
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Implementation of the Solution Algorithm
for Index and Near Index Problems

Yonsoo Chung, Arthur W. Westerberg

EDRC 06-104-91

University Libraries
Carnegie Mellon University
Pittsburgh PA 15213-3890

Implementation of the Solution Algorithm
for Index and Near Index Problems

May, 1991

Yonsoo Chung
Arthur W. Westerberg

Engineering Design Research Center
and Department of Chemical Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

ABSTRACT

This paper deals with implementing the solution algorithm for index and near index problems proposed

by Chung and Westerberg. A numerical singularity checking method is suggested to detect the

singularity or the near singularity of a matrix and to identify the equations responsible for the singularity

or the near singularity. An exact numerical differentiation method is also suggested to generate elements

of the Jacobian matrix and the equations needed. The potential use of the existing algebraic equation and

ODE/DAE solvers in constructing a solver for index and near index problems is also studied. With the

numerical method suggested in this paper, index and near index problems can be numerically and

automatically solved.

Introduction

For the last decade, there has been a large literature building on the solution of index problems. Several

papers [1,2,3,5, 8] propose solution algorithms for index problems. Chung and Westerberg [3,4]

review these papers. Chung and Westerberg [4] also introduce a new class of DAEs - near index

problems, and study its relation to stiff differential equations. They present a numerical algorithm for

solving near index problems. In this paper, we shall discuss implementation of the solution algorithm for

index and near index problems of Chung and Westerberg [3,4]. We shall first discuss issues in

implementing their algorithm for a large problem involving thousands of equations and then present

numerical methods that make the issues straight forward to solve.

To help one understand the background for this paper, this paper begins with review and summary of

the solution algorithm for index and near index problems proposed by Chung and Westerberg [3,4].

Solving Index and N e a r Index Problems

Chung and Westerberg [3,4] propose a numerical algorithm for detecting and solving index and near

index problems. The algorithm starts by finding whether the problem is well posed or not. We can

demonstrate that the problem is not well posed if the equations are singular with respect to all the

variables in the equations or if both a state variable and its derivative must be solved for using the

equations. If not well posed, we would need to start over by reposing a correct set of equations for the

problem at hand. To implement this step, we need a Jacobian matrix with respect to all the variables in

the equations and a method to check the singularity of the Jacobian matrix.

For a well posed problem, the algorithm detects the rank of the Jacobian matrix with respect to

derivatives of the state and algebraic variables to find whether the system has an index or a near index

problem. If the Jacobian matrix is singular, the problem has an index problem; if the Jacobian is near

singular, the problem has a near index problem. This step needs the Jacobian matrix with respect to

derivatives of state variables and algebraic variables and a method to check the singularity or the near

singularity of the Jacobian matrix.

For an index or a near index problem, the algorithm analyzes the Jacobian matrix used for detecting an

index or a near index problem to find equations responsible for the singularity or the near singularity.

Here, we must identify the equations responsible for the singularity or the near singularity of the Jacobian

matrix.

Equations responsible for the singularity or the near singularity are differentiated to generate the

equations needed to reduce the index of the system. In Chung and Westerberg [3,4], symbolic

differentiation has been used as Gear and Petzold [6], Gear [5], and Bachmann et al. [1,2] have also done.

An exact numerical differentiation method [7,9] is a good candidate to replace the symbolic

differentiation method. We shall discuss an exact numerical differentiation method in detail in this

chapter.

For the original equations plus the additional ones generated from differentiation, Chung and

Westerberg [3,41 detect the rank of the new Jacobian matrix to find whether the system still has an index

or a near index problem. The new Jacobian matrix is generated with respect to derivatives of state

variables, algebraic variables, and new variables generated from differentiation. To implement this step,

we need to expand the Jacobian matrix.

If the expanded Jacobian matrix is still singular or near singular, The algorithm detects and

differentiates equations responsible for its singularity again. Singularity checking is carried out again.

This procedure continues until the expanded Jacobian matrix becomes nonsingular. When the expanded

Jacobian matrix is nonsingular, the algorithm obtains a solution from the new set of equations: the

original plus the additional equations. The new set of equations which has a nonsingular Jacobian matrix

is called as the augmented set. The solution algorithm for index problems terminates with a nonsingular

Jacobian matrix. The remaining step is to solve the augmented set of equations as a set of algebraic

. equations and to integrate only a part of the original differential equations. The solution of index

problems has only integration error which can be easily controlled. The algorithm for near index

problems needs some more steps to improve the solution accuracy obtained from the augmented set of

equations.

The algorithm for near index problems updates the augmented nonpivot variables to improve solution

accuracy. Chung and Westerberg [3,4] generate a set of derivative equations by differentiating the

highest order equations in the augmented set The final set of equations to solve consists of the

augmented set and the additional sets of augmenting equations. The sets of augmenting equations are

obtained by repeatedly differentiating equations in the augmented set which have never been

differentiated according to the number of the augmented nonpivot variables and the specified error

tolerance. The algorithm can improve the solution accuracy up to the specified error tolerance just with

solving the final set of equations as a set of algebraic equations and integrating only a part of the original

differential equations. To implement the updating procedure, we need to differentiate equations.

The Summary of the Algorithm

The following is the summary of an algorithm for identifying variables to be integrated numerically and

obtaining their time derivatives at any time [4].

1. Given known or guessed values x, xf and y, make the Jacobian matrix of the original
equations.

2. Detect the rank of the Jacobian matrix with respect to all the variables. Detect this rank
where no variable xL and its time derivative x{ are simultaneously pivoted. If rank deficient,
the problem is not well posed. Quit with a warning. (One has only guessed the solution
point for the equations and has not yet converged them. Actual rank deficiency can only be
detected at a solution point so this test is ambiguous at first.)

3. Detect the rank of the original equations with respect only to variables xf and y.

4. If rank deficient with respect to xf and y, the equations have an apparent index problem.
Continue with the next step. If not, the equations can have a near index problem. Follow
step 15.

5. Identify the equations responsible for the rank deficiency of the Jacobian.

6. Differentiate the detected equations. Note, the Jacobian matrix for the differentiated
equations is obtained in this step.

7. Pivot through the Jacobian matrix of the differentiated equations only in the columns under
newly generated variables until it can no longer be pivoted using only these variables.

8. Pivot through the Jacobian matrix of all the equations with respect to variables x! and y plus
the pivoted variables found in the previous step.

9. If all these variables cannot be pivoted, repeat steps 5 to 8. Else, continue with the next
step.

10. Assign arbitrary but convenient fixed values to those variables in the set of the newly
generated variables not pivoted but appearing in the new equations.

11. For equations not yet pivoted in step 8, allow pivoting among the state variables, x.

•12. Solve the expanded set of equations.

13. Repeat steps 1 to 12 until the equations are converged at a solution.

14. Return with identity of state variables not solved in step 1 to 13 and with their time
derivatives.

15. Check whether the Jacobian with respect to variables xf and y is nearly singular. If nearly
singular, continue with the next step. If not, solve the equations for variables :i and y.
Return with all state variables identified to be integrated and with their time derivatives, ii.

16. Treat the problem as if it were an index problem. Find the augmented set of equations with
the algorithm used in steps 5 to 9.

17. Determine the near index of the system and locate augmented nonpivot variables.

18. To update augmented nonpivot variables, make a set of augmenting equations by
differentiating the highest order equations in the augmented set.

19. Differentiate the set of augmenting equations found in the previous step as many times as
one less than the near index of the system. Repeat this step if higher accuracy required.

20. Solve all equations found in steps 1 to 19.

21. Return with identity of state variables not solved in step 1 to 20 and with their time
derivatives.

To implement their algorithm for a large problem involving thousands of equations, we need

1. to check the singularity or the near singularity of the Jacobian matrix and to identify the
equations responsible for the singularity or the near singularity of the Jacobian matrix,

2. to differentiate equations and to generate the Jacobian matrix,

3. to solve the augmented set or the final set of equations and propagate it along time.

The first issue is the singularity checking problem, and the second is the differentiation problem. These

are not simple for large nonlinear problems. The third issue is to solve a set of algebraic equations at each

time step and integrate a part of differential equations between two adjacent time steps. Solution of a set

of algebraic equations and integration of differential equations are well understood. We will study the

potential use of existing algebraic equation and ODE/DAE solvers. The following sections discuss how

to make the above issues straight forward to carry out.

Checking Numerical Singularity

The algorithm needs to detect if a matrix is singular or nearly singular. From the arguments in Chung

and Westerberg [4], we see that in fact we only need to decide if a pivot is small as the solution is

expanded in terms of this small pivot. We can therefore sidestep the issues of a matrix being singular and

only ask if a pivot is small. The following discussion is to argue that we need only look at the magnitude

of a pivot to decide if it is small.

We assume we have a set of equations f(x,x^,y) =/(JC,Z) = 0 which are well scaled. Each variable

has a nominal value near to unity and the largest term in each equation has a magnitude near unity. We

form the Newton equations for the equations at a guessed point for their solution and wish to detect if

these equations have a small pivot when variables z are used as the pivots. To detect if the magnitude of a

pivot is small, we should examine the Jacobian matrix in the larger context of having all the variables and

the right-hand-side present during the forward elimination process, including those for the variables x

which we do not intend to pivot. After the forward elimination process of a Gaussian elimination

procedure, the equations would appear as shown in Figure 1.

The last equation is

= b 0)

There is an interesting interpretation for b. Assume that Azn+W is exactly zero. Then solve the remaining

equations for their pivoted variables. Substitute these values into the original equation to which this

unused last equation corresponds, b would be exactly the residual resulting.

There are three cases to consider in trying to decide if e is really small.

1. All ag9 e and b are really small in magnitude, say of order 10"8. The equation is essentially
stating that zero equals zero. However, we could divide through by e and have an equation
with reasonable coefficients everywhere. It is here that the interpretation of b given above
is useful, b (not bit) is the error in satisfying the last equation for a zero value for Azn+fn. A
small value of b says the original equation is in fact well satisfied locally with this
assumption. We can claim this last equation is a locally dependent equation.

2. e only is really small in magnitude. One of the variables Ax, with a large coefficient a{

should really be selected as a pivot variable for this equation. Choosing Azrt+m as a pivot
would require it to have a value with an enormous magnitude. Since all variables are well
scaled, none should have a perturbation with a magnitude much larger than unity.

3. All ax and e are really small in magnitude and b is of order unity in magnitude. Then the

a

0 N.

0 e

Figure 1: Jacobian Matrix after the Forward Gaussian Elimination

equation has to be inconsistent. Any variable selected as a pivot would have a value of
enormous magnitude which is inconsistent with having a well scaled set of equations and
variables.

In all of these cases, the coefficient e is small if and only if it is small in an absolute sense, provided the

problem is well scaled. It can be detected during Gaussian elimination.

Discovering the Equations Causing the Singularity

Consider an n x n matrix A. Let us assume that matrix A is rank deficient by 1. Gaussian elimination

of matrix A results in the echelon form in which the last row is empty. With information of row exchange

from Gaussian elimination, matrix A can be rearranged as follows:

An Al2

A2l A22 (2)

where A2l and A22 correspond to the empty row of the echelon form, and the dimension of submatrix An

is (n-1) x (n-1). Gaussian elimination of matrix (2) converts it to

U11 Ln An

f A
\2 (3)

where Ln and Un are the LU factors of submatrix An. We note here that

A22 - A21Un
 lLn

 lAu = 0 (4)

because the last row of matrix (2) becomes empty with Gaussian elimination. The last row is a linear

combination of the first n-1 rows; we write therefore that

-V"
(5)

(6)

where y is an n-1-dimensional vector. Using the LU factors of submatrix An, equation (5) becomes

Y - ̂ 21T (7)

Premultiplying equation (7) with UX{"T converts it to the form

^lirY=tflfrV* (8)

Therefore,

Lu
Ty = (A2lUn~bT (9)

From equations (4) and (9),

A22 = A2lUu~lLu-lAn = irLnLlf
lAl2 = f An (10)

Transposition of equation (10) is

which is exactly the same as equation (6). This means that equation (6) is dependent on equation (5).

Only equation (5) is required to determine the independent linear combination.

When equation (5) is solved for y, nonzero elements of y indicate rows involved in the linear

combination. In other words, the nonzero elements of y indicate the rows responsible for the singularity

of matrix A. Among the identities of equation (5), equation (9) is the easiest to solve for y because it can

be simply solved by back-substitution.

To solve equation (9), we have to know A2l Un~
l and Ln. We note here that submatrix A2l and the

lower triangular part of submatrix An have zero elements after Gaussian elimination, and their sizes are

the same as those of A2^ f/n"1 and L n . This situation allows us to store A2l C/11~
1 and L^ in the zero

elements in matrix (3) to save memory and to supply information for equation (9). With this

"overloading," matrix (3) becomes

Ln\Un Lu An

(12)

Of course, A2r
mA2iuii'lLn l i 4 i 2 i s z e r o-

Matrix (12) includes everything needed to detect the singularity of matrix A and to identify the rows

responsible for the singularity. The zero value of ^22~"A2l^if ̂ n " 1 ^ indicates the singularity of

matrix A, and the solution of equation (9) for y identifies the rows responsible for the singularity with

A2i Ui\~l and Ln appearing in the leftmost part of the matrix.

The following example shows how the above numerical method detects the singularity of a square

matrix and identifies the rows responsible for the singularity.

Example 1

Suppose we have a 4 x 4 matrix A for which the last row is a linear combination of other rows.

2
4
- 2
- 6

1
1
2
3

1
0
1
1

4
5
3
2 (13)

Submatrices of matrix (13) are

2
4
-2

A,, = -6

1
1
2

1
0
1 • A12 =

4
5
3 (14)

4 2 2 = 2

The LU factors of submatrix Al j are

hi'

1
2 1

- 3 1 . uu =

2 1
-1

1
-2

-4 (15)

From (14) and (15), the following information can be obtained.

10

4

-2

- 3 - 6 2

(16)

= 0

The overloaded matrix is

2 1 1 4
2 - 1 - 2 - 3

-1 - 3 - 4 - 2
- 3 - 6 2 0 (17)

where the diagonal elements of Ln do not appear because there is a lack of space and they are all l's.

The zero value of A22-A2\Un~lLu~lAn shows that matrix (13) is singular.

For this example, equation (9) becomes

(18)

2 -1
1 - 3

1

Yi
Y2

Y3
=

-3
-6
2

By simple back-substitution, the solution of equation (18) is

Yi = - 1 . Y2 = 0. Y3 = 2 (19)

This indicates that the first, the third and the fourth rows of matrix (13) are responsible for the singularity.

When the rank deficiency of matrix A is greater than 1 and less than n, the above method can be also

applied. In this case, the zero values of the submatrix ^ " ^ l ^ i T ^ i r ^ n shows the singularity, y

becomes a set of vectors whose solutions identify the rows responsible for the singularity.

11

Discovering Equations Responsible for a Near Singularity

The Newton formula for a set of DAEs, / (x , x', y, t) = 0 , is

A x + - ^ Ax' + ^ Ay + %At = - / (x , V,;y, t) (20)

dx dxf dy dt

In the above equation, Ax' and Ay terms are unknowns, and others are known from previous steps.

Therefore, Ax and At are zero, and equation (20) reduces to:

AX? + &Ay = - / (u ' j , r) (21)
dx? 3y

If we introduce a new variable z for variables x' and y, equation (21) becomes

^ A z = RHS (22)
dz

Let U be the echelon form of the Jacobian and b be the vector of RHS after Gaussian elimination, then

UAz = b (23)

When U has a very small pivot, the system has a near index problem. Let us assume that the last pivot of

U has a very small value, e. In this case,

2̂2 - A2lUn"%flAn = e (24)

where

0 £ | e | « 1

The linear combination for the near singular matrix A is

Au
Ty + e , = ^ r (25)

12

(26)

where ^ is an n-1-dimensional vector and e^ is a scalar with very small values. If we treat e in equation

(24) as if it were zero, ex and 62 would become zero. This makes equation (26) dependent on equation

(25) which is the same as equation (5). The rows responsible for the near singularity can be identified by

solving equations (9) with an error tolerance which is a little larger than the magnitude of e.

The following example shows how the above method works on a near singular matrix.

Example 2

Consider the following matrix which is perturbed from matrix (13).

A =

2
4
- 2
- 6

1
1
2
3

1
0
1

1+e

4
5
3
2 (27)

If we treat e in matrix (27) as if it were zero, we can apply the above method for this example.

Submatrices of matrix (27) are

2
4

-2

A2l = -6

1
1
2

1
0
1 ' A12 ~

4
5
3 (28)

A22 = \2

The overloaded matrix is

2
2

-1
- 3

1
-1
-3
-6

1 4
-2 -3
-4 -2

9_e _e
4 2

(29)

The value of J U , - A , , U, rlLu~
lA,2 is - 1 . It shows that matrix (27) is near singular.

*22~ /12lcyil

13

For this example, equation (9) becomes

2 - 1
1 - 3

1

Yi
Y2
Y3 =

-3
-6

(30)

The solution of equation (30) is

- - « + * « • (31)

If we specify an error tolerance of 2e for the solution of equation (30), y2 can be treated as zero, while yx

and y3 are nonzero. These values indicate that the first, the third and the fourth rows of matrix (27) are

responsible for the near singularity.

The algorithm for solving index and near index problems investigates two kinds of Jacobian matrices: a

square Jacobian matrix and a rectangular one. The square Jacobian matrix is used for detecting equations

to differentiate and the rectangular one is used for detecting whether the system is well posed or not. The

above numerical method is well suited to the case for the square Jacobian matrix. However, it can be also

applied for the case of the rectangular Jacobian matrix. When we detect the singularity of the rectangular

Jacobian matrix to check whether a system is well posed or not, we do not need to identify the equations

responsible for the singularity. We just need to know whether it is singular or not. This can be easily

carried out by Gaussian elimination.

An Exact Numerical Differentiation Method

Many equation solvers and optimizers have used symbolic differentiation or finite difference

approximation to obtain derivatives of a function. Most symbolic differentiation packages are large and

cumbersome because it is difficult to manipulate symbolic expressions, and the algebraic form of the

derivatives of nonlinear functions is commonly more complicated than the original expression. Finite

difference approximation includes errors in itself, and we cannot guarantee that there is no accumulation

of the error. We will discuss an exact numerical differentiation method to use instead of a symbolic

differentiation method or a finite difference approximation approach.

14

Ponton [9] states that if the derivative obtained with symbolic differentiation is more complex, and

hence takes longer to evaluate than the function, then numerical differentiation would be faster. He

presents a computational scheme for obtaining the numerical value of the analytical derivatives of a

function without the generation of computer code representing the differentiated expression. The original

function is supplied as a reverse Polish string, and values of the function and partial derivatives with

respect to all the variables are obtained simultaneously using multiple stacks.

Griewank [7] shows that a reverse mode of automatic differentiation is far superior to symbolic

differentiation or finite difference approximation. He states that the symbolic differentiation approach is

not only inefficient but unmaintainable because it generates separate expressions for the function and each

gradient component directly in terms of the independent variables and it has difficulties in inspecting and

correcting programming errors. He insists that one should write a program for evaluating the function

efficiently and then generate an extended program that evaluate the function and gradient simultaneously.

He uses the chain rule and composite functions to evaluate the function and each gradient component

simultaneously. He demonstrates that the work ratio of the reverse mode of automatic differentiation is

bounded by a constant number: five, while the bounds of the forward mode of automatic differentiation,

symbolic differentiation, and finite difference approximation grow linearly with the number of variables.

The woric ratio is defined as the ratio of the work required to evaluate the function and each gradient

component to the work required to evaluate the function only.

Based on the reverse mode of automatic exact numerical differentiation in Griewank [7], we will

develop a numerical differentiation method to evaluate the function and its partial derivatives up to any

order. We will carry out this discussion with an example problem to aid in making the points more

clearly.

The Function Evaluation

Suppose we have a function to evaluate:

>>=/(*) • 02)

where x e Rn. Evaluation of a function can be expressed by a computational graph [7]. Figure 2 shows a

computational graph for a function f1[f6{f5(xvx4),x2),xl]. Nodes x5, x6 and x7 correspond to

15

elementary functions/5,/6 and/7, respectively.

From a view of the computational graph, a function can be interpreted as a set of composite functions

as follows;

For i = n+1, n+2, . . . , m (33)

End i

y = xm

where an elementary function fi depends only on the already computed quantities Xp where node j is

directly connected to node i in the computational graph. In other words, / is the composition of m-n

elementary functions frs. The procedure (33) evaluates a function. The function of Figure 2 can be

evaluated with the composition of 3 elementary functions:/5,/6 and/7.

The First Order Partial Derivative

To obtain gradients of function (32), we need to calculate the first order partial derivatives:

dxk
(34)

where fm is the top node of the computational graph and xk is one of the independent variables. We note

that fm has the value of the function with procedure (33). Because a function is the composite of

elementary functions, the first order partial derivative (34) is obtained by the chain rule.

(3 5)

df.
where — is nonzero only if node j is directly connected to node /; in other words, the right hand side term

is effective only when node j is directly connected to node i in the computational graph. If the index j is
a/

iterated in the reverse order, — is always previously calculated. Here, node j is not necessarily an

independent variable, but can be an elementary function. The first order partial derivative (34) is obtained

16

Figure 2: A Computational Graph for Function /7 [/6 {/5 (x3, x4), X2}, xx]

17

when; in equation (35) corresponds to one of the independent variables.

If we use the following notation,

ij = T " (36)
• J dxj

the procedure to evaluate gradients of function (32) is as follows.

For i = m-1 , m-2 1 (37)

mj = X m'1 h where j e C(i) and j € C(m)

End i

where C(f) is the set of the children of node i9 i.e., the set of elements directly connected to node i. We

note that j € C(m) because my for j e Cim) is assumed to be computable. We also note that this

procedure is in "reverse mode" because the index i is decremented from m-1 to 1.

We consider a simple example to understand how procedures (33) and (37) evaluate the function and its

first order partial derivatives.

Example 3

y = *!X22*3*4 (38)

where it is known that JCJ = \,x2 = 2,JC3 = 3andx4 = 4.

It is possible to construa many computational graphs for this example problem. All of the possible

structures generate the same result. Figure 3 shows one possible structure. Let us consider the

computational graph in Figure 3. There are four elementary functions: JC5, x6, JC7 and x%. The first order

partial derivatives of each elementary function with respect to its own variables are easily determined.

They are noted on the links connecting the two nodes. Function (38) can be evaluated by procedure (33)

as follows:

18

X = X X
5 12

Figure 3: A Computational Graph of Example 3

19

4 8

Function (38) has the value of 48 which is exact with the given values of xfs.

The sets of the children are

C(8) = {7,6} (40)

CO) = {4,2}

C(6)= {5,3}

C(5) = {2,1}

The first order partial derivatives of elementary functions are as follows, using the numbers computed by

(39).

87 = x6 = 6 (41)

86 = xj = 8

74 = *2 = 2

72 = x4 = 4

65 = *3 = 3

63 = x5 = 2

52 - X! - 1

5i = *2 = 2

These are the exact numeric values for the first order partial derivatives of the elementary functions.

With this information, procedure (37) proceeds as follows:

20

85 = 8 6 6 5 = 24 (42)

• 84 = 8 7 7 4 = 12

83 = 8563 = 16

82 = 87 7 2 + 85 5 2 = 48

8X = 855! = 48

The gradient components of function (38): 8 l t 82, 83 and 84 have exact values with the given values of

Vs.

The Second Order Partial Derivative

In the above, we have discussed and showed how to evaluate the function and its first order partial

derivatives with the reverse mode of automatic differentiation. The second order partial derivatives can

also be obtained with a similar method. For the second order partial derivatives for the function (32), we

need to calculate

T-T- (43)

where fm is the same as in (34), and x{ and xn are the independent variables. These can be obtained by

differentiating the first order partial derivatives (35).

dxidx: dXiT dxkdx:

Using notation (36) and

kU = J ^ (4 5)

7 dxfaj

the chain rule generates

21

{m^kj + mkky) (46)

where Jfc;- and mk are known from the earlier evaluation of the first order partial derivatives, and k^ is

nonzero only if both nodes i and j are directly connected to node k. So, the term mk k^ is included only

when both nodes i and; are directly connected to node k in the computational graph. If indices i and; are

decremented from m-1 to 1, m^ is always previously calculated. Here again, nodes i and j are not

necessarily the independent variables but may be elementary functions. Second order partial derivatives

(43) are obtained when both i and; in equation (46) correspond to the independent variables.

The following procedure evaluates the second order partial derivatives of function (32).

For j = m-1, m-2, . . . , 1 (47)

For i = m-1, m-2, . . . , j

where ij e C(k) and ij € C(m)

End i

End j

Again, indices i and j are decremented. We note that index i is decremented from m-1 to j, not to 1,

because indices i andy are exchangeable for the second order partial derivatives.

Let us consider Example 3 again to obtain the second order partial derivatives of function (38). The

second order partial derivatives of each elementary function with respect to its own variables (its

children) are easily determined. These are

87.7 = °> 87,6 = ! ' 86,6 = 0, (48)

?4,4 = °' 74,2 = 1. 7 2 2 = 0,

^5,5 ^ 0, 653 = 1, 633 = 0,

5 2 2 = 0, 5 2 J = 1, 5 U = 0

With the second order partial derivatives of elementary functions and the results from the evaluation of

22

the function and its gradient components - equations (48), (39), (41) and (42), procedure (47) can be

applied to obtain the second order partial derivatives of function (38). Table 1 shows the sequential

procedure for the second order partial derivatives. The three columns show the calculated partial

derivative, the contents of calculation and the value of the derivative, respectively.

The second order partial derivatives of function (38): 8 U , 8 2 1 , 83 j, 84>1, 8^2, 83 2, 84 2, 83 3, 84 3 and

84f4 have exact values for the given values of the xfs.

Higher Order Partial Derivative

Similarly, we can construct the procedure for the third order partial derivatives of function (32) as

follows;

For k = m-1, m-2, . . . , 1 (49)

For j = m-1 , m-2, . . . , &

F o r i 35 m - 1 , m - 2 , . . . , j

mijk = X * mVl lfc + m'd lJk + mJl lik + m/ liJk *

where ijjc e C(0 and ij\k & C(m)

End i

End]

End k

The above numerical scheme can be easily extended up to any order of partial derivatives. If we know

partial derivatives of the elementary functions up to the n-th order, we can obtain the n-th order partial

derivatives of a composite ftinction. Prerequisite for the above method is only information about relations

between elementary functions and their partial derivatives.

Differentiating Equations and Generating the Jacobian Matrix

In the previous section, we discussed and presented an exact numerical differentiation method which

evaluates a function and its partial derivatives up to any order. In this section, we will discuss how the

23

Table 1: Procedure for the Second Order Partial Derivatives of Example 3

derivative contents value

87,5 he 65 3

86(5 86.565 °

85.5 8
5 , 6 6 5 °

87,4 87,774 0

86.4
 86.774 2

85,4 8
5 , 7 7 4

 6

84 ,4 8 4 > 7 7 4 0

87>3 8 7 > 6 6 3 2

85,3 8 5 > 6 6 3 + 8 6 6 5 3 8

84>3 84,663 4

833 8 3 > 6 6 3 0

8 7 , 2 8 7 > 7 7 2 + 8 7 5 5 2 3

86>2 8 6 > 7 7 2 + 8 6 > 5 5 2 4

85 ,2 8 5 J 7 2 + 8 5 > 5 5 2 12

84>2 8 4 J 7 2 + 8 7 7 4 > 2 + 8 4 (5 5 2 12

83>2 8 3 > 7 7 2 + 8 3 > 5 5 2 16

82>2 82 ,772+8^52 24

87,1 87.5 5 l 6

86 4 86>55 l 0

85,1 85,5$, 0

84>1 84.55i 12

83.1 8 ^ 5 ! 16

82)1 82,5 5i + 85
52,l 48

8U 8^5! 0

24

numerical differentiation method can be used in differentiating equations and generating the Jacobian

matrix.

Consider the following equation

/ (*) - 0 (50)

where z is the n-dimensional vector of variables and / is a scalar function which is assumed to be

sufficiently differentiable. The Newton formula of equation (50) is

|^Az = - / (z) (51)
dz

In the above equation, ^ is the first order partial derivatives of equation (50). It can be easily obtained

with the numerical differentiation method: procedure (37). The right hand side term can be also

evaluated by procedure (33). The only unknown variable in equation (51) is Az. The coefficient of the

unknown variable Az in equation (51) is the same as elements of the Jacobian matrix of equation (50).

Differentiating equation (50) generates

| ^ / = 0 (52)

The Newton formula of equation (52) is

3z + 3?

From equation (52),

of _ a t^fy\ _ £7 J (54)
dz dz dz dz1

and

25

<£ = £{£/}=£ (55)
3/ 3 / dz dz

If variable / is known, equation (53) can be solved for unknown variables Az and Az' because the

coefficients %-* % and the right hand side term of equation (53) can be calculated from equations (54),
at at

(55) and (52) respectively. We note that the first and the second partial derivatives in those equations can

be obtained using procedures (37) and (47). In equation (55), ^ is the same as the first order partial

derivatives —. This resemblance has been observed in previous chapters. Again, the coefficients of the
ds

unknown variables Az and Az' in equation (53) are the same as elements of the Jacobian matrix of

equation (52).

Differentiating equation (52) generates

dt dz dz'

where ^ and ^ are known from equations (54) and (55). The Newton formula of equation (56) is

dz d/

From equations (56), (54) and (55),

dv _y? dj ,,

dz*

n + <lz") = 2 ^ z ' (59)

and

26

With given or known z", everything except unknown variables Az, A/ and A/ ' can be calculated with the

results from the previous steps and the numerical differentiation method: procedure (49). As expected,

the coefficients of the unknown variables Az9 Az' and Az" in equation (57) are also the same as elements

of the Jacobian matrix of equation (56). In the above, values for / and V are assumed to be given or

known. Actually, they are calculated from the newton equations through iteration.

In this section, we have discussed and showed how an equation is differentiated and how its newton

equation is generated. To carry out the above method, only the results from numerical differentiation are

needed. Using this method, we can differentiate an equation as many times as we want, and we can get

the newton equations of the differentiated equations. We can also obtain the Jacobian matrix of the

differentiated equations because the coefficients of the unknown variables in the newton equations of the

differentiated equations are always the same as elements of the Jacobian matrix.

Example 4

Let us consider the following equation:

In Example 3, the function value and partial derivatives of equation (61) were evaluated when x1 = lt

*2 « 2,*3 = 3andx4 = 4.

Using equation (51) and the results of Example 3, the newton formula of equation (61) at the same

point as in Example 3 can be obtained as follows.

48 Axx + 48 AX2 + 16 Ax3 + 12 Ax4 = - 4 8 (62)

The Jacobian matrix of equation (61) for variables xv xv x3 and x4 is [48,48,16,12] whose elements are

the same as coefficients of the Ax^s here.

When equation (61) is differentiated with respect to time, its newton equation can be obtained from

equation (53). Guessing x{ = 1, x{ = - 1 , x3' = 1 and x4' = 1, equation (53) for this example

27

becomes

(63)
+ 48 Ax/ + 48 Ax/ + I6AX3' + 12Ax4' » - 2 8

The Jacobian matrix of equation (61) after the first differentiation for variables z l f x^% x3, JC4, xx\ x{% xj

and x4' is [-20* 52, 4, 4, 48, 48, 16, 12] whose elements are also the same as coefficients of Ax/s and

Ax/*s. The values for variables xx\ x{, x{ and x4' are calculated firom the newton equation, equation

(63), through iteration.

The newton formula and the Jacobian matrix of equation (61) after the second differentiation can be

also obtained from equation (57).

Solving and Propagating Index and Near Index Problems

We have discussed and presented a numerical method which can (1) detect the singularity or the near

singularity of the Jacobian matrix and identify the equations responsible for the singularity or the near

singularity of the Jacobian matrix and (2) differentiate equations and generate their Jacobian matrix and

newton equations. The remaining issue for implementing the solution algorithm for index and near index

problems is how to solve the augmented set or the final set of equations and how to propagate values

along time.

The solution algorithm for index and near index problems solves the augmented set or the final set of

equations as a set of algebraic equations. Solving a set of algebraic equations is usually carried out by

iteratively solving the corresponding set of the newton equations. When an index or a near index problem

is given, the numerical method discussed above results in a set of the newton equations for the augmented

or final set of equations. Using the exact numerical differentiation method, all the coefficients of the

unknown variables and the right hand side term in the newton equations have numeric values. In addition

to this numerical characteristic, the set of the newton equations always nonsingular with respect to the

unknown variables because the algorithm guarantees the nonsingularity of the augmented or the final set

of equations. We can obtain the solution of the index or the near index problem just by iteratively solving

the set of the newton equations and propagating a part of the original differential equations.

Suppose an augmented set of equations consists of n equations and m variables in solving an index

newton
equations

at
t

newton
equations

at
t

newton
equations

at
t

SOLUTION

Figure 4: Solution of an Index Problem with Zero Degrees of Freedom

initial

values

f
integration

**—v
• \

newton \ /
equations 1 I

at 1 1

'o J \

integration

newton \ /
equations I I

at f 1

V '' J ^

SOLUTION

integration

cv.
equations 1

at I

J

Figure 5: Solution of an Index Problem with Nonzero Degrees of Freedom

30

problem. The corresponding set of the newton equations also has n equations and m unknown variables.

According to the solution algorithm for index and near index problems, m is always greater than or equal

to n if it is a well posed problem. When m is equal to n, that is, when the degrees of freedom is zero, a

nonsingular set of the newton equations has to be solved at each time step including the initial point.

There will be no need to integrate any differential equations. The nonsingular set of the newton equations

can be easily solved by existing algebraic equation solvers. Figure 4 shows the solution procedure for an

index problem for which the augmented set has zero degrees of freedom. When m is greater than n, the

degrees of freedom is not zero. At the initial point, m-n initial values have to be assigned. At each time

step during propagation, m-n values must be given to solve the augmented set of equations. This requires

integration of m-n differential equations to reduce the degrees of freedom to zero. Existing ODE/DAE

solvers can be used to integrate the differential equations. We note that the algorithm presented in this

thesis can be used with any integration scheme. The remaining n equations are treated as algebraic

equations and solved by an existing algebraic equation solver. Figure 5 shows the solution procedure

when there are one or more degrees of freedom.

To solve a near index problem, a final set of equations is generated according to the user specified error

tolerance. The solution procedure for the final set of equations is almost the same as that for the

augmented set of an index problem . The only difference is that values must be assigned to a set of

nonpivot variables for the final set of equations at each time step. Figure 6 shows the solution procedure

for a near index problem with m-n degrees of freedom.

Conclusion

In this paper, we have discussed implementation of the solution algorithm for index and near index

problems proposed by Chung and Westerberg [3,4]. We have presented a numerical singularity checking

method to detea the singularity or the near singularity of the Jacobian matrix and to identify the equations

to be differentiated. We have also presented an exact numerical differentiation method to differentiate

equations and to generate the Jacobian matrix. The numerical method presented in this thesis results in a

set of the newton equations for the augmented or final set of equations. Existing algebraic equation or

ODE/DAE solvers can be used to solve the resulting set of the newton equations at each time step or to

integrate only a part of the differential equations between two adjacent time steps. With the numerical

method suggested in this thesis, index and near index problems can be numerically and automatically

solved.

rionpivof variables

initial
values

newton
equations

at
t

integration i r integration 11 integration

newton
equations

at

SOLUTION

newton
equations

at

Figure 6: Solution of a Near Index Problem with Nonzero Degrees of Freedom

32

Acknowledgement

Support for this work comes from the National Science Foundation through its support for Design

Research Center, NSF Grant EDC-8943164.

33

References

[1] Bachmaim, R., L. Brifll, U. Pallaske, and Th. Mrziglod.
A Contribution to The Numerical Treatment of Differential Algebraic Equations Arising in

Chemical Engineering.
Dechema-Monographs vol.116 - VCH Verlagsgesellschcft :343-349,1989.

[2] Bachmann, R., L. Brull, Th. Mrziglod, and U. Pallaske.
On Methods for Reducing the Index of Differential Algebraic Equations.
Comput. Chem. Engng. 14(11):1271-1273,1990.

[3] Chung, Y. and A.W. Westerberg.
A Proposed Numerical Algorithm for Solving Nonlinear Index Problems.
Ind. Eng. Chem. Res. 29(7): 1234-1239,1990.

[4] Chung, Y. and A.W. Westerberg.
Solving Stiff DAE Systems as 'Near' Index Problems.
Submitted to Ind. Eng. Chem. Res. 0:. 1991.

[5] Gear, C.W.
Differential-Algebraic Equation Index Transformation.
SIAMJ. SCI. STAT. COMPUT. 9(l):39-47, January, 1988.

[6] Gear, C.W. and L.R. Petzold.
ODE Methods for The Solution of Differential/Algebraic Systems.
SIAMJ. NUMER. ANAL. 21(4):716-728, August, 1984.

[7] Griewank, A.
On Automatic Differentiation.
Preprint MCS-P10-1088. Argonne National Laboratory, October, 1988.

[8] Pantelfdes, C.C.
The Consistent Initialization of Differential-Algebraic Systems.
SIAMJ. SCI. STAT. COMPUT. 9(2):213-231,1988.

[9] Ponton, J.W.
The Numerical Evaluation of Analytical Derivatives.
Comput. Chem. Engng. 6(4):331-333,1982.

