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1

In the current discussion on philosophy of mathematics some do as

if systematic foundational work supported an exclusive alternative

between Platonism and Constructivism; others do as if such mathe-

matical and logical research were deeply misguided and had no

bearing on our understanding of mathematics. Both attitudes

prevent us from grasping insights that underlie such work and from

appreciating significant results that have been obtained. In conse-

quence, they keep us from turning attention to the task of under-

standing the role of accessible domains for foundational theories

and that of abstract structures for mathematical practice.

This twofold task derives from a probing perspective that

takes seriously traditional epistemological concerns, but that does

not respect time-honored boundaries drawn for philosophical

convenience. It will be approached mainly through work that has

been done during the last seventy years on versions of Hilbert's

Program. Such an avenue may be surprising, because the stand that

was taken in the foundational discussion by Hilbert, Bernays, and

their collaborators is widely perceived as extremely narrow and

1 My considerations are based on two papers of mine: the first, Relative Consistency and
Accessible Domains, was published in Synthese 84, 1990, pp. 259-297; the second, Mechanical
Procedures and Mathematical Experience, will appear in "Mathematics and Mind", edited by A.
George, Oxford University Press. Here, I focus squarely on broader strategic points and rely
for details concerning the relevant (meta-) mathematical results, historical connections, and
conceptual analyses on those earlier papers.



technical. So I will give in section 2 a revisionary description of

Hilbert's Program and sketch in section 3 some results that have

been obtained within a general reductive program.

A prerequisite for Hilbert's Program is the effective or formal

presentation of mathematical thought. Gb'del took his incomplete-

ness theorems as refuting any form of "pure formalism", in

particular the variety (he thought to be) underlying Hilbert's

Program. The discussion of Godel's reflections on this issue, in

section 4, will lead me to focus on two aspects of mathematical

experience. The first is the quasi-constructive aspect, and it has to

do with accessible domains; the second is the conceptional aspect,

and it deals with axiomatically characterized abstract structures.

These two aspects are discussed in sections 5 and 6. In the seventh

and final section I come back to the question of "mechanizing"

mathematical thought and contrast Turing's views with Godel's.

2

Are the results of contemporary proof theory significant for the

foundational concerns that motivated Hilbert's Program, and are

those concerns connected to insightful reflections on the nature of

mathematics? - Before we can assess answers to either question,

we have to be clear about the specific foundational concerns and the

general character of solutions proposed by the program. The broad

background is provided by striking developments in 19-th century

mathematics, namely the emergence of set theory, the discovery of

set theoretic foundations for analysis, and the rise of modern

axiomatics with a distinctive structuralist bent. These develop-



ments came to the fore in Cantor's and Dedekind's work. Some of the

difficult issues connected with them were seen by Cantor, others

were made explicit by Dedekind and by Kronecker (when criticizing

Dedekind); and they clearly prompted Hilberfs foundational studies

in the late 1890's. Dedekind and Kronecker were both deeply

influenced by Dirichlet; their divergent development of algebraic

number theory together with their general reflections pinpoint the

central issues most clearly. Hilbert's Program was formulated only

in the early twenties, but it evolved out of this earlier

"problematic".

The program was to mediate between the opposing

foundational views represented by Dedekind and Kronecker, and it

was to address a methodological problem, to wit, the use of

'abstract' analytic means in proofs of 'concrete' number theoretic

results (employed first by Dirichlet). The expressibility of parts of

classical mathematics in axiomatic systems P was the basic datum

for conceiving of consistency proofs for P as a possibly convincing

approach. The basic datum, after such P's had been sharpened to

formal theories, allowed Hilbert to think of classical mathematics

programmatically as a formula game and, thus, of the consistency

problem as a syntactic one. In this way Hilbert side-stepped the

philosophical problems associated with the content of P and turned

to restrictive demands on consistency proofs. He required that they

be given in finitist mathematics, believed to be a philosophically

unproblematic part of number theory and to coincide with the

mathematics accepted by Kronecker and Brouwer.



To describe the role of consistency proofs in greater detail,

let P be a formal theory in which the practice of classical

mathematics can be represented, and let F formulate the principles

of finitist mathematics. The formal character of P allowed Hilbert

to express in the language of F the proof predicate Pr for P and thus

P's consistency; Hilbert expected that an elementary proof of this

elementary statement could be found! The consistency of P can

actually be shown in F to be equivalent to the reflection principle

(Vx)(Pr(x,'s') -> s);

where s is a finitist statement, and 's' is the corresponding formula

in the language of P. A consistency proof in F would show, because

of this equivalence, that the technical apparatus P can serve as a

reliable instrument for establishing true finitist statements; after

all, it would allow the transformation of any P-derivation of 's' into

an F-proof of s. Finitist consistency proofs would thus resolve the

methodological problem mentioned above, guaranteeing "Methoden-

reinheit" in a systematic manner. And yet, describing the program in

this way truncates it by leaving out essential and problematic

considerations.

Hilbert and Bernays attributed to consistency proofs a further

philosophical significance: such proofs were thought to provide the

last desideratum for justifying the existential supposition of

infinite structures made by modern axiomatic theories2. This issue

links the program of the twenties to Hilbert's first foundational

2 "Existential supposition" is to correspond to the term "existentielle Setzung" that is used by
Hilbert and Bernays as a quasi-technical term. The problem pointed to is presented as a central
one in Grundlagen der Mathematik /; see p. 19 of that work.



investigations. At the core of the strategic considerations was the

perceived close connection between (truth in) mathematical

structures and (provability in) syntactic formalisms; this connec-

tion was to be exploited as a crucial means of "reduction". Bernays

expressed the central idea repeatedly through a mathematical image

(in papers that span close to fifty years). In (1922) he observed

after a discussion of Hilbert's Grundlagen der Geometrie.

Thus the axiomatic treatment of geometry amounts to this: one abstracts from geometry,
given as the science of spatial figures, the purely mathematical component of knowledge
[Erkenntnis]; the latter is then investigated separately all by itself. The spatial
relations are projected as it were into the sphere of the mathematically abstract, where
the structure of their interconnection presents itself as an object of purely
mathematical thinking and is subjected to a manner of investigation focused exclusively
on logical connections, (p. 96)

What is said here for geometry was stated in (1922A) for arithmetic

and in (1970) for formal theories in general: "Taking the deductive

structure of a formalized theory ... as an object of investigation, the

[contentual] theory is projected as it were into the number-

theoretic domain." The number-theoretic structure obtained in this

way, Bernays emphasized then, will usually be different from the

structure intended by the theory in essential ways. And yet, the

projection has a point, because "... [the number-theoretic structure]

can serve to recognize the consistency of the theory from a

standpoint that is more elementary than the assumption of the

intended structure." Since Hilbert saw the axiomatic method as

applying in identical ways to different domains, these projections

are epistemologically uniform. That is explicitly described in

Grundlagen der Mathematik I:

Formal axiomatics, too, requires for the checking of deductions and the proof of
consistency in any case certain evidences, but with the crucial difference [when
compared to contentual axiomatics] that this evidence does not rest on a special



epistemological relation to the particular domain, but rather is one and the same for any
axiomatics; this evidence is the primitive manner of recognizing truths that is a
prerequisite for any theoretical investigation whatsoever.3

Hilbert's Program is thus seen to aim for uniform structural

reductions: arbitrary mathematical structures are projected through

their presumably "complete" formalizations into the properly mathe-

matical domain of finitist mathematics. As the equivalence of

consistency and satisfiability was assumed, or at least conjectured,

the existence of such structures seemed to be secured by solving the

finitist consistency problem.

It is often claimed that the difficult philosophical problems

inherent in the axiomatic method and the associated structuralist

view of mathematics were not addressed in the Hilbert school. That

is incorrect; those problems were seen clearly and indeeed

motivated the enterprise. But Hilbert and Bernays hoped, perhaps

too naively, either to avoid them in a systematic-mathematical

development by appropriate interpretations or to solve them for

fundamental structures by finitist arguments. In any case, they

envisioned an absolute reduction to a basis that was viewed by

them, to repeat, as "the prerequisite for any theoretical

investigation whatsoever". I assume, it is this clear reductive and

philosophically motivated goal (to be reached by purely

mathematical means) that made Hilbert's Program attractive; even

Godel admitted in his 1938 lecture at Zilsel's: "If the original

Hilbert program could have been carried out, that would have been

without any doubt of enormous epistemological value. The following

3 Grundlagen der Mathematik /, p. 2. The parenthetical remark is mine. - Hilbert and Bernays
use the term "primitive Erkenntnisweise" which I tried to capture by the somewhat unwieldy
phrase "primitive manner of recognizing truths".



requirements would both have been satisfied: (A) Mathematics would

have been reduced to a very small part of itself ... . (B) Everything

would really have been reduced to a concrete basis, on which

everyone must be able to agree." Note that (B) paraphrases Hilbert's

characterization of the finitist basis in his (1926).

3

Godel's Incompleteness Theorems blocked, however, the radical

aspiration of Hilbert's Program. If the program was to be pursued in

some form, the sharp restriction of the "properly mathematical"

domain had to be given up; Godel's second theorem implies, after all,

that structural reductions even for arithmetic can be obtained only

by strengthening the finitist basis. A suitable modification of the

program has been pursued with remarkable success.4 The crucial

tasks of this general reductive program are: (1) find a formal theory

P* for a significant part of classical mathematical practice, (2)

formulate an unmistakably constructive theory F*, and (3) prove in

F* the partial reflection principle for P*, i.e.

Pr*(d,'s') -> s

for each P*-derivation d. Pr* is the proof-predicate of P*, and s is

an element of some class of formulas in the language of F*. The

provability of this partial reflection principle implies the

consistency of P* relative to F*. Clearly, for such a result to be of

foundational significance, F* must be philosophically distinguished.

4 Hilbert and Bernays, Ackermann, von Neumann, Herbrand, Godel, Gentzen, Schiitte, Kreisel,
Feferman, Tait, Takeuti, and many others contributed. For references and detailed discussions,
in particular on the consistency proofs for impredicative theories, see (Buchholz e.a. 1981),
(Sieg 1984), (Feferman 1988), (Pohlers 1989), or (Rathjen 1991).



The first contributions to the reductive program were the proofs

given by Godel, respectively Bernays and Gentzen, who established

independently the consistency of classical arithmetic relative to its

intuitionistic version; as a matter of fact, this result made the

modification of Hilbert's Program at all plausible.

As I do not intend to sketch the development of proof theory, I

will only comment on some central results concerning analysis, i.e.

concerning theories for the mathematical continuum. Hilbert and

Bernays considered analysis as the touchstone for the feasibility of

the reductive program and took second order arithmetic as the

framework for its formal development and its metamathematical

investigation. In contemporary presentations the essential set

theoretic principles are the comprehension principle

(3X)(Vy)(yeX <-> S(y))

and forms of the axiom of choice

(Vx)(3Y)S(x,Y) -> (3Z)(Vx)S(x,(Z)x);

here S is an arbitrary second order formula.5 The principles in this

general form are impredicative, as the sets X and Z whose existence

is postulated are characterized by reference to all sets of natural

numbers - if S contains set quantifiers. Subsystems of second

order arithmetic are defined by restricting S to particular classes

of formulas; and subsystems that have been proved consistent

contain, for example, the impredicative comprehension principle for

n\- and Aj-formulas.

5 The lower case variables range over natural numbers, the upper case variables over sets of
natural numbers. In the axiom of choice, ye(Z)x is understood as <y,x>eZ and <,> is a pairing
function.

8



These subsystems are of genuine mathematical interest, since

analysis can be formalized in them by refining the presentation in

Supplement IV of Grundlagen der Mathematik II. (This presentation

goes actually back to lectures of Hilbert's starting with those given

in the winter term 1917/18, when Bernays had just started to work

with him on foundational matters.) Really surprising refinements

have been obtained during the last twenty years6: all of analysis can

be formalized in conservative extensions of number theory

(containing the comprehension principle for arithmetic formulas

with set parameters); significant parts of analysis and of algebra

can be developed already in conservative extensions of primitive

recursive arithmetic, which is arguably the exact formal frame for

finitist mathematics.7 The further mathematical investigations,

showing that ever weaker subsystems allow the formalization of at

least significant parts of analysis, have been complemented by proof

theoretic reductions of ever stronger subsystems of analysis to

constructive theories. However, the treatment of full second order

arithmetic is still an open issue: even the subsystem with E -̂

comprehension presents a formidable obstacle.

Before discussing the character of relative consistency proofs

for impredicative theories, I want to recall that Brouwer's

mathematical universe was richer than assumed in Gottingen. In his

development of analysis Brouwer used infinite proofs and treated

them mathematically as well-founded trees. Such trees can be

6 For references to the rich literature see (Feferman 1977 and 1988), (Simpson 1988) and
(Sieg 1990).
7 This is the basis for Simpson's version of Hilbert's Program that should better be called
"Kronecker's Program"; see (Simpson 1988) and (Sieg 1990).



viewed as inductively generated sets of sequences of natural

numbers. For constructive ordinals the generation proceeds in a

similar manner according to the rules OeO, aeO ->a'eO, and

(Vn)ane0 -> a:=supane0. With respect to the infinite proofs Brouwer

wrote in his (1927): "These mental mathematical proofs that in

general contain infinitely many terms must not be confused with

their linguistic accompaniments, which are finite and necessarily

inadequate, hence do not belong to mathematics11 (footnote 8, p.460).

He added that this remark contains his "main argument against the

claims of Hilbert's metamathematics".

The relative consistency proofs for impredicative theories I

alluded to, ironically use infinitary logical calculi; the syntactic

objects constituting them, i.e. infinitary formulas and derivations,

are treated as well-founded trees in harmony with intuitionistic

principles. The theories F*, in which the infinitary calculi are

investigated and to which the impredicative theories are reduced,

are extensions of intuitionistic number theory by definition and

proof principles for constructive ordinals or other i.d. [inductively

defined] classes of natural numbers. As the process of inductive

generation for constructive ordinals can be expressed by an

arithmetic formula A(X,x), the two principles are in this case

(01) (Vx)( A(O,x)-> O(x) ) , and

(02) (Vx)( A(F,x) -> F(x) ) -> (Vx)( O(x) -> F(x) ) .

These principles are correct from an intuitionistic point of view.

There is no doubt that (meta-) mathematically and prima facie

also philosophically significant results have been obtained. As to

10



the mathematical results it can be observed: a considerable portion

of classical mathematical practice, including all of analysis, can be

carried out in a small corner of Cantor's paradise that is consistent

relative to the constructive principles formalized in intuitionistic

number theory. And this is not trivial, if one bears in mind that

strong non-constructive principles seemed to be necessary for

analysis. As to the metamathematical results it can be noted: the

constructive principles formalized in intuitionistic theories for

special i.d. classes allow us to recognize the relative consistency of

some impredicative theories. This is again not trivial, if one takes

into account that any impredicative principle, from a broad

constructive point of view, seemed to contain vicious circles.

The relative consistency proofs provide material for critical

philosophical investigations. After all, they press on us the

question, "What is the special evidence of the mathematical

principles used in these proofs?" The principles for special i.d.

classes are recognized by classical and constructivist

mathematicians alike: they are more elementary than the principles

used in their set theoretic justification, but they cannot be given a

direct intuitive foundation. In section 5 I will formulate some tasks

for an analysis that attempts to clarify the objective underpinnings

for extensions of the finitist standpoint and to explicate, relative to

them, the epistemological significance of particular results.

4

The task of assessing the epistemological significance of particular

proof theoretic results was briefly taken up by Godel: in his lecture

1 1



at Zilsel's Seminar of January 29, 1938, he investigated several

ways of extending the finitist basis and (the possibility of) proving

the consistency of arithmetic and analysis on that basis. The

lecture extended the considerations of a talk Godel had given in

Cambridge on December 30, 1933. In both lectures he was

sympathetic to a reductive program of the sort I sketched; cp. the

discussion in (Sieg and Parsons 1993). However, this line of

research was not pursued and the underlying "methodische

Einstellung" was not adopted by Godel.8 He tried later, most

explicitly in his Gibbs Lecture of 1951, to use the incompleteness

theorems as a starting point for an argument in favor of Platonism.9

Central features of Gbdel's argument are, first, the fact that formal

theories are being investigated and, second, the belief that the

concept of formality had been captured adequately through Turing's

analysis. The first point is also important for the very formulation

of Hilbert's Program, and the second is crucial for the generality of

the incompleteness theorems -- used for the program's refutation!

The insistence on the effective presentation or the formal

nature of theories had been motivated by epistemological concerns;

and it is quite clear that a restriction on our cognitive, more

particularly mathematical, capacities had been intended. For this

reason it is surprising that some of the logical pioneers interpreted

the incompleteness and undecidability results in a quite dramatic

way. Post, for example, emphasized in 1936 that these theorems

8 Indeed, not properly appreciated.
9 To understand this development in Godel's views is most important, particularly in light of
the critical remarks on Platonism made in his 1933 lecture quoted below.
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exemplify "a fundamental discovery in the limitations of the

mathematizing power of Homo Sapiens"; a few years later he

remarked with respect to the same results:

Like the classical unsolvability proofs, these proofs are of unsolvability by means of
given instruments. What is new is that in the present case these instruments, in effect,
seem to be the only instruments at man's disposal. (1944, p. 310)

Turing's work provided for Godel na precise and unquestionably

adequate definition of the general concept of formal system";

consequently, the incompleteness theorems hold for arbitrary formal

systems (satisfying the usual conditions). Yet in contrast to Post,

Godel did not see them as establishing "any bounds for the powers of

human reason, but rather for the potentialities of pure formalism in

mathematics" (1965, pp. 72-73).10

In his Gibbs Lecture Godel argued that human reason goes

beyond the bounds for formalism in mathematics. To begin with he

stated, if mathematics is viewed as a body of propositions that

"hold in an absolute sense", then the incompleteness theorems bring

to light the fact that mathematics is not exhaustible by a

mechanical enumeration of its theorems. Already the first theorem

yields for any consistent formal system P, containing a modicum of

number theory, a simple arithmetic sentence that is independent of

P. But he emphasized that the second theorem makes particularly

evident the phenomenon of inexhaustibility.

1 0 As a footnote to this remark Godel discussed in (1972) a "philosophical error in Turing's
work". Godel claimed that Turing intended to show that "mental procedures cannot go beyond
mechanical procedures" and pointed to page 136 (in (Davis 1965)) of Turing's "On Computable
Numbers", where a very brief argument is to show that the number of states of mind that need
be taken into account for a computation is finite. As mechanical procedures, not mental
procedures in general, are analyzed there, I do not see a philosophical error in Turing's work,
but rather in Godel's interpretation.

13



For it makes it impossible that someone should set up a certain well-defined system of
axioms and rules and consistently make the following assertion about it: all of these
axioms and rules I perceive (with mathematical certitude) to be correct, and moreover I
believe that they contain all of mathematics. (1951, pp. 5-6)

J If someone claims this he contradicts himself, because recognizing

the correctness of all the axioms and rules means recognizing the

consistency of the system. Thus, a mathematical insight has been

gained that does not follow from the axioms.

To explain the meaning of this situation Go del distinguished

between "objective" and "subjective" mathematics: objective

! mathematics is the body of all true mathematical propositions,

subjective mathematics is that of all humanly provable ones. There

clearly cannot be complete formal systems for objective mathema-

i tics. For subjective mathematics the existence of a finite procedure

yielding all its evident axioms cannot be excluded. But if there were

such a procedure, then we could not be certain that all of the

generated axioms are correct, and -- as far as mathematics is

concerned — the human mind would be equivalent to a Turing

machine. Furthermore, there would exist simple arithmetical

problems that could not be decided by a mathematical proof

• : intelligible to the human mind. Calling such problems absolutely

undecidable Godel thus established: either mathematics is

• inexhaustible in the sense that its evident axioms cannot be

m generated by a finite procedure or (in case there is a procedure

generating the axioms of subjective mathematics) there are

absolutely undecidable arithmetic problems. (1951, p. 7)

This disjunction is of "great philosophical interest" to Godel;

not surprisingly, because he rejects the second alternative and

14



explicates the first in the following way: "... that is to say, the

human mind (even within the realm of pure mathematics) infinitely

surpasses the powers of any finite machine". Godel's elucidation of

this remark invokes his Platonism; already in (1933, p. 50) he had

claimed that the axioms of set theory, "if interpreted as meaningful

statements, necessarily presuppose a kind of Platonism". But at

that time he added the relative clause "which cannot satisfy any

critical mind and which does not even produce the conviction that

they [the axioms of set theory] are consistent".

I would go too far afield, if I presented the reasons why I do

not find Godel's considerations for Platonism convincing. In any

event, my criticism does not start with his treatment of set theory,

but at the point where he contrasts the objects of finitist and

intuitionistic mathematics in his Dialectica paper of 1956. (The

basic considerations go back to 1938 and 1941.) According to Godel,

finitist mathematical objects are required to be "finite space-time

configurations whose nature is irrelevant except for equality and

difference"; furthermore, in proofs of propositions concerning them

one uses only insights that derive from the combinatorial space-

time properties of sign combinations representing them.11 These

remarks, though consonant with Hilbert's very early views, stand in

sharp conflict with Bernays' position to which Godel appealed in his

Dialectica paper. Bernays stressed already in 1930 the uniform

character of the generation of natural numbers, the local structure

1 1 (Godel 1958), in Collected Works II, p. 240. It is informative to compare this statement
with the incorrect translation on p. 241 and, most significantly, with the corresponding remark
in (Godel 1972), p. 273. In the latter G6del expanded "insights that derive from" by "a
reflection upon" in this remark.

15



of the schematic "iteration figure", and the need to "reflect on the

general features of intuitive objects". Indeed, our understanding of

natural numbers as being generated in a uniform way allows us to

grasp laws concerning them. This observation is also correct for

more general inductively defined classes, and it points to the first

of two critical aspects of mathematical experience I want to

describe now.

5

If one takes seriously the reformulation of the first alternative in

Godel's disjunction, one should try to see ways in which the human

mind goes beyond the limits of mechanical computors. Godel

suggested in (1972) that there may be humanly effective, but non-

mechanical mental procedures; yet even the most specific of his

proposals, he admitted then, "would require a substantial advance in

our understanding of the basic concepts of mathematics". That

proposal concerned extensions of the cumulative hierarchy or,

rather, of Zermelo Fraenkel set theory by axioms of infinity. The

problem of extending what I call accessible domains is not special

to the case of set theory: there are completely analogous issues, e.g.,

for the theory of primitive recursive functional and for the theory

of constructive ordinals.

Accessible domains comprise elements that are inductively

and uniquely generated. They are most familiar from mathematics

and logic: the natural numbers, the formulas of first order logic, the

constructive ordinals, and the sets in segments of the cumulative

hierarchy are generated in this way and form accessible domains.

16



The generating procedures allow us in all these cases to grasp the

build-up of the objects and to recognize mathematical principles for

the domains constituted by just them. For it is the case, I suppose,

that the definition and proof principles for such domains follow

directly from the comprehended build-up.

A broad framework for the inductive generation of

mathematical objects is described by Aczel (1977). It is indeed so

general that it encompasses all the examples I mentioned, and

allows us to compare and explicate the difficulties (in our

understanding) of generating procedures. This echoes considerations

of Godel's in his 1933 lecture in Cambridge, when discussing

varieties of constructive mathematics as follows:

... it is certainly true that there are different notions of constructivity and, accordingly,
different layers of intuitionistic or constructive mathematics. As we ascend in the
series of these layers, we are drawing nearer to ordinary non-constructive
mathematics, and at the same time the methods of proof and construction are becoming
less satisfactory and less convincing, (p. 51)

Let us continue, I suggest, the ascent to classical mathematics and

investigate, in what way the methods of proof and construction are

becoming "less satisfactory and less convincing11; let us consider, in

particular, (extensions of) Zermelo Fraenkel set theory! It seems

that, if we understand the generating procedure for a segment of the

cumulative hierarchy, then it is the case that the axioms of ZF* 1 2

together with a suitable axiom of infinity "force themselves upon us

as being true" (in GodePs famous phrase). They formulate, after all,

the principles underlying the "construction" of the objects in the

segment; this reason for accepting the axioms is consonant with

12 ZF* denotes ZF set theory without the axiom of infinity

17



Godel's analysis in What is Cantor's continuum problem*3 and does

not rest on the Platonism advocated in the later supplement of the

paper.

By broadening the range of foundational theories for relative

consistency proofs from constructive to "quasi-constructive" ones

and concentrating on one central feature of objects in the intended

domains, namely accessibility, we can understand better what is

characteristic of and considered as problematic in classical

mathematics, and what is characteristic of and taken for granted as

convincing in constructive mathematics. I want to raise issues

concerning the second conjunct and start at a very elementary level.

A finitist standpoint that is to serve as the basis for Hilbert's

Program cannot be founded on just the intuition of concretely given

objects, but has to incorporate reflection as Bernays explained in

(1930)14. Thus a first task presents itself.

(I) Analyze Bernays' reflection for the natural numbers (and elements of other
accessible i.d. classes given by finitary inductive definitions) and investigate, whether
and how induction- and recursion principles can be based on it.

For Bernays, the natural numbers are the simplest formal objects

that can be (partially) represented by concrete objects. That

representation has a special feature: the representing things,

numerals, contain the essential properties of the represented things

in such a way that relations between the latter objects obtain

between the former and can be ascertained by considering those.

This feature has to be given up when we extend the finitist

standpoint; symbols are no longer carrying their meaning on their

1 3 The conceptual kernel of the analysis goes back to Zermelo's penetrating 1930.
1 4 Cp. the discussion of Bernays' views at the end of section 4.

18



face, as they cannot exhibit their intended build-up. Numerals for

the elements of accessible i.d. classes, for example, are understood

as denoting infinite objects, namely the unique construction trees

associated effectively with the elements. So we generalize (I) to a

second task:

(II) Extend the reflection to constructive ordinals and elements of other accessible i.d.
classes and investigate, whether and how induction- and recursion principles can be
based on it.

For the consistency proofs of impredicative theories the definition

of i.d. classes has to be iterated; that means, branchings in the well-

founded construction trees are not only taken over natural numbers,

but also over already obtained i.d. classes. These trees are of much

greater complexity. Thus, modifying (II) we have a third task.

(III) Extend the reflection to iterated accessible i.d. classes, in particular to the higher
constructive number classes.15

The reflective analyses have to be complemented by reasoned

choices of deductive frames in which the mathematical principles

are embedded. Thus, there are substantial questions concerning the

language, logic, and the exact formulation of schematic principles;

but these questions are of only secondary importance for my

concerns here. The restriction to intuitionistic logic, for example,

is rather insignificant, as the consistency proofs for classical

arithmetic relative to intuitionistic arithmetic can be extended to a

variety of theories. Indeed, Friedman showed for arithmetic, finite

type theories, and Zermelo Fraenkel set theory that the classical

theories are n^-conservative over their intuitionistic versions.

15 As I am presenting only broad strategic considerations, I do not discuss the use of systems
of ordinal notations in the work of Gentzen, Schutte, Feferman, e.a.; cp. (Sieg 1990), p. 281.
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With Friedman's strikingly simple techniques such results were also

established for some subsystems of analysis and for the theories of

iterated inductive definitions.16 In the latter case it is the further

restriction to accessible i.d. classes that is technically difficult and

conceptually significant.

6

We have a wealth of accessible domains and seem to understand the

pertinent mathematical principles, because we grasp the build-up of

the objects constituting these domains. I did not discuss at all the

ontological status of mathematical objects, as I agree with the

subtle considerations of Bernays in his essay Mathematische

Existenz und Widerspruchsfreiheit and suggest only one amendation:

the objects of "methodical frames" (methodische Rahmen) should

constitute accessible domains. In this way methodical frames may

be epistemologically differentiated from each other and from

"abstract" theories formulated within particular frames. I want to

focus on this latter differentiation and contrast now the quasi-

constructive aspect of mathematical experience (I sketched in the

previous section) with its conceptional aspect.

In my paper "Relative consistency and accessible domains" (cp.

note 1) I pointed out methodological parallels between Dedekind's

treatment of natural and real numbers; here I want to emphasize a

striking difference. Dedekind's analysis of natural numbers is based

on a clear understanding of their accessibility through the successor

1 6 in (Feferman and Sieg 1981), pp. 57-59; the subsystems that were shown to be E§-
conservative over their intuitionistic versions include the theory of arithmetic properties and
ramified systems.
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operation. Given the build-up of objects in their domains, it is quite

obvious that any two simply infinite systems have to be isomorphic,

indeed, via a unique mapping. By way of contrast consider the

axioms for dense linear orderings without endpoints; their countable

models are all isomorphic, but Cantor's back-and-forth argument for

this fact exploits the density condition and the non-existence of

endpoints, not any build-up of objects. This observation provides

also the reason, why these axioms do not have an intended model: the

accessibility of objects via operations gives us such models, not the

categoricity of a theory. Similar remarks apply to the reals, as the

isomorphism between any two models of the axioms for complete,

ordered fields is based on the topological completeness requirement,

not any build-up of their elements. The crucial point is illustrated

even more clearly by a classical theorem of Pontrjagin's stating that

connected, locally-compact topological fields are either isomorphic

to the reals, the complex numbers, or the quaternions. For this case

Bourbaki's description, that the individuality of the objects in the

classical structures is induced by the superposition of structural

conditions, is so wonderfully apt; having presented the principal

structures (order, algebraic, topological) he continues:

Farther along we come finally to the theories properly called particular. In these the
elements of the sets under consideration, which, in the general structures have remained
entirely indeterminate, obtain a more definitely characterized individuality. At this
point we merge with the theories of classical mathematics, the analysis of functions of
real or complex variable, differential geometry, algebraic geometry, theory of numbers.
But they have no longer their former autonomy; they have become crossroads, where
several more general mathematical structures meet and react upon one another.(1950,
p. 229)

The general structures fall under abstract notions that are

distilled from mathematical practice for the purpose of
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comprehending complex connections (in the case of the reals,

connections to geometry), of making analogies between different

theories precise, and thus to obtain a more profound understanding.

Notions like group, field, topological space, differentiable manifold

are abstract in this sense, and relative consistency proofs have here

indeed the task of establishing the consistency of these notions

relative to accessible domains. Bourbaki's enterprise might be seen

as being pursued relative to (a segment of) the cumulative hierarchy.

The abstract, structural concepts are properly and in full generality

investigated in category theory; Groethendieck's introduction of

universes and MacLane's distinction between small and large

categories can be viewed as attempts to establish the consistency

of the general theory relative to extended segments of the

cumulative hierarchy.17 -- These broad considerations pertain not

only to notions of classical mathematics, but apply also to notions

distinctive for constructive mathematics. A prime example is the

(abstract, axiomatically characterized) concept of a choice sequence

that was introduced by Brouwer into intuitionistic mathematics in

order to capture the essence of the continuum. Kreisel and

Troelstra's consistency proof for the theory of choice sequences

relative to the theory of O can be viewed as fulfilling exactly the

above reductive task.

The conceptional aspect of mathematical experience and its

profound function in mathematics has been entirely neglected in the

logico-philosophical literature on the foundations of mathematics,

17 To review in this context the earlier discussion on the foundations of category theory seems
very much worthwhile; cp. for example (Feferman 1969).
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except in the writings of Bernays. Among the major contributors to

the foundational discussion in our century, it was Bernays who

steered clear of divisionary formulations and emphasized the

complementary character of seemingly conflicting aspects of

mathematical experience (and philosophical positions). We have

been discussing, implicitly and in his spirit, a redirected Hilbert

Program searching for structural reductions of abstract concepts to

accessible domains. Such structural reductions are most significant

for any methodical frame: the traditional contrast between

"platonist" and "constructivist" tendencies in mathematics comes to

light in refined distinctions concerning the admissibility of

operations, of their iteration, and of deductive principles considered

as fundamental for a particular frame.18

7

The sharpening of axiomatic theories to formal ones was motivated

by normative epistemological demands: checking of proofs ought to

be done in a radically intersubjective way and ought to involve only

operations similar to those used by a human computor when carrying

out an arithmetic calculation. Turing analyzed the processes

underlying such operations and formulated a notion of computability

by means of his machines; that was in 1936. In a paper written

about ten years later and entitled Intelligent Machinery, he stated

what really is the problem of cognitive psychology:

18Abstract notions have been important for the internal development of mathematics and for
sophisticated applications in the sciences to organize our experience of the world. It seems to
me to be absolutely crucial to gain insight into this dual role -- to bring into harmony
philosophical reflections on mathematics with those on the sciences.
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If the untrained infant's mind is to become an intelligent one, it must acquire both
discipline and initiative. ... But discipline is certainly not enough in itself to produce
intelligence. That which is required in addition we call initiative. This statement will
have to serve as a definition. Our task is to discover the nature of this residue as it
occurs in man, and to try and copy it in machines. (1948, p. 21.)

The task of copying may be difficult, and Godel would argue that it

is impossible for mathematical thinking. But before we can start

copying, we have to discover at least partially the nature of the

residue, and we are led back to the questions: What are essential

aspects of mathematical experience? Are they mechanizable?

I tried to give a very tentative and partial answer to the first

question. As far as the second question is concerned, I don't have

even a conjecture on how it will be answered. To come closer to an

answer, we should investigate aspects of mathematical experience

vigorously: by historical case studies, theoretical analyses,

psychological experimentation, and by machine simulation. That the

latter is still a real issue is counter to Turing's expectations. In

1947 he expressed this view:

As regards mathematical philosophy, since the machines will be doing more and more
mathematics themselves, the centre of gravity of the human interest will be driven
further and further into philosophical questions of what can in principle be done etc.
(1947, p. 122)

Even now, machines don't do much mathematics themselves — when

doing mathematics includes: finding intelligible proofs of given

theorems, introducing appropriate defined notions, formulating

motivated conjectures, discovering new abstract concepts, and

recognizing new axioms for accessible domains. For the first,

relatively easy question, calculi that were developed in the Hilbert

school provide the necessary logical framework. And with respect
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to the other issues Hilbert, I assume, would have been very

optimistic; he claimed in 1927:

The formula game that Brouwer so deprecates has, besides its mathematical value, an
important general philosophical significance. For this formula game is carried out
according to definite rules in which the technique of our thinking is expressed. These
rules form a closed system that can be discovered and definitively stated. The
fundamental idea of my proof theory is none other than to describe the activity of our
understanding, to make a protocol of the rules according to which our thinking actually
proceeds.

And he added, "If any totality of observations and phenomena

deserves to be made the object of serious and thorough

investigation, it is this one ... ." This remark of Hilbert's is

undoubtedly correct (and independent from his claims for proof

theory).
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