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Abstract

This paper addresses the development of an efficient optimization method for convex

nonlinear and mixed-integer nonlinear multiperiod design optimization problems. An

example of this class of problems that are addressed in this paper are the multiperiod

multiproduct batch plant design problems with single product campaign. A multiperiod

model is presented for the design and future capacity expansions of such plants. Finally,

numerical results are presented drawing comparison with existing general solution methods

such as MINOS and SQP for the NLP case, and DICOPT++ for the MINLP case. The

proposed method is advantageous in both time efficiency, with savings up to 90%, and

robustness.
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Introduction

Over the last decade there has been an increased interest in the development of

systematic methods for the design of flexible chemical plants (Grossmann and Straub,

1991). The motivation for this comes from the fact that in practice the issue of flexibility is

usually introduced by applying empirical overdesign, a practice that does not guarantee

optimality or even feasibility over the desirable range of conditions. A major class of

flexibility problems, the Multi-Period Design problem (MPD), involves designing plants

which are capable of operating under various specified conditions in a sequence of different

time periods (Grossmann and Sargent, 1979; Grossmann and Halemane, 1982). Another

class deals with the uncertainty involved in some of the design parameters, which is the

problem of optimal design under uncertainty (see Grossmann et al, 1983 for a review). As

has been shown by Grossmann and Sargent (1978) and Halemane and Grossmann (1983),

this problem requires the iterative solution of multiperiod design problems which involve

Nonlinear Programming (NLP) or more generally Mixed Integer Nonlinear Programming

problems (MINLP), where the number of decision variables and constraints can become

rather large. It is the major objective of this paper to develop efficient techniques for

solving convex versions of these problems which have applications in the design and

planning of multiperiod batch plants.

The paper will begin with the statement of the problem and proceed with a short

review of decomposition methods and a discussion of the limitations of these techniques as

well as the case where no decomposition is performed. We then proceed to the

development of an outer approximation based decomposition method for the NLP case, and

present its extension for the general MINLP case. A multiperiod model is then presented



for the design and future expansions of multiproduct batch plants with single product

campaigns. Finally, numerical results are presented, drawing comparisons with solutions

when no decomposition is performed.

Problem Statement

For the multiperiod design problem to be addressed in this paper it will be

assumed that the plant is subjected to constant operating conditions in N successive time

periods. The dynamics of the process will be neglected, as it is considered that the length of

the transients is much smaller than the time periods of the successive steady states. The

multiperiod design problem can be mathematically formulated as a Nonlinear Programming

problem (NLP) when the topology of the process is fixed. More generally, however, its

formulation will correspond to a Mixed Integer Nonlinear Programming problem (MINLP)

in which the topology of the plant is also subject to optimization for a given superstructure

of alternatives.

Consider first the case in which the topology is fixed. The variables are partitioned

into two categories: the vector d, of design variables, is associated with the sizing of the

units and remains fixed once the design is implemented for all the different periods of

operation; the second class are the state and control variables, vectors xi for each different

period i, that can be manipulated in each period so as to meet the production specifications.

Thus, the general NLP mathematical formulation becomes:

N

minimize z = fo(d) + ^ fi(d,xO (1)
i= l

s.t. h(d,Xi) =Xi) = 0 ,

g(d,Xi)<0 J

r(d)<0

XJ e Xj = {xj e Rn I xjL < xi < xiU}, i = 1,... N

de D = {de R n l d L <d<dU}

Note that in the above formulation the order of the periods can be arbitrary since the

operation of each period is independent of its relative position in the sequence. An

important characteristic of this problem can be seen in the matrix representation of Figure 1,

where the variables and the constraints form a block diagonal structure. The design
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operation.
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Figure 1. Block diagonal structure in the constraints of model (1)

More generally, if we allow for structural changes to be a subject of optimization,

the problem will become a multiperiod MINLP. Here a third class of variables, the binary

variables y, are introduced and they are primarily associated with the existence or

nonexistence of a unit, or in general with a decision concerning the design of the plant.

Structurally they are similar to the design variables, since they also remain fixed once the

design is implemented for all the different periods. Assuming that the 0-1 binary variables

can be represented linearly in the model, the multiperiod MINLP problem can be

formulated as:

N
minimize z = fo(d) + ^ fi(d,xj) + cTy (2)

s.t. h(d,xi) + Ay = 0

g(d, Xi) + By < 0

r(d)<0

i = 1,... N

xj e Xi = {xi G Rn I xiL < xi < xiu}, i = 1,... N

d € D = { d e R n l d L < d < d u } ,

y e Y = { 0 , l } m



For large*ndustrial multiperiod design problems there are two kinds of problems

that arise as the size of the problem increases. Firstly, the computational requirements for

solving the NLP in (1) or the MINLP in (2) can be very expensive, so that ultimately the

solution of the problem may not be achieved in a reasonable amount of time. Secondly, the

complexity and the size of the problems can be such that standard algorithms for NLP and

MINLP fail. The major reason for this is that the number of variables and constraints

increase with the number of periods. Despite the fact that this increase is linear in the

number of periods, the computational demand increases in most cases at least quadratically.

This behavior has been verified by the solution of two example problems, described in the

Appendix. In all cases there is a quadratic/cubic dependence of the solution time to the

number of periods, as it is seen in Figure 2.
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Figure 2. Direct NLP approach for two example problems

Decomposition Strategies

From the above discussion, the need for an alternative solution strategy becomes

apparent, especially as the number of time periods increases. The most promising direction

is one that exploits the block diagonal structure of the problem through a decomposition

strategy. Note that, once the design variables are fixed the subproblems for each period

become decoupled, and hence they can be solved independently.



The basic idea behind the NLP decomposition strategy by Grossmann and

Halemane (1982), is based on a projection restriction procedure (Grigoriadis, 1979) by

which the problem at the level of design variables is reduced into one in which variables

are eliminated by using the active constraints at each time period A common characteristic

in related methods is that they exploit the problem structure through an algebraic-matrix

reformulation scheme. The idea in decomposition techniques that eliminate variables from

active sets, is now partially addressed (the user cannot select which variables to eliminate)

and implicitly embedded in some of the existing reduced gradient based NLP optimization

packages, such as MINOS (Murtagh and Saunders, 1985). Therefore in this work, an

alternative decomposition scheme will be developed in order to addresses the problem at a

higher algorithmic level.

At this level, an existing method is the Generalized Benders Decomposition by

Geoffrion (1972), which can be applied to NLP and MENLP problems. Here, the original

problem is partitioned into two subproblems, the primal and the master, and the solution is

found by iterating between them. The primal problem is the original problem in which the

complicating variables, the design variables d (and the binary variables in the MINLP case)

are fixed, and therefore the optimization is done with respect to the x{ variables. The master

problem is a dual problem in which the optimization is done with respect to the

complicating variables, subject to approximations obtained from the Lagrangian of the

primal problem. In each iteration the master problem, due to its relaxed form, predicts a

lower bound to the objective function that increases monotonically with the number of

iterations while the primal problem provides an upper bound to the objective. Generalized

Benders decomposition was initially explored in this work but the results were not very

promising. Firstly, the master problem is an NLP subproblem of increasing size, and

secondly a large number of iterations between subproblems and the master problem may be

required.

Proposed Method

A different solution alternative is motivated from the ideas of the cutting plane

method for convex NLP's (Kelley, 1960) and the Outer Approximation method for

MENLFs (Duran and Grossmann, 1986), which also involves an alternating sequence of

primal and master problems. The primal problem is also an NLP with fixed values of the



complicating variables, identical to the one in Benders decomposition. The main difference

lies in the formulation of the master problem. Here, the information from the primal

problem is used to approximate the feasible region by accumulating linear approximations

of the constraints of the original problem at the optimal points, xiK in each iteration k of the

primal problem. This then provides a polyhedral representation of the continuous feasible

space of problems (1) and (2) where the optimization is done only with respect to the

complicating variables d. This is the basic idea in Outer Approximation (OA). In this paper

a slightly different formulation of the master problem has been introduced. The reason for

this comes from the fact that OA was developed for MINLP while here, even in the MINLP

form of the problem, the difficulties arise mainly from the NLP subproblem. In this

formulation, the linearization of the constraints and the objective is being done with respect

to both xi and d, leading to a master representation on the full problem space. The present

algorithm will make use of cutting planes, based on characterization of convex sets through

intersection of supporting hyperplanes. All the analysis that follows is based on convexity

assumptions for all the functions involved, namely fi, gi should be convex as well as the

relaxed inequality form of hi at the optimum, for i=l, N.

NLP Decomposition Strategy

In the case of the NLP multiperiod problem in (1), the primal and the master subproblem

have the following form:

• Primal NLP (optimize xj for fixed d^)

N

minimize z = ^ fi(dk,x0 (3)

s.t. h(dk,Xi) = O |

g ( d k , X i ) < 0 J '"• •

xi e Xi = {xj e Rn I XiL < xi < x i u } , i = 1,... N

Since this subproblem might be infeasible for some values dk, a more general formulation

that allows for a feasible subproblem follows by relaxing the above formulation using a

penalty function approach for minimizing the violation of the constraints:

• Primal Feasibility NLP (optimize xi for fixed



N
minimize z = £ fi(dk,x0 + pu (3f)

s.t h(dk,Xi)-u<0 ^

-h(dk,x0-u<0 I i= l , . . .N
g(dk, Xi) - u < 0 J

xi€ Xi= {xi€ R n l x i L < x i < x i u } , i= 1,...N

u > 0, u € R1

where u is a scalar variable and p is a large positive number. The value of p should be

greater than the maximum of the absolute value of the Lagrangian multipliers of the

constraints at the optimum point. This is in order to guarantee optimality for (3f), according

to the concept of the exact penalty functions (Han and Mangasarian, 1979).

• Master problem OA/LP (optimize xi and d for K approximation points)

minimize a (4)

N
s.t. £ [ fi(x ,̂ dk) + Vxfi(xfrr (Xi - x*) + Vdfi(d

k)T (d - dk) ]

+ fo(dk) + Vdf0(d
k)T(d - dk) < a k = 1,... K

Ti {h(x*, dk) + Vxh(x* dk)T (Xi - x*) + Vdh(x^, dk)T (d - dk)} < 0 | i = 1, ... N

g(x* dk) + Vxg(x^, dk)T (Xi - x\) + Vdg(x^, dk)T (d - dk) J k = h - K

r(dk) + Vdr(dk)T(d-dk) < 0

Xi€ X= {Xi€ RnIXiL<Xi<XiU},

d e D = { d e R n l d L < d < d u } , a e R 1

In the above master problem the equations of the original problem (1) are relaxed as

inequalities following the equality relaxation scheme by Kocis and Grossmann (1987),

where Ti is a diagonal matrix with elements tjj = sign (Aj) and Aj the Lagrangian multiplier

of the j-th equation.
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In the proposed decomposition scheme the primal problem provides an upper

bound for the original objective function (provided that it is feasible), while the master

problem predicts a monotonically increasing lower bound to the original objective, if

convexity conditions hold. The convergence criterion in this case, will be the difference

between the upper and the lower bound in each iteration; the two values will be within a

small tolerance e after a finite number of iterations.

The most important feature of the LP master formulation is the fact that it forms a

linearized representation of the original NLP (1), in the space of both the d and xi variables.

This would suggest that successive solution of the LP master problem in which new

linearizations are generated and added to the master problem, can help to obtain a better

representation of the original NLP problem. In this way the solution of NLP subproblems

can be avoided, at least at the initial stages of the algorithm. In particular, it is proposed that

for a specified inner convergence tolerance £, the solution of the master problem should be

satisfied before resorting to the solution of a primal NLP. Clearly, if a sufficiently small

tolerance is specified the algorithm would reduce to a pure cutting plane without requiring

any primal NLP solution.

Another step towards the development of a more efficient algorithm is the

elimination of redundant constraints. This idea exploits the fact that convergence can be

guaranteed even by dropping the inactive constraints after some iterations; this results in a

reduction of the time requirements, proportional to the size of the problem and the number

of inactive constraints at the optimum. Particularly, it has been proved (Eaves and

Zangwill, 1971), that this constraint rejection scheme does not affect the convergence

properties of a general cutting plane method, provided that certain conditions for dropping

the constraints, related to a specific improvement in the objective function with respect to a

separator function, hold. However, this proof holds without the above provisions when the

objective of the master problem is nonlinear and hence the master problem is solved as a

linearly constrained NLP (Topkis, 1982).

The proposed Outer Approximation / Repetitive Linear Programming algorithm

(OA/RLP) can now be formally stated, assuming that convexity conditions hold in the

multiperiod NLP problem (1). The main steps in the proposed OA/RLP algorithm are as

follows:



Step 1. Select vecjprs xj1 and d1. Set K=l, set the upper bound zu = °o and the lower
bound zl M™ = - oo. Select tolerances e, £.

Step 2. Set zl o l d = zl new. Set up and solve the master LP problem (4). Set new lower
bound zl n e w = a. If I zu - zl n e w I < e convergence is achieved, STOP. If I zl new -

zl old | < £ then go to step 3; else set K=K+1 and repeat step 2.

Step 3. Solve primal NLP (3f). If the solution is feasible for the original problem (u=0) set

zK = z ; else zK = oo. Set upper bound z" = min (zK, zu). If I z" - zl n e w l< e

convergence is achieved, STOP; else set K=K+1 and return to step 2.

An additional overall convergence criterion can been introduced in step 2 of the above

implementation. This involves an e satisfaction of the constraints. Convergence is achieved

if I h(xi^, d )̂ I < e and g(xi^, dk) < e', where e and e1 are vectors with elements small

positive numbers. The overall convergence parameters e, e1 and eM, and the inner

convergence parameter £ can be chosen as a small fraction of the current bounds and the

value of the individual constraints. The actual number of the NLP calls could be as low as

zero, if a small value is used for the inner tolerance £. In some cases it is advisable not to

use a very small value. The reason is that the convergence of the LP's might be slow close

to the optimum. In this case the primal NLP solution can accelerate convergence in the final

steps. Typical values for C, and e used in this work were in the range of 0.1 - 0.01 and 0.01

- 0.001, respectively.

From an algorithmic standpoint, the constraint rejection scheme is applied after

the solution of each master problem in step 2. If the difference between the value of the

objective in the current and in the previous iteration is greater or equal to the value of a

nonnegative separator function 8(xjk, dk) at the current point, that is zk > zk-1 + 8(xjk, dk),

the inactive constraints from previous iterations are dropped. Possible choice for separator

functions are g(xj, d) or g2(xj, d) for scalar functions g, as it is suggested by Eaves and

Zangwill (1971). In this algorithm, the separator function was chosen to be the maximum

of the vector of inequality constraints, 8(xi, d) = maxj {gj(xj, d)}.

The above method converges to the optimum if the original NLP problem (1) has

a finite optimal solution and its objective function and the constraints are differentiable and

convex. We can always assume in (1) that the objective function is linear by introducing an

additional variable a; also based on the premise that all the equations can be relaxed as

convex inequalities, (1) can be equivalently written as:

minimize a (I1)
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s.t. z(d,Xi)-oc<0

h(d,Xi)<0 \ i = l , . . .N

g(d, Xi) < 0 J

r(d) < 0

and the inequality constraints of {I1) c a n be collectively denoted as g. Since we accumulate

constraints in the master problem (4) the objective function of the master problem forms a

nondecreasing sequence ak that approaches the optimum from below, as shown in the

following Lemma:

Lemma 1: The value of the objective function a of the master problem (4) forms a

nondecreasing sequence ock, k = 1,... K, which is always less or equal to the objective a*

of the transformed original problem (I1).

Proof: (i) We define the feasible region of problem (V) and (4) (at the K-th iteration) as:

F={xif d/gfa, d) <0, xi e Xi9 i=l, ... N,de D) and S^={xif d / g(xfi, dk) + VgT(Xi
k,

dk) A(xl
Jc, dk) <0for k=l, ... K, JC/ e Xif i=7, ... N,de D), respectively. In both cases g

collectively denotes all the constraints. From the convexity assumptions for all the involved

functions we have:
g(xfi, dk) + VgT(xfr d*) A(xt, d^ <g(xif d)

therefore, from the definition of the two sets we have F ^SK and Sk 3 Sk+J, k=l, ... K-

7.

(ii) Since the constraints in the master problem (4) are accumulated, at iteration K we have

forallk<K:

z(xik, dk) + VzT(Xi
k, dk) A(x£, dk) < aK for k=l, ..., K

where A(x£, dk) is the vector of the differences Xg - xfi and d - dk.

Since we minimize a:

oF = max {z(xfi, dk) + VzTfa*, dk) A(x£, dk)j

Which then implies:
min <xk < min ak + 1 < min a* k = 1,... K-l
(x i td)€Sk (xi,d)€Sk+1 (xi,d)eF

Therefore at, k=l,... K is a nondecreasing sequence and oft <a*.

The convergence of this method derives from the following result (Minoux,

1986):
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Theorem 1: If the functions g are convex and continuously differentiate, and if (lf) has a

finite optimal solution, then any cluster point of the sequence {xik, dk}, generated by the

above method is an optimal solution of problem (V).

Proof. If problem (1') has a finite optimal solution then after some step K the sequence of

points (xfi, dk) k=l,..., K is contained in a bounded and hence compact set N.
Let {x}, dl}\€i (Nz^L) be a subsequence which converges to (x{, d).

Consider the subsequence {x£, dl}iej (Lz>T) of points for which a cutting plane, with

respect to the active constraints, is generated. If at each step we add cutting planes for all

the active constraints, then we notice that either g(xt
J, S) <0 after some step I >lo on, or

the subsequence {x}, dl}i€jis infinite.

In the case when (xf, dl}i€j is infinite, we have for all t'eT (t' > t)

g(xf, d<) + VgT(xf9 df) A(x{, d<) <0 =>

=> g(xf, df) <H Vg(Xi<, d<) HII A(x{, df) II

Since H A(xf, d<) // ->OandH Vg(xf, cP) // ->// Vg(xi, d) // it follows that

g(x{, <P) -> g(Xi\ d) <0

and hence (x{, d) is a solution of(l').

Now, if(xi*, (t) is an optimal solution of(l'), then from Lemma 1 we have at every step

a1 <a*, from which we deduce that a' <a*, which shows that (x/, d) is an optimal

solution, of the minimization problem (!').

MINLP Decomposition Strategy

In the MINLP case, the decomposition strategy presented in the previous section could be

directly applied to the NLP phase of the OA algorithm by Duran and Grossmann (1986).

However, since additional linearizations are generated through the proposed OA/RLP

scheme these cuts will be also used in the master problem of OA. More specifically, the

original MINLP problem (2) is initially decomposed into the NLP subproblem where the

binary variables y are fixed, and the Mixed Integer Linear Programming (MILP) master

problem which supplies the new binary vector. The NLP subproblem is solved with the

algorithm stated in the previous section. For the MILP master problem the ideas of Outer

Approximation will be utilized. The advantage in this modified approach comes from the

way that the primal NLP is solved with the OA/RLP approach, and the original OA solution

for the master MILP problem (Duran and Grossmann, 1986). In this MINLP algorithm all

the information from the different NLP phases is used as additional linearizations to the
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MILP master, providing a tighter lower bound and therefore a better representation of the

original problem at each iteration. The subproblems and the master problem are as follows:

• Primal problem - Feasibility NLP

• NLP phase - Feasibility NLP (optimize xi for fixed d^ and yk)

N
minimize z = fo(dk) + ]T fi(dk,Xi) + cTyk + p u (5)

s.t. h(dk,Xi) + Ayk = 0 I
g(dk, xO + Byk - u < 0 J ""

r(dk) - u < 0

xi e Xj = {xj e Rn I XJL< x4 < XjU), i = 1,... N

d e D = { d e R n l d L < d < d u }

u>0, u e R1

LP phase - Feasibility LP (optimize xi and d for fixed yk)

minimize z = a + p u (6)

N
s.t. £ { fi(xk, dk) + Vxfi(x

k)T (Xi - x
k) + Vdfj(d

k)T (d - dk) }
i=l

+ fo(d
k) + Vdf0(d

k)T(d - dk) + cTyk < a k = 1,... K

Ti {h(xk, dk) + Vxh(xk, dk)T (Xi - x
k) + Vdh(xk, dk)T (d - dk)} + Ayk - u < 0 1 i = 1,... N

g(xk, dk) + Vxg(xk, dk)T (xi - xk) + Vdg(xk, dk)T (d - dk) + Byk - u < 0 * k = l - - K

r(dk) + Vdr(dk)T (d - dk) - u < 0 k=l,..., K

xj e Xj = {xi e Rn I xjL < Xi < x ^ } , i = 1,... N

d e D = { d e R n l d L < d < d u }

u>0 , u e R1

In the above implementation both phases of the NLP subproblem are relaxed by using a

penalty function scheme in order to prevent infeasibilities that may occur for some of the

binary vectors yk.

• Master problem - MILP (optimize xj, d and y)
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fc minimize z =cx (7)

s.t. y. [ liW, d*) + vxti(xr)' (xi - xf) + vdti(a^' (d - dk) }

+ fo(d
k) + Vdf0(d

k)T(d - dk) + cTy < a k = 1,... K

fi {h(xk, dk) + Vxh(xk, dk)T (Xi - x
k) + Vdh(xk, dk)T (d - dk)} + Ay - u < 0 \ i = 1, ... N

g(4, dk) + Vxg(xk, dk)T (Xi - x
k) + Vdg(xk, dk)T (d - dk) + By - u <; 0

r(dk) + Vdr(dk)T (d - dk) < 0 k=l K

X y i - X y i < | B k | - i
ie Bk ierf

Xi e Xi = {xj G Rn I xjL < Xi < xjU}, i = 1,... N

d e D = { d e R n l d L < d < d u } ,

y€ Y={O,1}^

B k = { i l y i = i } and Nk={ilyi=O}

In the above scheme the primal problem provides an upper bound for the original

objective function (provided that it is feasible) since it is a restricted form of the original

MINLP (2), The master problem provides a monotonically increasing lower bound to the

original objective provided that the convexity assumptions hold. The convergence criterion

in this case, since the original multiperiod problem is a convex MINLP, will be the

crossing of the bounds, provided that after each master iteration an integer cut of the

previous point yk is added to the master problem, as indicated in problem (7).

Another option in initializing the solution procedure, which was actually used in

this algorithm, is to solve a relaxed version of the original MINLP (problem 8) through the

OA/RLP scheme, in the first iteration, by relaxing the integrality requirements on y. This

exploits the efficiency of OA/RLP for big problems, and avoids the problem of having to

specify initial values of the binary variables (see also Viswanathan and Grossmann, 1990).

This relaxed MINLP subproblem has the form:

N

minimize z = fo(d) + ]£ fi(d,xj) + cTy (8)
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fc s.t. h(d,xO + Ay = 0
g(d,Xi) + B y < 0

r(d)<0

xi € Xi = {xj e Rn I XiL < xi < xjU}, i = 1,... N

de D = {d€ R n l d L < d < d u } ,

y e Y r = { y € R m I O < y < l }

The above Outer Approximation / Mixed Integer Repetitive Linear Programming

algorithm (OA/MIRLP) can now be formally stated, assuming that all convexity conditions

hold The main steps in the algorithm are as follows:

Step 1. Select vectors Xi1, d1, y1 and solve the relaxed MINLP (8) by using the OA/RLP

approach. If y is integer, the solution is found, STOP. Otherwise, set K=l, zu =
oo.

Step 2. Set up the MILP master problem (7) and solve to find the integer vector yK with

objective value zK. Set zl = zK. If zl > zu optimum is found. STOP.

Step 3. Solve the NLP subproblem for yK via the sequence OA/RLP of (5) and (6) to find a

point (xiK, dK, yK) with objective value zK. If the problem is feasible (u=0) set zu

= zK. If zl > zu the optimum, zu , is found, STOP. Otherwise go to step 2.

The convergence criterion is the crossing of the bounds, since the problem is

convex and at each iteration an integer cut is added to the master problem. One interesting

feature of the above algorithm is that the direct solution of NLP problems in step 3 is not

needed. Instead, the NLP subproblems can be solved by a series of LFs, provided that the

inner convergence tolerance C, is small enough, as indicated previously in the paper. In this

scheme, phase one of the NLP subproblem (5) is eliminated.This particular scheme is not

limited to multiperiod problems but can be generally applied to any MINLP problem.

The constraint rejection step is also utilized in this implementation, in the form

earlier discussed, resulting in smaller size MILP's. It has been noted that this step does not

affect the number of major iterations, while it significantly reduces the solution time

requirements.

From a theoretical standpoint the above algorithm will converge, provided that the

continuous functions are differentiable and convex and there is a finite optimum to the



15

original problem ^2). Since it is guaranteed by Theorem 1 that the individual NLP

subproblems will converge to the optimum, and the MILP representation has at least all the

linearizations the original OA form has, convergence properties become identical to the

ones stated in Duran and Grossmann, (1986).

Remarks

Based on the above OA/RLP decomposition method, there are some alternative

schemes that can be proposed. Firstly, the master problem of OA/RLP can be formulated in

a slightly different way, namely as a linearly constrained NLP, linearization could be done

only in the space of the constraints while the objective remains nonlinear. In that case linear

convergence can be guaranteed and the inactive constraints can be dropped after each

iteration (see Topkis, 1982), without the conditions of a separator function stated in

previous section. Secondly, the new point (xik, dk) at which linearization is performed in

the repetitive scheme could be found in a slightly different way. Instead of using the

solution of the previous master problem, a linear combination can be used based on the

current solution point of the master problem and a strict interior point provided by the most

recent feasible primal subproblem. This scheme might further improve the speed of

convergence.

On the implementation level, on the other hand, the successive LFs can be solved

through the dual LP problem, in which case the addition of linearizations at each iteration

would be more efficient, since the simplex tableau would be dual feasible and hence fewer

pivots would be required.

Application to Design of Batch Processes

As an application of the algorithm to multiperiod design we will consider

multiperiod batch plants which produce different products over different time periods. In

addition to that, these plants can in general have different production demands over

different time horizons. One key problem in the design of these plants, that stems from the

nature of their products (pharmaceuticals, food products, etc.), is the changing pattern of

the demand over a finite horizon time. Often, demand forecasts for a product are given over

the next 1, 2 or 5 years. In order to satisfy the changing demand and minimize the
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discounted costs, planning for the expansion of production capacity in the initial design

stage is of vital importance. Here the issue is to consider the tradeoff between the

economies-of-scale savings of large initial capacities versus the cost of installing the

capacity before it is needed. The major decisions in capacity expansion problems are the

expansion sizes and the expansion times. The discounted cost of all expansions depends on

the expansion cost function, the discount rate and the demand growth over time. The

expansion cost function is usually concave, exhibiting economies of scale. As pointed out

by Luss (1982), the discount rate has a significant impact on the optimal policy not only

because of the different opportunity cost of money and inflation, but also because it must

reflect reductions in expansion cost due to technological innovations.

The MINLP model, by Grossmann and Sargent (1979), for the optimal design of

multiproduct batch plants without provision for potential expansions, involves several

processing stages with possible parallel units in each of them. In this work, this model will

be extended to include different periods of operations so that different amounts of products

can be produced during each period. Although the problem of expansions has been partially

addressed through a single-step expansion model (Wellons and Reklaitis, 1989), a more

realistic approach will be introduced here. A model will be developed to allow for several

expansions to occur (or not) at different times, so that the optimal expansion strategy over a

finite horizon can be determined. The above structure can be easily visualized in Figure 3,

where a typical prediction of demand for one of the products is presented. In this figure

fluctuation of the demands is considered with 20 time periods and a 10 year horizon. The

initial installation and expansions are considered with 5 potential expansion periods each

with a length of 2 years.
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4 0 - -

Demand
for

product A

10

2 4 6 8 10

Expansion times (yrs)

Figure 3. Demand prediction over a ten year horizon

Another extension of these model towards a more realistic approach involves

simultaneous optimization with respect to the amount of production. Traditionally, in batch

plant models of this type, the objective function involves only the investment cost which is

minimized, for fixed amounts of production. The inclusion of a profit function with

variable production amounts in the multiperiod model, adds a concave, and non-

convexifiable, term in the objective function. This concave term makes the convexification

of the model impossible. In this work, a special convex profit function formulation is

added to the objective so that the production quantities can be optimized around an initial

estimation that is given as a forecast, retaining at the same time all the global solution

properties. In this formulation the profit function appears implicitly through a variable

representing the additional available time at each period, assuming a uniform increase in

production following the predicted pattern.

Two multiperiod multiproduct batch plant models with single product campaign

will be developed. In the first model the goal is to optimally design a multiperiod and

multiproduct plant with fixed topology consisting of M one-unit stages, producing N

products all in T different periods of operation. This leads to the following multiperiod

non-convex NLP which, however, can be convexified with exponential transformation and

effectively solved with the proposed OA/RLP algorithm.

Model (MA):
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(a) Investment cost̂ and potential profit

T

t=i H t - 0 t

(b) Volume for each stage

Vj^SijtBu i=l,N; j=l,M; t=l,T

(c) Production horizon time for each period

^ T « V-/t — A^t """ '

(d) Bounds

VjU<Vj<VjL j=l,M

BitU<B it<B itL i=l,N; t=l,T

0 < 0 t < 5 t H t t=l,T

where the variables of the problem are the volume of each unit, Vj, the batch size for the

product i in period, Bit, and the extra production time in each period, 0 t . The parameters of

this problem are the cost coefficients for the units OCJ and pj, the units size factors Syt, the

cycle time for each product at each period Qt, the demand for every product at each period

Qit, the sales profit at each period based on the predicted demands pt, and the horizon time

for each period Ht. It is assumed here that the production of the different products is

increased uniformly in proportion to the demands Qit during the extra production time 0 t .

Therefore, pt is given by the profit per period, based on the demands Qit, during each time

period t. For realistic purposes the extra time 0t is bounded between zero and a given

fraction 8t, of the total horizon time for each period. The meaning of the lower bound is

that the given demand Qit must always be satisfied, while the allowable increase in

production cannot exceed a certain percentage of this demand

In the second model, the above batch design problem is further extended in order

to include the design of the optimal topology and to address the expansion problem of the

batch plant. The resulting problem is a multiperiod MINLP which can be convexified and

solved by the proposed OA/MIRLP algorithm.
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In the following multiperiod formulation the periods of operation are denoted by t

= 1,... T, while the periods for initial installation and expansions are denoted by x = 1,...

n. The planning problem is then to determine the optimal number of parallel units NjT at

each potential expansion period x (x = 1,... II). One assumption concerning the parallel

units for each stage is that they are of the same volume.

Model (M.2):

(a) Investment and expansion cost and potential profit

M n M n T TT

min z « 2 ajNjvf + £ £ aj (Nj - Nj"1) vf + £ ?T? - E p t - 1 ^ -
j=l T=2 j=l T=2 t=l Ht - 0 t

(b) Volume for each stage

Vj>Sij tB i t i=l,N; j=l,M; t=l,T

(c) Cycle time for each product at each period

NjxQ t>t i j t x=l,ri; i=l,N; j=l,M; t=l,T; TD n andtmod(x) = 0

(d) Production horizon time

% ^ + 0 t<H t t=l,T

(e) Number of parallel units

K
k Yjk J=1,M; x=l,

k=l

(f) Single choice of Nj*

K
Y]k=l j=l,M; t=l,n

k=l

(g) Non decreasing number of expansion units

N / + 1 > Njx x=l, n-1
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(h) Logical conditions for each expansion

Njx + 1<Njx

(i) Bounds

fj j=l,M; x= l , n

C i t
L < Cit < CitU i=i,N; t=l ,T

Yjk
x = 0,l j=l,M; x=l ,n ; k=l,K

Zx = 0,l x=2,n

Here the additional variables of the problem are the number of parallel units for each stage

at each potential expansion period x, Njx, the cycle time for each time period Q t which is a

variable in this model, the binary variable indicating the number of parallel units at each

stage Yjkx, and an additional binary variable Zx associated with the decision of an

expansion at each potential expansion period. The parameter tyt represents the processing

times for each product i at stage j at time period t. The parameter Yjx represents the fixed

cost associated with every expansion. The values of OCJT and Yjx implicitly involve the

discount rate.

Example problems

Example problems will be presented to illustrate the application of the proposed

decomposition techniques. First the convexified NLP multiperiod multiproduct batch plant

model will be solved for a small and a medium size plant, over several time periods in each

case. Then the convexified MINLP model will be also solved for the two cases and for

different operation and expansion periods. The models were developed and solved within

the modeling system GAMS. The package used for LFs and NLP's was MINOS, for

MILFs it was SCICONIC and for the undecomposed MINLP it was the academic code

DICOPT++ (Viswanathan and Grossmann, 1990).

Example 1. In this example the NLP case will be considered. First we convexify the

model through an exponential transformation as suggested by Kocis and Grossmann

(1988). The idea is to express the nonconvex product terms as the sum of exponential

functions which are convex. This requires the definition of the transformed variables VJ =
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In [Vj], bit = ln [B^- Using the above and performing the necessary exponentiations yields

the following convex NLP model:

Model (M/Cl):

(a) Investment cost and potential profit

M T H
min z= £ ctj exp[pjVj] - £ Pt L~

j=i t=i Ht - 0 t

(b) Volume for each stage

VJ > In (Syt) + bu i=l, N; j=l,M; t=l,T

(c) Production Horizon time
N
X Qit dt exp[- biJ + 0 t < Ht t = 1, T

l

(d) Bounds

In [VjU] < VJ < In [VjL] j=l, M

In [ BitU] < bu ^ In [Bit
L] i=l, N; t=l, T

0 < 0 t < 8 H t t=l,T

Note that the second summation in the objective function is only a function of ©t and that

each term is convex in this variable.

Case I. It is assumed that the plant consists of three processing stages (M=3) with a single

unit each, produces five products (N=5) and its operation will be designed for a series of

different time periods, namely from one (T=l), up to twenty (T=20). The total horizon

time will be one year. Table I contains the data for this example. The optimal solution for a

typical five period problem is shown in Table II. The number of constraints in this problem

is 16T+1 and the number of variables 6T+3, shown for typical cases in Table III. The

computational results and a comparison with other methods are listed on Table IV.

Case II. In this case the plant consists of six processing stages (M=6) with a single unit

each, produces ten different products (N=10) and its operation will be designed for a series

of time periods ranging from one (T=l), up to twenty (T=20), over a one year horizon.

The number of constraints in this problem is 61T+1 and the number of variables 11T+6.
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Input data and size information are listed in Tables I and in, while the computational results

are shown in Tabl^TV,

Table I. Data for Example 1.

Case I

Cost Coefficients

Bounds on Volumes

Horizon time (h)

Production QAt

ranges Qct

(Kg/yr) QEI <

Stage

Size factor Sijt

for product i at

stage j (same for

all periods t)

(L/KR)

Processing time q

product i (all periods

Case II

Products, N=5

ctj = 250 ($/yr)

(L) V f = 25

Ht = 8000/TT

e {210,000 - 290,000}

6 {160,000-200,000} <

E {100,000- 150,000}

A

B

C

D

E

t for A

t), (h) 8.3

Products, N=10

<

p j =

Vj u =

QBte

3Dt6

1

7.9

0.7

0.7

4.7

1.2

B

6.5

Stages, M=3

0.6 j=l ,M

= 25000 j=l, M

t=l,T

{110,000-195.000}

{130,000-185,000}

2

2.0

0.8

2.6

2.3

3.6

C D

5.4 3.5

Stages, M=6

3

52

0.9

1.6

1.6

2.4

E

4.2

Additional QAAt € {140,000 - 320,000} QBBI € {120,000 - 230,000}

production Qcct e {110,000 - 210,000} QDDI € {125,000 - 270,000}

ranges (Kg/yr) Q E E t e {115,000-225000}

The use of a multiperiod model for the short term variation in product demand

results in an optimal design and production planning. The advantage of a multiperiod

design versus a worst case approach is shown in Table IL The worst case design approach

is a single period design consisting of the maximum demand for each product over the

different time periods. Although this scheme guarantees feasibility for all potential periods

it is more expensive as expected. Depending on the actual value of the marginal profit of

overproduction pt, the worst case design gives a higher total cost (or lower profit) ranging

from 5% to 20%. Depending on the value of pt, there are two different trends in the optimal

multiperiod solution. If the value of the marginal profit pt, is low there is one bottleneck

period in which the additional production is zero, 0t = 0, which means that in this period it

is not worth producing more that it is suggested. In this case the batch sizes are the same
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for all different periods due to the fact that the horizon constraint is active in all periods (see

Table II). If the value of the marginal profit pt is high, then the additional production 0t is

driven to its upper bound, hence there is no bottleneck period and the batch sizes are

different for each time period Another characteristic of the multiperiod solution is the fact

that, apart from the additional production in the above case, no variables lie on their bounds

at the optimal solution.

Table EL Comparison of the optimal solution and the worst case solution for a five-period

problem of case I

Stage:

Volume (L):

Period:

1

3658

1

Optimal Design

2

2140

2 3

3

2408

4 5

Batch
size for

each

product

A
B

C

D

463.0
2675.5

823.2

778.4

463.2
2675.5

823.2

778.4

463.2
2675.5

823.2

778.4

463.2
2675.5

823.2

778.4

463.2
2675.5

823.2

778.4

(Kg) E 594.6 594.6 594.6 594.6 594.6

Additional

production (%)

Annualized Cost

Stage:

Volume (L):

Period:

5.3

($)

1

4010

1

8.6

2

14.9

59,820

Worst Case

2

2346

3

0.6

Design

4

3

2640

0.0

5

Batch
size for

each

product

(Kg)

A
B

C

D

E

507.6
2933.0

902.5

853.3

651.8

507.6
2933.0

902.5

853.3

651.8

507.6
2933.0

902.5

853.3

651.8

507.6
2933.0

902.5

853.3

651.8

507.6
2933.0

902.5

853.3

651.8

Additional

production (%) 15.5 19.0 26.0 10.3 9.0

Annualized Cost ($) 62,180
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The sizes of the different problems with respect to the number of variables and

constraints and the respective trends as the number of periods increases, are shown in

Table HI.

Table DDL Problem

Number of

periods

sizes for cases

Case

Total number

of variables

land

I

II in Example 1.

Total number

of constraints

5

10

20

30

33
63

123

183

81
161

321

481

Case II

Number of

periods

Total number

of variables

Total number

of constraints

5
10

20

30

61
116

226

336

306
611

1221

1831

Table IV. Results for Example 1.

Number of

periods

5

10

20

30

Number of

periods

SQP

CPU time

7.1

34.6

1140.5

3566.8

SQP

CPU time

Case I

(s)(0

Case II

(s)G>

MINOS

CPU time (s)<0

5.6

14.6

38.9

69.2

MINOS

CPU time (s)(0

OA/RLP

CPU time (s)®

5.3

11.1

14.6

36.4

OA/RLP

CPU time (s)<»>

43.6 23.0 11.2
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10
20

30

fc 279.5
1579.1

(ii)

63.2
(iii)

(iv)

30.2
84.8

222.6

(*) CPU time results on a 6320 VAX mainframe

<") SQP failed due to working set size limitations

("*) MINOS failed from the given initial point

(iv> MINOS failed to solve

From the computational standpoint the performance of the proposed algorithm is

compared to the case when a reduced gradient method (commercial code MINOS, by

Murtagh and Saunders, (1985)) and a successive quadratic programming method (academic

code SQP, by Biegler and Cuthrell, (1985)) was applied directly to these methods without

performing decomposition. As it can be seen from the results on Table IV, OA/RLP

outperforms MINOS and especially SQP. CPU time savings were achieved in all cases,

particularly as the number of periods increases. Moreover, as it is seen in the case II

problem, which is larger, MINOS failed to solve the 20 period problem from the same

starting point, succeeding from a "better" one, and it failed on all problems with more than

20 periods. On the other hand the proposed OA/RLP method was successful in all different

sizes of the problem in both cases, showing a remarkable robustness. Another important

characteristic of this method is the fact that the number of the inner LP calls is constant

(five and six for case I and case II, respectively) and independent of the number of periods,

and hence the size of a particular problem. For the first case no NLP subproblem solution

was required, while in the second case only one NLP subproblem was solved.

Example 2. In this example the MINLP batch plant design will be considered. First we

convexify model (M.2) through an exponential transformation. This requires the additional

definition of the transformed variables VJ = In [Vj], bjt = In [Bid, "jx = In [Njx], qt = In

[Qd Using the above yields the following convex MINLP model:

Model (M/C.2):

(a) Investment and expansion cost and potential profit

n M M n
min z = X X (aTl' aP exP(nJ'1+ Pjvj) + X <xjexp(nj+ PjYj) + £ fP

T=2 j=l j=l T=2
T

V n Ht
- 2-Pt—*—

t=i H t - © t
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(b) Volume for eack stage

VJ £ In (Sijt) + bu i=l,N; j=l,M; t=l,T

(c) Cycle time for each product at each period

nj* + cu > In (tjjt) T=l,n; i=l,N; j=l,M; t=l,T; T a n andtmod(x> =

(d) Production horizon time

N
£ Qit exp(cit - bit) + 0t < Ht t=l, T

(e) Number of parallel units

K

ln(k)yJk = nJ x=l,T; j=l, M
k=l

(f) Single choice of Njx

K
l Y ] k = l j=l,M; x=l,n
k=l

(g) Non decreasing number of expansion units

njx + 1>nf T=1 , I I -1 ; j=l,M

(h) Logical conditions for each expansion

njx+1 < nf + In (K) ZT+1 x=l,II-l; j=l,M

(i) Bounds

0 < njx < In [NJTU]

In [CitL] < cit < In [CitU] i=l, N; x=l,

Case I. The plant consists of three processing stages (M=3) and each of them may consist

of up to five parallel units (K==5). It produces five products (N=5) and its operation will be

designed for a series of different time periods, namely from two (T=2), up to twenty

(T=20). The total time horizon will be ten years, and expansions will be allowed to occur
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over a variety of different expansion periods (11=2,3,5). Table V contains the data for this

example, while Table VEtt contains information on the sizes of several problems for cases I

and II. The number of constraints in this problem is 16T+27I1-5, the total number of

variables 6T+24I1+3, and the number of binary variables 16FI-1, where n is the total

number of possible expansions. The optimal solution for a typical problem is listed in Table

VI and a comparison case in Table VII, while computational results are listed in Table IX.

Case II. In this case the size of the designed plant is bigger consisting of six processing

stages (M=6) and each of them may consist of up to five parallel units. It produces ten

products (N=10) and its operation will be designed for a series of different time periods,

namely from two (T=2), up to twenty (T=20). The total time horizon will be ten years, and

expansions will be allowed to occur every year. The number of constraints in this problem

is 61T+84n-l l , the total number of variables 11T+77I1+6, and the number of binary

variables 6111-1, where n is the total number of possible expansions. Computational

results are listed on Table DC.

Table V. Additional data for Example 2.

Case I Products, N=5 Stages, M=3

Cost Coefficients Oj° = 250 ($/yr) 7° = $20,000 Pj = 0.6 j=l, M

Annual discount rate n=0.1
Max. number of parallel units NJ T U = 5 j=l, M

Horizon time (h) Ht = 10*8000/T t=l, T

Total Horizon 10 years

Production QAt e {100,000 - 580,000} QBt e {50,000 - 680,000}

ranges Q Q ^ {80,000-640,000} QDie {160,000-635,000}

(Kg/yr) Q E t € {120,000-575,000}

Case II Products, N=10 Stages, M=6

Bounds on Volumes (L) VjL = 25 VjU = 45000 j=l ,M

Additional QAAI e {140,000 - 450,000} QBBI e {150,000 - 595,000}

production Qcct e {110,000 - 600,000} QDDI e {150,000 - 575,000}

ranges (Kg/yr) QEEt^ {140,000-510000}

The optimal solution of a ten period batch plant with five potential expansions

over a ten year horizon is listed in Table VI. Both the above expansion model and a period-

by-period capacity expansion model were investigated. In the period-by-period design
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approach the optimization is being done for each individual expansion period separately,

while in the proposed model the expansion decision is made simultaneously with the

optimization of the other design variables. The period-by-period design gives a suboptimal

solution that always results in a substantially higher total cost ($934,800 vs. 655,500). The

results from a comparative study for a three period plant with three potential expansion

periods over a ten year horizon are presented in Table VIL The cost in the period-by-period

expansion design approach is 42% higher than the design through the proposed expansion

model, for this three period problem.

Table VI. Optimal solution for a five-expansion twenty period batch plant

Stage

Parallel 1

units for 2

each 3

expansion 4

period® 5

Volume per

unit (L)

Period

Batch A

size for B

each C

product D

(Kg) E

Additional

production (%)

(0)(0

(4)

(8)

(12)

(16)

1

2

2

3

3

3

24288

1

3074

17763

620

4222

5106

33.3

5

3074

17763

7070

5168

5106

14.8

2

2

3

3

3

3

18381

10

3074

17763

6978

2929

5106

33.3

15

3074

17763

7070

5168

5106

18.5

3

2

3

4

4

4

15987

20

3074

17763

7070

5168

5106

0.0

(') In parenthesis the actual year of operation is shown

Table VII. Comparison between a period-by-period expansion design and the proposed

optimal expansion design

Optimal Expansion Design

Stage 1

Parallel units for 1

each expansion 2

1

2

1

2

1

3
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period m

Volume per

unit(L)

Total Cost ($)

Stage

Parallel units for

each expansion

period

Volume per

unit(L)

Total Cost ($)

3

1

2

3

3

22,471

3

16,950

655,500

Period-by-Period Expansion Design

1

1

5

9

7,911

2

1

6

9

5,603

934,800

4

14,794

3
1

7

12

5,208

Table Vm.

Number of

expansions

2

2

2

3

5

5
5
10

Number of

expansions

2

2

2

5

5

Problem sizes for cases I and II

Number of

periods

2

10

20

3

5
10

20

10

Number of

periods

2

10

20

5
10

Case I

Total number

of constraints

81

209

369

115

200

280

440

425

Case II

Total number

of constraints

279
784

1377

714

1019

in Example 2.

Total number

variables

63

111

171

93

153

183

243

303

Total number

variables

182

270

380

446

501

Number of

binary vars.

31

31

31

47

79

79

79

159

Number of

binary vars.

121

121

121

304

304



30

5
10

20

10*

Table DC. Computational

Number of

expansions

2

3

Number of

periods

10

3

1629
1439

611
886

results for Example 2.

1

2

2

1

1

1

Case I

Parall. Units

Stage

2 3

2

2

1

1

1

3

3

1

1

2

DICOPT++

CPU time (s)(0

(major iter.)

163.9 (2)

105.9 (2)

304

609

OA/MIRLP

CPU time (s)(0

(major iter.)

87.7 (2)

54.4 (2)

1 1 1

1 1 1

1 2 2

2 2 3

2 2 3

631.5 (3) 594.4 (3)

10 1 1 1

2 2 3

2 2 3

2 2 3

2 2 3

404.7 (2) 189.2 (2)

20 2 2 2

2 3 3

3 3 4

3 3 4

3 3 4

1982.9 (3) 1526.4 (3)

10 10 1 1 2

1 1 2

1 1 2

2 2 3

(ii) 1584.2 (2)
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fc Case II

10 2 2 2 2 2 2

3 3 3 4 3 3

3722.2(3) 2631.6(2)

1 1 2 2 2 1

1 1 2 2 2 1

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

<ai) 3818.2(2)

® CPU time results on a 6320 VAX mainframe

(y) Internal MILP solver failed

(***) Limit of 5,000 sec exceeded in the first iteration

The computational performance of the proposed OA/MIRLP scheme is better than

DICOPT++ in all of the examined cases. In the above examples the lower bound predicted

at each iteration by OA/MIRLP was always higher than the one predicted by DICOPT++.

The number of major iterations for the proposed method were fewer or equal to the ones of

DICOPT++. This is attributed to the more accurate representation of the master problem in

this method. However, since the major part of the computations are devoted to the solution

of the master MILP, the results are not always showing a systematic increase in the time

savings as the number of time period increases. This can be attributed to the different

degree of difficulty in solving the primal NLP and the master MILP. Since the advantage of

this method lies mainly in the NLP part of the problem, the difference becomes more

apparent in problems where the NLP phase shares a substantial portion of the total solution

time. Overall the proposed method is more robust and efficient in solving big multiperiod

NLFs and MINLFs. This performance can be partially attributed to the fact that it mainly

relies on the solution of LP's and MILFs and also because whenever an NLP subproblem

is solved, it is done on the reduced space of state and control variables and for each period

independently.

Conclusions

A decomposition algorithm based on outer approximation has been proposed for

efficiently solving convex NLP and MINLP multiperiod design problems. The proposed

methods have been successfully applied to the design of a multiperiod multiproduct batch

plant, with a capacity expansion deterministic model. For this purpose a general model for
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multiperiod multiproduct batch plants was developed. Major components of the design

problem, which have not been incorporated in a single formulation in the past, such as the

optimal production policy and a realistic capacity expansion formulation, lead to an optimal

and practical design. With this formulation large overdesign and suboptimal, hence

expensive, expansion policies are avoided. For the efficient solution of such models the

proposed algorithm was applied. The computational performance was illustrated for the

NLP and MINLP problem on two examples for several periods of operation and several

optional expansion times. The results show an advantage of the presented method over

traditional solution approaches, in both robustness and time efficiency, issues very

important for design applications in chemical process industries.
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Appendix

The two analytic examples solved to identify the computational nature of MPD's are

presented here.

Example 1

N
min ^ (a*x? + tydi + Cid2) + d^ +d4 -

s.t. -qxi + d\ + dl + dl - <U + dl < 0

-aiXi + 2d? - d2 + 3d^ + dl - d5 < 0 {* N

Example 2
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N
d] +(U - d5 + 4 d6 + 4d7 + 4d8 + d9 -

s.t. -qxj + d? + do + d, - d4 + dl + dl + <$ + dl + d̂  < 0

<0 ;_!

where the parameters are a* e {2, 6}, bi e {-25, -10}, q e {10, 27} for different periods

i. As stated in the problem statement section xj are the variables for each period i, and di,

...f dio arc the complicating variables.


