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I. Introduction

There have been many important developments in classical control theory of linear

time-invariant (LTI) systems as a result of geometric perspectives (Nyquist, Bode, Evans)

[1-3]. These graphical methods remain key control analysis and design tools even in the

post-computer age. In fact, the advent of the computer has extended these methods

considerably. For example, multivariable root locus plots can be generated as readily as

single-input, single-output (SISO) root locus plots. The power and availability of

software tools has prompted us to consider a new geometric perspective of the Evans root

locus. The resulting plots, called gain plots (GPs), show the explicit variation of

eigenvalue magnitudes and angles with respect to a scalar system parameter, such as

forward gain [4], The eigenvalue magnitude vs. gain is portrayed in a magnitude gain plot

(MGP) using a log-log scale and the eigenvalue angle vs. gain is displayed in an angle gain

plot (AGP) using a semi-log scale (with the logarithms being base 10). Although we select

gain as the variable of interest, it should be noted that any parameter may be used in the

geometric analysis.

In this report we employ the standard state-space representation of an LTI system:

x(t) = Ax(t) +Bu(t) (1)

y(t) = Cx(t) +Du(t) (2)

where xe 9?n is the state, u€ 9im is the plant command or control input, ye 9?m is the plant

output, and {A, B, C, D}e 9f with appropriate dimensions. The input-output dynamics

are governed by a square transfer function matrix, G(s),

G(s) = C [ s I - A ] l B +D (3)

The system is embedded in a unity feedback closed-loop configuration with

forward static compensator, kl, implying that each input channel is scaled by the same

constant gain k. (Note that the plant transfer function matrix and any dynamic

compensation may be combined in the transfer function matrix G(s).) The control law is

given by

u(t),= kle(t) • . (4)

where

e(t) = r(t)-y(t) (5)



is the error and r(t) € 9fm is the reference (command) signal that y(t) must track. The

closed-loop transfer function matrix is

GcL(s) = [I-HkG(s)]-1kG(s) (6)

To develop the root locus plot, the migration of the eigenvalues of GCL(S) in the complex

plane is portrayed for 0 £ k < °°. The eigenvalues of the closed-loop system, s = Xx

(i=l,2,...,n), are the roots of <t>cL(s)> the closed-loop characteristic polynomial,

= <|>oL(s)det[I + kG(s)] (7)

where <1>OL(S) is the open-loop characteristic polynomial,

- A] (8)

The roots of (8) are the open-loop poles; they are also the eigenvalues of A. By equating

the determinant in (7) to zero, the multiple-input, multiple-output (MIMO) generalization

of the SISO characteristic equation (1 + kg(s) = 0) is obtained. The presence of the

determinant is the major challenge in generalizing the SISO root locus sketching rules to

MIMO systems and complicates the root locus plot. For example, the root locus branches

"move" between several copies (Riemann sheets) in the s-plane that are connected at

singularity points known as branch points [5,6].

Although it is not normally possible to sketch MIMO root loci by inspection, the

closed-loop system eigenvalues may be computed numerically from

, i = l , 2 , . . . , n (9)

where eig[Q] represents the eigenvalues of matrix Q. In the examples, the loci of the

eigenvalues are calculated from (9) as k is monotonically increased from zero.

II. Geometric Paradigms of Fundamental Control Concepts

This section presents a series of theorems that encapsulate fundamental concepts of

classical control theory. Some of these concepts are discussed openly in the literature,

while others do not seem to be mentioned. These theorems demonstrate the insight into

control theory fundamentals provided by the GPs.

We introduce two assumptions:

Assumption 1: The systems analyzed are lumped parameter LTI systems.



Assumption 2: The forward scalar gain, k, is real and positive, i.e., k e 9f,

k > 0.

Open—Loop Eigenvalue Representation

Theorem 1:

lim Ri(k) = |eig(A)|, i = 1, ... , n

lim 0l(k) = Z(eig(A)), i = 1 n
k->0

where R* and 0j, are the MGP and AGP ordinate values, respectively.

Proof: It follows from (7) that

lim 0CL(S)= lim 0oL(s)det[I + kG(s)] = 0OL(S)
k->o k-»0

which is the open-loop case.

Root Locus 180° Criterion

Theorem 2: Curve segments on the AGP must either lie on a multiple of 180" or

must occur in a set of two segments that are symmetric about i multiple of 180°.

Proof: Since (A, B, C, D} e 9f, then (9) represents the standard eigenvalue

equation

\\l - (A - B(I + kD)"lkC) I = 0 (13)

generating a polynomial in X with real coefficients. Therefore, any complex eigenvalue

must occur in a complex pair.

High Gain Behavior of Infinite Magnitude Eigenvalues

As k increases from 0 to <», the closed-loop eigenvalues trace out "root loci" in the

complex plane. At zero gain, the eigenvalues of the closed-loop system are the open-loop

poles. At infinite gain some of these eigenvalues approach finite transmission zeros,

defined to be those values of z\ that satisfy the generalized eigenvalue problem

,- -- H r K s j . ' - - ' . " -



where [ x(0) v ]r is the right generalized eigenvector corresponding to the generalized

eigenvalue, /•#:, transmission zero, with x(0) representing the initial state and v being a

vector representing input direction in the multi-input case. In the absence of pole/zero

cancellation, the finite transmission zeros are the roots of the determinant of G(s).

Algorithms have been developed for efficient and accurate computation of transmission

zeros [7-9]. Those eigenvalues that do not have matching zeros in the finite part of the s-

plane are considered to have matching zeros at infinity; these are the infinite eigenvalues.

An interesting perspective of the high gain SISO'root locus behavior is presented in [10].

Theorem 3: For SISO systems with n poles and m transmission zeros

where there are n-m 0 values corresponding to the n-m infinite eigenvalues. This is the

Butterworth configuration [11].

Theorem 4: For SISO systems with n poles and m transmission zeros

Urn R i = k 1 / ( n " m ) , i = m + l , . . . , n
k—>oo

where there are n-m magnitude values corresponding to n-m infinite eigenvalues.

Proof: An LTI SISO system may be characterized by the transfer function

m

n (17)

I aJsJ

where n(s) is the transfer function numerator of order m in s with coefficients, b, (i=0, 1,

..., m), and d(s) is the transfer function denominator of order n in s with coefficients, an

0=0, 1,. . . , n) with an=l. 4>CL(S) is

0CL(S) = d(s) + kn(s) = X ajSJ + k X M (18)
j = 0 i = <>

which can be written as



d(s)-_Ji0

n(s)~ .A . (19)

From (19), as k->©o, the ratio of n(s) to d(s) must also tend towards infinity at the same

rate. As k—><», there are two possibilities for the magnitude ratio of d(s) to n(s), i.e.,

n(s)->0 ( 2 Q )

and/or

In the literature, it is shown that both of these criteria are satisfied as k—»oo. For large gain,

the highest order s term for both d(s) and n(s) dominates, since lsl-**>. Thus, in the limit

as k—><», (19) may be approximated by

k""b^ = " t (22)

From (22), the asymptotic behavior of the eigenvalues may be realized as

By taking the magnitude and angle of X. in (23), the proof for Theorems 3 and 4 is

completed.

Eigenvalue Approach Rates to Transmission Zeros

Theorem 5: For SISO systems with m transmission zeros

Urn |Zi - \\ = k"l/Wl , i = 1, ..., m (24)
k-»oo

where wj is the transmission zero multiplicity at z\ in the complex plane.

Before the proof is presented, we make the following assumption.

Assumption 3: There are no open-loop pole/zero cancelations. That is

Pj * zif V j , i (25)

where pj and z\ are the poles and zeros of the system, respectively.



Proof: For (20) to hold,

lim
k—>oo

Zi , i = 1 , . . . , m
(26)

since the zfs are the roots of n(s).

Rewriting (19) as the ratio of products

fi
(27)

and evaluating it at

s = (28)

we recognize that k—»©o, as (28) and consequently (20) are realized. Furthermore, since z{

are defined as the finite transmission zeros, s - pj must be finite, and s - zy * 0 (due to

Assumption 3) if z\ * ZJ' where i' * i. In general, if there are w multiple poles at z\

lim
k—»o mn

= lim
mn

Li = 1

, i = 1, ..., m (29)

and

X\ + pj = otj, i = 1, ..., m ; j = 1, .... n

where ctj is a constant, and

where Pr is a constant.

Thus

zi; i = 1, ..., m

(30)

(31)

lim
n
mn

= lim , 1 = 1, ..., m
(32)

S = A,



where

n

Ai= J 3 aj , i = 1, ..., n
J = l ( 33 )

and

Bi - I I P̂  (34)
i' * i

completing the proof.

Stability

Theorem 6: If the principal angle of the closed-loop system eigenvalues is

0° < 6 < 360° (35)

then the system is stable if

90° < 9 < 270° (36)

Outside this range, the system is unstable.

Proof: Since the AGP depicts the angle of the system eigenvalues, eigenvalues

having angles in the range given by (36) are in the right hand plane yielding unstable

differential equations. This is the classical root locus stability criterion.

Gain Margin

Theorem 7: For a given gain, k, the gain margin, GM, of the closed-loop system

may be computed from the AGP as

GM = 201og N(db) (37)

where ks is the gain corresponding to marginal stability.

Proof: In the frequency domain, GM is defined as

GM = 20 logjks (g(jcoa))| - 20 iogtk (g(jcoa))| (db) = 20 l o g | ^ ^ | ( d b ) (38)

where



(39)

(38) may be amplified as

GM = 20 lo g(jCOa) = 20iog|^ |(db) (40)

This ratio is the factor by which k may be increased before instability occurs. Both the

numerator and denominator of (40) may be determined by inspection from the AGP.

Root Sensitivity Function

In classical control theory the root sensitivity, Sp, is defined as the relative change

in the system roots or eigenvalues, X\ (i = 1,..., n), with respect to a system parameter, p.

Most often, the parameter analyzed is the forward proportional controller gain, k. The root

sensitivity with respect to gain is given by

S t = dk/k = ^ i r ^ <4» !

Since the eigenvalues may occur as complex conjugate pairs, Sk may be complex.

Assumption 4: There are no eigenvalues at the origin of the s-plane, i.e.,

X\ * 0 , Vi = 1, ..., n (42)

However, the theorems are valid for eigenvalues arbitrarily close to the origin singularity.

Based on these assumptions, we draw the following theorems.

Theorem 8: The real component of the sensitivity function is given by

Re {Sit } = Afm
 ( 4 3 )

where Mm is the slope of the MGP.

Theorem 9: The imaginary component of the sensitivity function is given by

Ma (44)

where Ma is the slope of the AGP.

Proof: Equation (41) may be rewritten [ 12,13 j in terms of the derivatives of natural

logarithms as



_dln(X(k))
— J T (45)

The natural logarithm of the complex value, X, may be written as the sum of the logarithm

of the magnitude of X and the angle of X multiplied by j = I^T. Thus, (45) becomes

dlnbt(k)l , -dZMk) = dloglX(k)l . i dZX(k)
* dln(k) J dln(k) dlog(k) Jlogedlog(k) ( 4 6 )

The complex root sensitivity function is now expressed with distinct real and imaginary

components employing the polar form of the eigenvalues. Since k is real and positive,

d ln(k) and d log(k) are purely real obviating the need to decompose those terms into polar

form. (In general, most parameters studied are real and this proof is sufficient. If,

however, the parameter analyzed is complex, it is a straightforward task to extend the

above analysis.) Equation (46) may be rewritten as

The proof is completed by taking the real and imaginary components of (47),

yielding (43) and (44). It is interesting to note that the Cartesian representation of 5* is

related to the polar representation of X\.

IV. Examples

Example 1

To demonstrate the theorems presented above, we examine a second order system

with a PD controller.

This system has open-loop poles at s = - 1 , s = -2 and a finite transmission zero at s = - 3 .

Hence, n = 2 and m =1 in the notation employed earlier. The root locus of (48) is

presented in Figure 1. It shows a break-out point at s ~ -1.6, a break-in point at s * -4.4,

Butterworth asymptotes along -180°, and reveals that the closed-loop system is stable

. given Re(Xi) < 0, V i,k.

An alternate representation of Figure 1 is the MGP of Figure 2a and the AGP of

Figure 2b. Here, the explicit influence of gain on the eigenvalue trajectories is represented.

As k -» 0 the MGP and AGP reveal the influence on the magnitudes and .angles,

10



respectively, of the open-loop eigenvalues demonstrating Theorem 1. The curve segments

in the AGP are either on the 180# line or symmetric about it, in agreement with Theorem 2.

Also, the break-out and break-in points are evident at k * 0.17 and k » 5.83, respectively.

As k -» °° the AGP shows the Butterworth configuration for a single infinite eigenvalue

proceeding along a trajectory of 180* in accordance with Theorem 3. Theorem 4 is

demonstrated by the corresponding high gain MGP slope of unity for the infinite

eigenvalue.
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Figure 1. Root Locus Plot for Example 1.
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To observe the approach rate to the finite transmission zero, we have constructed a

modified MGP^fcich shows the distance of the finite eigenvalue to the finite zero at s = -L

The resulting figure, Figure 3, shows that as k -» <» the distance is inversely proportional

to k confirming Theorem 5 for w = 1. Figure 3 also shows that between the break points

there is a constant distance between the eigenvalue and the transmission zero,

demonstrating that the eigenvalue trajectory about the transmission zero is circular in the

complex plane.
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10' 102

Figure 3. Distance to Single Finite Transmission Zero for Example 1.

Since 9j is always in the range prescribed by (36), the closed-loop system is stable

for all gains, and hence has an infinite gain margin. A more interesting demonstration of

Theorems 6 ami 7 follows in Example 2.

Theorems 8 and 9 are demonstrated by the sensitivity plots of Figures 4a and 4b,

respectively. (These figures were generated from (45) by plotting the real and imaginary

components of S*.) They clearly highlight the infinite sensitivities at the break points.

Furthermore, they show the sensitivity function is real for X\ e 9f. The crossover point at

k « 2 in Figure 4b corresponds to the extremum of Im{Xi}. As k —> 00 the finite

eigenvalue becomes completely desensitized whereas the infinite eigenvalue has a

sensitivity of unity, again confirming Theorems 8 and 9.
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Example 2

This
employing i

iple [14] considers a third order system (with a transmission zero)
control.

s+ 1
s(s - l ) ( s+10) 2 (49)

This system is open-loop unstable. The root locus plot of Figure 5 shows that there is a
regime for which the closed-loop system is stable. The corresponding gain plots are
shown in Figures 6a,b. It is possible using Theorem 6 to determine the stable range as
132 < k < 1230. From Theorem 7 the gain margin can be computed at any design value
of k. For example, at k = 300, the lower gain margin is 201og( 132/300) * -7.1 dB and the
upper gain margin is 201og( 1230/300) • 12.3 dB.
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Figure 5. Root Locus Plot for Example 2.
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Figure 6a. Magnitude Gain Plot for Example 2.
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the same system as in Example 2 with a PED controller.

( s+ l ) 2

g3(s)=
s(s - l ) ( s+10) 2 (50)

The root locus plot is presented in Figure 7 and shows the two finite eigenvalues
approaching the double transmission zero at s = - 1 . As expected from Theorem 5 the
approach rate to the double zeros is inversely proportional to k1^ since w = 2. This is
demonstrated by the high gain slope of -1/2 in Figure 8 which shows the distance to the
finite transmission zeros.
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Figure 7. Root Locus Plot for Example 3.
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Figure 8. Distance to Double Finite Transmission Zeros for Example 3.

V. Closing

This paper has promoted the use of gain plots that expose closed-loop eigenvalue

geometry as a function of a system parameter such as propononal gain. By displaying the

eigenvalue magnitude vs. gain in a logarithmic plot and the eigenvalue angle vs. gain in a

semi-logarithmic plot, fundamental concepts of classical control can be determined by

inspection. For example, stability, gain margin, root sensitivity, eigenvalue approach rates

to both finite and infinite transmission zeros, as well as other properties are available. The

gain plots embellish the information presented in the root locus, and are recommended as a

powerful new tool for control system analysis and design.
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