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Abstract

This technical report promotes graphically based met\wdsfor determining the gain

margin and phase margin of linear time-invariant single-input, single-output control

systems. The gain margin, or amount of gain that can be increased before the closed-loop

system becomes unstable, can be determined from a graph showing the angle of each

closed-loop system eigenvalue in the complex plane as a logarithmic function of real gain.

By identifying the gain interval for which all eigenvalues have angles within the stable

region, the gain margin can be calculated. At any constant real gain, the phase margin, or

range of phase angle corresponding to a stable closed-loop system, can be determined from

a graph of the angle of each closed-loop system eigenvalue in the complex plane as a

function of gain angle. The proposed methods do not require frequency calculations, and

serve as alternate means for stability-robustness studies. Furthermore, the phase margin

determination highlights the importance of root sensitivity, with the practical design

guideline of not selecting control gains near break-points.
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Classical Presentation of Relative Stability

In the design of control systems one is interested in the relative stability of a system

as well as its absolute stability. Although as Bellman has stated "there is no stability to the

definition of stability," a system can be considered as being absolutely stable if a transient

oscillation decays and ultimately vanishes. A system on the bonier of absolute instability

are prone to oscillations that continue for a long time. The overshoot and settling time for

step inputs may be excessive degrading the performance of the system. Furthermore,

systems operating near marginal stability may be driven to instability from sensor noise,

disturbances, and modeling errors. Thus, a system has to be relatively as well as

absolutely stable in practice, making robustness a paramount design consideration.

In the time domain, relative stability of a linear time-invariant (LTI), single-input,

single-output (SISO) control system is measured by parameters such as the maximum

overshoot and the settling time. In the frequency domain, the resonance peak can be used

to indicate relative stability. Alternatively, relative stability can be determined by means of

the Nyquist plot of the loop transfer function g(s). The proximity of the Nyquist contour

(g(jco) polar plot) to the critical point, (-1, jO), yields an indication the closed-loop

system's degree of stability.

A typical Nyquist plot or open-loop frequency locus for a minimum phase transfer

function g(s) is shown in Figure 1. (It is assumed that g(jco) is a minimum-phase transfer

function, so that the portion of the Nyquist contour that corresponds to s=jco, 0<co<oo, is

sufficient for stability analysis.) Application of the Nyquist encirclement test shows that

the closed-loop system is absolutely stable. If the loop gain is low, the Nyquist plot of

g(jco) intersects the negative real axis at a point that is quite far to the right of the critical

point. As the gain is increased, the intersection point of the Nyquist contour and the

negative real axis moves closer to the critical point, eventually passing through it

(corresponding to marginal stability) and then encircling it (indicating instability).

The gain margin is used to quantify the distance between the Nyquist contour

intersection of the real axis and the critical point. In general, if the intersection occurs at a

distance lg(jo)p)l from the origin, then multiplying the gain by a factor l/lg(jo)p)l produces

instability. The factor l/lg(jo>p)l is the gain margin, and the special frequency, Op, is the

phase crossover frequency, i.e., the frequency at the phase-crossover where Zg(jo>p) =

180*.. In control engineering, it is more common to express this factor in decibels (dB)

with a positive gain margin indicating a stable system. The gain margin GM in decibels is

given by



GM = 20log
i|gGo)p)|J (1)

Thus, the gain margin is the number of decibels by which the magnitude of the open-loop

frequency response falls short of unity when the phase angle is 180*.

[g(jco)]

Figure 1. Nyquist Diagram for Calculation of Gain and Phase Margin.

Since the gain margin is the factor by which the gain can be multiplied before the

closed-loop system becomes unstable, it follows that it can also be determined from the

root locus. The gain margin can be expressed as

GM = 20 log kl1

(2)

where k* is the gain corresponding to marginal stability, z.e., the gain at the crossing of the

jco axis in the root locus plot. If the root locus does not cross the stability boundary for any

gain, the gain margin is infinite.

The phase margin is also a measure of relative stability. It is the angle by which the

phase of the open-loop frequency response falls short of -180° when the magnitude is

unity. Thus, the phase margin, denoted as PM in Figure 1, is the additional phase lag

required to just make the system unstable. The phase margin is the phase at the frequency,

O)g, the gain crossover frequency, where the magnitude or "gain" of g(jco) is unity (0 dB).



A positive phase margin indicates a stable system. (In Figure 1, the phase margin is

measured clockwise from the negative real axis, with a positive phase margin denoting a

stable system.)

The phase and gain margins can be viewed as safety factors in the design

specifications. A useful rule-of-thumb that is generally applicable to control systems is

that for adequate closed-loop stability the gain margin should be greater than 6 dB and the

phase margin should be between 30# and 60# (Ogata, 1990). (The 6 dB limit corresponds

to the quarter amplitude decay response obtained with the gain settings given by the

Ziegler-Nichols ultimate-cycle method (Palm, 1986).) Some control engineers offer more

restrictive measures, suggesting GM > 8 dB and PM £ 40# or even 50*. These values

should be viewed as rough, albeit often useful, working guides. In general, it is not

desirable to make the margins too large since this corresponds to low gain systems yielding

sluggish designs that may result in large steady-state errors (Palm, 1986).

In this report, the concepts of gain margin and phase margin are interpreted using

an alternate paradigm, namely the feedback block diagram of Figure 2 where the forward

gain is given by k=lkleizk. The gain margin corresponds to the range Ikl can be adjusted,

assuming Zk=0, for the closed-loop system to be stable. Similarly, the phase margin

corresponds to the range that Zk can be adjusted for a given Ikl such that the closed-loop

system is stable. This perspective does not involve the calculation of the gain or phase

crossover frequencies, nor does it require Nyquist or Bode plots for illustrating the gain

and phase margins.

•N e(i) Ikl e i Z k u(s)
g(s) y(s)

Figure 2. Feedback Block Diagram with Forward Complex Gain.

The gain k in equation (2) is related to the gain margin under the assumption that the

gain is real. (In any physical system the gain is real.) An advantage of employing equation

(2) is that it provides a means to determine the gain margin from relations linking the gain

and measures of stability. The most popular graphically-based tool employing gain is the



Evans root locus, in which gain is an implicit variable. To exploit the relation of equation

(2) we seek a graphical tool that expresses the information of the root locus in conjunction

with the gain continuum (as opposed to discrete tick marks representing gain on the root

locus). Since a key assumption in root locus theory is that the gain is real, root locus

analysis is limited to calculation of gain margin and not phase margin. By generalizing the

forward gain to be a complex quantity with magnitude and phase angle, it is possible to

generate a graphical tool to determine phase margin. This report promotes the use of

graphically-based tools for gain margin and phase margin determination.

Gain Margin from Angle-Gain Plot

An alternative graphical representation of the standard root locus plot is to present

the magnitude and angle (phase) of the closed-loop system eigenvalues in separate graphs

that show the explicit dependency of the forward real gain k=lkleJz0=lkl. These plots,

called the magnitude and angle gain plots, respectively, have been proposed (Kurfess and

Nagurka, 1991a, 1991b) as a useful pair of plots for control system analysis and design.

In fact, they follow from a natural progression of perspectives of the standard root locus in

an analogous fashion that the Bode plots are an alternate representation of the Nyquist

diagram. By directly exposing the influence of gain magnitude on the system eigenvalues,

the gain plots enable the designer to select values of gain corresponding to stable behavior

that meet desired performance specifications, such as achieving the natural frequency and

damping ratio of interest. From the angle-gain plot, the range of gains for which the

closed-loop system is stable can be determined by inspection. The magnitude-gain plot is

also an important design aid since the slopes of the loci are related to root sensitivity

magnitudes (Kurfess and Nagurka, 1991c). Again, by inspection, the designer can select

gains corresponding to robust operating regimes.

The expression given by equation (2) is especially well suited for determination of

gain margin from the angle-gain plot. In particular, k*, the gain corresponding to marginal

stability, can be determined directly from the angle-gain plot by noting the angle of any

eigenvalue that maps to a location on the imaginary axis, i.e., Zs = ±90*. Thus, given a

design value of magnitude k, equation (2) can be used to calculate the gain margin. From

equation (2),

GM = -201og |k| + 201og |k*| (3)

which suggests that the gain margin is logarithmically proportional to Ikl, as shown in

Figure 3. The slope of the line is -20 dB/gain and the intercept is GM = 20 log Ik*1 dB at

lkl=l and GM=0 dB at lkl=lk*!.



Example 1

The opciv-loop transfer function of this example is given by

1

V + «r (4)

It is embedded in a closed loop system of Figure 2 with k=lkleJ°. The root locus is shown
in Figure 4. As the gain is increased the real eigenvalue moves deeper in the left half plane
along the real axis whereas the complex conjugate pair of eigenvalues crosses the imaginary
axis and enters the right half plane. This behavior is readily observable in the associated set
of gain plots, namely the magnitude and angle gain plots of Figure 5a,b, respectively. By
inspection of the angle-gain plot, marginal stability is reached at k=k*=128. From
equation (2), the gain margin GM = -20 log k + 42.1 dB. At k=100 the GM = 2.1 dB
indicating that the closed-loop system with unity forward gain can be increased 2.1 dB
before the stability margin is reached. At k=200 the GM = -3.88 dB, i.e., the gain must be
decreased 3.88 dB for stability to be reached. The results for several gain magnitudes are
summarized in Table 1. Also shown is the phase crossover frequency, calculated from a
frequency analysis. In the proposed approach there is no need to compute this intermediate
frequency.

GM(dB)

20 log Ik*

0(dB)
Ikl Gog scale)

Figure 3. Gain Margin vs Gain Magnitude Showing Logarithmic Relation.
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Figure 4. Root Locus Plot of Example 1.

Phase Margin from Angle-Angle Plot
By relaxing the constraint that the gain be purely real, it is possible to graphically

depict the phase margin in a plot showing the angle of each closed-loop eigenvalue vs. the
angle of the gain. The perspective of viewing the forward gain as a complex quantity is
counter to the traditional presentation. It can result in counter-intuitive behavior, e.g., the
possibility of generating complex system eigenvalues that do not occur as complex
conjugate quantities.

For a complex forward gain of given magnitude, it is possible to compute and
display the root loci showing the closed-loop eigenvalue trajectories in the complex plane
as implicit functions of the gain angle. However, sketching rules are not available and
there is limited, if any, useful information for the designer. An alternative graphical tool is
to depict the angle of each closed-loop system eigenvalue vs. the angle of the gain, Zk, for
a given real gain Ikl. We have called this graph the angle-angle plot. The phase margin can
be determined by inspection of this graph by identifying the smallest angle of k for which
any eigenvalue crosses the instability boundary, i.e., ±90* in the complex plane.
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Figure 5. (a) Magnitude Gain Plot and (b) Angle Gain Plot of Example 1.



An angle-angle plot can be generated for a given value of the gain magnitude. This
is analogous to the angle-gain plot which corresponds to a single value of the gain angle,
namely Zk=O. A popular example of a zero angle variational magnitude analysis is the
Evans root locus plot where Ikl only is varied. Thus, it is possible to produce a family of
angle-angle plots for different values of Ikl. Once Ikl is chosen, a phase analysis is quite
important since gain margin analysis alone does not suffice for determining stability and
robustness (Kuo, 1991).

The angle-angle plot presents phase margin information directly. The phase margin
is read from the plot as the Zk that forces any of the eigenvalues to cross the ±90"
boundaries. The phase margin is available without the use of frequency domain
information, i.e., there is no need to compute the 0 dB crossover frequency for the forward
loop transmission. In addition to phase margin, the angle-angle plot shows phase margin
sensitivity. The sensitivity is observed from the slopes of the curves. Large derivatives
indicate that the phase margin is sensitive to angle variations. Sensitivity information is
important when considering augmenting the system with other systems such as low pass
filters, or when including modeling errors into the control design (Doyle and Stein, 1981).

Example 1 Revisited

We again consider the system given by equation (4). For the phase margin analysis
we are especially interested in Ikl = 9.48 corresponding to the break-point of the
eigenvalues on the root locus, and gain magnitudes near it (e.g., Ikl = 9 and 10). The
break-point gain has been isolated to illustrate the corresponding significant changes in the
phase margin sensitivity. Table 1 shows the results, and includes an entry for 0)g, the 0 dB

gain crossover frequency obtained via standard Bode plot techniques.

Figures 6a,b,and c are the angle-angle plots for the cases Ikl = 9, 9.48, and 10,
respectively. From the figures, the phase margin is the angle of k that causes an eigenvalue
to cross the 90# line. An interesting attribute is the linear asymptotic behavior of the curves
as Zk increases. A second intriguing feature is the large slope of the curve near Z k=0# for
the angle-angle plot for the case Ikl = 9.48. This phenomenon is expected since the
sensitivity of the system is infinite at the break-point. Because of the infinite sensitivity,
gains placing eigenvalues near the break-points should be avoided when designing control
systems. As demonstrated in the example, choosing a gain that is slightly different from
the break-point gain, can significantly reduce the sensitivity of the phase margin.



Table 1. Results of Gain and Phase Margin Analyses for Example 1.

Ikl

1.00

9.00

9.48

10.0

100

128

200

1000

|k|/|k*|

0.00781

0.0703

0.0741

0.0781

0.781

1.00

1.56

7.81

GM (dB)

42.14

23.06

22.61

22.14

2.14

0.00

-3.87

-17.86

PM (deg)

88.21*

74.29*

73.49*

72.63*

7.29*

0.00*

-12.06*

-44.19*

(Op (rad/s)

4.0000

4.0000

4.0000

4.0000

4.0000

4.0000

4.0000

4.0000

ci)g (rad/s)

0.0625

0.5220

0.5803

0.6108

3.5212

4.0000

4.9445

9.4672

60
10 20 30 40 50 60 70 80 90 100

Angle k (deg)

Figure 6a. Angle Angle Plot of Example 1 for Ikl = 9.
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Figure 6b. Angle Angle Plot of Example 1 for Ikl = 9.48.
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Figure 6c. Angle Angle Plot of Example 1 for Ikl = 10.
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Example 2

This example (adapted from Cannon, 1967) considers a third order system with a
transmission zero employing integral control.

This system is open-loop unstable. The root locus plot of Figure 7 shows that there is a
regime for which the closed-loop system is stable. The corresponding gain plots are
shown in Figures 8a,b. It is possible to determine the stable range as 132 < k < 1227
directly from the angle gain plot. From equation (2) the gain margin can be computed at
any design value of k. For example, at k = 500, the lower gain margin is
201og( 132/500) * —11.5 dB and the upper gain margin is 201og( 1227/500) * 7.8 dB. The
implication is that the gain can vary by —11.5 dB and +7.8 dB about 500 before instability
occurs. The phase margin can be determined by observation from the angle-angle plot,
shown in Figure 9a as 17.5" for lkl=500 and expanded in Figure 9b.

Figures 10a,b are the traditional Bode magnitude and phase plots, respectively, for
the system at k=500. The phase and gain margins are marked in both of these plots- The
difficulty with computing these quantities via the Bode plots is the necessity to determine
the gain cross-over frequency, cog ~ 4.24 rad/s, the lower phase cross-over frequency, 0)pi
* 1.3 rad/s, and the upper phase cross-over frequency 0)pU « 7.7 rad/s. These frequencies,
may be considered intermediate or indirect variables in the calculations and are not
necessary when the analyses are conducted in the gain domain. Furthermore, the
determination of the gain margin from the Bode magnitude plot may be confusing as the
upper gain margin is determined from a measurement below that of the lower gain margin.
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Closing
This note presents graphically-based methods for studying relative stability of LIT

SISO systems. The angle-gain plot and the angle-angle plot are proposed for finding the
gain margin and phase margin, respectively. The angle-gain plot recasts the information of
the standard root locus in a form that exposes the explicit functional dependence of forward
gain magnitude on the angle of each closed-loop system eigenvalue; the angle-angle plot
explicitly relates the forward gain angle to system eigenvalue angles. Furthermore, the
sensitivity of the phase margin is available and augments classical design techniques. The
proposed methods, recommended for analysis and design of classical control systems, are
useful geometric tools that do not require frequency analysis. The proposed framework
employs independent gain and phase axes in plots naturally suited for determining gain and
phase margin, respectively.
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