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0. Abstract

We introduce a methodology for concurrent design that consider s the allocation of
tolerances and manufacturing processes for minimum cost. Cost is approximated as a
hyperbolic function over tolerance, and wor st-case stack-up tolerance is assumed. Two
smulated annealing techniques are introduced to solve the optimization problem. The first
assumes independent, unordered, manufacturing processes and uses a Monte-Carlo
- dmulation; the second assumes well known individual process cost functions which can be
manipulated to create a single continuous function of cost versus tolerance with
discontinuous derivatives solved with a continuous smulated annealing algorithm. An
example utilizing a system of friction wheels over the manufacturing processes of turning,
grinding, and saw cutting bar sock demongtrates excellent results.




1. Introduction

Techniques for concurrent design promise to impact the way design is done in
industry. Too often design conceptualization, detailed design, and manufacturing design
are done independently causing inferior product quality and excessive cost. In this paper
we propose a technique to bring manufacturing concerns into the design process. Our
emphasis is on the design of and manufacturing influences on tolerance stack-up. Product
tolerancing is often the least emphasized part of the design process, yet the tolerance on
individual components can have a mgjor effect on the performance of a system. This paper
assumes the worse-case stack-up of tolerances which occurs when each part is
manufactured consistently on the upper or lower end of the tolerance range. Although each

part is in tolerance, the worst case sum of part tolerances (the stack-up) may violate a
performance constraint.

There has been significant work on tolerance selection. Speckhart (1972), Michael
and Siddall (1981), Spotts (1973), and Sutherland and Roth (1975) have applied
optimization techniques for tolerance selection to minimize cost given a fixed manufacturing
process. Dong and Soom (1990) have examined optimal tolerance allocation in multiple
dimension chains. Lee and Woo (1990) employ probabilistic techniques to analyze
tolerance tradeoffs with performance. Each of these efforts assume a fixed manufacturing
process.

We will show that selection of tolerances alone is not enough; the tolerances must
be selected along with the manufacturing process if costs are to be minimized.
Manufacturing apart to tight tolerances can be an expensive process; thus parts are usually
designed for as large a tolerance range as possible. However, components can be
manufactured with different processes at different costs, and each process is best suited to
hold different tolerance ranges. Once the form of the design is determined, the part must be
designed and manufactured such that no constraints are violated and the cost is kept to a
minimum. Our thesis is that consideration of geometric tolerances should be a major

influence in selecting a manufacturing process while minimizing cost for a given
performance.

In this paper we introduce two optimization-based -approaches to determine the
geometric tolerance on each component, as well as its manufacturing process, in a system
of components. In both techniques, the combinatoric problem is solved using the
stochastic pptimization technique of smulated annealing (Kirkpatrick, et. al, 1983). In the
first technique, during each iteration of the simulated annealing algorithm a set of




manufacturing processes is assumed and the tolerance of each component is determined to
minimize the cost of the system and maintain a pre-defined output tolerance. This
technique is. useful with purdy digoint sets of manufacturing processes. Here the
smulated annealing is used only to control a Monte-Carlo analysis and can only find the
actual global minimum if the correct rr wvufacturing processes are at some time selected.
Although statigtically thisis likely :- happen, it is not guar anteed

In the second technique, we examine the inverted problem. Ingtead of randomly
generating a set of manufacturing processes and then determining the tolerances, the -
tolerance versus cost curve isviewed as a continuum with discontinuousfirst derivatives, at
each discontinuity, a different manufacturing process becomes dominant. Gradient
techniques are inappropriate because of the discontinuous derivatives, however, smulated
annealing is now used to solve the continuous problem. This technique is guaranteed, in
theory, to conver ge on the global minimum.

Lee and Woo (1989) solve a amilar problem with integer programing by assuming
discrete tolerances. We explore ;. . .tmiated annealing because, in the general
case, a machine could have from several thousand to several million parts (Kalpakjian,
1991) produced by many different manufacturing processes. Thus the combinatorics are
unwieldy and application of integer programing becomes impractical. Note that for smaller
problems such as the one presented in this paper, the integer programming solution ismore
efficient than the Monte-Carlo approach; we utilize the smple example only to demonstrate
the methodology of our theory. However, the continuous solution is still the most efficient
approach.

A system of friction wheels is utilized to illugtrate the theory. We choose friction
wheels because they are smple enough to analyze in closed form, and yet complex enough
to illustrate the difficulties in actual applications. In the next section we review the
technique of smulated annealing. The cost ver sus tolerance function for the wheels is then
developed for any given ma: - process and the two techniques are formalized.
Finally, the methods are applied to »# - whed system where each component can be
manufactured by three different manuiacturing processes (giving 3* = 81 possible
combinations).

2. Simulated Annealing

. Simulated annealing is a stochastic optimization technique which has been shown
able to solve both ordered combinatoric problems and non-linear- continuous problems even




with objectives of discontinuous slope. Traditional gradient-based optimization techniques
(e.g., Papalambros and Wilde, 1988) are not readily able to solve such problems.
Kirkpatrick, et al., (1983) developed the smulating annealing algorithm based on
Metropolis' Monte-Carlo technique (1953). The idea is analogous to the annealing of
metals. A cooling schedule is defined giving a temperature reduction over the number of
iterations. Temperature, T, isa gradient variable with no relation to physical temperature.
At high temperature, selection of a solution point is quite random while at lower
temperatures the solution is more stable; the metal annealing analogy is that at high
temper atures the molecules are at a highly random state while at lower temperatures they
reach a sable minimum energy date.

The approach to smulated annealing is to randomly pick a feasble state, §> and
evaluate the energy at that state, Eq). A different feasible state, 52, is then selected by
randomly picking a new gate within a given range of the available design space (which we
call the mutation space). State S2 is then evaluated to £y,- * &2 < Asi* A ©"52 becomes
the new solution state. If Eg, = Eg, then there is a probability based on the temperature

that the new gtate will be accepted anyhow. Acceptance is determined by the probability
calculation:

Pr {Eg,) =

’ (1)
whereZ(T) isa normélization factor. A random number, r, uniformly digtributed between
0 and 1 is generated and compared with Pr{fy,)- A" < JM~J * &N xcnewstate xs
accepted anyhow; otherwise the old sate isretained. The temperature is reduced and the
process coritinues until convergence isreached or the temperature reaches 0. Also, the size
of the mutation space is also reduced o that it asymptotesto 0. It can be proven that if the
system reaches equilibrium at each temperature, then asthe temperature approaches zero the
algorithm will asymptotically converge on the global optimum (Lundy and Mees, 1986).
Because we cannot guarantee sufficient time to reach equilibrium or a slow enough
decrease in temperature, we search only for a good solution and do not require the absolute

best solution. However, in the example problem of section 4, the global optimum is
attained.

Simulated annealing has been applied to various mechanical engineering problems.
Jain and Agogino applied smulated annealing to the continuous problem of mechanism
design (1988) and the integer problem of selecting teeth for the gears in a multispeed
gearbox (1990). Jain, et ai, (1990) applied smulated annealing to the nesting of blanks




for metal stamping with excellent results for scrap minimization of the continuous problem.
Other references of simulated annealing are given in van Laarhoven and Aarts (1987).

3 Relating Feeds, Speeds, Tolerances, and Costs

This section presents the methods employed in determining the cost functional
used in the optimization algorithm. It is divided into several subsections that describe the
computation of the three different machining costs per part for saw cutting, turning, and
cylindrical grinding. The theory is valid for avariety of processes, the ones discussed are
chosen for practical demonstration. The first subsection describes the generic computation
of the machine costs on ah hourly basis, and the assumptions made. The second sub
section describes the computation of the machining times for each process. We conclude
this section with the determination of hyperbolic cost functional which are quite genera
and differ from those found in the literature.

Determination of Hourly Machine Costs

To compute the costs of any machine on an hourly basis, three figures are required:
the annual payments on the machine, A, the annua maintenance for the machine, A, and
the cost of operator and maintenance labor, Q. Although there are a large number of costs
involved with operating a machine tool, these are the mgjor ones and, therefore,we address
them in our economic analysis .

To compute A, we employ a standard annual payment analysis assuming an annual
interest rate compounded annually, i, an initial machine cost of C,,,, and n yearsin which to
pay the machine off. This analysis assumes that the payments are made at the end of each
of the n years, and ignoresinflation. The annual cost of the machine is given by:

i(1 +ip +A
(1+ip-1 2

.

A=C,
The hourly cost of the equipment is computed as

_—A . . '
ARENAT ©)

where Nd is the number of working days per year, and Nh is the number of working hours
per day. Finaly, the hourly cost of machine operation is

Hm=Anp+ Q, (4)

where Q the hourly cost of labor.




Computing Production Times for the Processes

Saw Cutting

The production procedure for a saw cut operation isto smply take bar stock from
the steel mill and saw a predetermined disk- of width, W, from the part with a power
reciprocating saw. After the sawing operation, a high speed face grinder is employed to
flatten the face of the disk. Thetimerequired to face grind is inggnificant in comparison to
the sawing process, and it is assumed that the two processes function in paralld, thus only
the sawing timeisrequired to determine the production time per whesl.

For awhed of diameter, D, the production timein secondsis

r _ _ 60D .
NS T W (5)

where Ssw is the recommended number of strokesminute, Fsaw is the recommended feed
speed (in/stroke), and Tsaw is the load/unload time for the saw.

Turning

The turning operation requires that a saw cut blank be supplied as the initial
geometry of the part. Since we are only concerned about the diameter of the part, we
analyze the single point turning of the outsde diameter for a single pass. In many
operations, multiple passes may be employed including roughing and finishing passes,
however, we do not incorporate these into our analysis. The time in seconds required to
turn a part of diameter, D, and width, W, is

, (S)nDW
Tighe = ———»
SlatheFlathe (6)
where Sathe is the recommended surface gpeed (fpm) and FHahe is the recommended feed

speed (ipr) for single point turning.

Grinding

The grinding operation requiresthat a blank be sawed and then rough turned to near
finished shape. Again, we assume that the blank is close to finished size and, thus,
requiresonly a single grinding pass. In general, this analysis may be extended to multiple
grinding passes; however, for the purposes of this research a single pass analysss is
aufficient. The time in seconds required to grind the whed of diameter, D, and width, W,
with a grinding whed of width, W, is




T =(5)1§DW+WWL/10‘EQVV(+W_) \
Sgrindengrindcr Sgrind*Ww ’ \{/7

where Sgnnd is the recommended work speed (fpm) and the recommended traverse feed,
Fgind* is one half the grinding wheel width per work-piece revolution.

Nominal Part Production Costs

The nominal part production cost may now be determined from the above nominal
machining time parameters as

H
Crom = J*Q Ti + Mi, i = {saw, lathe, ginder}, A

where Mj is the cost of the blank material. It isimportant to realize that the blank costs may
differ for various processes, since different processes may require different blanks. For
example, the sawing operation requires bar stock as its blank; however, the turning
operation requires saw cut blanks (wheels pre-cut from bar stock). Thus, the cost of
sawing must be incorporated into the turning blank cost.

Computing the Hyperbolic Cost Parameters

We assume a hyperbolic cost function as depicted in Figure 1. The form of the cost
function is given as

C=-K—+b,
A-a (9)

where C is the cost, ais the tightest tolerance that the machine can hold, b is the cost: of
producing a part when no specific tolerance is specified (i.e., when the machine is running
at its maximum capacity without regard to holding a specific tolerance), and K is a process-
dependent constant

Two common cost functions found in the literature are the inverse quadratic
(Spotts, 1973; Sutherland and Roth, 1975) and exponential (Speckhart, 1972; Dong and
Soom, 1990) forms. Although all of the cost functional are of the same general shape,
both our hyperbolic form and the inverse quadratic form provide the limiting non-zero
tolerance case as found in practice, whereas the exponential form permits impractical
tolerances such as negative and unachievable values. The hyperbola differs from the
inverse quadratic in that for tolerances tighter than the machine's minimal tolerance it yields
negative costs providing aflag to the algorithm.




C@a)

Y
-

Figure 1. Typical Cost Functional

The hyperboalic shape of the cost functional is based on the sandard manufacturing
practice of reducing feeds, speeds and cut depths to increase accuracy. Thus, tighter
tolerances may be achieved by reducing the production rate of a machine until the ultimate
machine accuracy, a, is attained. The lower limit on the cost, b, istherealization that there
are certain fixed costs involved in producing a part. That is, no matter how loose the

tolerances are, the cost of manufacturing a part can never be zero (e.g., material costs
demand this).

There are, in theory, some limitations to the hyperbolic representation, the most
significant being the lower cost bound. The physical meaning of this bound is that
production rates may be increased ad infinitwn when the tolerances become infinitely loose.
Clearly, however, there are physical congraints to production rates which prevent this.

Thus, in practice the infinite production rate scenario is not a significant limitation to the
algorithm.

To determine the parameters for the curve in equation (9) a point on the hyperbola is
required. We use a nominal tolerance

Anom = 3a (20)




as the tolerance generated when the recommended feeds, speeds and cut depths are
employed. Thus, operating at A,om results in a nominal part cost, C,om- The cost
functional may be written in terms of known parameters as

H

C b -
Aa . (1

4. Monte-Carlo Simulation

We are interested in specifying tolerance and manufacturing process for an
assembly of parts. In our first approach to solve this problem, a possible manufacturing
process is randomly selected for each system component. That set of processes becomes
the current design state. IThe state is then checked to verify constraint satisfaction and then
the optimization problem is solved by symbolic or numerical techniques to evaluate the
optimal objective solution for the given set of manufacturing processes. That objective of
manufacturing cost is the energy quantity which is evaluated by the simulated annealing
algorithm to determine the optimal configuration.

The general algorithm is shown in Figure 2 where the temperature is multiplied by
reduction_factor on each iteration until it reaches 0. In practice the algorithm isrun until
thereis no improvemeht at an iteration (convergence isreached). Also the solution should
reach equilibrium at éach temperatureiteration and so it isrun at each temperature for some
fixed number of times or until a certain number of successful moves is reached.

When simulated annealing is utilized for the continuous problem there is some .
metric between different states; the sameis true for discrete problems with ordered sets. In
these cases'the mutation space can be reduced as the temperature decreases. There is no
metric of nearness between manufacturing processes in the current technique. Thus the
mutation in our application is truly random and the simulated annealing algorithm isonly a
basis for a Monte-Carlo simulation; if convergence isreached then the algorithm may run in
fewer iterations than if it were required to complete a fixed number of iterations.

Because there is no metric of nearness and thus the size of the mutation space
‘cannot beredu'ced, it is possible that the optimal solution will be found and then left at high
temperatures (at lower temperatures this becomes more unlikely). During acceptance by the
Metropolis algorithm, our algorithm saves the best state that it has found during the run,
even if it disposes that state. Thus, although we cannot guarantee to conver ge on the global
minimum in practical time, we can guarantee that if it is generated at any time, it will be
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retained. Statistically, if the algorithm isrun for sufficient timeit is likely to have found the
optimal state.

Begin Discrete-Anneal
T=1.
Generate state;
Best_state = state;
Evaluate sate;
WhileT>0da
Generate temp_state;
1f (verify constraints of temp_state)
then Begin
- Evaluate temp_dtate;
Test temp_state with Metropolis;
If (accept)
then
state = temp_state;
If state is better than Best_state

then
Best_state = dtate;
End
End
End
T = T*reduction_factor,
End

||

Figure 2. Discrete Problem Algorithm

5. Inverted Continuous Problem

Although the algorithm of section 3 is useful for the'general, discrete problem, it
cannot be guaranteed to converge on the global optimum. Figure 3 shows a sequence of
tolerance versus cost curves for different manufacturing processes on a given part. For any
given tolerance, there is only one manufacturing process that yields the lowest possible
cost; that set of costs is highlighted with the heavy black line of Figure 3 which is also
shown in Figure 4. Figure 4 becomes a continuous tolerance versus cost function
consid-ering all possible manufacturing processes for a single pért. Each part has a similar
curve and the optimal tolerance for each part is desired.

Because the cost function of Figure 4 has discontinuous first derivatives, gradient
techniques would be inappropriate for solving this problem. Vanderbilt and L ouie (1984)
showed that simulated annealing could be applied to continuous problems. Also, smulated
annealing can keep the solution out of local minima, a useful characteristic when unknown




cost functions are utilized. Our second technique applies smulated annealing to converge
on the tolerances from the continuous cost curves. As mentioned in section 3, the form of
the hyperbola cost curves are appropriate for a wide variety of machining processes on
most parts Thusthis method is quite general, although we only demondrate it for a smple
friction whed problem. If adifferent manufacturing processis employed or the continuous
hyperbola is found not to sufficiently model the cost function of a particular part, then
either the new function can be incorporated into our tech'nique or the first technique of
section 4 can be employed.

C(A)
A

-/
-

Tolerance

Figure 3. Tolerance versus cost curves for different manufacturing processes
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Figure 4, Continuous tolerance ver sus cost curve derived from Figure 3

The algorithm is found in Figure 5. First the intersection points of the various
potential manufacturing processes are obtained and the continuous cost curve is defined by
range. Next initial darting tolerances are selected, making sure tolerances sum up to the
specified output tolerance. In general thisisdone by selecting thefirst of n tolerances, then
from the remaining available range selecting the next tolerance, continuing this process for
n-1 parts until the final part is assigned the remaining tolerance range. The total cost is
evaluated.

The continuous smulated annealing algorithm is then run by randomly generating
new tolerances in a neighborhood (€) about the tolerance of each of the firg n-1 parts the
final part is again assigned the remaining available tolerance range. This new set of
tolerancesis then evaluated and the M etropoalis algorithm determines whether it is accepted.
As the temperature is reduced, so is the range (e) of the mutation space. The algorithm
terminates when the cost converges or the temperaturereaches 0.

Once conver gence'is reached then the particular manufacturing process of each part
isknown. Depending on the cooling schedule, the optimal solution may need to be fine-
tuned. Either the analysis of section 6 for hyperboalic cost functions can be employed or a
gradient-based numerical technique with Lagrange Multipliers can be utilized. Note that in




the example of section 6, the simulated annealing solution is essentially identical to the
analytical solution.

Begin Continuous-Anneal
Determine cost function;
T=1;
Generate Sate
Evauate -u ..
WhileT>0Oda
Generate temp_state by mutation where range is function
of T;
If (verify constraints of temp_state)
then Begin
Evaluate temp_state;
Test temp_state with Metropoalis,
1f (accept)
then
dtate = temp_state;
End
End
T = T*reduction_factor,
End

Fine-tune solution with gradient technique if required;

End

Figure 5. Continuous Problem Algorithm

6. Friction Whed Example

6.1 Problem Definition

In this section we apply the simulated annealing agorithms described in sections 4
and 5 to the design and manufacturing of a system of friction wheels. The engineering
cost, tolerancing, and manufacturing information described in section 3 is used to
determine actual design numbers.

Information pertaining to the machining parameters is based on values obtained
from manufacturers and Machinability Data Center (1980). For demonstrative purposes,
the recommended feeds, speeds, and cut depths assume the machined material is 1117 low
carbon resulfurized free machining wrought steel, cold drawn with a hardness of
approximately 200 BHN. Machining time for other materials may be computed with the
formulas developed by substituting their particular recommended machining parameters.
These parameters are available for awide variety of materials.
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Figure 6. General system of n friction wheels

Consider a system of n friction wheels as shown in Figure 6. The cost function for
~ asinglewheel is given in equation (9). Thetotal cost (Or) of all the wheelsis then the sum
of each individual wheel costs. The performance criteria is specified by a given output

tolerance (Aout)s the stack-up tolerance on the system must be bounded by Ayt- The
optimization problem is formulated as.

nun: Cr
st.: .
. CrXQ,
hi:” i=1
G =K, b,
hz: Ai -
n
gl: 2 Ai S Aout .

i=1

Monotonicity analysis (Papalambros and Wilde, 1988) reveals that both equality
congraints hi and h2 and inequality congtraint gi must be active and relevant. For given
parameters ai, bi, and Kj, and n wheels, this problem has n-1 degrees-of-freedom (DOF).
By using all relevant information the minimum can be determined by applying the first-
order necessary conditions of optimality (setting the partial derivative of the cost function to
zero for each Ai). Algebrathen leads to the following solution for each Aj:

i-1 -1
(Aou.- Y Aj- I A,--an)l(n-”% aiK; 112

j=l j=i+l

A vi= 1. .17 Ki-lﬂ + Kn-uz (12)




Note that there are n-1 smultaneous equations which must be solved to determine the
optimal tolerances. The n* tolerance (An) is determined from condraint gj .

This general problem to determine a set of tolerances given the manufacturing
processes has been programmed in C on aMac IL The discrete technique is programmed
to randomly pick a manufacturing process for each friction wheel and evaluate the
geometric tolerance on each wheel and the total cost. The smulated annealing algorithm
then repeats this process until the optimal configuration and tolerances are determined.

The continuous problem is solved independent of equation (12) as described in
section 5; however, once the optimal manufacturing processes have been determined
equation (12) can be usad to determine the exact solution.

o D2+A2
DizAI D3+A3
M D4+A4
< ZDi+A0 >

Figure 7. System of four friction wheels

We will demongrate application of the algorithms to the design of the system of
four friction wheelsin Figure 7 where each wheel can be manufactured by either turning,
grinding, or stock dlicing (saw cutting) as discussed in section 3. These results can easily
be applied to different manufacturing processes with smilar cost functions.

6.1 Tradeoff of Manufacturing Processes

-Congder the problem where the friction wheels can ‘be manufactured by three
different processes. The whee diameters and the numerical coefficients for the cost
function of equation (9) are given in Table 1. The cost functions of the three processes as a
function of tolerance are given in Figure 8 By specifying an output tolerance (Agt) of
0.08, the optimal configuration has parts 1-4 allocated tolerances of 0.0654, 0.0049,
0.0049, 0.0048, and processes of sawing, sawing, grinding and grinding, respectively;
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the system has a total cost of $6.63. These results are obtained for both the discrete and
continuous methods introduced in this paper.

Condgder the sensitivity of the solution to Aoy.. Figure 9 shows the minimum cost
as a function of Aoy; the function is a smooth curve with greater sensitivity for very tight
tolerance and relatively small sensitivity for larger tolerances.

In general, athough the cost function is smooth with little sensitivity to change in
Aout, the selection of manufacturing process and allocated component tolerances is quite
sensitive. Figure 10 shows the manufacturing process of each component as a function of
Aout- Note that at tight tolerances all components are ground. As Aout increases, the
processes progress from grinding to turning to saw cutting, and at loose tolerances all
components are saw cut. Note that the larger components (which are more expensive to
hold at tight tolerances) rapidly switch to the lathe and then saw cut; the smaller
components are ground until much higher tolerances. Note also that all components rapidly
switch from the grinder to the saw cut and very few components are ever turned on the
~ lathe; the third whedl actually skips the lathe step altogether.

As we follow the transition of the different manufacturing processes for each part,
the alocated tolerances also uniquely change as shown in Figure 11. Initially all wheels are
kept at atight tolerance. As Aoy becomes looser, the larger wheels are allocated |ooser
tolerances while the smaller, less expensive, wheels maintain tight tolerances. The largest
wheel tolerance increases until it becomes more expensive for the other wheels to keep tight
tolerances than to continue to loosen the tolerance of the largest wheel; the largest wheel
tolerance is then dightly tightened as the next largest wheel tolerance becomes significantly
looser. The two larger wheels then increase in tolerance until the third largest wheel is
allocated a looser tolerance and the two larger wheels obtain a dlightly tighter tolerance.
This process continues until the final wheel must obtain alooser tolerance. Note that as the
wheel diameter is increased, the cost of holding tighter tolerances is also increased. This
causes the tolerances on the larger wheels to be relaxed before those of the smaller wheel s

From Figures 10 and 11 we can conclude that manufacturing processes and
allocated tolerances do not have smooth transitions. Rather there is great cost sensitivity
between the different process and their implied tolerances as Aoy changes. Accounting for
these variations leads to optimal design cost configurations.

17




Table 1. Parameter values used in equation (9) for three processes for each friction wheel

Wheel Number
1 2 3 4
40inchdial 30inchdia | 25inchdia 10inchdia
al 0.02 0.02 0.02 0.02
Lb 20 113 0.78 0.13
K| 0.0266134 | 0.0201421 0. 0169064 0. 0071994
] 0.005 0. 005 0. 005 0.005
g | T 1.63 1.20 Q3
£ K 0.00568620] 0.00519498 [0.00494938  { 0.00421255
,;8?1 0. 0005 0. 0005 0. 0005 0. 0005
E b 2% 1.89 145 0.52
K| 0.0003004 | 0.0002902 |0.0002851 0. 0002699

124
1 - 1 A 1 1 1 1
0 0.02 0.04 0.06 0.08 0.1 0.12
A
Saw. Lathe ======- Grinder

Figure 8. Tolerance versus cost functions for three processes
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Figure 11. Optima alocated tolerance versus Aout for each component

7 Conclusons

We have presented two methodologies to determine optimal allocation of tolerances
and manufacturing processes to a system of components for minimum cost. Both
techniques utilize the Stochastic optimization technique of smulated annedling. The firgt
implements a Monte-Carlo smulation for discrete manufacturing processes; the second
models the tolerance versus cost function as a continuous function with discontinuous
derivatives. The first gpproach is ussful when there is no obvious ordering to the discrete
st of processes; the second is useful when there is an ordering and the functions are well
known.

We gpplied the techniques to the design of a system of friction wheels considering
the manufacturing processes of grinding, turning, and stock dicing. This example was
used to demonstrate the theory, but the gpproach is more generd than for friction whedls
aone. The hyperbolic cost functions are useful for numerous other material removal
manufacturing processes for a variety of componehts However, if the manufacturing
process is modded with adifferent cost function, the theory ill remains vaid dthough the
agebraic andyss needs to be updated
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