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Abstract

The branches of optimal root loci that approach infinity as the error weighting is

decreased can be characterized by a combination of several Butterwonh patterns existing on

separate Riemann sheets. Algorithmic approaches have been reported to find the order of

these Butterwonh patterns. This report presents a geometric technique, involving

eigenvalue polar plots, that provides direct realization of the directions and radii of the

asymptotic eigenvalue patterns. A graphically-based systematic procedure is proposed and

employed in a sample problem for analyzing Butterworth patterns.
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1. Introduction

The optimal root loci are used to find the closed-loop eigenvalues of the linear

quadratic regulator as the input weight of the performance index is varied. For

multivariable regulators, it has been shown that the asymptotic poles which approach

optimal infinite zeros (OIZ) can be grouped into several Butterworth patterns of different

orders and with different radii [1]. An iterative algorithm to determine the OIZ angle and

radius for all orders has been proposed by Kouvaritakis [2] and modified by Keenhi and

Fannin [3]. The present report outlines a graphical procedure for obtaining the information

of the OIZ from a set of eigenvalue polar plots. To illustrate the method, an example

problem is solved.

2. Linear Quadratic Regulator Problem

Consider the linear time-invariant state space system

x = Ax + Bu (1)

(2)

where x is an nxl vector and u and y are mxl vectors. Assume that (A,B) is stabilizable

and (C,A) is detectable. The objective is to find an optimal control which minimizes the

cost function

J = I (yrQy + pu rRu)dt (3)

Jo
where Q and R are weighting matrices and p is a scalar. As p varies from ©o to 0

(corresponding to "expensive" to "cheap" control, respectively), the closed-loop poles of

the system trace out the optimal root locus consisting of m Butterwonh patterns on m

Riemann sheets [4].

3. Methodology

From [2] the asymptotic approach to OIZ of order 2n can be expressed as

(4)

or



S = K i ^ | CJ-i (5)

where X{ is a complex number with magnitude K* and angle 6i. From equation (5), the

radius of the OIZ of order 2n is

\ l / 2 n

The optimal root locus may be viewed via an alternate graphical representation that

exposes the relationship between the control weighting scalar, p, and the eigenvalue

locations in polar coordinates. The proposed plots, called eigenvalue polar plots, portray

the magnitude and angle of each closed-loop system eigenvalue in the complex plane as a

function of p. The visualization is based on the adjustment of p in the same fashion

employed in constructing the optimal root locus plot.

Eigenvalue polar plots recast, and in so doing enrich, the information presented in

the optimal root locus plot, and offer advantages for control system analysis and design.

For example, by exposing the correspondence of weighting values to specific eigenvalue

locations, the plots are a useful pole-placement tool for achieving closed-loop designs

meeting stability and performance specifications.

In the eigenvalue magnitude plot, equation (6) implies a straight line of slope l/2n

when 1/p approaches infinity. Because an nth order Butterworth pattern corresponds to a

In111 order OIZ, according to equation (6), the order of the Butterworth pattern can be

determined from the slope of the eigenvalue magnitude plot. The corresponding direction

0j can be found from the eigenvalue angle plot.

To determine the radius of the OIZ, the constant K{ in equation (6) should be

determined first. Choosing a point (1/po, Isol) in the eigenvalue magnitude plot with po

large, the constant Kx can be expressed in terms of po and Isol. Thus, the approach to OIZ

of order 2n can be obtained as

J/2n
Si = (7)

Equation (7) may be used to approximate the closed-loop optimal eigenvalues for

low values of p, provided that certain criteria are met. The following steps may be used to

graphically compute a valid asymptotic approximation to the closed-loop eigenvalue:

1. Inspect the eigenvalue magnitude plot to determine n, the order of the
Butterworth pattern, from theslope=l/2n.



2. For the corresponding eigenvalue, determine the angle, 0i, from the
eigenvalue angle plot.

3. Choose a test point (1/po, IsoO from the eigenvalue magnitude plot such
that the corresponding curve segment exhibits straight line asymptotic
behavior.

4. Choose a value of p and verify that it is in the range of asymptotic
behavior on the eigenvalue magnitude plot. (If it is not, the
approximation given by equation (7) may not be valid.)

5. Substitute the values of po, IsoU 9i and p into equation (7) to
approximate the eigenvalue.

An example problem demonstrates the procedure.

4. Example

This example, adapted from [ 11, considers the longitudinal motion of an aircraft. The

system is described by equations (1) and (2) with
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We wish to control the system such that a criterion of the form of equation (3) is minimized

where

Q 4 0.02 0 1
1 0 50

D _ r 0.0004 o
R " ' 0 2500

Applying the proposed technique, first order and second order Butterworth patterns were

found from the eigenvalue magnitude plot of Figure 1 by examining the slope of 1/2 and

1/4, respectively. The corresponding angles were obtained from the eigenvalue angle plot

of Figure 2. From Figure 1, test points were chosen as (1/po- X)0 = (107, 13) for the first

order pattern and (107, 50) for the second order pattern, and the asymptotic behavior was

determined from equation (7) as follows:

First order Butterworth pattern: s = -180*



Second order Butterworth pattern: s = [k&&2.]eJ(±135'>
I P

These are in close agreement with the results determined in [1]:

First order Butterworth pattern: s = [Q
l / 2

Second order Butterworth pattern: s = [Q-8871jei(±135'>
L P l / 4 J

It should be emphasized that the data points used to determine the eigenvalue locations in

the eigenvalue polar plots were read directly from the figures. By using the actual

numerical values employed in plotting the graph, the relations match (to the accuracy

shown) those calculated from [1].
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Figure 1. Optimal Root Locus Plot (p Implicit).
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Figure 2. Eigenvalue Magnitude Plot (p Explicit).
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Figure 3. Eigenvalue Angle Plot (p Explicit).



5. Conclusions

This report has presented a graphical technique for approximating the behavior of

closed-loop eigenvalues in the linear quadratic optimal control problem with low control

weighting. The proposed geometric tools are eigenvalue polar plots that are built from the

same data used in creating the optimal root locus plot. Hence, if the optimal root locus is

generated, it is a minor effort to draw the eigenvalue polar plots and geometrically

determine the closed-loop eigenvalues at low values of control weighting. In an example

problem, the geometric analysis yields exceptionally accurate results that have been verified

by comparison to documented techniques.
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