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Abstract - In this report, we present a geometric method for
representing the classical root sensitivity function of linear time-invariant
systems. The method employs gain plots that expand the information
presented in the root locus plot in a manner that permits determination of
both the real and imaginary components of the root sensitivity function by
inspection.
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I. The Root Sensitivity Function

In classical control theory the root sensitivity, Spj is defined as the relative change

in the system roots or eigenvalues, X{ (i = 1,.-, n), with respect to a system parameter, p.

Most often, the parameter analyzed is the forward proportional controller gain, k. The root

sensitivity with respect to gain is given by

dk/k dk

Since the eigenvalues may occur as complex conjugate pairs, 5* may be complex.

Equation (1) is often introduced in determining the break points of the Evans root

locus plot for single-input single-output systems. At the break points, S* becomes infinite

as at least two of the n system eigenvalues undergo a transition from the real domain to the

complex domain or vice versa. This transition causes an abrupt change in the relation

between the eigenvalue angle ZX and gain k yielding an infinite eigenvalue derivative with

respect to gain [1].

The root sensitivity function Sk is a measure of the effect of parameter variations on

the eigenvalues. It is important since one of the key objectives of feedback control theory

is to reduce system sensitivity to variations in system parameters. For example, the control

system of a robot should be relatively insensitive to the payload carried by the arm for the

recommended payload range. If the robot's performance is sensitive to payload variations,

then the control system is not robust and performance is difficult to guarantee. In this case,

Sm, where m is the payload mass, should be relatively small over the operational range of

m. Such considerations are critical if control designers are to develop high performance,

robust, closed-loop systems.

In this report, we present a geometric technique for computing and understanding

Sjfc. The technique relies on a set of plots called gain plots (GPs) [2] that are an alternate

visualization of the Evans root locus plot. In particular, we prove that the slopes of the

GPs are directly related to the real and imaginary components of S*. In an example

problem, a PD controller is implemented on a standard second order plant demonstrating

the importance of S* in control system design.



II. Root Sensitivity Analysis

In this section, we derive the complex root sensitivity function by employing a
polar representation of the eigenvalues in the complex plane. We proceed by positing three
assumptions:

Assumption 1: The systems analyzed are lumped parameter, linear time-invariant
(LTI) systems.

Assumption 2: There are no eigenvalues at the origin of the s-plane, i.e.,

X i * 0 , V i = 1, ..., n (2)

However, the eigenvalues may be arbitrarily close to the origin singularity.

Assumption 3: The forward scalar gain, k, is real and non-zero, i.e., k e 91,

k * 0.

Based on these assumptions, we draw the following theorems.

Theorem 1: The real component of the sensitivity function is given by

Theorem 2: The imaginary component of the sensitivity function is given by

where ZX is the eigenvalue angle.

Proof: Equation (1) may be rewritten [3,4] in terms of the derivatives of natural
logarithms as

dlnJMk))
Sk~ dln(k) ( 5 )

The natural logarithm of the complex value, X, may be written as the sum of the logarithm
of the magnitude of X and the angle of X multiplied by j = V^T. Thus, (5) becomes

d[ln[X(k)|+jZX(k)]
Sk TlTj " (6)

Since j is a constant, (6) may be rewritten as



_ dlnlMkj
**~ dln(k) Jdln(k) *"

The complex root sensitivity function is now expressed with distinct real and imaginary

components employing the polar form of the eigenvalues. It follows from Assumptions 2

and 3 that the denominator of (5) is purely real. (In general, most parameters studied are

real and this proof is sufficient. If, however, the parameter analyzed is complex, it is a

straightforward task to extend the above analysis.)

The proof is completed by taking the real and imaginary components of (7),
yielding (3) and (4). It is interesting to note that the Cartesian representation of 5& is
related to the polar representation of \[.

III. Geometric Relations to Gain Plots

The gain plots are an alternate graphical representation of the Evans root locus plot.

They explicitly graph the eigenvalue magnitude vs. gain in a magnitude gain plot (MGP)

and the eigenvalue angle vs. gain in an angle gain plot (AGP). The MGP employs a log-

log scale whereas the AGP uses a semi-log scale (with the logarithms being base 10.)

Although we use gain as the variable of interest, it should be noted that any parameter may

be used in the geometric analysis.

Theorem 3: The slope of the MGP is the real component of S*.

Proof: The MGP slope, A/m, is

_dlog(lX(k)l)
Mm dlog(k) ( 8 )

which may be rewritten as

_d[log(e)ln(|Mk)|)]_dln(|X(k)|)
_ =

m d[log(e)ln(k)] dln(k)

corresponding to (3).

Theorem 4: The slope of the AGP is linearly related to the imaginary component of

Sk by the constant, (log(e))'1.

Proof: The AGP slope, A/a, is



which may be rewritten as

Mfl ~ d [log(e) ln(k)] log(e) d In (k)

proving that Ma is proportionally related to (4) by (log(e))-!.

IV. Example

In this example, we consider the plant

s2 + 6 s + 1 8 (12)

with a PD compensator

gc(s) = k ( s + l ) ( 1 3 )

giving the loop-transmission transfer function

/ \ t \ ( \ k(s+ 1)g s) = gp s) gc(s) = —-±- '—
s2 + 6s + 18 (14)

The root locus plot shown in Figure 1 portrays the effect of varying gain k. An

alternate visualization is shown in the MGP and AGP of Figures 2a,b, respectively. These

figures show that the eigenvalues are either completely real or are complex conjugate

values. The real and imaginary components of 5& are plotted as functions of gain in

Figures 3a,k These are the slopes of the MGP and AGP, respectively.

Figures 2a9b and 3a,b show that the break point occurs at kbp =3.21. In particular,

Figures 3a,b highlight the infinite values of the real and imaginary eigenvalue components

at kbp. Below kbp the closed-loop eigenvalues follow a circular trajectory about the point

s =s -1 as demonstrated in Figure 1.

Figures 2a and 3a show that the eigenvalues have coincident trajectories below kbp.

Above kbp one eigenvalue migrates to the finite transmission zero at s=-l while the other

eigenvalue migrates to the infinite zero at -«°. At high gains the real components of 5& are

zero and one, respectively [51. Thus, at high gains the finite transmission zero is

desensitized from k, and there is a unity magnitude relation between k and the finite

eigenvalue. In contrast to Figures 2a and 3a, Figures 2b and 3b show multi-valued

eigenvalue trajectories above kbp and coincident trajectories below kbp. This is expected



since the eigenvalues are either purely real or complex conjugates. Finally, since the

eigenvalues are purely real above kbP, the imaginary component of S* is zero for k > kbp.

V. Closing

The concept of root sensitivity in classical controls is often introduced to emphasize

the high "sensitivity" of eigenvalues with respect to a system parameter such as gain near

the break-points. Normally, the root sensitivity function is not discussed as a complex

quantity in control system analysis and design. Here, we have derived and demonstrated a

powerful means to visualize the root sensitivity function via the gain plots. The slopes of

the gain plots provide a direct measure of the real and imaginary components of the root

sensitivity. These slopes are available by inspection, and offer the control system designer

important information for selection of appropriate system parameters such as gain.
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Figures

Figure 1. Root Locus Plot for Equation (14).



Figure 2a. Magnitude Gain Plot for Equation (14).
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Figure 2b. Angle Gain Plot for Equation (14).
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Figure 3a. Real Component of S* for Equation (14).
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Figure 3b. Imaginary Component of S* for Equation (14).


