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Abstract

The problem of increasing the efficiency of the optimization process for nonlinear struc-
tures has been examined by several authors in the last ten years. One of the methods
that has been proposed to improve the efficiency of this process considers the equilibrium
equations as equality constraints of the nonlinear mathematical programming problem. The
efficiency of this method, commonly called simultaneous, as compared to the more tradi-
tional approach of nesting the analysis and design phases, is reexamined in this paper. It
is shown that, when projected Lagrangian methods are used, the simultaneous method is
computationally more efficient than the nested provided the sparsity of at least the Jacobian
matrix is exploited. The basic structure of the Hessian and Jacobian matrices for geomet-
rically nonlinear behavior of truss structures is given and numerical results are presented
for a series of large problems using both dense and sparse projected Lagrangian methods.



Chapter 1

Introduction

Finding the optimum design of a structure, even when its topology and shape are pre-
determined, may be exceptionally expensive, especially for structures with a large number
of degrees of freedom and/or elements. The problem is usually posed in such a way that
the objective is to minimize the total weight or volume of the structure. The variables are
element sizes which may be assigned either individually or by groups. The constraints are
usually established in terms of stresses and displacements, and are, therefore, nonlinear in
nature. The resulting problem is then one of nonlinear mathematical programming, the
solution of which requires the use of iterative techniques.

Conventionally, a structural analysis is first performed for some initial guess of the
element sizes and its results are used to update the values of the objective function, the
constraints and their corresponding derivatives. Using these values, a search direction is
determined with the aid of a nonlinear optimization algorithm. The search direction is now
used to improve the current design and the cycle is repeated until some convergence criterion
is met. This approach is usually called nested and several procedures have been proposed
to improve its performance [3, 4, 5, 6]. The nonlinear case is particularly amenable to such
an improvement since it is itself an iterative process. Wu and Arora [5], for instance, use
the sensitivity information of the behavior of the structure to provide a better initial guess
for the next nonlinear analysis. Haftka [3] has extended this idea to include a linearized
behavior of the structure at early optimization stages.

An alternative view of the overall design process, however, consists of considering the
equilibrium equations of the system as equality constraints of the mathematical program-
ming problem, and adding the displacements of the structure to the set of optimization
variables. Within the structural context this alternative has been proposed by Haftka [1, 2];
the idea has also been used successfully by Biegler et al [12] in the chemical engineering
context. The resulting approach is usually termed simultaneous.

Although there are several procedures to solve nonlinear mathematical programming
problems, it is now generally accepted that projected Lagrangian methods provide the
most efficient algorithms to solve this class of problems [9, 7]. Earlier techniques required
the feasibility of the current approximation of the solution to be enforced at all times.



When projected Lagrangian methods are used, feasibility of the estimate of the solution is
only satisfied at the end of the optimization process. In a nested formulation, equilibrium is
automatically satisfied at each optimization step since a complete nonlinear structural anal-
ysis is performed each time. If a simultaneous formulation is used however, the equilibrium
requirement need not be satisfied at intermediate optimization steps and some savings in
computational effort might be expected from its absence. Unfortunately, the simultaneous
method results in a much larger optimization problem, since the sizes of the constraint Jaco-
bian and Lagrangian Hessian matrices are increased by the number of degrees of freedom of
the structural problem. As a consequence, a dense projected Lagrangian implementation of
this method, as in previous work [1, 2], requires much more storage and will almost always
be less efficient than the nested approach. In this paper we describe the sparsity structure
of the Jacobian and Hessian matrices associated with these two approaches and compare
the performance of a sparse implementation of the simultaneous approach with that of the
nested for optimization of geometrically nonlinear truss structures.



Chapter 2

Formulation

For simplicity, only truss type structures subjected to a single load case are considered.
Multiple load conditions can be included in a way similar to that used in [11] for the linear
case. Generalization to this case, to other sizing optimization problems and other element
types such as beams or plates is straightforward and will not change the basic structure of
the Hessian and Jacobian matrices.

2.1 Nonlinear truss elements

The strain energy for a truss element j with constant area aj and modulus of elasticity E
is:

Uj = \Eajljej (2.1)

where lj is the length of the element and e3 its longitudinal strain. For a three dimensional
truss element, Sj takes the form:

SI 2
Sj = j = {1+ ^[(y 4 - yi)(«4 - « l ) + (j/5 - Ifc)(tl5 - U2) + (jfe -

j j - 1 (2.2)

where the y's represent element nodal coordinates and the u's element nodal displacements.
Now, the total strain energy for the truss is:

U = £ \Eajliej (2.3)
j

where N is the total number of elements.
The ith element of the vector of (internal) nodal forces can be obtained using Cas-

tigliano's first theorem as:



g ^ f a (2.4)
where a and u are the vector of design areas and the vector of nodal displacements, respec-
tively.

Only the case in which the external forces are constant is considered here. For a for-
mulation that includes the variation of these forces with respect to the sizing variables, the
interested reader should see references [4] and [6].

Under the above circumstances the equations of equilibrium take the form:

* ( a , u) = P(a, u) - F = 0 (2.5)

where F is the vector of externally applied loads.
If a Newton-type method is used to solve the nonlinear system of equations (2.5), its

Jacobian will be needed. Since F is constant, the Jacobian of (2.5) with respect to the
displacements is simply #P(a, u)/#u, which is by definition the tangent stiffness matrix of
the structure. Its components are obtained by taking the appropriate derivatives in (2.4) .
Each element (i, k) of this matrix will then be:

duk

Expression (2.6) was explicitly evaluated at the element level and the global tangent
stiffness matrix assembled for the whole structure using the direct stiffness method.

2.2 Nested approach

Taking the volume as the objective function the nonlinear mathematical programming prob-
lem for the nested case can be formulated as follows:

TO Jk

Minimize V = ]T}(&fc 5Z ^')

subject to :
g<7C = <7+<7c > 0

g<7t = <7 t-<7 > 0 (2.7)

g u L = U - UL > 0

guu = uu - u > 0
bL < b <bjj

where:

m : Number of design variables.



bk : Design area corresponding to element group fc.

Jk : Number of elements with area 6*.

a : Vector of element stresses.

crc : Vector of allowable compressive stresses.

at : Vector of allowable tensile stresses.

u : Vector of nodal displacements.

U£, and uu are vectors of displacement lower and upper bounds.

b : Vector of design variables. (In this case areas).

bf, and bu are vectors with the values of lower and upper bounds of the design variables.

Jacobian of the stress constraints

If we now define g^ as a column vector of dimension 2N with the values of the stress
constraints, we can write the derivative of the constraints with respect to the design variables
(i.e. the Jacobian matrix of the stress constraints) as:

— - I % I (2 81

dafdh may be found using the chain rule as:

db 0 u 0 b >
Now, d<Tj/du = Edsj/dvi and d€j/du can be obtained from Eqn. (2.2). It can be easily

verified then that da/du is an N x n sparse matrix of direction cosines of the element axes
multiplied by E/l. Each of its rows has at most 6 nonzero entries for space trusses and 4
for plane trusses. Here / is the initial length of the truss element and n is the number of
degrees of freedom after application of the appropriate boundary conditions.

The equations of equilibrium (2.5) must now be recast in terms of the more general
variable b:

* ( b , u) = P(b, u) - F = 0 (2.10)

where we have retained the same symbols ^ and P for the sake of simplicity.
To find dn/db we take the derivative of the right hand side of (2.10) with respect to b

to obtain:

ap(bu) ap(bu)gu ' .
5 b K }



#P/c?b is a sparse n x m matrix whose components are element nodal forces divided by
the corresponding element sizes (m is the number of element groups, i.e., the number of
design variables). In the absence of element linking, i.e. when m = JV, dP/db has the same
sparsity structure as (da/d\i)T (6 nonzero entries per row in 3D and 4 nonzero entries
in 2D, for truss elements). When m < N, the fcth column of dP/db is a sum over the
contributions of the elements in size group k. The matrix dPjdu is as before the tangent
stiffness matrix of the structure K j .

Equations (2.11) can now be solved for du/db, to obtain formally:

db
and if this result is further substituted in (2.9) we get:

d*_ d c r x dP(b,u)

db ~ " a ^ K r db (2-13)

Depending on the order of multiplication of the matrices in (2.13), the procedures are
referred to as the direct or adjoint methods in the literature [8,10]. Given the characteristics
of the problems presented here (fewer variables, in general, than constraints), the so-called
direct approach is used. That is, dn/db is computed from equation (2.12) making use of
the factored form of Ky and the result substituted in (2.9).

Because the inverse of the tangent stiffness matrix is, in general, fully populated, the
Jacobian of the stress constraints (2.8) will be dense.

Jacobian of the displacements constraints

In a manner analogous to that of section 2.2 the Jacobian of the displacement constraints
can be written as:

—

where gu represents a vector with the values of all displacements constraints, dyi/db is
available from (2.12) and, as in the case of the stress Jacobian, it will be fully populated.

Hessian of the Lagrangian function

If the optimization technique used involves reduced-gradient type methods with second
order information for the search direction, or projected or augmented Lagrangian methods,
it is necessary either to use the exact Hessian of the Lagrangian function if it is available, or
to approximate it by one of the rank-one or rank-two update formulas. The BFGS update
is one of the most popular [9].

To examine the structure of this matrix, we first form the Lagrangian function corre-
sponding to problem (2.7) and denote it by L:

) = V - g T A (2.15)



where:

g is a vector with the values of all the active constraints including those that correspond
to the lower and upper bounds and,

A is the corresponding vector of Lagrange multipliers.

The gradient of (2.15) with respect to the areas is:

dL(X,b) dV d?
^hT --db-~dbx ( 2 - 1 6 )

And the corresponding Hessian:

^ j G i (2.17)
i

where:

t : Number of active constraints.

Gy • Hessian of the objective function which in this case is equal to zero.

Gj : Hessian of constraint j.

\j : Lagrange multiplier corresponding to constraint j

As in the case of the stress and displacement constraints, Hn will be a dense matrix.

2.3 Simultaneous approach

In this case the equilibrium equations (2.5) are regarded as equality constraints and the vari-
ables of the nonlinear programming problem include the areas as well as the displacements
of the structure.

The formal optimization problem may be posed as follows:

m
Minimize V =

subject to :

P(b,u)-F = 0 (2.18)
gac == a + <rc > 0

jt-<r > 0

XL < X < XU

where:



m : Number of design variables.

bk ' Design area corresponding to group k of elements.

Jk : Number of elements with area 6*.

a : Vector of element stresses.

crc : Vector of allowable compressive stresses.

<rt : Vector of allowable tensile stresses.

XL * Vector of lower bounds.

xu : Vector of upper bounds.

xT = [ b r uT ] and,

the remaining symbols are as defined before.

It should be noted that the displacement constraints are represented here as side con-
straints.

Jacobian of the equilibrium constraints

The derivative of (2.5) with respect to x yields:

aP(b,u) 1
au J (2.19)

The matrix #P(b, u)/#b is the same as for the nested case and #P(b, \i)/d\i is again
the tangent stiffness matrix Kx(b,u).

Therefore, the Jacobian of the equilibrium constraints is:

(2.20)

Jacobian of the stress constraints

Taking the derivative of g^ with respect to x we get:

_ r at (2.21)

In this case the stresses do not depend explicitly on the element sizes so: dcr/db = 0.
On the other hand, the matrix da/du is as described in section 2.2 for the nested approach.

As a consequence, the Jacobian of the stress constraints can be written as:

SSLau
0 -u

(2.22)
au



Hessian of the Lagrangian Function

The Lagrangian function corresponding to problem (2.18) may be written as:

L(A, x) = V - * T A* - gJcAyc - g£X9t - cTXc (2.23)

where:

\y : Lagrange multipliers associated with the equilibrium constraints.

g<rc • Vector with the values of the active compressive stress constraints.

XgC : Lagrange multipliers associated with the active compressive stress constraints.

gat : Vector with the values of the active tensile stress constraints.

Xgt : Lagrange multipliers associated with the active tensile stress constraints.

c : Vector with the values of the active set of upper and lower bounds constraints.

Ac : Lagrange multipliers associated with c

Taking into account (2.20) and (2.22) the gradient of (2.23) is then:

-{}£) Xc (2.24)

The Hessian of the Lagrangian function is obtained as the derivative of (2.24) :

H - (2.25)

The nonzero structure of ^ f A * is identical to that of dP/db. The nonzero structure
of d2<T/du2(Xgt - A5C) and ^^-Xy is more complex and depends on the number of elements
incident to a given node of the structure. It can be verified, however, that each column
of these two matrices, say that corresponding to global degree of freedom i, will in general
contain contributions from all the elements that share degree of freedom i.



Chapter 3

Sparsity Characteristics

In this section we present estimates of the number of nonzeros for the Hessian and Jacobian
matrices of both approaches. The following symbols will be used :

n : Number of degrees of freedom of the structure after applying boundary conditions.

m : Number of groups of design areas.

d : Number of degrees of freedom per element.

N : Total number of elements.

e : Maximum number of elements incident to a node.

6 : Semibandwidth of tangent stiffness matrix including diagonal elements.

3.1 Jacobian, nested approach

According to the ideas presented in section 2.2 the matrix of equation (2.8) is a fully
populated matrix and therefore it has Nm nonzero elements.

3.2 Hessian, nested approach

Similarly, from (2.17) it is seen that Hn has m2 nonzeros.

3*3 Simultaneous Approach

Jacobian of the equilibrium constraints

As noted before, #P/#b is a sparse matrix composed of sums of internal nodal forces divided
by elemental areas. Its kth. column includes contributions from all the elements belonging
to group k. In the absence of element linking or when the linked groups do not share any
degrees of freedom, the number of nonzeros is dN. In all other cases dN is an upper bound.

10



Table 3.1: Number of nonzero entries of main matrices

Matrix

KT

dV/dx
dgjdx
H
TOTAL

Nested

-

Nm
m2

d?N + Nm + m2

Simultaneous
-

(d?N) + dN
dN

Ld{2N + n(e+l)/2)
d(Nd+4N + n(e + l)/2)

Now, an estimate for the upper bound of the number of nonzero entries of the tangent
stiffness matrix will be the number of entries in the element stiffness matrices times the
number of elements, that is: o îV.1

Jacobian of the stress constraints

As described in section 2.2 the structure of d<r/du is identical to that of (dP/db)T in the
absence of linking. As a consequence, this matrix has also dN nonzero elements.

Hessian of the Lagrangian function

All matrices in (2.25) are sparse in nature. Upper bounds for their number of nonzero
entries are as follows:

: dN.

*fxA* : n(e

The number of nonzeros of the main matrices for the simultaneous and nested approaches
in the context of nonlinear analysis of reticular plane trusses is summarized in Table 3.1.

3.4 Storage required for the solution of the optimization
problem

In this section we relate the nonzero structure of the Jacobian and Hessian matrices with the
storage that would be required for the solution of the optimization problem when projected
Lagrangian methods are used. A detailed description of the techniques dealt with here may
be found in [9].

aIf this matrix is stored in band form the estimate would be 6n, but since this matrix is common to both
approaches the above bound was used for comparison purposes.

11



In general, a solution to the following system representing first order optimality condi-
tions is needed at each optimization step:

(3.1)

where H is the Hessian of the Lagrangian, A the Jacobian of the active constraints, p
the search direction, A the vector of Lagrange multipliers, g the gradient of the objective
function and c the value of the constraints at the current iterate.

The storage required for obtaining a solution to this system depends on the approach
used. If a range space method is used, the system to be solved can be obtained from (3.1)
by block Gaussian elimination:

AH"1ATA = -AIT^g - c (3.2)

Since the factors of H are required, fill-in may occur and the sparsity structure of H is
not sufficient to predict the amount of memory needed. On the other hand, if a null space
technique is used, the system to be solved takes the form:

ZTHZP z = - Z r ( g + HYpy) (3.3)

where Z is a matrix whose columns form a basis for the null space of A, Y is a matrix
whose columns span the range space of A and py represents the range space portion of the
search direction. The most storage efficient method to solve (3.3) is to compute Z using
an orthogonal factorization of A and store only the information needed for constructing
Householder matrices. If, in addition, a conjugate gradient algorithm is used, the storage
requirements are limited to those of H and A, since in this case it is not necessary to
compute ZrHZ explicitly (which will, in general be dense) but rather just the product
ZTHZp2 .

To solve the complete system (3.1) iteratively by the conjugate residual method (the
system is indefinite) constitutes a third alternative to the problem of finding the search
direction p. In this case, only the nonzeros of H and A are needed.

To illustrate the different storage characteristics of the simultaneous and nested ap-
proaches, the number of nonzero entries of the main matrices of these two methods, for
structures of the type shown in Figure 5.1, is plotted in Figure 3.1. It is observed that
the simultaneous method can be dramatically more efficient in terms of storage when an
appropriate algorithm is used to solve the optimization problem. The crossover point at
which the simultaneous method becomes more efficient is close to zero when there is no
element linking and it moves to the right when a linking scheme is introduced. It can be
concluded that for very large problems the simultaneous approach may be the only viable
technique based on storage requirements alone.

12



s
s
I
N 200000 -

150000- -

100000' ""

50000 —

100 200 300 400

A Nested Number of elements (N)
• Simultaneous

100000* •"

80000'—

60000- —

40000 -

20000' ~~

I J_
300 600 900 1200

A Netted Number of elements (N)
• Simultaneous

Figure 3.1: Number of nonzeros : a) No element linkages, b) Element linkages
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Chapter 4

Solution procedures

The optimization problems (2.7) and (2.18) were first solved using a sequential quadratic
programming (SQP) algorithm available in the IMSL mathematical library and based on
that developed by Schittkowski [7]. The same set of problems was then solved with the
MINOS code for large scale problems [13].

Schittkowsky's SQP routine does not take into account the sparsity of either the Hessian
or the Jacobian matrices. As a consequence, the quadratic programming subproblems
associated with the simultaneous method are much larger and more expensive to solve than
those of the nested case. On the other hand, the MINOS code uses a projected Lagrangian
Method in conjunction with a general subproblem. It includes a number of features for large
scale, sparse problems. The Jacobian matrix is represented sparsely in terms of the nonzeros.
A more efficient orthogonal, rather than orthonormal, null space basis is employed. A
sparse LU factorization with a Markowitz ordering scheme and Bartels-Golub updates is
used to construct the basis. Dense Quasi-Newton updates are also used to approximate the
projected Hessian.

MINOS explicitly requires the values and positions of all the nonzero entries of the
Jacobian matrix. Although the sparse nature of the Hessian is not exploited, the results ob-
tained with MINOS still provide useful information about the behavior of the simultaneous
method when its sparse characteristics are considered.
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Chapter 5

Numerical results

Figure 5.1 illustrates the type of truss structures that were used for the numerical ex-
periments. The number of bays and stories were adjusted to obtain different numbers of
elements. The loads and the initial guesses for the areas were selected according to heuristics
based on the number of bays and stories. Although the optimization process was performed
for geometrically nonlinear behavior the linear displacements corresponding to the initial
guesses of the areas were used as initial guesses in the simultaneous case. All numerical
tests were performed on a SUN 4-260. Convergence to the same optimum was achieved in
all cases tested.

Figure 5.1: Example of plane truss used for the numerical experiments.

Figure 5.2 shows the results obtained using the SQP solver versus the results obtained
using MINOS for the nested case (with no element linkages). It can be observed that in this
case MINOS is extremely inefficient as compared to the SQP due mainly to the fact that
the number of calls to the gradient and function subroutines in MINOS is approximately

15



one order of magnitude greater than for the SQP. The reason for this is that MINOS solves
a general linearly-constrained subproblem, whereas SQP solves a much simpler quadratic
subproblem. Since MINOS retains a linear approximation of the constraints for a sequence
of quadratic approximations of the Lagrangian function, it is most efficient for linear or
nearly linear constraints. In the nested case the constraints are highly nonlinear in the
design variables (they involve the inverse of the tangent stiffness matrix). This nonlinearity
which is relevant to the performance of MINOS, is not to be confused with the nonlinear
behavior of the structure. Even for linearly-behaving structures the constraints in the nested
formulation are highly nonlinear in the design variables. In contrast, one of the effects of
the simultaneous method is to reduce the nonlinearity in the constraints.

It should be pointed out also that due to the presence of realistic stress constraints, the
nonlinear behavior of the structures considered in this study was rather mild and each of the
individual analysis required only a few Newton iterations to converge. It is anticipated that
for highly nonlinear structural behavior the difference in performance will be even greater.

Figure 5.3 illustrates the danger of a dense implementation of the simultaneous method.
Since the sparsity of the Jacobian and Hessian matrices is not taken into account in this
case, the performance of the nested method is superior to that of the simultaneous (for
highly nonlinear problems the difference in performance will be less prominent).

Figure 5.4 shows the performance of MINOS for the nested and simultaneous formula-
tions. The clear advantage of the simultaneous implementation is mainly due to the sparse
representation of the Jacobian matrix of the constraints.

The results for the best performing code for each of the two approaches (simultaneous
and nested) are presented in Figure 5.5. It should be observed that despite the fact that
the simultaneous approach entails the solution of a much larger problem and the fact that
no consideration is made of the sparsity of the Hessian matrix, the performance of MINOS
is better than the performance of the SQP. Although this superiority is small, it should be
noted that it will increase as the nonlinearities in the structure become more prominent.
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Figure 5.2: MINOS vs. SQP solver, Nested formulation.
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Figure 5.3: Simultaneous vs. nested, SQP solver.
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Figure 5.5: Best performing code. (Simultaneous : MINOS ; Nested : SQP)
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Chapter 6

Conclusions

Two different approaches to the problem of geometrically nonlinear structural optimization
have been reexamined. The traditional nested approach requires the solution of the system
of equilibrium equations at each optimization iteration. In contrast, the simultaneous ap-
proach regards the equilibrium equations as equality constraints and the displacements of
the structure as design variables, allowing simultaneous analysis and design. For these two
methods, the basic structure of the Jacobian and Hessian matrices in the context of volume
minimization of geometrically nonlinear behavior of truss structures has been presented.
For the class of problems considered, it has been shown that exploitation of the sparsity
characteristics of its related matrices is critical to the success of the simultaneous approach,
in terms of both computational and storage efficiency.
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