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Abstract.

The objective of this paper is to show that many nonlinear models for batch design,

which are based on the assumption of continuous sizes, can be reformulated as MILP

problems when sizes are restricted to discrete values. Problems considered include

multiproduct plants operating with single product and mixed product campaigns, and

multipurpose plants with single and multiple production routes. It is shown that by

exploiting the structure of these MILP problems, solutions can be obtained with modest

computational effort. In addition, as opposed to the use of rounding schemes for

continuous models, global optimum solutions are guaranteed.



Introduction.

Recent growth in specialty chemicals, food products and pharmaceutical industries

has increased the interest in systematic methods for the design of batch ̂ processes.

Therefore, in recent years there have been increased research efforts to develop design

methods and tools for multiproduct and multipurpose batch plants; see Reklaitis" (1989) for

a review.

Among the earlier works, the design problem for multiproduct batch plants

operating with single product campaigns (SPC) was formulated as a nonlinear program by

Robinson and Loonkar (1972). They used the minimum capital cost as a design criterion.

The multiproduct model was extended by Sparrow et al (1975) to include the optimal

selection of the number of parallel units at each processing stage as well as the optimization

over discrete equipment sizes. They used heuristics as well as a specific branch and bound

method for this problem. Grossmann and Sargent (1979) presented an alternative approach

in which the problem by Sparrow et al was formulated as a mixed-integer-nonlinear

program whose relaxation was shown to have a unique optimum.

The above design models were restricted to the case of single product campaigns

with no intermediate storage and where only batch equipment were considered in the design

procedure. Some of these simplifying assumptions were subsequently relaxed. One

direction followed by some researchers was to take into account semicontinuous units

(Knopf et al, 1981, Yeh and Reklaitis, 1987). The other direction was the incorporation of

scheduling with mixed product campaigns (Birewar and Grossmann, 1989).

The optimal design of multipurpose batch plants is more difficult than that of

multiproduct plants. Initially the work concentrated on plants operating in SPC mode and

single production routes (Suhami and Mah, 1982 , Vaselenak et al, 1987, Faqir and

Karimi, 1988). Recently the assumption of single production routes has been relaxed to the

more realistic case of plants with multiple production routes (Faqir and Karimi, 1990).

Finally, a more complete formulation of the problem which also addresses the aspect of

various different assignments of equipment types to tasks has been proposed by

Papageorgaki and Reklaitis (1990). These authors considered further the case in which a

given equipment type need not be exclusively dedicated to a single task, but the equipment

items can be divided among multiple tasks of the same or different products.

Most of the models cited above correspond to nonlinear optimization problems

(NLP or MINLP) in which the sizes of equipment are treated as continuous variables. In

practice, however, it is clear that in virtually all the cases sizes are only available in discrete



values. Therefore, there is currently this gap for the application in practice of optimization

models for batch design .

The outline of this paper is as follows. Firstly we show that nonlinear models

proposed previously in the literature, and which are based on the assumption of'continuous

sizes, can in fact be reformulated as MILP problems where the discrete sizes can be

explicitly accounted for. Cases considered include multiproduct and multipurpose plants

with single and multiple production routes. Methods for enhancing the solution efficiency

of these models will also be discussed and illustrated with several example problems. The

major significance of the MILP models presented in this work is that they correspond to

realistic design models that can be solved to global optimality with reasonable

computational expense.

Definitions and problem statement

Batch plants may be divided into two broad categories. First, the multi product

batch plant in which the same sequence of equipment is used to produce each product. If a

collection of process equipment is used in different arrangements to produce perhaps more

than one product at any time then this corresponds to a multi purpose batch plant.

A multi product or multi purpose plant can be operated in two distinct modes. In the

first mode, each product is produced in one campaign the single product campaign (SPC).

Alternatively the plant can be operated with mixed product campaigns (MPC). In this mode

two or more products are manufactured in each campaign and therefore the selection of the

sequence of the products becomes a very important factor.

The staged nature of a batch plant, comprised of a number of units in series, allows

four different storage options, i) Unlimited intermediate storage (UIS), ii) Finite

intermediate storage (FIS), iii) No intermediate storage (NIS), iv) Zero wait or No wait

(ZW or NW). In both the NIS and ZW modes, there is no storage between stages. After

the completion of a batch in a processing unit, it may be held in it temporarily in the NIS

mode, or in a storage vessel in the UIS or FIS modes. In the ZW mode the batch must be

immediately transferred to the downstream unit. In situations where unstable intermediates

are produced and must be immediately processed in subsequent steps, the ZW mode of

operation is used. Therefore, the storage policy best describing batch plants is a

combination of all the above modes, which will be referred to as mixed intermediate storage

(MIS) policy.



The following notation will be used throughout the paper:

i Index of products {A,B,C....} with cardinality N.

j Index of stages {1,2,...., M} (index of equipment in problem'(P6)).

h Index of production campaigns.

r Index of routes in a multipurpose plant with multiple routes {1,2,...., R}.
s Index of discrete sizes {1,2,...,, nsj}.

n Index of number of parallel units {1,2, , npj}.

tjj Processing time of product i at stage j.
TLi Cycle time in single product campaigns, for product i. T^ = max {ty}.

Sjj Size factor of stage j for product i.

Qi Market demand for product i.

H Time horizon in which the demand has to be satisfied.
Vj Volume of a vessel at stage j.

VJS Standard volume of size s for stage j.

Bi Batch size for product i.

T[ Length of time which is dedicated to the production of product i.

Length of campaign h.

Incidence parameter denoting whether product i can be produced in

campaign h (1 for positive case, 0 negative case),
cjj. Amount of production from route r.

Tr Length of time for production in route r.

n[ Number of batches of product i during the time horizon H.

Number of occurrences of the pair i-k in a MPC schedule during horizon H.

In this work we address the optimal design of a batch plant for which the objective

is to minimize batch equipment cost with the equipment being available in discrete sizes.

The plant in question consists of M stages of batch equipment that are to be used for

producing N different products, and they can belong in any of the following cases:

1) Multiproduct plants operating under:

a) Single Product Campaigns with single unit per stage under ZW policy.

b) Single Product Campaigns with parallel units per stage under ZW policy.

c) Mixed Product Campaigns with single unit per stage under any storage policy.

d) Mixed Product Campaigns with parallel units per stage under UIS policy



2) Multipurpose plants operating with:

a) Single production routes.

b) Multiple production routes.

, -,i

The basic data that are given are the product demands Qj and a time horizon H, the

size factors Sjj (volume of a vessel in stage j required to produce one mass unit Df the final

product) and the processing times tjj. The major assumptions made are the following. No

splitting or mixing of a specific batch is allowed while in process. The processing time tjj

of a product i in any stage j is independent of the batch size. The size factors Sjj are

constant. Parallel units are allowed in each stage. Resource constraints are not taken into

account except the availability of vessels in standard sizes.

Single product campaigns with single units per stage.

Consider the case of a multiproduct batch plant with one unit per stage operating

with single product campaigns and ZW policy. The model proposed by Grossmann and

Sargent (1979) for optimal sizing consists of the following NLP problem:

Bi > 0 i=l,..,N

where T L I = max {tjj} is a constant as well as a; (cost coefficient) and bj (cost

j=l,..M

exponent).

This model is a geometric programming problem which involves posynomial terms,

and therefore can be convexified with exponential transformations. A major assumption in



this formulation is that the vessel sizes Vj are assumed to be continuous within specified

lower and upper bounds V- ,V- . In real life however, only vessels of discrete sizes are

available. One alternative is to simply round up the solution of the NLP in (CPl),to discrete

sizes although there is no guarantee that this will lead to a global optimal design. In order to

rigorously tackle this situation the following discrete variables can be introduced:-

!

1 if unit at stage j has size s
0 otherwise

The variable Vj is restricted to take values from the set SVj={ v\\, VJ2 ,...,vjn }.

A straightforward extension of (CPl) to handle the case of discrete sizes is to introduce

new constraints to restrict the volumes to discrete sizes. In this way the following MINLP

model is obtained,

j

s.L V j > S i j B i i = 1 _ N f j = 1 _ ,

Vj, Bi > 0 i=l,..,N , j=l,..,M

This model can be convexified with exponential transformations to find the optimal discrete

sizes of the vessels (e.g. see Kocis and Grossmann, 1988). The drawback, however, is

that the MINLP model may be large and expensive to solve.
In order to reformulate model (CPl) as an MILP we define Tx = nj TJJ, the total

time for producing product i where r\[ = Q\ I B\ is the number of batches of product i. We



then have Qi / Bj = nj = T[ I Ty . By multiplying the first constraint of (CP1) by Qi and

after algebraic manipulations we get

The right-hand-side is nonlinear as it involves the inverse of the volume. But by taking

advantage of the multiple choice character of the problem of discrete sizes, we can develop
a model which is linear. First we note that 1/Vj can be expressed in terms of the discrete

variables as:

In this way by substituting (2) into (1) and by setting CJS = aj v.^ , the optimal

design problem reduces to the MRP problem,

I Z c j s y j s (Rpi)

s.t.

JS = i J=I,.,M

s

Ti > 0 i=l,..,N , y j s € { 0 , 1 } j=l,..,M , s=l,..,nsj

Note that this problem only has M additional constraints compared to the continuous model

(CP1). However, potential problem of this formulation is the increase of the number of 0-1



variables when the number of discrete sizes is relatively high. This problem can be
efficiently tackled by exploiting the specific structure of the problem as will be shown in the
section of computational procedure. A more important aspect though, is that model (RP1),
apart from being linear, can be solved for the global optimum combination of discrete sizes
with the branch and bound method for MILP (see Nemhauser and Wolsey,19fc8). The
continuous model (CPl), apart from being nonlinear, will in general not provide the global
optimum with a simple rounding scheme.

Single Product Campaigns with parallel units*

When increased production rates are considered, it may be necessary to introduce
units operating in parallel and out of phase to decrease the cycle times. These are defined by
bottleneck stages which may be different for different products. As suggested by Kocis and
Grossmann (1988), parallel units can be treated by introducing the discrete variable,

_ f 1 if stage j has n units of same volume in parallel
z J n " j 0 otherwise

to represent an integer value for Nj the number of parallel units at stage j. Model (CPl) can

then be expanded to treat the case of parallel units with the following MINLP model,

min X Nj aj V Ĵ ( C P 2 )
j J

TLi ^ i=l,.-N

i < H
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z j n e { O , l } , N j , T L i , B i ^ O i=l,..,N , j=l,..,M , n=l,..,nPj

Again taking advantage of the multiple choice constraints for sizes and parallel

units, it is possible to develop a linear model. Let

_ (1 if stage j has n units in parallel of equal size s
y J s n | 0 otherwise

By using a similar procedure as in the derivation of (RPl), the MINLP problem (CP2) can

be reformulated as the MILP model,

Z Z I j s n Yjsn

Ti*XX
s n

s n

Ti > 0 i=l,..N , y j s n G { 0 , 1 } , i=lf..,N j=l,..,M n=l,..,npj

where CJ s n = n aj v. J .

Mixed product campaigns with single units per stage.

In the case of mixed product campaigns it is assumed that a schedule may be

allowed in which sequencing of products may be possible. To model this feature, special

scheduling constraints have to be introduced as was shown by Birewar and Grossmann

(1989). For the case of a plant with one unit per stage operating with ZW policy and

assuming continuous sizes Vj, the following NLP model was proposed by these authors:



min >, a; V.lj V (CP3)

S.t.

i=l,..,N

ik = "i
k

ik = "k k=l,..,l
i

V]° < Vj < VHP j=l,..,M

>0 i=l,..,N , NPik > 0 i=l,..,N k=l,..,N

The third and fourth constraint of (CP3) are aggregated assignment constraints for product

sequences. The sixth constraint of (CP3) is for eliminating subcycles that only involve one
product. SLjkj is the slack generated between products i and k at stage j if they are

scheduled in that order and includes the cleanup time that may be required in order to

prepare the vessel for product k after product i has finished processing. These slacks can be

computed a priori as shown in Birewar and Grossmann (1989). In order to obtain an MILP

design model it is required to reformulate the first constraint of (CP3) in terms of the
number of batches due to the aggregated scheduling constraints. Since n p Q{ / B[, the first

constraint in (CP3) can be expressed as:

Qi Si;
n i ^ - ^ r 1 i=l,..,N , j=l,.,M (3)

Again, applying (2) and following a similar procedure as in the derivation of problem

(RP1) the following MILP model is obtained,
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^ X X cj s yj
i S

(RP3)

s.t *fs~)yy , J=I,.:,M

k=l,..,I

I (ni ti j + (Z NPi k SLi k j)) < H j = 1 _ M

i k

n i f N P i k >0 i=l k=l,..,N V j . s

The various storage policies can be addressed by assigning appropriate values to the slacks
SLjjg. For example the case of UIS storage policy can be treated by setting SL^j equal to

the clean-up time for every i,k j . Even further, in this case it is possible to address the case

of parallel units per stage with the following MELP model,

(RP4)
s n

s.t.
s n

s n
s n
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= nk k=l,. . ,N

Hnyjsn J=1.».M
n s

q , N P i k >0 V i , k and yj s n € { 0 ,1 } V j . s . n

Multipurpose plants with single production routes.

The case considered here is the one where not all products require the same

processing stages. Simultaneous production of products sharing the same stages in not

allowed since only one production route is considered for each product with the possibility

of parallel units (see Suhami and Mah, 1982). The model proposed for this problem by

Vaselenak et al (1987), and later extended by Faqir and Karimi (1988), corresponds to the

following MINLP:

min X Nj aj vjS (CP5)
j J

s.t.

T L i > ^
Nj

(Tl,T2,.., V . ) < H k=l,. . ,K

T L i , T i , B i > 0 i=l,..,N

Nj = Integer j=l,- ,M
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In the above model there are K horizon constraints, each one being a linear function
of the time Tj dedicated to the production of a specific product i. Suhami and Mah (1982)

first proposed the introduction of such constraints for the planning of specific groupings of

products, A systematic way to obtain these constraints was proposed by Vaselenak et al

(1987). Finally Faqir and Karimi (1988) addressed various ways to express these

constraints. Model (CP5) is similar to (CP2) with the exception of the horizon constraints.

Therefore, in analogy to (RP2) the following MILP model can be developed for the case of

discrete sizes:

s.t

X X X cj s n yjsn
j s n

(RP5)

s n
vJI v J s )

X X yj s n -
s n

,Tf7 yjsn i=l,..,N , j=l,..,M

fi , 0 h > O s n e (0 , 1} V j , s , n

in which the third and fourth constraints are expressed in terms of campaign lengths, 0^,

as proposed by Faqir and Karimi (1988). In these constraints ahi represents the coefficient

of an incidence matrix to denote whether or not product i corresponds to campaign h. The

number and identity of possible campaigns of compatible products can be obtained with the

procedure by Vaselenak et al , or alternatively, as described in Appendix A, through a

sequence of maximal clique problems. As discussed above, previous authors have spent
significant effort to express these constraints only in terms of the variables T[ as is the case

in model (CP5). It is not straightforward, however, to express these constraints in terms of
T[. In the procedure by Faqir and Karimi (1988) this effort is quite large especially

considering the fact that the computational benefits obtained when the third and fourth
constraint in (RP5) are replaced by the ones expressed in terms of Tj are questionable. The

number of the horizon constraints in (RP5) is equal to N+l (N = number of products),
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whereas the number of reduced constraints in (CP5) is not specified and can well exceed

N+l.

Multipurpose plants with multiple production routes. *

The case of a plant with multiple production routes corresponds to the one where at

a specific stage parallel units are allowed, but they operate independently giving rise to

multiple production routes. Also for this reason the size of the vessels can be unequal, and

consequently the batch sizes of the routes producing the same product can also be unequal.

The definition of such a design model of the plant is more flexible and it can potentially

provide cheaper designs than models for plants with single production routes.

The problem is formulated by assigning a maximum number of units in each stage

(groups of equipment as seen in Fig 1). Each product i can then follow a different path

inside the plant depending on the unit through which it is processed at the required stages

(or groups). Each of the possible paths inside the plant is denoted by a route r. In this way

a specific set of routes PR(i) is assigned to each product i. For every route r a specific
subset of equipments ER(r) is assigned. The volume of every equipment Vj, j=l,..,NE , is

allowed to take values from a set SV(J)={VJJ,VJ2, . . , vjs,...,vjn(j)}, where VJJ=O to

account fot the possibility for not selecting the given equipment. The batch size for every
route is denoted as B r , whereas total production of a route is q^ It is assumed that the batch

size is identical for all batches produced in a specific route. The total demand for a product
that has to be satisfied in a specific time horizon H is Q|. From the previous definitions it is

clear that :

X Qr^Qi i=l,..,N (4)

The production is again assumed to occur in SPC campaigns with ZW policy.

Every campaign h is the period of time in which one or more compatible routes which do

not share the same equipment are producing the product assigned to each one of them.
Again the term Srj denotes the size factor of equipment j in route r, and T L F is the cycle

time of router.

Faqir and Karimi (1990) proposed for this case the following (MINLP) model.

X X cj s yj s (P6)
j s
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s.t. V j > S r j Br Vj € ER(r) , r=l,..,R

TrBr = qr TLr r=l,..,R

fk(Ti,T2 , . . ,Tp . . ) < H k=l,..,K

Vj>0 Vj , c fr .Br.T^O Vr, yjse{O,l} Vj ,s

where TL r = max { tjj, r e PR(i) } is the cycle time.

jeER(r)

Note that the last K constraints are the horizon constraints in terms of the lengths of
productions T[ as discussed previously in the paper. The main difficulty in (P6) is with the

second equation which is bilinear. This equation gives rise to nonconvexities and Faqir and

Karimi proposed valid underestimators to avoid cutting off the global optimum with an

MINLP algorithm. However, as will be shown below, problem (P6) can again be

reformulated as an MILP.

By combining the first and second constraint in (P6) and taking into account the

condition in (2) we get:

yjs Vje ER(r), r=l,..,R (5)

In order to eliminate the bilinearities % * yjs a new variable ĉ .- is defined to represent

this crossproduct. The equivalence of the crossproduct and the new variable is forced with

the following constraints (see also Grossmann et al, 1991):
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js Vj e ER(r) , r=l,..,R

i j s ~ Ur j s yj s Vj € ER(r), r=l,..,R, s=l,..,nsj (7)

where Urj s represents an upper bound for the variable cus and can easily be obtained

analytically as will be illustrated later in equation (8). Making use of (5) and (7) the

following MILP model is proposed,

™ XZ cjsyjs (RP6)
J s

T r i I fefil!k VjeER(r),r=l,..,R
s \ J s

= £ qr j s Vj € ER(r), r=l,..,R

j s " U r j sYj s Vj e ER(r),r=l,..,R,s=l,..,nSj

i = 1 N

Tr r=l,..,R

q j j s . q r . B r ' T r .©h^O V r , j , s , h , yjse{O,l}

Note that as in (RP5) the horizon constraints in (RP6) are expressed in terms of the
campaign lengths ©h- The reason behind using these horizon constraints is the same as in

the previous case of multipurpose plants with single production routes.
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The upper bound Ujjs can be obtained analytically from the first constraint (RP6).

Because of the second and fourth constraint in (RP6) only one entry in the summation of
the first constraint in (RP6) will be nonzero. The upper bound for Tr is H. Hence, in the

worst case the first inequality in (RP6) will be satisfied as an equality; therefore,'

s = i ? s = cVJ S
T

H VJ G ER(r) ' r = 1-R ' s = 1 - n s J (8)
l J 5 ^r i l L r

Computational considerations.

While the proposed MILP models (RP1) to (RP6) have the important feature of

handling discrete sizes and the capability of obtaining the global optimum, they can

potentially become expensive to solve for large problems. Three aspects of the. models

allow us to enhance the efficiency of the computational procedure, namely : SOSl

structures, bounding schemes for domain reduction and objective function cutoff.

SOS 1 structure.

A feature of the models that was exploited in linearizing the design models was the

multiple choice structure of the models. Beale et al (1970) introduced the notion of Special

Ordered Sets (SOS). The first kind of special ordered sets is that of type 1 (SOSl) (see also

Williams (1985),Tomlin (1988)). This is a set of variables (continuous or integer) within

which exactly one must be nonzero. This restriction can be treated by enforcing a special

branching rule that recognizes that only one variable is nonzero. Therefore, great

computational advantages can be gained, instead of treating them as a summation of binary

variables.

In all the models that we proposed, there is an equation

Xyjs = 1 or Ilyjsn = 1 (9)
s s ns n

This means that variables yjs and yj s n can be treated as special ordered sets. For every

block of variables yjs , ordered sets for each j are introduced.

In order to take computational advantage of the SOS 1 structure there must be an

ordering in these variables as for instance given by increasing cost. The natural order of
variables yjs is given by increasing sizes which in turn corresponds to increasing costs. In
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the case of parallel units the natural order in the variables yj s n is not necessarily preserved

when the number of parallel units increases for the various sizes. Although in our

implementation strict sequential ordering was not considered, SOS1 sets have the effect of

reducing the nodes that are generated in the search tree. The favorable computational results

gained by using SOS 1 are illustrated in the results section.

Domain reduction.

Apart from using special ordered sets, computational enhancements can be obtained
by reducing the domain of the binary variables. More specifically, the binary variable yjs is

defined in a domain which corresponds to the crossproduct of the sets in which j and s take

values. In some instances though we can derive analytical or computational lower bounds

on the volumes v- . In these cases the inclusion of the discrete variables yjs for sizes

vjs<v- in the model has no useful purpose because they will lead to infeasible designs.

Also, by not including these variables in the model, the number of the nodes in the branch

and bound tree and the size of the model are reduced.

Analytical lower bounds can be obtained by taking explicitly into account the

structure of the constraints. Specifically for the NLP model (CP1), which is the relaxation

of (RP1), we have the following. The first constraint in ( CP1) is forced to equality for a

specific product i by a specific stage j which is the bottleneck stage for this product. If a

stage was not a bottleneck for any product then the volume of the vessel at this stage could

have been decreased without any effect in the objective function. Hence, the optimality

condition requires that every stage is a bottleneck stage for at least one product. A lower

bound for the volume of a unit at a specific stage can be obtained if this stage is assumed to
be a bottleneck stage for every product. Since T[ = (Qj / B[) T y , by setting the first

constraint as an equation in (CP1) we get:

T Q i S l J T •
T i = - ^ - T L i i=l,..,N (10)

Vj

By requiring that the sum of the above variables be exactlly equal to the horizon time H, we

get:
O. e. . i

(ID
vj°=I H
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This lower bound turns out to be fairly tight for the cases in which the scheduling policy is

SPC with one unit per stage (model (RP1)). The way that the lower bounds were exploited

is to avoid the introduction of a discrete variable denoting the existence of a size lower than

the lower bound in the model. For the computational impact more is presented in the

section of computational results.

For the case of parallel units per stage (model (RP2)), a straightforward extension

of the previous procedure gives the following bound,

v i o _ Y ( Q i s i
in Y * H n

If for any n the bound v • exceeds the upper bound of the volume V- p at a stage j then a

lower bound of the number of parallel units nl° can be set as the next highest integer for the

ratio v • / V - p . For model (RP5) the bound given in equation (12) can also be used since

the horizon constraints in (RP2) are tighter than in (RP5). For the case of MPC scheduling

policy (model (RP3) and (RP4)) a lower bound that can be obtained analytically is the same

as in equation (11) and by assuming that all the slacks are zero. The inefficiency of these

bound was demonstrated in our computational experience where the reduction of the

domain of the binary variables was only marginal. In this case tighter lower bounds on the

volumes must be obtained numerically. For example for problem (RP3) these can be

obtained by solving the following LP to minimize the volume for each stage j (see (2)) in
which the variables yjs are treated as continuous:

s.t

max X i p - - (13)
s J s

Qi Si |

k=l,..,N
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ni , NP i k £0 Vi,k

The lower bounds are then given by:

vlo _ 1
j yyj_s j=l,..,M (14)

T v j s

The problems in (13) are LP's that are not very expensive to solve. It is expected
that in larger models the benefit from the domain reduction that will be obtained by using
lower bounds will compensate the extra computational efforts required to solve the LP's in
(13). Of course the above scheme can be applied in all cases and for every model, but for
the cases of SPC the analytical bounds proved to be satisfactory.

Since the branch and bound algorithm will tend to examine nodes for the lower cost
designs, the derivation of upper bounds for volumes was found to have only a small
effect. Again it is possible by combining analytical manipulations and computational
practices to derive these upper bounds.

For the case of multipurpose plants with multiple routes, a simple way to obtain the
lower bounds in volumes is by solving the following LP relaxation for every equipment j:

j sy j s (15)

s.t Constraints in (RP6)

Priority constraints for each equipment group

In the case of a multipurpose plant the plant is divided into groups of equipment of

the same type. If all items in a group are allowed to take all sizes, then equivalent

permutations of item sizes might be obtained because of the identical nature of the

equipment. This can be avoided by prioritizing the items in each group with the following

constraint Vj > Vj+i for all equipment j and j+1 in the same group.
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Objective function cutoff.

The most common method for solving MILP problem is the branch and bound

(B&B) algorithm. Good lower and upper bounds in the objective function can greatly

impact the efficiency of the method. A good upper bound can reduce the size of fhe B&B

tree that needs to be enumerated. This bound is usually obtained using a heuristic

procedure. One way to obtain this upper bound is to solve the relaxed LP in which the

integrality of all the binary variables is removed. This then yields relaxed volumes V- that

can be computed for instance from (2). By rounding up these volumes we can obtain a

feasible solution in which the binary variables have integral values. The objective value of

this solution is used as an objective function cutoff.

For the case of the multipurpose plant with multiple routes the objective function

cutoff obtained by simply rounding up the relaxed solution turns out to yield a weak upper

bound. In order to obtain a good cutoff the following procedure is proposed.

Assume the following binary variable is defined:

_ (1 if route r exists I
I 0 otherwise I

The following constraints can then be added to model (RP6):

s Vj € ER(r) , r=l,..,R (16)

r r=l,..,R , V is PRr (17)

s

The introduction of these constraints will increase the dimensionality of the problem

and as such it seems a step in the wrong direction. The important thing though is that the

space of routes has been introduced in which some logical manipulations can be performed.

Consider the plant which is given in Figure 1. Equipment group 2 and 4 have 3

equipment, whereas all the other equipment groups have 1 equipment. As far as the number

of equipment per stage is concerned the solution of the problem is going to be one of the

following nine alternatives:
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Group 1 Group2 Group3 Group4 Group5 Group6

1)
2)

3)
4)

5)
6)

7)

8)

9)

1

1

1

1

1

1

1

1

1

In order to

1

2

3

1

2

3

1

2

3

avoid

1

1

1

1

1

1

1

1

1

the effect of counting

1

1

1

2

2

2

3
3

3

equivalent

1

1

1

1

1

1

1

1

1

solutions and

> 1

• 1

" 1

1

1

1

1

1

1

without loss c

generality a priority in picking equipment can be introduced So for example equipment 2 in

Group 2 should be picked before equipment 3 and so forth. An immediate result of the

above is that for each one of the alternatives presented above, a significant number of
binary variables z^ can be fixed. As an example the first alternative can be represented by

fixing the binary variables Zj. as follows: Z I = Z 4 = Z7 = Z I Q = 1 , and Zf =0 for all others.

In the second alternative we have two equipment in group 2 and 1 in group 4. For

the first statement and keeping in mind the ordering of the equipment we can introduce the

logical constraint which states that either route 1 or route2 and either route 10 or route 11
have to be picked whereas for the second statement we can fix the variables Z7 = Z4 =1. All

the other variables are fixed to zero. As we continue to the next alternatives, fewer variables

are fixed and more variables are placed in exclusions. At the ninth alternative we are not

able to fix any variable and we just obtain constraint (18).

The sequence of alternatives has some interesting characteristics. First in the initial

alternatives the number of variables that are fixed is large. This has the effect that through

constraints (16),(17) and (18) the problem is simplified significantly. The second

interesting characteristic is that by following the sequence of plant configurations with an

increasing number of units per group, it is quite likely that a good feasible solution can be

obtained with little computational effort. For the example in Fig.l a feasible solution with a

cost of $134,400 was obtained for the first alternative after 5 sec of CPU time in a

Vax-6420. The optimal solution with a cost of $124,500 was obtained in the second

alternative (2 units in group 2, 1 unit in the other groups). The biggest problem was to

prove the optimality of this solution by solving the subsequent problems. It is worth to note
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that using the method of rounding up the relaxed solution of the MELP in model (RP6) gave

an upper bound in the capital investment of $188,400, which was unsatisfactory.

The upper bound of the cost described above can also be used to obtain upper

bounds for the volumes of each equipment. This is done by solving the following LP

relaxation for each equipment j:

^ s y j s (19)
s

s.t Constraints in (RP6)

Priority constraints for each equipment group

where CJS represents the cost of equipment j when it has a size s.

The techniques described above are not the only ones with which the computational

efficiency of the MILPs can be enhanced. Another technique is to introduce cutting planes

which will cut a part of the feasible region of the relaxed LP without eliminating integer

solutions and if possibly to be facets of the convex hull of the integer problem. For more

details about such techniques see Nemhauser and Wolsey (1988).

Computational results.

Example 1.

Rounding the solution of continuous NLP models reported in the literature has the

drawback of giving suboptimal solutions. For example consider the case of a multiproduct

plant with one unit per stage operating under the SPC/ZW policy. The plant consists of 6

stages and is dedicated to the production of 5 products A, B, C, D and E. Data for this

problem are given in Table I. One way to solve the problem is using model (CP1). The

corresponding NLP of this problem has 32 constraints and 12 variables. Minos 5.2

required 1.25 CPU sec and 44 iterations to obtain the optimal solution with a cost of

$2,314,896. GAMS 2.25 on a Vax-6420 was used in order to generate the models. The
optimal sizes of the vessels predicted are Vi=6017.59 , V2=3483.6 , V3=3960.9 ,

V4=4823.5 , V5=4646.5 , V6=3885.55 (in liters). Assume, however, that the vessels are
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only available in the following set of discrete values SV={3000, 3750, 4688, 5860,7325}
liters. Note that the ratio of two consecutive sizes is constant and in this case this ratio is
1.25. Off course this ratio is arbitrary. In real applications the formulas or tables proposed
by DIN or ANSI norms, are used in order to calculate the set of discrete sizes. By rounding
up the NLP solution we get Vi=7325 , V2=3750 , V3=4688, V4=5860, V5=4688,
V6=4688 liters and a cost of $ 2,521,097.

Using the MILP model (RP1) the availability of discrete sizes is taken explicitly into
account. The solution in this case is Vi=5860 , V2=3750 , V3=3750, V4=5860,

V5=4688, V£=4688 liters with a cost of $2,405,840 which is $115,257 cheaper or 4.8%

lower than the previous value. It is clear that the rounding scheme did not predict the global

optimal design.

Model (RP1) is an MILP which is solved using SCICONIC 2.11 through GAMS

2.25 in a Vax-6420. The MILP problem involves 38 constraints, 36 variables and 246

nonzero elements. The time required for the MILP was 2.95 CPU sees. If instead model

(PI) is used, which is an MINLP, the problem involves 45 constraints and 43 variables

with 140 nonzero elements; 30 of the variables are discrete. The computer code DICOPT++

required 12.18 CPU sees to solve this problem and obtained the same solution as the

MILP. Note that the MILP is smaller in size than the MINLP in model (PI).

In order to illustrate the effect that the number of discrete sizes has in the size of

model (RP1) as well as in the computational performance, three more cases, one with 8 ,

one with 15 and another with 29 discrete sizes were considered. The comparison is

presented in Table II. We note from Table II that the number of discrete sizes has a

significant effect in the number of 0-1 variables, and hence in the number of iterations and

the CPU time. The way that the MILP's are treated so far is without using any of the

techniques proposed in the previous section (SOS1, domain reduction , cutoff).

In Table III results are presented for the same problem but with the use of SOS 1,

domain reduction and objective function cutoff. Note that the bounds are affecting mainly

the size of the model whereas the SOS1 and cutoff affect the iterations and the CPU time.

From the results it is seen that the handling of standard sizes gives rise to rigorous and

robust models which can also be solved quite efficiently. Even when the number of discrete

sizes is quite large the models that we propose can be solved in reasonable computational

time.

Example 2.

The issue of computational efficiency becomes even more critical in the case of

multiproduct batch plants with parallel units. Consider the problem given in Table IV. Note



24

that the data are exactly the same as in Table I with the only difference in the processing

time of product G in stage 4 which was increased significantly in order to bottleneck this

stage and to introduce the need of parallel units. It is assumed that all the stages can have up

to 4 units in parallel. In order to solve this problem the MINLP model'(CP2) for

continuous sizes and the MILP model (RP2) for discrete sizes were considered. For the

MILP two cases have been solved. The first one involving 4 discrete sizes in the range

between 1000 and 2500 liters, and in the second case 14 discrete sizes in the same range.

The optimal cost predicted in the first case was $5,261,290. whereas in the second case

$5,107,530. The results concerning the performance of the models with SCICONIC 2.11

are shown in Table V. From this table it is obvious the significant effect that the SOS1

structure and the domain reduction has.

Example 3.

For the case of plants with MPC and ZW policy the data for the example problem

are the same as in Table I. As far as the number of discrete sizes are concerned two cases

have been considered. In the first case the five discrete sizes of set SV were assumed,

whereas in the second case 15 discrete sizes ranging from 3000 to 6500 liters with an

interval of 500 liters were assumed. The optimal investment in the first case was

$2,405,840 and in the second case $2,331,240. The computational performance using

SCICONIC 2.11 is shown in Table VI. In both cases the cleanup times were assumed to be

zero.

Example 4.

For the case of a multipurpose plant with single product campaigns and single

production routes, the problem given in Yaselenak et al (1987) has been used. This

problem involves 10 stages and 7 products. In each stage up to 3 parallel equipment are

allowed. The solution in Vaselenak et al involved a capital investment of $355,516 and the

continuous solution was obtained using MINOS/Augmented in 18.79 seconds in a DEC-

20. The size of the model was 69 constraints and 48 variables. Assume that the volumes

can take discrete values from the following set SV={1000, 1600, 2560, 4096, 6554,

10485}. If the continuous solution is rounded to the standard sizes then the capital

investment is $397,457. Using the MILP model (RP5) the solution that was obtained

required a capital investment of $387,695 representing an improvement of 2.51% in the

capital investment. The size of the model was 42 constraints, 194 variables of which 180
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were 0-1 variables and 824 nonzero elements. The solution was obtained in 21.07 seconds

in a Vax-6420 using SCICONIC 2.11 through GAMS 2.25 and required 789 iterations. If

SOS1 and domain reduction are used then the problem involves 42 constraints, 159

variables, 655 nonzero elements and required 5.51 seconds and 187 iterations. *

Example 5.

For the case of a multipurpose plant with multiple production routes the

example of Faqir and Karimi (1990) has been used. The data for this problem are given in

Table VII whereas the layout of the plant is shown in Figure 1. The solution that the above

authors obtained is a capital investment of $124,500. As far as the computational

requirements of the procedure they devised, no clear characteristics can be given mainly

because the procedure is highly interactive. If model (RP6) is used without any. domain

reduction, without use of SOS1 and without objective function cutoff then the model

involved 50 0-1 variables, 245 variables (both continuous and binary), 859 nonzero

elements and 238 constraints.The reason that in this case 50 binary variables were used is

that no 0-1 variables were introduced for zero volumes, and the second constraint in (RP6)

was relaxed as an inequality. Using SCICONIC 2.11 through GAMS2.25 , 329.42 CPU

seconds on a Vax-6420 and 16,608 iterations were required to solve the problem. By

formulating the problem with additional 0-1 variables for zero volumes in order to have the

second constraint in (RP6) as an equality and using the SOS 1 structure, the problem

involved 60 binary variables, 238 constraints, 255 variables (continuous and binary), 869

nonzero elements. Using SCICONIC 2.11, 139.17 CPU seconds and 6923 iterations were

required in order to obtain the solution. Using SOS1, domain reduction and objective

function cutoff ($134,400 as discussed previously in the paper) the model had a size of 236

constraints, 246 variables and 853 nonzero elements. The CPU time required was 30.64

seconds and the number of iterations was 1572 on the same computer. Faqir and Karimi

used a different model to solve the same problem which was nonlinear and nonconvex.

They also proposed a somewhat complicated preprocessing scheme where domain

reduction was also considered. Using the results of their domain reduction in our model

and using SOS1 as well as the objective function cutoff the model involves 160 constraints,

144 continuous variables and 497 nonzero elements. The CPU time required to solve the

model is 4.26 seconds in a Vax-6420, and 289 iterations are needed.
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Conclusions.

It has been shown in this paper that taking into consideration the availability of the

vessels in only discrete sizes, it is possible to reformulate existing nonlinear design models

for batch processes as MILP problems. The resulting models determine the global optimal

solution for the design of batch plants either multiproduct or multipurpose, and operating

under various modes. Furthermore, the nonlinearities of the existing models are eliminated

giving rise to more robust computations.

Although the resulting models can be solved without any preprocessing, significant

computational gains can be achieved using the specific structure of the MILP's. The use of

objective function cutoff, and especially the domain reduction using a bounding scheme, as

well as the use of Special Ordered Sets of type 1 (SOS1) proved to have a significant

impact in the performance of the solution procedure.

Finally, it should be noted that the reformulation approach presented in this paper

for converting nonlinear optimization problems with discrete sizes as MILP problems has

been generalized and applied to other problems as discussed in Grossmann, Voudouris and

Ghattas (1991).

Acknowledgement.

The authors gratefully acknowledge financial support from the National Science

Foundation under Grant CBT-8908735.



References.

Beale E.M.L, Tomlin J.A. "Special facilities in a general mathematical
programming system for non-convex problems with ordered sets and
variables11, Proceedings of the Fifth International Conference on
Operational Research, Lawrence J. editor,Tavistock Publication^ London,
1970, pp447-454

Birewar D.B, Grossmann LE, "Incorporating scheduling in tha optimal
design of multiproduct plants", Comp&Chem.Eng.yoX 13, No 1/2, ppl41-
161, 1989

Brooke A., Kendrick D., Meeraus A.,
"GAMS A Users Guide", The Scientific Press , 1988

Faqir N.M,Karimi LA, "Design of multipurpose batch plants with multiple
production routes", Proceedings FOCAPD'89, Snowmass Village CO, pp
451-468, 1990

Faqir N.M,Karimi LA," Optimal design of batch plants with single production
routes", Paper 79a, Design&Analysis II, AIChE Annual Meeting,
Washington 1988

Grossmann LE, Sargent R.W.H, " Optimum design of multipurpose
chemical plants ", Ind.Eng.Chem.Proc.Des.Dev. 1979, Vol 18, Nd2,
pp343-348

Grossmann LE, Voudouris V.T., Ghattas O."Mixed-Integer Linear
Programming Reformulation for Some Nonlinear Discrete Design
Optimization Problems", Proceedings International Conference on Recent
Advances in Global Optimization, Princeton Univ, May 10-11,1991

Knopf F.C,Okos M.R,RekIaitis G.V, "Optimal design of
Batch/semicontinuous processes", Ind.Eng.Chem.Proc.Des.Dev. 1982,
21, pp79-86

Kocis G.R., Grossmann LE.,"Global optimization of nonconvex MINLP
problems in process synthesis", Ind.Engng.Chem.Res. 27,
pp 1407-1421, 1988.

Nemhauser G.L, Wolsey L.A.
11 Integer and Combinatorial Optimization",Wiley, 1988

Papadimitriou C.H,Steiglitz K. /'Combinatorial optimization: Algorithms
and complexity", Prentice Hall, 1982

Papageorgaki S, Reklaitis G.V "Optimal design of multipurpose batch plants-
1. Problem formulation ", Ind.Eng.Chem.Res. 1990a, 29, pp 2054-2062

Reklaitis G.V "Progress and issues in computer-aided batch process design",
FOCAPD Proceedings, Elsevier, NY, 1990, pp 241-275

Robinson J.D,Loonkar Y.R , "Minimizing capital investment for multi-
product batch plants", Process Technology Intl, 1972 , 17 , No 11 , p 861

SCICONIC/VM 2.11
" Users Guide", Scicon Ltd, 1991

Sparrow R.E,Forder G.J,Rippin D.W.T, " The choice of equipment sizes
for multiproduct batch plant. Heuristic vs. branch and bound", Ind.Eng.
Chem.Proc.Des.Dev. 1975, No3, Vol 14, pl97

Suhami I,Mah R.S.H, "Optimal design of multipurpose batch plants",
Ind.Eng.Chem.Proc.Des.Dev. 1982, 21, pp 94-100

Tomlin J.A. "Special ordered sets and an application to gas supply operations
planning", Mathematical Programming, 42,1988, pp 69-84

Vaselenak J.A 9Grossmann LE,Westerberg A.W, " An embedding
formulation for the optimal scheduling and design of multipurpose batch
plants", Ind.Eng.Chem.Res,Vol 26, Nol,1987,ppl39-148



Williams H.P "Model Building in Mathematical Programming",
second edition, Wiley, NY, 1985

Yeh N.C.,Reklaitis G.V, " Synthesis and sizing of batch/semicontinuous
processes", Comp&Chem.Eng.,Vo\ ll,No 6,pp639-654,1987



Appendix A. Determination of campaigns for multipurpose plants

Consider the case where five products A,B,C,D and E are going to be produced in

a multipurpose plant as shown in Figure Al. A graph G=(V,E) can be constructed, where

each node represents a product and an edge represents compatibility between two products.

By compatibility it is meant that the production routes of the two products do not share a

common equipment and can thus be processed in the same campaign. For our case the

graph is shown in Figure A2. The different possible campaigns of compatible products is

equivalent to a sequence of maximal clique problems as shown below.

A clique of a graph is defined as being a subset C of V in which all nodes are

connected to each other. A clique is maximal if it is not a subset of any other clique in a

graph. In Figure A3 the maximal cliques of the graph G=(V,E) are displayed. Here each

clique represents a possible production campaign (i.e. produce A and D, C and D, A and

D, and B-C-E simultaneously). Using the clique representation, a clique matrix can be

generated in which the rows represent a clique and the columns represent a product. This
clique matrix is the matrix A with entries a^ that is used in models (RP5) and (RP6).

As discussed in Papadimitriou and Steiglitz (1982) the problem of finding the

maximal cliques of a graph is a well studied problem, although no polynomial algorithm

has been developed.



TABLE I: Data for example 1 (SPC with one unit per stage).

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Size factor Sij

A I B I C
7.9 0.7 0.7

2 0.8 2.6

5.2 0.9 1.6

4.9 3.4 3.6

6.1 2.1 3.2

4.2 2.5 2.9

(I/kg)

D E

4.7 1.2

2.3 3.6

1.6 2.4

2.7 4.5

1.2 1.6

2.5 2.1

Proc. time tij (h)

A B C

6.4 6.8 1

4.7 6.4 6.3

8.3 6.5 5.4

3.9 4.4 11.9

2.1 2.3 5.7

1.2 32 6.2

D

3.2

3

3.5

3.3

2.8

3.4

E

2.1

2.5

4.2

3.6

3.7

22

Cost coeff.

ct(j) ($)

2500

2500

2500

2500

2500

2500

Costexp

B(i)

0.6

0.6

0.6

0.6

0.6

- 0.6

Q(A)= 250000, Q(B)=150000, Q(C)=180000, Q(D)=160000, Q(E)=120000 (KQ)

TABLE II: Computational results on example 1

(Without SOS 1,domain reduction and cutoff).

# dis. sizes

5

8

15

29

Constr.

38

38

38

38

All

Variables

3 6

5 4

9 6

180

Nonzeros

2 4 6

3 7 2

6 6 6

1254

0-1 var's

3 0

4 8

9 0

1 7 4

CPU * Iter.

3.1 195

2.93 181

25.09 985

44.94 1203

* In Vax-6420 sees



TABLE HI: Computational results on example 1

(With SOS 1,domain reduction and cutoff).

# dis. sizes

8

15

2 9

Constr. All

Variables

Nonzeros 0-1 var's CPU * Iter.

38 46 316 40 1.93 57

38 82 568 76 2.85 91

38 154 1072 148 6.64 182

* In Vax-6420 sees

Table IV: Data for example 2 (SPC with parallel units per stage).

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Size factor Sij

A | B

7.9 0.7

2 0.8

5.2 0.9

4.9 3.4

6.1 2.1

4.2 2.5

c
0.7

2.6

1.6

3.6

3.2

2.9

(I/kg)

D

4.7

2.3

1.6

2.7

1.2

2.5

E

1.2

3.6

2.4

4.5

1.6

2.1

Process, time tij (h)

A

6.4

4.7

8.3

3.9

2.1

1.2

B c
6.8 1

6.4 6.3

6.5 5.4

4.4 41.9

2.3 5.7

3.2 6.2

D

3.2

3

3.5

3.3

2.8

3.4

E

2.1

2.5

4.2

3.6

3.7

12

Cost coeff.

a(t) ($)

2500

2500

2500

2500

2500

2500

Cost exp

0(0

0.6

0.6

0.6

0.6

0.6

0.6

Q(A)= 250000, Q(B)= 150000, Q(C)=180000, Q(D)=160000, Q(E)=120000 Kg



TABLE V: Computational results for SPC with parallel units per stage.

# dis.

4

4 *

14

14

" SOS1

sizes

*

Constr.

38

38

38

38

Al l

Variables

102

37

342

240

and domain reduction have beer

Nonzeros

708

253

2388

1674

I used.

0-1 var's

96

31

336

2 3 4

CPU *

2.28

2.33

37.010

8.35

* In Vax-6420

Iter.

166

104

1124

374

sees

TABLE VI: Computational results for MPC/ZW with one unit per stage.

# dis. sizes

5

5 *•

15

15 "

Constr.

53

53

53

53

Al l

Variables

61

52

121

99

** SOS1 and domain reduction have beer

Nonzeros

456

393

876

722

i used.

0-1 var's

30

21

90

68

CPU * Iter.

4.54 238

1.32 97

39.51 1096

5.1 259

* In Vax-6420 sees



TABLE VTL Data for the multipurpose plant with multiple production routes.

Product

A

B

C

D

Group

1

2

A

5

6

Equipment Requirement

Task 1 Task 2 Task 3

Group 1 Group 2

Group 3 Group 4 Group 5

Group 4 Group 6

Group 2 Group 3 Group 6

>

500 L 1000 L

8300 12600

9200 13900

11700 17700

10800 16400

15000 22700

15400 23300

Processing Times h

Task 1 Task 2 Task 3

4.0 6.5

3.9 5.5 4.2

4.5 3.5

6.5 7.0 4.7

Costs (S)

2000 L 2500 L

19100 21900

21000 24100

26800 30600

24900 28400

34400 39400

35400 40500

Size Factors L/kg

Task 1 Task 2 Task 3

1.5

1.6

1.4.

2.2

3000 L

24400

26800

34200

31700

43900

45100

2.0

2.5 1.9

2.4

1.7 1.8

Production

Requirement kg

300,000

250,000

180,000

200,000

Discrete Sizes (Ail Items)
500 L
1000L
2000 L
2500 L
3000 L

Total Available Pnxluction

Time

H = 6200 h



Figure 1. Layout of the multipurpose plant with multiple production routes for example 5.

Groupl Group2 Group3

3
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Figure Al . Layout of a multipurpose plant.
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Figure A2. Graph representation of compatible products.

Figure A3. Maximal cliques of the graph shown in figure A2.


