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Abstract

The course Synthesis of Engineering Systems has been offered by the
Engineering Design Research Center over the last three years. In this
interdisciplinary course students are exposed to two major paradigms for
design synthesis: mathematical programming and knowledge based systems.
The former emphasizes the mathematical formulation of optimization
problems that involve discrete and continuous variables for the selection of
topologies and parameters in engineering systems. The latter emphasizes
representations and search techniques for processing qualitative knowledge
for synthesis of designs by hierarchical decomposition.

In the fall of 1990 the two authors taught this course and assigned a term
project in which the students applied both synthesis approaches to a design
problem in their domain. Most of the projects dealt with civil, chemical and
mechanical engineering problems, reflecting the disciplinary background of
the students. Overall the quality of these projects was very good and they
showed a number of different schemes for combining AI and optimization. For
instance, some used AI techniques for preliminary screening or as critics of
mathematical optimization, while others showed a direct comparison between
the approaches.

This paper summarizes the experience gained in the course, illustrates
representative student projects, discusses the major results and conclusions,
and provides a perspective for future research needs and educational
approaches in this area.
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1. Course overview

Motivation. The course Synthesis of Engineering Systems is a first year

graduate level course offered by the Engineering Design Research Center

(EDRC) at Carnegie Mellon. It is one of four interdisciplinary courses taught

by members of the EDRC. The courses are administered by the Carnegie

Institute of Technology (the college of engineering at Carnegie Mellon) and

accepted by all engineering departments. The overall motivation of the suite

of courses is twofold: (1) to provide a rapid introduction for new graduate

students and research assistants to the common methodologies underlying

EDRCs research activities; and (2) to foster an interdisciplinary setting for

problem-solving the reflects the multi-disciplinary nature of engineering

design processes.

The synthesis course is intended to present, compare and contrast a set of

generic, domain-independent synthesis methodologies. For the purposes of

the course, synthesis is defined as the generation, selection and integration of

systems, subsystems and components satisfying global objectives and

requirements as well as constraints due to physical lrfWs governing the

behavior of the systems. Synthesis is thus viewed as a generic design activity

in which abstract descriptions of artifacts (objectives and requirements) are

elaborated into more detailed descriptions (structure and behavior of the

system, etc. synthesized). The methodologies of interest are those that

systematically generate alternatives and identify improved designs.

The development and application of synthesis models is presented from two

perspectives: the mathematical programming approach and the knowledge-

based approach. The potential benefits for the combination and integration of

these two approaches has been recognized recently by a number of

researchers (e.g. see Glover, 1986; Simon, 1987). The two components of the

course are summarized in the following subsections.

Mathematical programming component. This component presents

optimization concepts and algorithms arising in Operations Research that can

be applied to the synthesis of engineering systems. The context for the

application of these techniques is for the case when synthesis problems can



be posed quantitatively as well defined problems that require handling of
constraints and determination of optimal trade-offs.

For the application of mathematical programming techniques, the following

design methodology is followed. It is assumed that a representation of

alternatives is developed for the choices of topologies and parameters. This

representation, which is denoted as a superstructure, is then modelled with

discrete and continuous variables. The former are used to model the selection

of the topology, while the latter are used to model the selection of design

parameters and the state variables in the system. The performance of the

system and design specifications are represented through equations, and the

criterion for the selection through an objective function. Finally, the design

is obtained by solving the corresponding mathematical program, which in

general corresponds to a mixed-integer nonlinear program (Grossmann,

1990). The MINLP may reduce to any of the following optimization problems

depending on whether nonlinearities and/or discrete variables are absent in

the formulation: linear programming (LP), mixed-integer linear

programming (MILP) or nonlinear programming (NLP).

In order to apply the above design methodology, emphasis is first placed on

the development of the superstructure of alternatives which may be

represented in the form of a tree, or more generally, as a network. As there is

no formal theory for developing these representations, they are illustrated

through example problems. Basic concepts of optimization are then covered to

first present NLP and LP techniques (in that order), in order to address design

problems with only continuous variables. The techniques covered include

successive quadratic programming, reduced gradient and the simplex

algorithm. The modelling with 0-1 variables is introduced next together with

special classes of Operations Research problems (e.g. assignment, plant

location, knapsack, set covering) in order to address design problems that

explicitly require discrete variables. The branch and bound method for MILP

is described, as well as the Generalized Benders and Outer-Approximation

algorithms for MINLP optimization. Finally, it is shown that inference

problems for logic and heuristics can be modelled as MILP problems.



Throughout this part of the course students are given several homework

assignments in which they have to model and solve small optimization

problems in various domains. This is accomplished with the modelling system

GAMS with which they can solve LP, NLP, MILP and MINLP problems. GAMS

allows the students to automatically access the optimization codes MINOS for LP

and NLP, ZOOM for MILP and DICOPT++ for MINLP. The latter is a code that was

developed at the EDRC by Viswanathan and Grossmann (1990). Students also

have access to the interactive computer code LINDO for LP and MILP problems.

Although this code is not as powerful as GAMS, it has the advantage that it is

easier to use.

In our experience students face several difficulties in this part of the course.

Firstly, it is often the case that some of the students may have had none or

very little previous exposure to optimization. We try to overcome this problem

by not assuming previous knowledge, except for basic background in calculus

and linear algebra. The second difficulty, which is perhaps the most serious

one, is that students experience difficulty in formulating optimization

problems. We try to overcome this problem by devoting some lectures to

modelling, and presenting examples derived from the research work in the

EDRC. Finally, although GAMS is a powerful platform for optimization, it

requires some effort and time to learn the syntax. We try to overcome this

problem by providing sample input files of GAMS, and offering the option to

use the program LINDO which is far easier to use. However, LINDO is restricted

to LP and MILP problems and has no capability of handling indexed equations

and variables.

Knowledge based component. This component presents synthesis

methodologies arising from the fields of Artificial Intelligence and

knowledge-based expert systems (KBES). Due to the relative recency of the

field, the applicable methodologies and approaches cannot be categorized and

formalized to the same extent as the techniques of mathematical programming.

The same general model of synthesis as in the first part of the course is used,

with the following limitations:

1. synthesis tends to emphasize topology and may be less concerned with

parameter value selection;



2. analysis may be non-existent or may only involve a weak quantitative
model;

3. evaluation tends to emphasize satisficing rather than optimizing; both

constraints and evaluation functions may be expressed in terms of

heuristics (approximations, preferences, etc.)

Two methodologies are discussed in depth: rule-based knowledge-based expert

systems and hierarchical decomposition. The rule-based formalism is used to

decompose the design problem into a hierarchy of goals; sets of rules

implement the identification, selection, evaluation or elimination of

alternatives for each goal element. Hierarchical decomposition is a further

formalization of this approach, where the knowledge base represents a

hierarchy of system, subsystem or component alternatives available at each

level of the artifact decomposition; problem-specific facts and heuristic

constraints among alternatives at various levels represented in the knowledge

base are used to systematically generate feasible alternate configurations.

Other knowledge-based synthesis strategies, including heuristic search, case-

based reasoning, analogical reasoning and model-based reasoning are treated

in lesser detail and illustrated with engineering synthesis applications,

whenever available.

In this part of the course, students are given two sets of homework

assignments, in which they develop small expert systems using the tools

provided. The first set uses VP-Expert, a PC-Based shell. The second set uses

EDESYN, a domain-independent shell specifically geared to synthesis by

hierarchical decomposition (Maher, 1988). A single application,

understandable to students with varying technical backgrounds, is chosen for

implementation; during the past semester, the problem was to design a screw

for connecting two pieces of wood, subject to various constraints.

The students difficulties manifest themselves at two levels. First, students are

unfamiliar with rule-based programming and attempt to program with strict

procedural control structures. Second, the students have difficulty in

collecting, organizing and coding domain knowledge, the traditional



"bottleneck" of expert systems development. We try to overcome their problem

by giving several lectures on knowledge acquisition, and directing students to

handbooks on technical data. Some enterprising students have interviewed

craftsmen and hardware store , salesmen to collect domain knowledge.

2. Project setting

Pedagogical setting of project. As stated above, weekly homework

assignments are given throughout both portions of the course, illustrating

and elaborating the lecture material on assigned problems. The problem sets

are either generic (i.e., independent of any specific engineering domain) or

drawn from specific disciplines (e.g., chemical, civil or mechanical

engineering). In order to complement these assignments, which allow

students to learn and master basic concepts in mathematical programming and

AI, each student is required to complete a term project involving the two

methodologies applied to a synthesis problem chosen by the student. In this

context, the student projects serve two functions:

1. they are the only assignments that tie the two halves of the course

together; and

2. they are the only opportunity the students have of applying the

methodologies presented to a problem in their specific domain of

specialization.

The first function may eventually be obviated as the two components of the

course are more tightly integrated. The • second function will remain crucial.

Students come into the course with a variety of engineering backgrounds, and

as graduate students they intend to further specialize in their respective

engineering disciplines. It is the theme of this and the other EDRC-sponsored

courses that the best way to "open the student's eyes" to interdisciplinary

methodologies, transcending their discipline-based education, is by providing

a setting in which they can explore, apply and evaluate such methodologies in

solving a "familiar" problem. Experience has shown that such an approach

yields better understanding of the role of the methodologies presented than

any set of instructor-assigned problems.



Project organization. Each student was given the choice of selecting a

synthesis problem of his/her domain. The initial assignment involved: (1) the

identification of the synthesis problem to be solved; (2) the identification of

major elements constituting the qualitative and the quantitative aspects of

their synthesis problem. This assignment was made after covering the

mathematical programming part, and after the presentation of the rule-based

KBES formalism but before the presentation of a framework for hierarchical

decomposition. Below we briefly describe the initial feedback that was

provided to the students.

Mathematical programming component. This component of the project

requested: (1) a preliminary description of the superstructure of alternatives

and the trade-offs to be examined; and (2) a preliminary formulation to

identify the nature of the optimization problem.

The initial assignment was returned to the students with suggestions which in

general tended to be of two types. One was for reducing the scope of the

problem to simplify the formulations and to reduce the size of the optimization

problems. The other was to redefine the design problem in order to expand the

scope for optimization. In most cases the suggestions were of the first type.

Also, the majority of the students elected to use GAMS for solving their

optimization problems.

Knowledge-based component. This component of the project requested:

(1) a preliminary identification of sources of knowledge to be incorporated

(e.g., textbooks, handbooks, personal experience or interviews with experts);

and (2) a preliminary design of the KBES, documented as a goal graph.

To assist the students, four possible models of the KBES and its integration to

the mathematical programming component were presented:

1. alternative synthesizer, where the KBES is an alternative to the

quantitative component, producing similar results based on qualitative

considerations using satisficing;



2. preprocessor to the quantitative model, assisting in setting up the

mathematical model by selecting discrete choices, initial parameters,

etc. on the basis of qualitative, heuristic criteria;

3. evaluator ox critic of the quantitative model, evaluating its output in

terms of qualitative constraints and other considerations not included

in the quantitative model, and critiquing the quantitative solution; or

4. redesign advisor similar to an evaluator, but producing

recommendations on how to reformulate the quantitative model so as to

include recommendations identified by the qualitative evaluation.

The initial assignment was returned with comments and suggestions. The

suggestions generally included recommendations to reduce the scope of the

KBES to manageable size and suggestions for closer integration with the

quantitative component. The majority of the students used the shell EDESYN

for implementing the KBES.

Summary of projects. In the Fall of 1990, 18 students took the course,

distributed as follows:

Mechanical Engineering 7

Chemical Engineering 6

Civil Engineering 4

Electrical and Computer Engineering 1

The projects dealt with a variety of different applications. These included

design for assembly, two and three dimensional triangulation for finite

element calculations, determination of trajectories for robotic spray gun,

design of a gearbox, optimal project selection, synthesis of liquid-liquid

extraction networks, synthesis of investment portfolios, design of truss

structures and optimal wall positioning in high rise buildings. Below we

briefly describe some of these projects.



3. Representative student projects

Optimum truss design and selection. In this project Susan Schrader, a

first-year graduate student in Civil Engineering, investigated the optimum

design of truss structures and the use of heuristics for selecting truss types

and preliminary proportions. The mathematical optimization component

formulated truss design as an LP problem subject to equilibrium and stress

constraints. The geometry of the truss was fixed, and all potential truss

members were included in the formulation. Under a single loading condition,

the LP converged to a statically determinate configuration, as expected (i.e.,

only 6 of the 10 members had non-zero areas, corresponding to the 6 available

equilibrium equations). This is a simple example of topology or configuration

optimization. The knowledge-based component consisted of sets of rules for

selecting the layout of the truss, the preliminary dimensions, and the

preferred configuration from among six standard truss types. The heuristics

were extracted from old (circa 1920) structural design textbooks; the student

commented that these rules may not be realistic for modern bridge design

practices. The student proposed two integration schemes: the KBES as a

preprocessor supplying layout and dimensions to the LP program; or the KBES

as a post-processor evaluating the optimal design in terms of suitability for its

intended use.

Optimal project selection. Paul Peck, a first-year graduate student in

Chemical Engineering, formulated a project selection scenario involving 7

projects. The projects are first pre-screened by a KBES which evaluates them

on the basis of: the company's long range goals; the current economy; worker

satisfaction; and public image concerns. Projects rated as acceptable are then

optimized with a MILP formulation to maximize profit with constraints on

project cost and available funds, engineering hours and land. The MILP

contained 7 decision variables with an OR constraint on two of the projects.

The integrated system was run on the following cases:

1. Base case: MILP selected projects 3, 6 and 7;

2. Stable economy, goal to increase production and improve public image:

KBES rejected project 3 because it produces a harmful chemical, MILP



selected projects 2, 6 and 7; and

3. Unfavorable economy, good public image: KBES rejected projects 2 and 3

because of high startup costs, MILP selected projects 1, 6 and 7.

The student commented on the extreme sensitivity of MILP to the cost

coefficients in the cost and profit functions, and on the limited knowledge

base of the KBES implemented resulting only in accept/reject decisions rather

than a desirability scaling factor.

Design of trajectory for robotic spraying. Rahul Bhargava, a graduate

student in Mechanical Engineering working on an EDRC project, considered

the problem on how to spray a uniform layer of metal on a 3-dimensional

surface using a robotic spray gun. Aside from having to achieve good finish

quality by uniform spraying, the objective is for the gun to move along a path

that involves minimum changes in orientation while at the same time

requiring a spraying sequence that requires minimum time. In order to

formulate the optimization problem it was assumed that a set of N points was

given which cover the entire surface. Each point is characterized by a 3-

dimensional position and a direction which is normal to the surface at that

point. To ensure good quality, the gun should be oriented along this vector.

Given this information, the aim is to visit each of these points exactly once so

as to minimize the distance traveled by the gun and the changes of

orientation. This problem was formulated as a Traveling Salesman problem

(TSP) in which the cost coefficients for moving from one point to the other

include a combination of the distance and change of orientation. Although

more efficient special purpose methods exist for the Traveling Salesman

problem, the problem was solved with GAMS as an LP problem with a small

subset of subtour elimination constraints. For problems with up to 10 points

the LP solution yielded optimal closed tours. The KBES component for this

project was used as a critic or evaluator for the optimal solution of the TSP to

try to identify sections where uneven spray may occur due to the selection of

points. Heuristics based on the experience of the student and various people

working in the Rapid Tool Manufacturing project at the EDRC were coded in

VP-Expert. The student noted that a limitation of the qualitative model was its

local outlook. However, the student also felt that the expert system could be a

10



useful advisory program to alert for potential faults, which in turn could

suggest the redefinition of the spraying points.

Design for assembly. The goal of this project by Raju S. Mattikali, a

graduate student in Mechanical Engineering working on an EDRC project, is to

address assembly concerns during design synthesis. The objective is to

determine the shape of components so as to facilitate assembly. The two parts

of the student's project address this problem at two distinct levels of

representation of a component. The quantitative portion represents the

component as a flexible polygon with fixed lengths but changing angles. The

interior angles are to be determined such that: the distance between the

closest vertex of the polygon to a boundary edge is maximized; the total sum of

distances is minimized; the polygon does not intersect any boundary edge; and

the polygon remains ordered (i.e., no crossing edges) and convex. The

resulting problem with non-linear objective functions and constraints was

solved using GAMS. The KBES portion of the project assumes that the

component's shape features (e.g., bosses, stubs, etc.) are identified and may be

evaluated for handling and insertion in terms of the component's symmetry,

size, weight, handling distance, type of fit, hold-down requirements, etc. The

student commented that the two parts of the project could not be integrated,

due to the absence of a mapping function between the low-level geometric

representation used for the NLP problem and the high-level features used by

the KBES.

Synthesis and modification of mortgage-based securities

portfolios. In this project, Jonathan Knight, a first year student in Chemical

Engineering, considered the selection and possible restructuring of a portfolio

by quantitative and qualitative approaches, respectively. For the quantitative

part, the objective in the project was to synthesize a portfolio of mortgage-

backed securities from an alternative space of assets and hedges that would

maximize future liquidation value. The portfolio was subject to cash flow

constraints, maximum portfolio size constraints, asset purchasing constraints

and portfolio management heuristics. MILP and MINLP models were developed

and applied to a problem with 10 assets and 4 hedges. For the qualitative

aspect, the objective was to design an expert system to modify or restructure

the portfolio given uncertainties in future interest rates and prepayment

11



rates. The major goal of the expert system was to avert possible financial

disaster. The unique feature of this project was the fact that it used real world

data that were supplied by an investment company. This in turn required

considerable preprocessing of data to formulate the parameters in the

quantitative and qualitative models. As for the integration of quantitative and

qualitative knowledge, it is interesting to note that this was accomplished at

two levels. Firstly, the mathematical models incorporated integer constraints

that reflected management portfolio heuristics to eliminate alternatives that

were unlikely to be financially attractive. Secondly, the qualitative

component served as a redesigner of the quantitative solution in the event

that the parameters used in the optimization would change significantly.

4. Generalizations

The experience in teaching the course on Synthesis of Engineering Systems,

and particularly the feedback from student projects, clearly support our

premise that engineering synthesis can significantly benefit from the

creative integration of quantitative, mathematical optimization-based methods

with qualitative, Artificial Intelligence-based methods including, but not

limited to, knowledge-based expert systems methodologies. On the other hand,

as the student projects amply demonstrate, the tools implementing these two

methods presently form two unconnected "islands of automation1' with no

direct linkages between the two approaches. This latter observation suggests

an agenda for considerable future work. This agenda is discussed below in the

major categories of research, tool development, and education.

Research. A basic question that has emerged from the experience with the

projects in this course, and in fact with other projects in the EDRC, is how to

develop a common framework for combining or integrating the mathematical

programming and Artificial Intelligence approaches for the synthesis of

engineering systems. In general, it would seem that two major alternative

paradigms are the following:

1. The quantitative and qualitative models act as two interfaced

knowledge sources under a common coordination scheme.
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2. The quantitative and qualitative models are tightly integrated under a

common framework.

The first alternative would build on the emerging methodologies of distributed

problem solving, cooperative problem solving and concurrent design

(Cutkosky and Tenenbaum, 1990; Durfee et al., 1989; Lesser and Corkill, 1987).

In such systems, the overall problem-solving task is distributed to a number of

heterogeneous agents, each of which is capable of contributing some portion

to the overall solution process. Communication, coordination and control of

agents is exercised in a variety of ways, of which the blackboard architecture

is most popular (Lesser and Corkill, 1987).

Within the context of engineering synthesis, agents in the distributed

problem-solving system would consist of quantitative agents implementing

various MILP and MINLP procedures and qualitative agents performing a

variety of functions, including:

1. Preprocessors which may assist the user to formulate optimization

problems, generate equations and constraints, select the superstructure and

define the corresponding discrete variables, etc.

2. Method selectors which could examine the nature of the optimization

problem and assist in selecting the appropriate mathematical programming

agent(s) to be activated.

3. Progress monitor that wpuld monitor the progress of quantitative

agents and recommend problem reformulation or alternate agent selection if

the quantitative agents encounter difficulties (slow or no convergence,

infeasibility, etc.).

4. Evaluators, critics or other postprocessors that may apply additional,

qualitative criteria to the solutions generated by the quantitative agents.

5. Redesign advisors that may use the results of the postprocessors to

recommend changes in the problem formulation and other design changes in

the synthesis process.
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Major research issues that need to be addressed include the development of

symbolic problem representations that can support the full range of

quantitative and qualitative processes and the development of domain-

independent representations of the heuristics and problem superstructures

involved.

It is to be understood that interfaced systems of the class sketched cannot aim

at producing global optima over all the variables and constraints that may

arise. However, they may lead to increasingly comprehensive optimization

problems or, at least, provide optima over broader ranges of problems

considerations than possible with direct, manual generations of quantitative

optimization models.

The second alternative is the one where both qualitative and quantitative

knowledge sources are activated simultaneously. This case would be

particularly relevant for expediting the search in large combinatorial

optimization problems. Here one possible integration framework is to convert

the heuristics and logic of a knowledge base as an MILP model (see Post, 1987;

Raman and Grossmann, 1991a), which can then be incorporated into a

quantitative optimization model. The qualitative MILP model is obtained by

stating the logic and heuristics of a knowledge base in conjunctive normal

form which is then translated into the form of inequalities with 0-1 variables.

Boolean variables are also assigned to the possible violation of heuristics

whose weighted sum is minimized in the objective function. As discussed by

Raman and Grossmann (1990), a quantitative integration can be accomplished

at the formulation level in which the qualitative MILP model is added in the

form of constraints to the quantitative model with a threshold value for the

violation of the heuristics. This has the effect of limiting the search space.

When heuristics are excluded, and only logic relations are retained, optimality

can still be guaranteed, and the logic serves as cuts that reduce the

combinatorial search of the problem. Alternatively, one may include the

qualitative MILP constraints in one component of an algorithm, such as is the

case of master problems for MINLP optimization. Both schemes for integration

have shown to have the effect of often reducing the computational expense

for the search in the quantitative model.

14



An important drawback, however, with a quantitative framework for

integration is that the additional constraints of the qualitative MILP model

increase the size of the optimization problem, and therefore computational

savings are not always realized. To overcome this difficulty, an alternative is

to perform the computations symbolically on the qualitative part. For

instance, recently Raman and Grossmann (1991b) have shown how logical

inference for selecting the branching in 0-1 variables and fixing subsets of

them can be performed as part of a quantitative branch and bound search for

MILP optimization. This integration scheme has proved to be much more

efficient than the quantitative integration described above. However, this

method is still limited to handling only logic information, not heuristics.

Therefore, a major challenge that remains to be solved is how to integrate

simultaneously symbolic computations of a knowledge base with quantitative

computations for optimization.

Tool development. The last decade has witnessed the development of a

number of modelling tools for optimization such as GAMS and LINDO, which

represent a major improvement over the low level optimization routines

which in the past required the development of FORTRAN routines and/or MPS

files. Although the current modelling systems have greatly facilitated the use

of optimization, the fact remains that they still require significant coding

effort and learning for efficient use. Furthermore, except for few LP

modelling systems, the transfer and preparation of data can be a major task. It

would be clearly desirable to develop optimization tools that require little

expertise by the users, which can handle symbolic information and be

accessed in a variety of forms, and which can be easily interfaced to data bases

or spreadsheets. Furthermore, nonlinear optimization tools have not achieved

yet the reliability and robustness of linear programming codes. These are all

areas which clearly deserve attention for further work. It should be noted

that current work along these lines includes the development of the ANALYZE

support system by Greenberg (1991) for LP optimization, the OSL routines for

LP and MILP by IBM which have an open architecture, the What's Best and

What-If Solver programs for LP and NLP optimization that can be accessed

through spreadsheets, and the program REFORM for reformulation of NLP and

MI(N)LP problems by Amarger et al. (1990).
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In a similar vein, tools for knowledge-based synthesis are still rudimentary.

The available KBES shells are largely geared to diagnostic problems. EDESYN

(Maher 1988) is the first attempt to develop a domain-independent synthesis

shell comparable in scope to the available diagnosis frameworks. Entirely new

generations of knowledge-based synthesis frameworks suitable for broad

classes of engineering synthesis problems are needed.

Ed u cat ion. Despite the fact that synthesis lies at the core of engineering

design, progress has been slow in incorporating synthesis in the

undergraduate and graduate engineering curriculum. Given the fact that

decisions at the synthesis level have a major impact in the cost and quality of

the designed artifacts, there is a clear need for synthesis to permeate

engineering education. The experience with our course has shown that

synthesis is teachable and that there are benefits from doing this in an

interdisciplinary setting. This is of course not to say that discipline-based

synthesis courses are not needed. These are certainly required to exploit the

physical insight and knowledge of the particular discipline. On the other

hand, an interdisciplinary course can emphasize basic design methodologies,

as our course has done, and provide students with broader perspective.

Among the major challenges that we feel need to be addressed for effectively

teaching synthesis as an interdisciplinary graduate course are the following.

Firstly, how to present underlying synthesis concepts that emphasize

strategies and formulations to prevent mathematical optimization from

becoming a "black box11? Secondly, how to to provide "synthetic" knowledge-

bases to supplement students* missing or limited domain knowledge? Finally,

how to effectively present the combination and relation of optimization and AI

approaches to synthesis? Undoubtedly answers to these questions will require

both basic research as well as additional experience in teaching these type of

courses.

5. Summary and conclusions

This paper has reported the experience in teaching an interdisciplinary

graduate course on synthesis at the Engineering Design Research Center at
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Carnegie Mellon. The outline of this course has been described, emphasizing

the' experience with projects where students attempted to combine

optimization and AI in a variety of different domain applications. While these

projects provided some interesting results and insights, the tools

implementing these two methods presently form two unconnected "islands of

automation" with no direct linkages between the two approaches. Based on

this experience some possible directions for future research, tool development,

and education have been pointed out.
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