striking (Figure 11).

14

15

Midterm

100
90
80

70 —
60 —
% 50
40 —]
30 —
20 —
10 —
0 -

Forw Back CPT Spring 1-Way 2-Way
68.7 76.4 80.7 84.3 72.8 83.4

}
A.A

3OOOE
'
SOOO!

:3
»

Y s

LI D 2 2R D 8 28 2 N
» »
.)”.)’D.D.D.) D.D L]

0%

ALY

G

L D8 28 28 28 3¢ 24
”””’D’D’)”

Figure 11

Not surprisingly, most of the difference in the student's
performance was in the harder problems (Figure 12).11

Twe say this is not surprising because in our experience the way a subject is taught
makes little difference to either the very smart students or to the average student's
performance on easy problems. One expects to see the payoff from better educational
treatments in harder problems done by average students.

Midterm - Hard Problems

100
90
80 —
70 — = 7
60 2 %
% 50 = oo %
40 — N\ oo \ /
30 5N N
10 = /
0 — § s & %
Forw Back CPT Spring 1-Way 2-Way
45.8 44.4 69.8 72.4 45 .1 71.7
Figure 12

Although at these sample sizes one needs a large difference in
means to achieve statistical significance on a T-test, the difference
between the 1-way and 2-way performance on the hard problems is
significant at the .026 level. That is, if we assume that the two groups
were equal in their ability to solve the hard problems,12 there is a 2.6%
chance that we would observe as large a difference in their means as we
did or larger. From this we can reject the hypothesis that the groups were
equal when they took the midterm. Since the only difference in these
groups was the pce each used, we assume the differences in the pces
caused the difference in their final proof construction abilities.

The results on the easy (Figure 13) and medium problems are much
less dramatic (Figure 14).

12Actually it appears that the 1-way group had slightly more ability. Their mean pre-
test score was 72.5 compared with 66.4 for the 2-way group. This makes the difference
in their performance on hard problems even more dramatic.

16

Midterm =« Easy Problems

100 — — Z «100
90 S e N / - 90
80 —] '% ae] N ?

Z AN * 80
702N N

o, 60— N - 60

% oo - 4N U
50 - \ - § / 50
40N TN
30 N N1 0
20 — % :E:: \\\ Z 20
10 — N
0 = 0

Forw Back CRT Spring 1-Way2-Wa
875 100 955 97.1° 941 96.7
Figure 13
Midterm - Medium Problems

100 3 100
90 — ' — —— 90
80 — N 3 3 ; 80
70 = 70

- NN e /

%60 1N & % % 60
50 — \\\ :‘: \ é 50
40 — N X § 7 40
30 — § 22 N\ é 30
20 TN = § % 20
10 9N N 10
0 = =l N 77 0

Forw Back CPT Spring 1-Way2-Way
79.2 926 818 87.6 86.3 86.2

Figure 14

The students who had the better interface constructed more elegant
proofs (Figure 15).

Average Number of Steps
in Completed Proofs

20 |
Number 15 = I§
of Steps 10 — \
N
RER\
Y OBy e
Figure 15

They also took less time to find them (Figure 16).

Average Time to Complete Proofs

900-

800

AENENNEEUNEEN]

7

'n
o
)
g

FA T

4 ¢
~
N

Figure 16

The students in either the Backwards, CPT or Spring group made
almost no errors (3) of logical dependency. The Forwards group made 11
such errors. The Backwards group's lack of errors is not surprising, since
one cannot make them while working backwards in the Goal Tree.

6. Analysis

Recall that we set out to test three features of CPT's problem solving
environment. They are:

1) an informative and manipulate display of the problem
state,

2) the flexibility to work forwards and backwards instead of
either way alone, and
3) strategic help at any point in any problem.

The data strongly support the utility of the second feature. Although
working backwards is clearly helpful in certain contexts of proof
construction, it is unnatural in others. The same holds for working
forwards. Students forced to work exclusively in either direction were at
a severe disadvantage, as is evidenced by the large differences between
the 1-way and 2-way groups, as well as between the CPT group and either
the Forwards or Backwards group. The CPT group differed from the
Backwards group only in the ability to work forwards, so clearly this
direction of search mattered. The CPT group differed in two ways from
the Forwards group, first in its ability to work backwards and second in
the use of an informative display, so the utility of working backwards is
more difficult to assess. It seems unlikely that the difference between
the CPT group and the Forwards group was entirely due to the display,
however. The Forwards group and Backwards group differed in their
display, but did not exhibit nearly the difference that the CPT and
Forwards group showed. Our interpretation is that only the students in
the CPT and Spring groups learned to separate those proof contexts in
which working backwards was advantageous from those in which working
forwards was better. Thus the ability to take alternative routes through
the search space helps the student learn the structure of the space better.

19

The Goal Tree and Fitch diagram embody the informative display.
Every group had such a display except the Forwards group. That it
mattered is evidenced first by the difference between the number of
errors in logical dependency made by the Forwards and CPT groups. Errors
in logical dependency could be made just as well in either group's pee, but
only the Forwards group actually committed them. Second, although the
difference in midterm success rate between the Forwards and Backwards
groups matches their pretest difference almost exactly and is
insignificant, the Backwards group outperformed the Forwards group in
time on search and in the size of the proof found. This is so even though
students spend most of their educational life training to solve problems in
a forwards fashion. Neither the differences in times of search or proof
lengths was statistically significant, but at sample sizes of 8 and 10 they
would have to be alarmingly large to be so. Our interpretation is that the
Backwards group searched more efficiently and with fewer errors because
of the Goal Tree diagram.

Assessing the effect of strategic help is more difficult and in this
paper has to be considered preliminary and inconclusive. First, students in
the spring were given a harder midterm, both substantively and in time
pressure. We do not know how many percentage points higher they would
have scored had their midterm been the same. Second, one of our
programmers introduced a bug in the data collection facility, so we have
no data on length of proof, search time, or errors of logical dependency.
The same.bug prevented us from keeping accurate tabs on which students
actually used the help facility. Since many of them rarely used it, we are
missing a rather important piece of information. Third, students in this
semester used the first implementation of the help facility, which was
rough and had some disappointing bugs. Nevertheless, many students
reported a great appreciation for the facility, and the differences between
the Spring group and the CPT group from the fall are interesting.

In the shared sections of the midterm, the Spring group was
approximately 3.5 percentage points better than the CPT group. The same
difference holds for the hard problems. These differences are of course
statistically insignificant, yet in the context of a much harder test
suggest that some students actually benefitted from the strategic help.

20

In the fall of 1990 we plan to redo this comparison, giving one group CPT
without help and one group CPT with help.

If it is difficult to separate the effects of the three features we
tested, it is not hard to see how well they work in combination. The Spring
group used the full CPT environment while the Forwards group used a
standard proof checker. The Spring group averaged almost two points
lower on the pre-test than did the Forward group, and they took a harder
midterm in less time than did the Forwards group. Yet their average score
on the part of the midterm the two groups shared was 15.6% higher. This
difference is significant at .119, which is quite acceptable given the
small sample sizes. |

7. Conclusions

Students who use CPT's proof construction environment seem to
learn proof construction better than those who use standard proof
checkers. We draw the following conclusions from our study. Problem
solving environments that allow and informatively represent a variety of
search strategies encourage better problem solving activity. Larkin's
belief that the problem display is pedagogically important [Larkin 87]
seems right.

Our results suggest but do not prove that intelligent strategic help
IS an important feature for problem solving environments. Much more
work needs to be done on this issue. First, it is not yet clear that
strategic tutoring helps performance, and second, it is not clear how to
optimally deliver such help.

Whatever the case, more experimental work needs to be done. The
computer is ideal as a tool for educational research as well as educational
intervention. We need a more objective foundation from which to proceed.
Too much of the advice for those studying the literature on educational
computing is anecdotal and vague. What students say they like does not
always correspond to what helps them learn. Carefully controlled
experiments do.

21

22

References

Anderson, J.R., "Production Systems, Learning, and Tutoring”, in D. Klahr, P.
Langley, & R. Neches (eds.), Production System Models of Learning
and Development, MIT Press, Cambridge, MA, pp. 437-458, 1987.

Anderson, J.R., Cognitive Psychology and lts Implications, W. H.
Freeman, San Francisco, 1980.

Anderson, J.R., Jeffries, R., "Novice LISP Errors: Undetected Losses
of Information from Working Memory", Human-Computer
Interaction, Vol. 1, 1985: 107-131.

Anderson, J. R., Boyle, C.F., "The Geometry Tutor", Proceedings of IJCAI-85,
Los Angeles, CA, 1985.

Bledsoe, W. W., and Loveland, D.W., (eds.), "Automated Theorem
Proving: After 25 Years," Contemporary Mathematics, Vol. 29,
Providence, RI, 1983.

Braine, M. D., "On the Relation Between the Natural Logic of Reasoning and
Standard Logic," Psychological Review, Vol. 85, pp 1-21, 1978

Burkholder, L., "Cumulative New Software", The Computers and Philosophy
Newsletter, pp. 48-89,Issue 4:1+4:2, July, 1989

Croy, M. J. , "The Current State of Computer-Assisted Instruction for
Logic", Teaching Philosophy 9, pp. 333-350, 1986.

Garson, J., "Getting Problem-Solving Advice from a Computer", BYTE,
May 1981: 186-196.

Gentzen, G., "Investigations Into Logical Deduction", in M.E. Szabo (ed), The
Collected Papers of Gerhard Gentzen, North Holland, Amsterdam,
pp. 68-131,1969.

23

Howson, A.G., Kahane, J.-P., and Pollak, H., "The Popularization of
Mathematics”, a report by The International Commission on
Mathematical Instruction, in Notices of the American
Mathematical Society, Providence, Rl, Vol. 36, No. 1, January 1989.

Jacoby, L. L. , "On Interpreting the Effects of Repetition: Solving a
Problem versus Remembering a Solution", Journal of Verbal
Learning and Verbal Behavior,

Vol 17, 649-667, 1978.

Johnson-Laird, P. N., "Models of Deduction”, in R. J. Falmagne (ed.),
Reasoning: Representation and Process in Children and Adults,
Erlbaum, Hillsdale, N. J., 1975, pp.7-54.

Kalish, D., Montague, R., and Mar, G., Logic: Techniques of Formal
Reasoning, Harcourt Brace Jovanovich, Inc., New York, 1980.

Larkin, J., "Display-Based Problem Solving", in The 21st Carnegie
Symposium, Erlbaum, Hillsdale, N.J., 1987.

Loveland, D.W., Automated Theorem Proving: A Logical Basis,
North-Holland, Amsterdam, 1978.

Moor, J. and Nelson, J., "Computer-Assisted Instruction in Logic:
BERTIE", Teaching Philosophy, Vol. 8, No. 4, 1985: 319-323.

Moor, J. and Nelson, J., "BERTIE-Il: Personal Computers and Logic",
Teaching Philosophy, Vol.8, No. 4, 1985: 319-323.

Newell, A., & Simon, H., Human Problem Solving, Prentice-Hall, Englewood
Cliffs, N.J., 1972.

Osherson, D.N., Logical Abilities in Children, (Vols. 2-4), Erlbaum,
Hillsdale, N.J. 1974-1976.

Pelletier, J. F., "Seventy-Five Problems for Testing Automatic

Theorem Provers”, Journal of Automated Reasoning, Vol. 2,
1986: 191-216.

24

Pelletier, J. F., Completely Non-Clausal, Completely Heuristically
Driven Automatic Theorem Proving, Technical Report TR82-7
Department of Computing Science, University of Alberta,
Edmonton, Alberta, Canada, August 1982.

Polya, G., Mathematics and Plausible Reasoning, Princeton, 1954

Portoraro, A., and Portoraro, F. D., "SYMLOG: Computer Assisted Instruction
in Symbolic Logic," The Computers and Philosophy Newsletter, Vol.
2, No. 2, pp 31-47, June 1987

Pressler, J., "Computers in Logic Courses", in lan Lancashire (ed.),
Methodologies in Humanities Computing, Philadelphia: University of
Pennsylvania Press, 1989.

Pressler, J., and Scheines, R., "An Intelligent Natural Deduction Proof
Tutor", Computerised Logic Teaching Bulletin, Vol. 1, No. 1, March
1988.

RIPS, L.J., "Deduction,” inThe Psychology of Human Thought, R.J.Sternberg
and E.E. Smith (eds.), Cambridge University Press, 1989.

Rips, L. J., "Cognitive Processing in Propositional Reasoning”,
Psychological Review,
Vol. 90, 1983: 38-71.

Robinson, J. A., " A Machine-Oriented Logic Based on the Resolution
Principle®, Journal of the Association for Computing
Machinery, Vol. 12, No. 1, January 1965: 23-41.

Robinson, J. A., Logic: Form and Function; The Mechanization of
Deductive Reasoning, North-Holland, New York, 1979.

Sieg, W., "Structure and Design: Getting at the Core of Mathematics and
Science in Liberal/Professional Education," to appear in:The Role of
Design in Liberal/Professional Education, 1989.

Sieg, W., and Scheines, R., "Searching for Proofs (In Sentential Logic),"
forthcoming in the Proceedings of the Fourth International
Conference of Computers and Philosophy, 1991.

Steen, LA., "Statement Before the National Science Board", in Notices of
the American Mathematical Society, Vol. 33, pp. 241-246, 1986

Suppes, P. (ed.), University-level Computer-assisted Instruction at
Stanford: 1968-1980, IMSSS, Stanford, 1981.

Weston, T., "Tree Diagrams in Computer-Aided Pfoof Construction”,
The Computers and Philosophy Newsletter, Vol. 2, No. 2, June
1987: 48-55.

25

