
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



Macro and Micro Perspectives of
Multlstrategy Learning

Y. Reich

EDRC 12-44-91



In Procceedings of the First International Workshop on Multistrategy Learning
(MSL-91), Harpers Ferry, WV, November 1991, pp 97-112, Center for Artificial
Intelligence, George Mason University, Fairfax, VA.

Macro and Micro Perspectives of Multistrategy Learning

Yoram Reich
Engineering Design Research Center

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract
Machine learning techniques are perceived to
have a great potential as means for the acqui-
sition of knowledge; nevertheless, their use in
complex engineering domains is still rare. Most
machine learning techniques have been studied
in the context of knowledge acquisition for well
defined tasks, such as classification. Learning
for these tasks can be handled by relatively sim-
ple algorithms. Complex domains present dif-
ficulties that can be approached by combining
the strengths of several complementing learn-
ing techniques, and overcoming their weak-
nesses by providing alternative learning strate-
gies. This study presents two perspectives, the
macro and the micro, for viewing the issue of
multistrategy learning. The macro perspec-
tive deals with the decomposition of an over-
all complex learning task into relatively well-
defined learning tasks, and the micro perspec-
tive deals with designing multistrategy learn-
ing techniques for supporting the acquisition of
knowledge for each task. The two perspectives
are discussed in the context of BRIDGER a sys-
tem that learns to design bridges.

K e y words : knowledge acquisition, multi-
strategy learning, generic learning tasks, design.

1 Introduction

Real world engineering problems, in particu-
lar design1, are very complex; they involve the
execution of many tasks in rich knowledge en-
vironments with limited resources. Computer

!The discussion in this paper is in the context of de-
sign, but it equally applies to other tasks and domains.

97

systems are expected to alleviate the complexity
of solving engineering tasks. An effective sup-
port for the construction of such computer sys-
tems is crucial to their dissemination in practice.
Machine learning has the potential of assisting
in this construction.

Several previous attempts at matching learning
techniques to the acquisition of design knowl-
edge have failed (Shalin et al., 1988; Witten
and MacDonald, 1988). The main reason for
this failure is the attempt to identify a single
technique that will suffice to support knowl-
edge acquisition for design as a whole. Design,
however, is neither a single process nor a static
one. The design of learning techniques for such
a complex activity requires its decomposition
into simpler tasks and the matching of learn-
ing techniques for the acquisition of knowledge
for each task. Usually, even this matching is
hard to achieve, since most machine learning
techniques are single strategy that only partially
match the requirements of real learning tasks
(Tecuci andMichalski, 1991).

Since single strategy learning approaches are
not sufficient for supporting learning in real do-
mains, multistrategy approaches must be em-
ployed. Two perspectives of using multistrat-
egy learning techniques emerge: the macro and
the micro; they are elaborated below.

The macro perspective deals with the design of
an architecture that learns and problem-solves
in the context of a large engineering task. It
assumes that it is not feasible to expect that a
single learning program will acquire all knowl-
edge in a real engineering domain. Therefore,
an architecture that supports this task is bound
to include several learning programs and a con-

"University Libraries
Carnegie IWellon University
^Pittsburgh PA 15213-3890



trol mechanism that directs learning tasks to the
appropriate programs. Building such a learning
system is a complex design task by itself. Its
successful completion depends on following a
systematic approach. The approach proposed in
this study is called M2LTD (Matching Machine
Learning To Design). It is detailed in Section
2.1, including an example of its use to specify
a learning system for a specific design domain.

Several recent studies incorporated macro-
perspective issues in their system implemen-
tation. Stirling and Buntine (1988) investigated
learning routings of products in a plant. They
decomposed the learning task into two subtasks.
In the first task, descriptions of routings of prod-
ucts in a mill are used to induce a grammar;
which can then be modified by an expert. In the
second task, examples are used by ID3 (Quin-
lan, 1986) to induce routing decisions which are
expressed as different branches in the grammar.
The rules generated can then be evaluated by an
expert. The grammar induction was necessary
for the execution of the second learning task.

Lu and Chen (1987) described a method for
learning evaluations in a manufacturing do-
main. In the first stage the behavior of objects is
clustered by CXUSTER/2 (Michalski and Stepp,
1983). Then, each class is treated as a concept
to be learned by the concept learning program
AQ15 (Michalski et al., 1986). The rules gen-
erated by AQ15 can assign a new object to the
class of behaviors to which it belongs. The two
learning programs are both required to perform
the overall learning task.

In all these studies, the macro perspective deals
with the use of distinct learning programs for
specific aspects of a learning problem. The con-
trol of the programs is determined by the prob-
lem requirements, and is fixed. Usually, exist-
ing learning techniques have been used based
on their availability and without modifications.

The micro perspective deals with the design of
specific learning procedures for the acquisition
of knowledge for small engineering tasks. In
real domains, these procedures are bound to
employ several learning strategies, operating in
an integrated manner. The crucial issue in this
perspective is the control of and cooperation
between the different strategies.

Several recent studies employ multistrategy

learning. MTL (Tecuci and Michalski, 1991)
uses deduction, analogy, abduction, and induc-
tion, to justify an input and potentially learn
new knowledge from observations. Although
currently the control of these strategies is fixed,
future extensions will allow the dynamic exe-
cution of the strategies.

ML-SMART (Bergadano et al., 1989) views
learning as a problem-solving activity. It uses
knowledge and different strategies, and allows
the user to specify which strategies are applica-
ble for the particular application domain.

AIMS (Lu and Tcheng, 1991) supports the dy-
namic selection of learning techniques in the
recursive-splitting learning paradigm. The sys-
tem divides the domain based on some criteria,
such as information gain, and selects a tech-
nique to further learn the subdomain based on
the desired accuracy, comprehensibility, and ef-
ficiency of the learned knowledge and the char-
acteristics of the available techniques.

Neither the macro, nor the micro perspective
is sufficient for supporting the knowledge ac-
quisition for real engineering domains; both are
equally important. The macro perspective can
identify machine learning programs that match
the specific engineering task, but these tech-
niques usually need to undergo modifications,
often by incorporating multistrategy learning.
The micro perspective deals with the develop-
ment of techniques to better suit well-defined
learning tasks. Usually, the scope of each tech-
nique will be restricted, necessitating the use of
several multistrategy programs for supporting a
real domain.

Two phases in the development of domain mod-
els, an idea similar to the macro and micro per-
spectives, is discussed by Tecuci (1991): (1)
the definition of a suitable framework and (2)
the implementation of the model in the frame-
work. These phases correspond to the macro
and micro perspectives, respectively.

Plan of the paper.
The remainder of the paper is organized as
follows. Section 2 discusses the macro per-
spective of multistrategy learning. It reviews
M2LTD and illustrates how BRIDGER, a system
that assists in the design of cable-stayed bridges,
was developed following M2LTD guidelines.
Section 3 briefly reviews COBWEB and PRO-

98



implementation results in feadback of down-stream
concerns on the preliminary design stage

Figure 1: M2LTD: Matching Machine Learning programs To Design tasks

TOS. It discusses their shortcomings in relation
to engineering domains and outlines some of
the extensions that introduce additional learn-
ing strategies into these systems. These exten-
sions are implemented in ECOBWEB, and EPRO-
TOS respectively. Section 4 provides a common
framework for the two perspectives by revis-
iting the concept of generic-learning tasks and
showing that both perspectives operate within
the generic task framework, but in different
grain sizes. Section 5 summarizes the paper
and discusses future research directions.

2 The Macro Perspective

This section describes M2LTD, the systematic
approach for identifying learning techniques for
complex domains, and reviews BRIDGER, the
system built following the principles of M2LTD.

2.1 M2LTD

M2LTD (Matching Machine Learning To De-
sign) is a manual systematic approach for de-
signing systems that acquire knowledge in com-
plex domains (Reich, 1990b); it reflects the
macro perspective of multistrategy learning. As
any other design activity, the use of M2LTD
does not guarantee a successful learning system;
rather, it help identify potential learning tech-
niques that may perform the overall learning
task. Feedback from implementation or other
concerns emerging in the integration of the dif-
ferent techniques, may dictate the modification
of the techniques identified or even their re-
placements. The collection of experiences of

using M2LTD is important to its future use. In
that sense, the learning in this perspective is
done by the developers of large learning sys-
tems.

M2LTD is based on four steps (Figure 1):

(1) decomposition of the design task into a col-
lection of smaller tasks (e.g., synthesis or
analysis);

(2) identification of the representation of de-
sign objects used (e.g., lists of attribute-value
pairs, trees or graphs) in each of the tasks de-
scribed in Step (1), and the strategies each
task uses (e.g., top-down refinement);

(3) selection of machine learning paradigms
that have the characteristics identified in Step
(2) (e.g., concept formation or EBL); and

(4) use of additional domain characteristics
to select particular machine learning pro-
grams, from the collection available in each
paradigm found in Step (3), that can acquire
the knowledge in the right representation
and support the strategies employed. These
well-defined learning techniques are called
generic learning tasks (Reich and Fenves,
1989; See also Section 4).

Rarely will an existing machine learning pro-
gram do the task as specified; but a close match
eliminates the effort of building a new learn-
ing program, leaving the need for modifying an
existing program. M2LTD focuses the imple-
mentation effort on the important modifications
required, which in many cases involve the ad-
dition of new learning strategies.

Many concerns enter the decision about the ap-
propriate machine learning task to use for each

99



Design tasks in
cable-stayed bridge
design

Appropriate
machine learning
tasks

Appropriate
machine learning
programs

problem
analysis s typology

*"**»• no hiScs

C space of candidate
designs

analysis • strong theory

redesign weak causal model +
heuristic preferences

SBL:
concept
formation

COBWEB

direct coding +
SBL

evaluation . non-existent

SBL +
weak EBL:
concept learning

Protos

SBL:
concept learning

acceptable solutions

a
Figure 2: Matching learning programs to design tasks

problem task. Some of the decisions are not
conclusive and require revisions when the sys-
tem is implemented. This is shown as Step (5) in
Figure 1. Some of the concerns are mentioned
in the next section which discusses BRIDGER,
a system that demonstrates the application of
M2LTD in the design of a learning system.

2.2 Bridger

UsesofJVfLTD.
BRIDGER is a system that assists in the prelim-
inary design of cable-stayed bridges. Its con-
struction followed the M2LTD approach (Reich,
1990b; Reich, 1991b). This section describes
the design of BRIDGER.

In Step (1) of M2LTD, preliminary design was

decomposed into several tasks executed sequen-
tially: synthesis, analysis, redesign, and evalu-
ation (see Figure 2a). In Step (2), the domain of
cable-stayed bridge design was analyzed based
on the tasks previously identified, and resulted
in the following observations:

Synthesis. There is no explicit knowledge about
the synthesis of cable-stayed bridges. Rather,
synthesis uses the collection of previously de-
signed bridges and adapts them to the specifi-
cations of new problems. Cable-stayed bridges
can be described by an elaborate list of property-
value pairs. A list sufficient for represent-
ing preliminary designs, drawn from existing
bridges, contains about 60 properties.

Analysis. There is extensive knowledge about
analysis of bridges which is readily available in

100



programs such as finite-element analysis.

Redesign. There is a collection of heuristics
that can propose design modifications for par-
ticular deficiencies in candidate designs. These
heuristics were generated from studies of bridge
examples. The heuristics are not exact and can
be viewed as a weak domain knowledge.

Evaluation. Subjective judgment is usually
used in selecting between candidate designs that
satisfy the design requirements and the relevant
design codes. In particular, aesthetic criteria
have a major impact on evaluation.

The above observations lead the selection of
learning tasks (Step (3)) and programs (Step (4))
for the acquisition of knowledge in the domain
of cable-stayed bridge design (see Figure 2b and
c). Both steps are discussed next.

Synthesis is a process that generates a descrip-
tion of an artifact given a list of specifications.
In this design domain, both specifications and
artifact descriptions are represented by lists of
property-value pairs. A learning process that
can capture a relation between two sets of prop-
erties is concept formation, which is believed to
be fundamental for capturing synthesis knowl-
edge (Reich and Fenves, 1991). The design do-
main characteristics determine the use of tech-
niques that do not use knowledge since it does
not exist2. Step (4) suggests that a program
such as COBWEB (Fisher, 1987), can perform
the learning activity. The reimplemention and
testing of COBWEB on several design domains
show some deficiencies leading to significant
enhancements that are implemented in ECOB-
WEB (Enhanced COBWEB; see also Section 3.1).

Analysis is coded directly, no learning is used in
this task. Nevertheless, an experiment was per-
formed to show that ECOBWEB can learn heuris-
tic analysis (Reich and Fenves, 1991).

Redesign is a diagnosis task which can be sup-
ported by concept learning. The characteristics
of the design domain allow the use of weak do-
main knowledge. A learning program that sup-
ports such learning activity is PROTOS (Bareiss,
1989) which was modified to handle continu-

2Later we show how, in fact, knowledge can be used
to enhance learning performance. The use of this knowl-
edge has emerged from the particular algorithm chosen
for the implementation.

ous, as well as nominal property types.

Evaluation is not explicitly captured as knowl-
edge; nevertheless, candidate designs that are
chosen by the designer using BRIDGER can be
used as training examples for enhancing synthe-
sis knowledge. Consequently, the user evalua-
tion becomes an implicit part of synthesis.

Bridger's architecture.
BRIDGER's architecture is based on the task
analysis. BRIDGER contains two main subsys-
tems: synthesis and redesign (see Figure 3).
The synthesis system is responsible for synthe-
sizing several candidates from a given specifi-
cation. Synthesis knowledge is generated by
learning from existing designs and from suc-
cessful design examples that are selected by
the user. The redesign module is responsi-
ble for modifying designs after their analysis.
On receiving the analysis results, this module
retrieves the best design modification for the
bridge. The user can override the redesign mod-
ifications and supply explanations that enhance
redesign knowledge. The results of the redesign
system are acceptable designs.

User (final eviluator)

examples of
designs

warning
module

existing
knowledge

specifications

synthesis

Synthesis System

Redesign System

redesign
module

candidate
designs

cnnc
(analytis+ev tluation)

module

user selection

acceptable
designs

Figure 3: BRIDGER'S architecture

Interaction between synthesis and redesign.
One of the important questions in multistrategy
learning is the interaction between the strate-
gies or programs. In the context of BRIDGER,
this question is translated into the nature of the
interaction between synthesis (ECOBWEB) and
redesign (EPROTOS).

101



In the macro perspective, the control, and there-
fore, the interaction is pre-specified and limited.
The different learning programs interact in the
normal course of solving problems in the do-
main. In BRIDGER, the product of synthesis is
delivered to analysis and redesign, therefore,
the redesign knowledge acquired will be tuned
to the candidates generated by the synthesis
module. In addition, candidates modified by
redesign may be learned by the synthesis mod-
ule, therefore, enhancing its knowledge. As
BRIDGER designs more bridges, the candidate
generated by synthesis are better and closer to
those that redesign can easily correct.

Two other application of M2LTD for specifying
a system that learns to design ships and a system
that learns to perform finite element modeling
are discussed in (Reich, 1991b). Since the pre-
liminary design of ships is similar to the prelimi-
nary design of bridges, the use of M2LTD in this
domain results in a specification of a program
that is similar to BRIDGER. Two modifications
to BRIDGER'S architecture allow the acquisition
of analysis and evaluation knowledge of ships.
Due to the similarity between the bridge and
the ship design domains, the use of M2LTD for
the domain of ship design is guaranteed to be
successful. The third domain, the design of
finite-element models, is completely different
than the first two domains. The use of M2LTD
for this domain results in a rough specification
of a learning program. A successful implemen-
tation requires the modification of several ma-
chine learning programs and substantial testing.

3 The Micro Perspective

This section discusses the micro perspective of
multistrategy learning in the context of the sys-
tems that implement the synthesis and redesign
modules of BRIDGER: ECOBWEB and EPRO-
TOS. ECOBWEB includes several extensions that
make it a multistrategy learning system; ECOB-
WEB is the major focus of this section. EPROTOS
enhances PROTOS, which is already a multistrat-
egy learning system; its operation is described,
including two new extensions. Due to space
limitation, the description assumes a certain
level of familiarity with the original COBWEB
and PROTOS.

3.1 Ecobweb

COBWEB is a concept formation program for
the creation of hierarchical classification trees
(Fisher, 1987). A classification is 'good' if the
description of an example can be guessed with
high accuracy, given that it belongs to a specific
class.

COBWEB evaluates a classification of a set
of examples into mutually-exclusive classes
Ci,C2,...,C« by a statistical function called
category utility (CU):

E , E> va\ck)
2 -

(l)

where C* is a class, A,- = Vy is a property-
value pair, P(x) is the probability of x> and n
is the number of classes. The first term in
the numerator measures the expected number
of property-value pairs that can be guessed cor-
rectly by using the classification. The second
term measures the same quantity without using
the classes. Thus, the category utility measures
the increase of property-value pairs that can be
guessed above the guess based on frequency
alone. The measurement is normalized with
respect to the number of classes.

When a new example is introduced, COBWEB
tries to accommodate it into an existing hierar-
chy starting at the root. The system performs
one of the following operators (See (Fisher,
1987) for a detailed description):

(1) expanding the root, if it does not have any
sub-classes, by creating a new class and at-
taching the root and the new example as its
sub-classes;

(2) adding the new example as a new sub-class
of the root;

(3) adding the new example to one of the sub-
classes of the root;

(4) merging the two best sub-classes and
putting the new example into the merged sub-
class; or

(5) splitting the best sub-class and again con-
sidering all the alternatives.

If the example has been assimilated into an ex-
isting sub-class, the process recurses with this
class as the top of a new hierarchy. COBWEB
again uses category utility to determine the next
operator to apply.

102



COBWEB predicts using a mechanism similar to
the one used for augmenting the hierarchy by
new examples but allowing only operator 3 to
apply. COBWEB sorts a partial example through
the hierarchy to find the best host for the new
example. The best host is a leaf node (i.e., one of
the training examples) that is used to complete
the description of the new example.

COBWEB has a number of drawbacks for its use
in an engineering design domain.

(1) COBWEB can only manipulate nominal
properties. CLASSIT is a descendant of COB-
WEB that handles continuous properties (Gen-
nari et aL, 1989). Elsewhere, we contrast its
approach with the extension to continuous
properties implemented in ECOBWEB (Reich,
1991b) and conclude that ECOBWEB'S strat-
egy is more "natural" and flexible.

(2) COBWEB has a stiff prediction scheme. It
makes a strong commitment to continue pre-
diction until a complete existing design is
retrieved. No generation of new examples
or accommodation of subjective judgment is
allowed. In addition, leaf prediction is not
adequate since it produces only one candi-
date in each prediction. Leaf prediction is
also susceptible to noise and may result in
unnecessarily high error rates.

(3) COBWEB uses only die syntactic measure of
category utility to guide its learning and pre-
diction. No domain dependent or indepen-
dent knowledge is used, although if available,
could enhance learning substantially.

(4) COBWEB'S performance depends substan-
tially on the order of example presentation,
eventhough it has two learning operators,
split and merge, that are specifically designed
to reduce order effects on learning.

Extensions that address each of the deficien-
cies are described next. They all involve some
aspect of using background knowledge or addi-
tional learning strategies. Since ECOBWEB pre-
diction is interleaved with its learning, exten-
sions to prediction methods are also important
and discussed next.

Extension to continuous properties.
As a system that learns from bridge examples,
ECOBWEB must handle the continuous, ordi-
nal, or nominal property types that appear in
bridge descriptions. ECOBWEB implements an
extension of CU that can handle continuous

properties3. In its simplest variant the term
= Vii\Ck)2 is calculated as:

_
Vi\Ck)

2 U *Pi(Adx\ (2)

where pi(x) is a distribution for the A,-, 2d^ is
dependent on the range of values of A,, V,- is
the mean of the values of A, in Ck, and aL is the
standard deviation of the values of A4. If no spe-
cific knowledge is available on the distribution
Pi, the default is the normal distribution. This
extension has been tested extensively in several
domains and has proven to be effective and rel-
atively insensitive to the choice of di (Reich,
1991b).

Knowledge can be used in two ways. The first is
the use of domain knowledge about the distribu-
tion of continuous properties. The second way
is the inspection of a posteriori distributions of
continuous property values and the revision of
their distributions based on this inspection. The
first way is fully implemented and the second
can be incorporated in ECOBWEB.

Extension of the prediction methods.
COBWEB'S prediction method is too restrictive.
Also, it is not clear how an inductive learner of
the COBWEB type performs without a rich set of
bridge examples. The new prediction methods
are designed to operate between a case-based
approach, when few examples are available, to
a prototype-based approach when many exam-
ples are present.

ECOBWEB'S prediction methods can be de-
scribed along two dimensions: the refinement
process which can be extensional or intentional;
and the generation process which can be case-
based or prototype-based. Figure 4 illustrates
these dimensions. In the extensional approach,
refinement classifies a new example with a new
subclass starting from the top node (class 1 in
Figure 4) until the process terminates (class 3).
In this view, a class represents the extension
of all its leaves. In the intentional approach,
while classifying the new example, character-
istic property-values of the classes traversed
(classes 1, 2, and 3 in Figure 4) are assigned

3 A detailed development of this extension appears in
(Reich, 1991b).

103



Extension*! Intentional

Case-based

Prototype-
based

5UJ
Figure 4: Synthesis methods

to the new design4.

In the case-based approach, a set of existing
designs is retrieved as candidate designs. For
example, designs 4, 5, and 6 are retrieved. In
the prototype-based approach, the last class, i.e.
class 3, is used to generate several candidates
from the property value data it contains.

Note that the synthesis process may end at an in-
termediate class in the hierarchy, such as class
3, depending on the specific problem. To il-
lustrate, assume that the problem is specified
by two requirements, and that one of the char-
acteristic values of class 1 is the same as one
requirement, and one of the characteristics of
class 3, equals the other requirement. In this
situation, the path from class 1 to 3 matches
the two requirements and therefore, the synthe-
sis process terminates. This behavior generates
general solutions to general problems, a good
by-product of the design of the new prediction
methods.

4Characteristics are property values that satisfy:
P(Ai = Vij\Ck) > threshold and P(C*|A,- = Vy) >
threshold, where threshold is a pre-determined fixed
value. Potentially, this value can be learned for each
domain.

Use of knowledge in concept formation.
Use of knowledge to override CU.
An important characteristic of the knowledge
generated by ECOBWEB is that it is declarative.
This enables an external body of knowledge,
domain dependent or independent, to inspect it.
This inspection can make inferences that en-
hance the use of the classification hierarchy and
further develop it. The ability to benefit from
external knowledge relies on the flexible nature
of the learning method which uses weak search
methods directed by the category utility func-
tion. CU can be used as a default mechanism in
the absence of knowledge; explicit knowledge,
on the other hand, can prefer the execution of
a specific operator or other learning strategies
and override CU.

An example of constraining learning and pre-
diction by Pareto-optimality and hard con-
straints is given in Figure 5. The top level of the
classification hierarchy consists of four classes.
Each class is partially described by three charac-
teristic objectives; all the remaining properties
are irrelevant to this discussion. In learning or
prediction, instead of trying to find the best host
from all the sub-classes, only sub-classes that
are Pareto-optimal with respect to the desired
objectives (C2,. . . , C*,. . . , Cn) and that satisfy

104



all the hard-constraints (C*, • . . , C) arc consid-
ered. Consequently, C\ is excluded since it is
not optimal and violates the constraints, and
C2 is excluded since it violates the constraint
Alternatively, given additional resources, ex-
ploratory search might take place by relaxing
constraints (permitting the consideration of C2),
or by trading objectives with other considera-
tions (permitting the consideration of CO .

minimize a, b, and c
subject to c < 13 Pfcopa

a
b
c

ty value
10
10
10

Parcto-optimal set Satiifies all requirements

Figure 5: Constrained optimization and ex-
ploratory design

Knowledge about modeling.
Another kind of domain knowledge that is in-
vestigated is knowledge about modeling. For
example, such knowledge can suggest impor-
tant features of objects. Given an initial descrip-
tion of objects, the knowledge can augment it
by additional properties, compress the descrip-
tion of several properties, or erase irrelevant
properties.

A simple use of such knowledge is exercised in
modifying Equation 1 to account for the a priori
or learned differences in the relative importance
of properties. Equation 3 shows how CU can
accommodate knowledge about the relative im-
portance of properties:

selected for the cable-stayed bridge domain is
a = 1.1. This value can be dynamically mod-
ified by observing the branching factor of the
hierarchy. A branching factor of 3 to 4 is expe-
rienced to yield good results across domains.

The knowledge about the weighting and the a
parameter are required if data is sparse and not
sufficient to construct a usable hierarchy. The
need to use knowledge in empirical learning,
when data is limited, is recognized in many
learning systems. EPROTOS, the system used
for the acquisition of redesign knowledge, is
one example of such a system.

Constructive induction.
COBWEB makes use of the original property-
value pairs appearing in example descriptions
without modifying them. This assumes that the
description language is adequate. ECOBWEB has
a constructive induction scheme that can gener-
ate higher-order features from existing property
values (Reich, 1990a). The extension to con-
tinuous properties can be viewed as grouping
values into samples from an assumed distribu-
tion.

-(3)

where Wt is the weight of A,, and a > 1.0.

The parameters a makes sure that the classifica-
tion hierarchy is not flat. This would result in an
inefficient storage and retrieval of designs. A
flat hierarchy is built if the data is sparse as it is
in the target domain of BRIDGER: cable-stayed
bridge design. The variation of the parameter
a changes the hierarchy from binary, when a
is large, to flat, when a equals 1.0. The value

For example, two complementing values
and Vn can be combined into a new feature
G\ = {Vn, V12}. This can be viewed as
adding an internal disjunct into the description
language. Additional values can be accommo-
dated into or deleted from G\ based on addi-
tional information.

Hierarchical properties.
The constructive induction capability can be
used to handle hierarchical properties. In this
case, the only features that will be allowed
are those that represent nodes of the hier-
archy. For example, {circle}, or round =
{circle, ellipse), shown in Figure 6, are pos-
sible features, whereas {square, rectangle), or
{triangle, circle) are inappropriate features.

any-shape
^ - - ^

round poly

circle ellipse square rectangle triangle

Figure 6: A hierarchical property

105



Experimentation.
Another way of using knowledge is to construct
examples that will enhance the performance of
the system. This capability is very important
since machine learning techniques are emerging
as tools for extracting knowledge from simula-
tion of behaviors of designs which are examples
that are generated on demand (Buchanan et aL,
1988; Reich, 1991b). The availability of good
sources of examples is crucial for obtaining a
satisfactory learning performance.

For example, in the context of BREDGER, there
are relatively few examples of cable-stayed
bridges available and the generation of new ex-
amples is time consuming; it involves the se-
lection of 'good' specification and the design
of solutions for the specification. It is there-
fore important to devise a method that will al-
low the generation of the most useful examples,
such that the improvement in knowledge due
to learning is maximized with minimal training
resources.

The problem of selecting good examples is es-
pecially dominant when using an incremental
learning system. In this case, even if all the
examples are available, it is useful to impose a
good ordering on the training examples. While
using COBWEB (Fisher, 1987) in several design
domains (Reich, 1991b) it has been observed
that the order of training examples used to gen-
erate synthesis knowledge has a substantial ef-
fect on the synthesis ability. Deviation of 90%
in synthesis performance were observed in sta-
tistical experiments with random orderings of
training examples.

ECOBWEB'S experimentation technique can be
performed in two ways. The first method only
makes use of the information stored at the root
of the hierarchy, namely, the most frequent
property-value pairs. The next training example
that is selected is one that has property values
that are the most distant from the most frequent
values observed thus far.

The second experimentation method is more
complex, it searches for an example that if
learned, will maximize the category utility of
the top-level classification. This method is
more informative and makes use of ECOBWEB
mechanisms. Preliminary experiments in sev-
eral domains show improvements in the perfor-
mance of the system (Reich, 1991a).

Hierarchy-correction scheme.
Another approach to mitigate the problem of or-
der effects on learning is to use knowledge about
properties to reorganize the hierarchical knowl-
edge structure in a process called hierarchy cor-
rection. This procedure can detect problems in
the classification hierarchy that were introduce
in spite of the mechanisms that use knowledge
to override CU, discussed before.

The hierarchy-correction scheme follows three
steps. First, properties deemed most critical
by domain knowledge are selected as triggers.
Second, the hierarchy is traversed top-down.
Each class with a characteristic value of a trigger
property, that differs from a characteristic in one
of the class* ancestors, is removed along with its
subtree from the hierarchy. Third, the examples
at the leaves of all the removed subtrees are re-
learned. The process can iterate several times
until no change of the hierarchy is obtained.
The application of this procedure enhances the
predictive accuracy of ECOBWEB.

To illustrate, assume that the top classification
hierarchy is as appears in Figure 7. Speci is
a specification property and desi is a design
description property that are considered trig-
gers by domain knowledge. Only characteristic
values are shown in the figure. The hierarchy
correction traverses the hierarchy until reaching
class C\. By looking at its sub-classes, C2, C3,
and C4, the method detects that: the character-
istic value of speci in class Ci is different than
that in class C\9 the characteristic value of desi
in class C3 is different than that in class C\, and
both characteristic values in class C4 are equal
to those in class C\. The differences suggest
that the information stored in more specialized
classes contradict the information stored in the
parent class. It is better if this contradiction
is removed. Therefore, classes Ci and C3 are
erased from the hierarchy with all their sons,
and the leaf nodes which are training examples
are re-learned by ECOBWEB5. The process can
iterate until no change to the hierarchy is possi-
ble.

User guidance.
Beside all the automatic techniques discussed
above, that make use of some knowledge, there
is the most trivial way of using knowledge in

5If only speci was a trigger, only d would have been
erased.

106



Property

1 c,
Property value nopeiiy

d
V*» 1

value

1
value

A
B

Property value

Property value

C
Property value

S j C

Properly vahie

spec!
des i

A
B

Figure 7: Classification hierarchy with charac-
teristic contradictions

learning and prediction: the apprentice mode.
In that mode, ECOBWEB allows the user to de-
termine the next learning operator or strategy
to apply instead of using category utility or one
of the additional mechanisms described. Simi-
lar ideas to the use of interactive induction, in
which the user of the learning program observes
the results of the program and modifies its input,
are discussed in (Stirling and Buntine, 1988). It
is expected that in complex domains, a synergis-
tic approach to human-computer induction will
be more beneficial than the automatic approach.

Summary.
This list of implemented and potential uses
of knowledge or other learning strategies in
the COBWEB framework is not exhaustive.
Presently, the user of ECOBWEB determines
which learning strategies are used in a specific
learning scenario. The automatic control of this
strategy collection is complex and is the subject
of future research.

3.2 Eprotos

PROTOS is an exemplar-based learning program
that integrates empirical learning with weak
domain knowledge in the form of explanation
(Bareiss, 1989). Therefore, PROTOS is a mul-
tistrategy learning system. The task of PROTOS
is heuristic classification: given a new case to
classify and knowledge in the form of category
structure, PROTOS attempts to find the best cat-
egory for the new case. PROTOS' operation is
detailed in the following paragraphs.

PROTOS represents knowledge in categories that
contain representative cases called exemplars.
Exemplars are described by lists of property-
value pairs. The exemplars are augmented with
domain knowledge, which explains why a cer-
tain exemplar is a member of its category. The
explanation can also provide additional rela-
tions between other pieces of knowledge. The
explanations are in the form of a network of
predicates relating terms in the category struc-
ture. Each predicate is associated with several
types of probability measures, such as strength
or degree of belief. Every object in the cate-
gory structure constitutes a term: the name of
the category, the name of an exemplar, each of
the properties or their values, or the predicates
themselves. Such a representation allows the
construction of an elaborate network from sim-
ple primitives.

The first process in PROTOS' algorithm is find-
ing an exemplar that strongly matches the new
case. The description of the new case serves
as the indexing information. PROTOS can in-
dex the category structure using four types of
indices: remindings, censors, prototypicality,
and difference. Remindings associate proper-
ties with exemplars in the category structure.
Remindings are combined to generate access to
a particular exemplar. A censor leading from a
property to an exemplar prevents access to that
exemplar.

Remindings and censors are used in the hypoth-
esis formation stage of classification. In this
process the properties of a new case remind ex-
emplars that are rated based on their combined
remindings' strength. The category that con-
tains the strongest exemplar is selected as the
hypothesis of the classification. In the second
stage of classification, hypothesis confirmation,
prototypicality ratings of the exemplars are used
to select the most prototypical exemplar from
that category to further confirm the result.

In the confirmation process, the properties of
the old exemplar are matched against the new
case. PROTOS tries to obtain one-to-one match-
ing between the properties. A property that is
not matched triggers search through the cate-
gory network to heuristically construct further
matchings via the use of explanations. If PRO-
TOS cannot find a suitable explanation between
the old exemplar and the new case, it tries to

107



properties

A new case

Indexing

P1=V1

Pn = Vn

nominal properties

continuous property

Remindings to exemplars
or categories

lPn=Vn'~Vn|-»»

retrieve existing continuous term

Figure 8: Indexing remindings with continuous properties

A new case Matching An existing exemplar

PI

P2

P3

Pn

= V1

= V2

= V3

= Vn

nominal properties

continuous property

P1=V1

P2 = V2

= Vnf

Result

1

1

0

1-
abs(Vn.Vnf)

max( abs<Vn), abf(Vn'))

Figure 9: Comparison with continuous properties

fetch a better exemplar of the same category
by using the difference links and then starts the
matching process again.

PROTOS learns while interacting with an ex-
pert. Problems in either the hypothesis for-
mation (classification) or the confirmation (ex-
planation) trigger queries for the expert. The
queries are focussed on the local problem that
PROTOS has. The expert's answers are used to
refine PROTOS' knowledge.

Indices are learned and strengthened in suc-
cessful hypothesis formation. An exemplar is
learned if it cannot be classified or if there is no
good match between it and an existing exem-
plar. Explanations are solicited from the user
about new terms or to explain a match between
properties that PROTOS cannot pursue. Credit
is assigned to exemplars that are used in a suc-
cessful matching process.

In relation to design, PROTOS is used to acquire
redesign knowledge and to redesign objects. In
this case, exemplars and cases contain the de-
scription of bridges with some performance val-

ues and a redesign modification contains a list
of properties that should be modified to correct
the performance. PROTOS has several draw-
backs for its use as a redesign system.

(1) PROTOS can only manipulate symbolic
properties. This problem was discussed be-
fore in relation to COBWEB. In engineering
domains, numbers play a major role and must
be handled effectively by PROTOS.

(2) As a classification program, PROTOS outputs
a single class as the confirmed hypothesis.
In redesign, it may be necessary to output
several redesign modifications that may be
coupled as the redesign recommendation.

(3) The explanation language cannot handle ex-
act relationships between terms. For exam-
ple, it cannot easily represent an equation.

The two first drawbacks are addressed in exten-
sions that are implemented in EPROTOS.

Extension to continuous properties.
The original PROTOS cannot work with contin-
uous or ordered properties. Both PROTOS' main
mechanisms: (1) the retrieval of remindings to

108



categories or exemplars; and (2) the compari-
son of a new case with an exemplar; must be
modified to handle continuous properties.

Retrieval of remindings.
When a new case is introduced, PROTOS tries to
match the case's properties to existing terms in
the category structure. A term is considered to
be the property with its value. If a match exists,
the remindings attached to it are triggered; oth-
erwise, PROTOS does not recognize the property
and it asks the user for relevant information. In
the case of continuous properties, it is highly
improbable that exactly the same value will be
in memory. Consequently, PROTOS will not rec-
ognize the property-value pair.

To remedy this situation, an indexing mecha-
nisms is created (see Figure 8). This mecha-
nism takes a new property-value pair as input
and outputs the most relevant property-value
pair in memory. This functionality leads itself
to the use of ECOBWEB as an implementation
mechanism for the indexing. ECOBWEB is used
to create a hierarchy from the cases in PRO-
TOS' memory. This hierarchy is used to index
existing continuous property-value pairs with
one of the existing synthesis mechanisms. A
single hierarchy is sufficient for all the continu-
ous properties. A highly desirable consequence
of this synergy between ECOBWEB and PROTOS
is that gradually, the indexing hierarchy will
assimilate the heuristics in PROTOS' category
network, leading to better retrieval of relevant
properties. In fact, the indexing hierarchy can
be later used to predict redesign actions as well.

Comparison of cases with exemplars.
After forming a hypothesis about the most prob-
able category to which the new case belongs,
PROTOS tries to match the case with an ex-
isting exemplar. A successful match verifies
the hypothesis. This match is performed by a
knowledge-based matcher that searches through
the category structure. Before search is ex-
panded, a test is performed to check whether
there is a match between a case property-value
pair and the term in the category network. This
test faces the same problem as before: no match
will be found between continuous properties.
To remedy this problem, a match is calculated
for continuous properties based on their values
(see Figure 9). This match is easily calculated.

These modifications allow EPROTOS to handle

continuous values. These modifications were
not tested extensively as the extension to con-
tinuous properties in ECOBWEB; nevertheless,
they were sufficient to support the processing
required of EPROTOS.

Retrieval of several redesign modifications.
PROTOS evaluates several hypotheses and ranks
them. It only outputs the most favorable one
based on the match between the new case and
one of the exemplars in the category that repre-
sents the hypothesis.

A simple modification to the output of PRO-
TOS allows the retrieval of all the hypotheses
formed. The order of the hypotheses is based
on the strengths of their remindings and con-
firmation. Although the user is responsible for
determining the magnitude of continuous prop-
erty modifications, the user can use the strength
of the hypotheses as a recommendation to die
relative variation in the redesign actions.

4 Generic Learning Tasks

Both the macro and the micro perspectives rely
on similar principles. In both, it is important
to know (1) what is the input and output of a
learning program, (2) what is the representa-
tion of knowledge used and learned, and (3)
how the program is executed. This information
is used manually in the macro perspective for
identifying learning programs for specific tasks;
and automatically in the micro perspective for
selecting learning strategies in a multistrategy
learning program.

Similar information requirements emerge from
Chandrasekaran's work on generic tasks as high
level building blocks for expert systems design
(Chandrasekaran, 1986). A generic task is a
tuple G = (//<9,A7?,C). Its components are
described as follows.

I/O is the Input/Output of the generic task.
KR is the representation of knowledge re-

quired by the generic task. It describes how
concepts should be structured to achieve the
task functionality.

C is the control structure for the task. It spec-
ifies the procedure for achieving the task
functionality by operating on the knowl-
edge.

109



This tuple is crafted such that the knowl-
edge representation and control used in the
task are directed toward providing the required
Input/Output characteristics, which may be
termed the functionality of the task. The rep-
resentation and control are to be designed such
that their structure matches their semantics. The
syntax-semantics correspondence establishes a
strong limitation on the task scope but makes it
productive for a specific problem.

The concept of generic learning tasks is the ap-
plication of the generic task idea to machine
learning except that now the task is learning a
specific type of knowledge that will be used by
some generic task. To illustrate the concept, ex-
amples of generic learning tasks from the macro
and the micro perspectives are discussed.

Macro generic task: ECOBWEB,
ECOBWEB can be viewed as a generic learn-
ing task that acquires knowledge for a class of
routine synthesis problems6. The information
related to the task is:

I/O. The input to ECOBWEB is examples repre-
sented by lists of property-value pairs. The
output is a classification hierarchy that can
be used for synthesis.

KR. Learned knowledge is represented as a
probabilistic declarative classification hi-
erarchy. Background knowledge is repre-
sented in a variety of forms depending on
the type of knowledge.

C. ECOBWEB makes use of four learning op-
erators and a heuristic control driven by
CU. This approximates hill-climbing in the
space of classification hierarchies. ECOB-
WEB exercises fixed control over the learn-
ing mechanisms that use domain knowl-
edge. This information also includes time
and space complexity of all the learning
procedures implemented in ECOBWEB.

Micro generic task: hierarchy-correction.
The hierarchy-correction procedure can be
viewed as a generic learning task that improves
the quality of knowledge represented by a clas-
sification hierarchy. The information related to
this task is:

I/O. The input to hierarchy-correction is a clas-

6Of course, COBWEB can be viewed as a generic learn-
ing task that acquires knowledge for a class of classifica-
tion problems.

sification hierarchy and a list of constraints
on the hierarchy. The output is a classifica-
tion hierarchy that heuristically minimizes
the constraint violations.

KR, This procedure represents the classifica-
tion hierarchy as a probabilistic declarative
structure. The constraints are represented
by predicates.

C. Hierarchy-correction performs iterative
constraint violation detection, forgetting
and re-learning of the forgotten examples,
until the hierarchy is not changed. This con-
stitutes a hill-climbing in the space of clas-
sification hierarchies. The time and space
complexity of this procedure is similar to
ECOBWEB since it includes the execution
of ECOBWEB for re-learning the forgotten
examples.

The hierarchy-correction procedure shows how
easily can complex leaning behaviors be cre-
ated. Although it is one of ECOBWEB's mecha-
nisms, it can make use of all ECOBWEB 'S func-
tionality for executing one of its sub-processes.

In complex multistrategy learning programs,
there will be several generic learning tasks that
can provide the same functionality but differ
in their accuracy, cost, etc. The control of the
multistrategy system will have to consider the
overall learning task requirements in determin-
ing which learning task will perform each func-
tion.

Preliminary experience with developing generic
learning tasks, and their integration into larger
systems, suggests that considerable knowledge
about learning techniques is required to success-
fully employ multistrategy techniques. Knowl-
edge is not yet available that would allow the
full automation of selecting appropriate learn-
ing tasks for specific problems. It is conjectured
that a better use of multistrategy learning is fa-
cilitated through the use of the generic learn-
ing task idea which reflects both the macro and
the micro perspectives of multistrategy learn-
ing. This idea, in turn, requires the develop-
ment of a better understanding of existing ma-
chine learning techniques. This understanding
involves the ability to identify machine learn-
ing techniques that can support the knowledge
acquisition for a particular domain and support
the problem-solving strategies that manipulate
knowledge in that domain. In general, this un-

110



derstanding involves the construction of a map-
ping as shown in Figure 107.

Machine
learning
techniques

An applicable machine
learning technique

Problem-
solving
strategies

Representation
Problem
representations

Figure 10: Mapping problem representation
and solution strategies into machine learning
techniques

The problem of multistrategy learning is not
building the mechanisms but their integration
and control. The control aspect requires knowl-
edge about the learning strategies: their perfor-
mance, functionality, representation, accuracy,
etc. For multistrategy learning to successfully
work, a good understanding of machine learn-
ing techniques must be developed.

The automatic use of multiple learning strate-
gies and programs for solving hard learning
problems is an important problem that begins
to attract new research effort It is conjectured
that the development of a better understanding
of generic learning tasks will be beneficial in
advancing the use of multistrategy learning.

Acknowledgements
This work has supported in part by the Engineer-
ing Design Research Center, a National Science
Foundation Engineering Research Center.

References

5 Discussion and Summary

This paper discussed two perspectives of ad-
dressing the issue of using multistrategy learn-
ing systems: the macro and the micro. The
macro perspective deals with the decomposi-
tion of large learning problems into manage-
able pieces, and the selection of state-of-the-
art learning techniques that can address these
simpler learning problems. Since rarely will
existing techniques satisfy the requirements of
real world learning problems, the specification
of new techniques are developed. M2LTD is a
manual procedure that guides the designer of a
large learning program in the above decompo-
sition, selection, and specification procedures.
One example of the use of M2LTD is the design
of BRIDGER, a system that assists in the design
of cable-stayed bridges.

The micro perspective deals with the design
of multistrategy learning programs that must
cope with the simpler learning tasks identified
by M2LTD. ECOBWEB and EPROTOS are two
multistrategy systems that are incorporated in
BRIDGER:

7 Although the surface is shown to be continuous, it is
in fact not expected to be continuous.

Bareiss, R. Exemplar-Based Knowledge Ac-
quisition. Academic Press, Boston, MA.
1989.

Bergadano, F, Gemello, R., Giordana, A., and
Saitta, L. ML-SMART: A problem solver for
learning from examples. Fundamenta Infor-
maticae, XII(l):29-50.1989.

Buchanan, B. G., Sulivan, J., Cheng, T.-R, and
Clearwater, S. H. Simulation-assisted induc-
tive learning. In Proceedings of AAAI-88,
pages 552-557, St. Paul, Minnesota. Mor-
gan Kaufmann. 1988.

Chandrasekaran, B. Generic tasks in
knowledge-based reasoning: high-level
building blocks for expert system design.
IEEE Expert, l(3):23-30.1986.

Fisher, D. H. Knowledge acquisition via in-
cremental conceptual clustering. Machine
Learning, 2(7): 139-172.1987.

Gennari, J. H., Langley, P., and Fisher, D. Mod-
els of incremental concept formation. Artifi-
cial Intelligence, 40(l-3):ll-61.1989.

Lu, S. C.-Y. and Chen, K. A machine learning
approach to the automatic synthesis of mech-
anistic knowledge for engineering decision-

111



making. Artificial Intelligence for Engineer-
ing Design, Analysis, and Manufacturing,
l(2):109-118.1987.

Lu, S. C.-Y. and Tcheng, D. K. Building lay-
ered models to support engineering decision
making: a machine learning approach. Jour-
nal of Engineering for Industry, Transactions
oftheASME, 113(l):l-9.1991.

Michalski, R. S., MozetiC, I., Hong, J., and
LavraC, N. The multi-purpose incremental
learning system AQ15 and its testing appli-
cation to three medical domains. In Proceed-
ings of AAAI-86 (Philadelphia, PA), pages
1041-1045, San Mateo, CA. Morgan Kauf-
mann. 1986.

Michalski, R. S. and Stepp, R. Learning
from observation: Conceptual clustering.
In Michalski, R. S., Carbonell, J. G., and
Mitchell, T. M., editors, Machine Learning:
An Artificial Intelligence Approach, pages
331-363, Palo Alto, CA. Tioga Press. 1983.

Quinlan, J. R. Induction of decision trees. Ma-
chine Learning, l(l):81-106.1986.

Reich, Y. Constructive induction by incremen-
tal concept formation. In Feldman, Y. A. and
Bruckstein, A., editors, Proceedings of the
Seventh Israeli Symposium on Artificial In-
telligence and Computer Vision, pages 195-
208, Ramat-Gan, Israel. Elsevier Science
Publishers. 1990a.

Reich, Y. Design knowledge acquisition:
Task analysis and a partial implementation.
Knowledge Acquisition, in Press. 1990b.

Reich, Y. Automatic selection of examples
for training a learning design system. Tech-
nical Report 12-42-91, Engineering Design
Research Center, Carnegie Mellon Univer-
sity, Pittsburgh, PA. 1991a.

Reich, Y. Building and Improving Design
Systems: A Machine Learning Approach.
PhD thesis, Department of Civil Engineer-
ing, Carnegie Mellon University, Pittsburgh,
PA. 1991b.

Reich, Y. and Fenves, S. J. Integration of
generic learning tasks. Technical Report

EDRC 12-28-89, Engineering Design Re-
search Center, Carnegie Mellon University,
Pittsburgh, PA. 1989.

Reich, Y. and Fenves, S. J. The formation and
use of abstract concepts in design. In Fisher,
D. H. J., Pazzani, M. J., and Langley, P.,
editors, Concept Formation: Knowledge and
Experience in Unsupervised Learning, pages
323-353, Los Altos, CA. Morgan Kaufmann.
1991.

Shalin, V. L., Wisniewski, E. J., Levi, K. R.,
and Scott, P. D. A formal analysis of machine
learning systems for knowledge acquisition.
International Journal of Man-Machine Stud-
ies, 29(4):429-446.1988.

Stirling, D. and Buntine, W. Process routings
in a steel mill: a challenging induction prob-
lem. In Gero, J. S. and Stanton, R., editors,
Artificial Intelligence Developments and Ap-
plications, pages 301-313. North-Holland,
Amsterdam. 1988.

Tecuci, G, A multistrategy learning ap-
proach to domain modeling and knowledge
acquisition. In Kodratoff, Y, editor, Ma-
chine Learning-EWSL91, Proceedings of the
European Workshop on Machine Learning,
Berlin. Springer-Verlag. 1991.

Tecuci, G. D. and Michalski, R. S. A
method for multistrategy task-adaptive learn-
ing based on plausible justifications. In Birn-
baum, L. A. and Collins, G., editors, Pro-
ceedings of the Eight International Workshop
on Machine Learning (Evanston, IL), pages
549-553, San Mateo, CA. Morgan Kauf-
mann. 1991.

Witten, I. H. and MacDonald, B. A. Using
concept learning for knowledge acquisition.
International Journal of Man-Machine Stud-
ies, 29(2): 171-196.1988.

112


