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ABSTRACT

The safe and reliable operation of chemical plants depends on high integrity operating proce-
dures. Such procedures often involve process transitions through stationary states. A strategy for
qualitatively evaluating the stability of stationary states is presented. This strategy is applied to
linear processes and uses the Routh-Hurwitz conditions as a basis for analysis. The methodology
requires specification of the parameter signs, and sometimes their possible equality and order of
magnitude relations. The novelty of this approach relies on relaxing the requirement of detailed
parameter information for the evaluation of process stability. This allows addressing stability
concerns at earlier design stages than it is presently done. Since this analysis is performed at a
minimal level of parameter information, it can generate process analysis and synthesis heuristics
by identifying process structures which are inherendy stable. The strategy is applied in examples
which involve series of material capacitors, proportional control and chemical reaction.
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1. INTRODUCTION

The instrumental role of operating procedures in the safe and reliable operation of a

chemical plant makes the planning of operating procedures an important chemical engineering

activity. To ensure such operation, the synthesis of operating procedures must incorporate in-

herently desirable features, such as verifiability of procedure steps and stability of intermediate

process states. The main purpose of operating procedures is to take the process from an initial

to a goal state. This state transformation must be achieved by applying permissible process

operations, without violating any process constraints along the way. These constraints are

motivated by concerns for the safe and reliable operation of the plant. Quality control and

economic issues also influence the synthesis of operating procedures.

The concerns for safety and reliability favor processes which are inherently stable over

large ranges of parameter values and operating conditions. Such processes are exposed to a

lower risk of undesirable scenarios like explosions, runaway reactions, and unacceptably high

vessel pressure.

The design of chemical processing systems commonly is done using representations

which describe the system at various levels of detail. We are interested in evaluating processes

for stability early at their design stage to minimize the number of alternative operating proce-

dures considered by pruning designs which are not expected to meet safety requirements. At

the preliminary design level, however, process information such as precise equipment size,

flow or heat transfer coefficients has not yet been determined or specified. It is therefore ap-

pealing to develop a formalism for evaluating stability without requiring detailed process in-

formation. In this paper stability is investigated using representations which describe the pa-

rameter values by intervals.

Moreover, the design levels in chemical engineering are hierarchical in that the properties

derived at a certain level of detail are generally preserved as the granularity of the analysis in-

creases. The proposed formalism will operate at a relatively abstract level, therefore it can

provide general design rules for system stability.,

1.1 Recent Work in Operating Procedure Synthesis

The methodologies for operating procedure synthesis have included a variety of symbolic

manipulation techniques to generate desirable plans. Fusillo and Powers (1987, 1988a & b)

used a modified form of means/ends analysis, where operating goals are identified and proce-

dural actions are sought to satisfy the goals, and a constraint guided strategy, which searches

for sequences actions that do not violate the operating constraints. The methodology decom-

poses the complexity of the system by exploiting the existence of stationary states, or states

where the operating goals are partially met and the system can wait. These states are used as



planning islands, where the status of the system can be verified before the next planning action

is taken.

Lakshmanan and Stephanopoulos (1988a & b, 1989) developed hierarchical, object-ori-

ented modelling techniques and applied them with a nonlinear planning method to synthesize

operating procedures for chemical plants. Models are implemented as objects, allowing rela-

tions and methods to be inherited through the hierarchy of models. Their planning methodol-

ogy involves identifying stationary states and using means/ends analysis to plan procedures for

carrying the process between stationary states. The nonlinear planning techniques are based on

the propagation of constraints. They also developed specific methodologies addressing quali-

tative mixing constraints and quantitative constraints.

Aelion and Powers (1990) developed a unified strategy for the retrofit synthesis of flow-

sheet structures for attaining or improving operating procedures. Their approach proposes

structural modifications, aimed specifically at creating stationary states. The stationary states

introduced by the structural operators increase process flexibility and add modularity and veri-

fiability to the operating procedures. Means/ends analysis is used to backtrack from the goal to

the initial state. Parts of their strategy have been implemented in a computer program, the

Procedural and Structural Planner (PSP).

1.2 Operating Procedure Synthesis and Stationary States

Stationary states constitute an important factor for the effective operation of chemical

plants. The fundamental role of stationary states in operating procedure synthesis becomes

evident upon realizing that flexibility, safety and reliability concerns favor procedures and

structures with intermediate states, where the system can wait for some time until the next ac-

tion is taken. At such states the status of the system can be verified. The system can also con-

veniently retreat to an intermediate state to avoid complete shutdowns in emergency or mainte-

nance situations. Strategic inclusion of stationary states into the process adds modularity to its

operating procedures, thus rendering the system more flexible. Fusillo describes the character-

istics of useful stationary states (1987a):

1. The system is at steady state or changing very slowly.

2. The values of (most of) the variables lie between their initial and goal-state values.

3. Connections between a subsystem and its neighbors are closed, so the subsystems

do not interact.

This characterization suggests that among the important attributes of stationary states is

that they are stable. However, the steady state need not be asymptotic and an oscillatory steady

state of the center kind would be sufficient. In fact, the first condition of a stationary state indi-

cates that a steady state of the focus variety which is very weakly unstable, in the sense that it is



unwinding very slowly, would be sufficient for operating procedure synthesis. In this paper,

we restrict our attention to identifying stable steady states and leave the question of identifying

acceptable unstable ones unexplored.

Stationary states form because of the presence of simultaneous inverse operations or

large capacitance for a physical quantity, such as thermal energy or mass. An example of a

stationary state is a distillation column operating at total reflux. This stationary state is realized

because the evaporation at the bottom of the column is counteracted by the condensation at the

top. A batch reactor may exhibit a stationary state when filled with one of two reagents and

solvent and heated until it reaches a set-point temperature. The stationary state results from ca-

pacitance for thermal energy and mass. Since the second reagent is not present, the reactor

contents can wait at or near the desired temperature and composition without undergoing

chemical reaction.

The description offered by Fusillo and Powers can be generalized to include stationary

states which are not necessarily physically isolated from their neighboring subsystems. An ex-

ample is a heated stirred tank reactor which is fed with the catalyst, solvents and all the re-

quired reagents but one. The withheld reagent waits introduction after the reactor temperature

is heated to a set-point value. Even though physically connected to its neighboring systems,

this system exhibits a stationary state with respect to temperature. The stationarity is attributed

to the inverse operations of the feed cooling the reactor contents and the heater heating them.

To generalize this observation, if the stationary state is created because of inverse operations,

one or both inverse operations may be inputs to the system. This situation can be alternatively

analyzed by redefining the system boundaries to include the inverse operations.

Even in cases where the neighboring connections may disturbed the stationarity, the sys-

tem need not be completely isolated, provided that the capacitance of the system is sufficiently

larger than that of the property transporting through the system boundaries. Therefore, capaci-

tance related stationary states need only be effectively isolated from its neighboring subsystems.

The effect of an input to a system property may be quantified by a gain, which is the derivative

of the property with respect to the input. Extensive properties normally have larger gains than

intensive ones, because they are adding directly to the extensive property of the system. In

contrast, intensive properties are not affected as strongly, because they subject the inputs to

some form of mixing thereby moderating the resulting property changes. A system can be

effectively isolated in either case if it possesses large enough capacitance to dumpen changes in

its inputs.

The above analysis suggests adding a fourth characteristic for stationary states:

4. If the stationary state is capacitance related, it must be effectively isolated from its

neighboring subsystems.



1.3 Evaluation of Operating Procedures

Operating procedures are often required to satisfy multiple conflicting objectives, which

necessitates a prioritization among them. Most importantly, all processes must ensure a basic

standard of safety and reliability, while providing for quality control and efficiency. Safe and

reliable operation is related to the stability characteristics of process subsystems. In addition,

stability at intermediate states provides for a more flexible process, which in turn may translate

into economic benefits.

The synthesis of operating procedures calls for a method to evaluate the stability of pro-

cess subsystems. Stability can be characterized by detailed numerical process simulation,

which requires reasonably accurate values for process parameters and conditions. This infor-

mation is not normally available at the preliminary operating procedure design stages. In addi-

tion, a process simulation predicts the transient system behavior for a single point in the pro-

cess variable space, therefore a what-if analysis would require numerous simulation runs.

Therefore, a preliminary evaluation method for operating procedure stability is needed for

cases when precise estimates of the system parameters are not available.

In the next section we discuss the general problem of stability evaluation of operating

procedures. Stability is attained for a range of values for the parameters of the system. Based

on this property, interval representations for parameters are introduced and stability properties

of different structures investigated.

If needed, the preliminary stability analysis of the operating procedures could be verified

using detailed numerical models and pilot plant experiments. The proposed preliminary stabil-

ity evaluation method will provide estimates of ranges for the process variables, hopefully im-

proving the efficiency of the detailed stability analysis.

2. STABILITY

In this section we provide formal definitions for stability and theorems which explicate

the properties of stable steady states that can be used to evaluate operating procedure stationary

states.

A stable system is defined (loosely) as one that has a bounded response for all bounded

inputs. A system that has an unbounded response to a bounded input is unstable

(Coughanowr, 1965). For engineering applications, it is usually desirable to design systems

such that they operate about stable steady states. An unstable system would run the risk of

"running away" from the steady state for any disturbance. If some of the state variables are

pressure and temperature, such unbounded responses could result in accidents during the op-

erating procedures.



2.1 Definition of Stability

Consider a physical system represented by a set of n differential equations as follows:

dt (2-1)

The variables JC/ are state variables, ui are input variables and ax are parameters of the

system. Let X{(t) denote the solutions of 2-1. The focus of our attention is devoted to the

question of stability of the solutions X[(t) about the equilibrium points (or synonymously, the

steady states). In this subsection, we provide the definition of stability as given by Liapounov.

A more detailed treatment is provided by Minorsky (1976) and Hayashi (1985).

Definition 1 [Liapounov]

We say thatxtft) is stable, if given e>0 and x0, there isr] = 7] (e, r0) such that any so-
lution x(x)for which /xi(x0) - x[(xo)\ < r\ satisfies /xtfx) - x\(x)\ < efor x > x0. If no such rj
exists, xi(t) is unstable.

Definition 2

Ifxi(t) is stable, and in addition \x[{x0) - x[(x0)/ —>0asxtends to infinity, we say that it is

asymptotically stable.

If a solution is stable then all solutions that come near it remain in the neighborhood; if it

is asymptotically stable then all solutions approach it asymptotically. In the following subsec-

tions the Routh-Hurwitz conditions and Liapounov's second method are presented for operat-

ing procedure evaluation. The Routh-Hurwitz conditions provide conditions for stability of

variables JC/ in the neighborhood of the equilibrium points. In contrast, Liapounov's second

method allows us to investigate stability in the large or in a finite region of the state space.

2.2 Routh-Hurwitz Conditions

The linear approximation to equation 1 in the neighborhood of the equilibrium point is as

follows:

021 ^22

Onn .

X\

X2

Xn.

(2-2)



The characteristic equation for equation 2 is:

Xn + k\Xn'1 + k2X
n'2 + ... + kn.iX (2-3)

where
ki = (-1)'" ^(ith order principal minors of A)

If the real parts of the roots of the characteristic equation 2-3 are negative, then the system

is stable. If at least one root is positive then the system is unstable. The Routh-Hurwitz con-

ditions are necessary and sufficient for stability.

Routh-Hurwitz Theorem
LetAe Rnxn, then A is stable iff (all) the following conditions are satisfied:

1. ki> 0for alii = 1,2, ...,n,and

2. all the determinants, <%, shown below are greater than zero, i.e.

1*2

k\ k3 k5

1 k2k4

0*1*3

*3 • • • 0
k2 • • • 0

o

>0

These conditions investigate the stability of a system only in the neighborhood of an

equilibrium point.

2.3 The Domain of Stability

The Routh-Hurwitz conditions are a set of inequality constraints among the parameters

a/yof the system. Consider a simple system with the characteristic equation shown as follows:

a\i-X an

an
= 0

The Routh-Hurwitz conditions are:

If we plot these relations in the ki - k2 parameter space, the region of stability is in the

first quadrant. In general, the Routh-Hurwitz conditions define a domain of stability

(Gantmacher, 1964). This indicates that stability is not a stringent criterion which restricts the

parameters to single values. Rather it constrains the parameters to lie in a domain in the pa-

rameter space. This property forms the basis for our qualitative evaluation of the stability of

stationary states used in planning operating procedures.



2.4 Qualitative Analysis of Stability

The question of stability may be investigated at various levels of representation. The ap-

proach adopted is as follows: A qualitative representational level is chosen, say (+, 0, -) where

the parameters of the system are represented by the intervals (+, 0, -). For this resolution, dif-

ferent structures of differential equations characterized by the matrix A in 2-2 are investigated

in terms of the stability criteria given by the Routh-Hurwitz conditions or Liapounov's Second

Method. The attempt is to identify all the classes of structures that can proved to be stable at

this level of representation. This analysis is done for (+, 0, -) and order of magnitude repre-

sentations. This approach is expected to provide a taxonomy for various representations. The

representations chosen for investigation are motivated by the characteristics of stationary states,

commonly found in chemical plant operating procedures.

The immediate question that arises is the issue of how to divide the real line into

intervals. The most commonly used representation in the qualitative reasoning literature is

based on the (+ 0 -) value set. In general, the real line can be divided into a larger number of

intervals. If we consider the subdivisions to be symmetric about 0, then n divisions of the

positive real line will generate 2n + 1 intervals on the real line. For n = 1, the 3 intervals are (+

0 -). If n = 2, the 5 intervals are (++, +, 0, -, --). In a similar fashion, we can divide the real

line into a large number of intervals, such that as n approaches infinity, the set of values

become infinite and represent the whole line. Such a hierarchy of divisions will provide a

hierarchy of representations for stability evaluation. The appropriate value of n will depend on

the domain of application, which will decide the precision required in the solutions.

The approach to qualitative reasoning adopted in this paper is based on Interval Analysis

which is suggested by the AI literature (de Kleer, 1984; Kuipers, 1984; Raiman, 1986;

Mavrovouniotis and Stephanopoulos, 1988) and originally by the literature in mathematical

economics and ecology (Samuelson, 1947; Quirk, 1968; Jeffries, 1977). Recent interest in this

approach among control engineers is suggested by Ishida et al. (1981) and Kuipers (1989).

The different qualitative representations differ in the degree of resolution with which variables

and parameters of a given system are represented.

2.5 Qualitative Representations
In this section some results of the stability analysis conducted at three representational

levels are presented. Systems are classified based on the length of the feedback loops that are

present in the structure of the differential equations 2-2. The different levels at which this anal-

ysis is presented are:



2.5.1 (+ 0 -) Representation

This level represents interactions (gains) between state variables as being (+ 0 -). The

matrix A in equation 2-2 which represents the interactions (for a local linearization) is such that

it's elements are (+ 0 -).

The necessary and sufficient conditions for stability at this level of representation were

presented by Jeffries (1977). A system that is stable based only on sign considerations is

called sign stable. The necessary and sufficient conditions for sign stability indicate that only

systems with feedback loops of length 2 can be captured at the (+ 0 -) level of representation.

The length of a feedback loop, n, is determined by the the presence of the following non-zero

elements in a matrix: anj2 ai2,i3 — ain,il-

The necessary and sufficient conditions for sign instaility enumerate the cases for which

one or more of the Routh-Hurwitz conditions are violated based on sign considerations alone.

A formal statement is presented in Kalagnanam (1990a). If a given system is not sign stable,

then these conditions can be used to check for sign instability. If a given system is sign unsta-

ble then no further analysis is required since any additional information on the interactions in

the matrix A in equation 2-2 will not alter the result. However, if the system is neither sign

stable or unstable then it is potentially stable. A potentially stable system can be forced to be

stable by further restricting the values of the interactions in matrix A. This implies that the (+ 0

-) representation is inadequate to determine the stability of the given system and a greater level

of detail is required. Since the concepts of sign instability and potential stability are comple-

mentary, the conditions for sign instability are key for determining if a given system is poten-

tially stable.

2.5.2 (+ 0 - =) Representation

This representation is the same as the previous one, with the addition of equality rela-

tionsbetween variables. The symbol "=" means that two variables have the same magnitude,

without without considering signs. For example, if a2i = a22> then a2i, a22 have the same

magnitude and this fact is represented by assigning the same symbol to both, i.e. a = a2i = a22-

A set of sufficient conditions for stability at this level is presented. These conditions are

such that they capture systems with one feedback loop of length ny over and above the cases

listed in the (+ 0 -) representation. The necessary and sufficient conditions for sign stability

and instability at this level of representation are left as open questions.

The structure of the differential equations which satisfy the sufficiency conditions is as

follows:
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This is a block diagonal matrix with a corner element. The proof for this result can be

found in Kalagnanam (1990b).

2.5.3 Order of Magnitude Representation

This level represents the order of magnitude of the different interactions in matrix A. The

(+ 0 - =) representation is augmented with the relations: (>, », <, « ) . The relation a// > (<)

aij represents the fact that aij is larger (smaller) than a*/. Similarly, ay » ( « ) a*/represents

that aij is much larger (smaller) than a*/. The semantics for this representation is based on

Mavrovouniotis and Stephanopoulos (1988).

The stability analysis at this level of representation consists of investigating the Routh-

Hurwitz inequality constraints with some assumptions about the order of magnitude of the pa-

rameters a^

The stability of a system depends on the interaction between a regulatory mechanism,

which dumps the output for perturbations in the input, and an enhancing factor, which ampli-

fies the input disturbances. The regulation could be self-regulation or negative feedback. The

enhancing factors could be positive feedback or self-enhancement. Restrictions on the order of

magnitude of the gains are often sufficient for inferring whether the regulatory factor domi-

nates, thereby concluding that the system is stable.

3. EXAMPLES
In this section the Routh-Hurwitz conditions are applied in a series of operating proce-

dure stationary state examples. The analysis starts at the level of gain signs. If the. gain sign

information is not sufficient for determining stability, then the analysis proceeds with order of

magnitude arguments for stability evaluation. The purpose of this methodology is to provide

heuristic arguments for stability reasoning at the preliminary design level. A hierarchical ap-

proach to design is applicable and conclusions reached at this level of abstraction will be appli-

cable as the detail of the analysis increases.

3.1 A Series of Material Capacitors

Consider a chemical process subsystem which consists of a precooler, a reactor and a

splitter, as shown in Figure 3-1. Species A and B react at high temperature to form C. At

medium temperature the reaction leads to an unwanted product, U. A and B enter the



precooler at constant flowrates fA and fB moles/sec respectively. The flowrates between units

and the outputs from the system are also constant.

IL
t
I

out,r

I
Figure 3-1. A Reactor Subsystem

The reactor contents are to be kept at a low temperature to avoid all reactions during

startup. The precooler is included because the reactor configuration does not allow the cooling

to be achieved inside the unit. The side-stream out of the reactor, fout,r> is for purging and

sampling. Part of the material in the splitter is recycled back to the precooler.

A part of an operarting procedure for starting up this unit requires that the reactor com-

position be established. The stability with respect to composition is under investigation. We

assume a well mixed precooler, reactor and stream splitter and negligible pipeline volume, as

compared to that of the overflow vessels. We also assume that the total input to the system is

equal to its output, f0 = fOuu + fout,s-

Under these conditions the unsteady state mole and composition balances for each pro-

cessing unit are provided below.

Precooler:
dt (i)

dn
p A p p Ap r r

rt = dt = XAP~dt + nP~dt = f ° X A o + f s X A s "

After substituting (i) into (ii) and cancelling opposite terms, we get:

dt - ' np p

Similarly, for the reactor and splitter we get:

Ar _ g p
dt ~ n r

X A P " n r
X A r

dt ~ ns
 X A r " ns

 X A s

(I)

(II)

(HI)
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where nAi = moles of A in unit i

ni = total moles in unit i

XAi = mole fraction of A in unit i
r ~ ["moles!
f = flowrate, hr

dx
Combining equations (I), (II) and (III) in matrix form we get -r- = Ax + B.

where x =

LxA s J

k
nr

0

0 S
nr

ns ns J

np

0

L 0 .

Defining Qj s -^, we get A =

The Cn's are positive, so A =

0 C
sp

Cpr

0

-Cpr 0

rs

-
+

0

0
-
+

0
_

The system can be treated as linear if we assume that nj's are approximately constant in

the time interval of interest. Stability is guaranteed if the Routh-Hurwitz conditions are met.

= Cop + Cs > 0

Crs + Crs (C 0
o p + Csp + Cpr +

k2 = (Cop + Csp) Cpr + Cpr Crs + Crs (Cop

k3 = Cop Cpr Crs > 0

§2 = ki k2 - k3 > 0

83 = k3 52 > 0

The signs of the parameters and the equality relations render the expressions true for all

numerical values.The Routh-Hurwitz conditions indicate that the subsystem is stable with re-

spect to composition provided that the inputs remain positive. The signs of the parameters

along with the equality relations are sufficient for characterizing stability. Note that the struc-

ture of the matrix A in this example is the same as the one presented in Section 2.6.2 except for

the extra input term in ai 1. This structure is in general stable.

The analysis has shown that the outputs play no role in the subsystem's stability.

Therefore it is not necessary to require that the inputs be equal to the outputs. If the total input

11



exceeded the total output for a long enough time to flood the system, the present analysis

would not have detected it, because it has been set up to address only the stability with respect

to composition.

We can generalize the results of this example by noting the following heuristic.

The stationary state created by a series of capacitors for an extensive property

(moles) is always stable with respect to the corresponding intensive property

(concentration), provided that the input(s) to the system are positive.

3.2 Material Capacitors with Composition Control

The startup method of the previous example will work only if the feed composition is

identical to the reactor composition set-point, XAsp- If the feed composition does not remain

constant, composition control will have to be employed. Figure 3-2 presents the new configu-

ration. The controller is proportional and modifies the incoming composition by readjusting

the flows f^ and fe while keeping the total feed flow, f0, constant.

-He- Composition
Controller

fB
fr.

I
lout rlout,r iout,s

Figure 3-2. Introduction of a Composition Controller

The system is described by the matrix ^ = Ax + B, where

0 0 -K 0

x =

" X A O "

XAp

XAr

- X A S -

np

0

0

fn+fs
np

nr

0

o

. -&
nr

k
ns

k
np

0

k
n§

, B =
0
0
0
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Using the Cy notation, A =

0 0 -K 0

Cop -(Q>p+Csp) 0 Csp
0

L 0
-Cpr 0

0 s

Also, A =

0 0 - 0

+ - 0 +

0 + - 0

Lo o + - J
Note again that all Cy's are positive. The Routh-Hurwitz conditions are as follows.

ki = Co p + Csp + Cpr + C rs > 0

k2 = (Cop + Csp) Cpr + Cpr Crs +

k3 = Cop Cpr (K + Crs) > 0
(Cop + > 0

k4 = K C o p C p r C r s > 0

82 = ki k2 - k3 =

[Cop + Csp + Cpr + Crs][(COp + Csp) Cop + Cpr C^ + Crs (Cop + Csp)]

Cpr>0

k k

-(K + Crs)COp

83 = ki k2 k3 - j 3

84 = k4 83

The necessary conditions, ki > 0 are satisfied purely on sign and equality considerations.

The sufficient conditions, 8i > 0, can be satisfied by assuming that all the elements in matrix A

are approximately of the same magnitude, C, and K < C. For this analysis we assume the up-

per limit, K * C. Under these assumptions the analysis indicates that the system is stable.

Consider 82 = ki k2 - k3; k] * 4 C, k2 * 5 C2 and k3 « 2 C3. The results are obtained:

82 «20C3-2C3~ 18C3>0

83 = 40 C6 - 20 C6 « 20 C6 > 0

84 = k4 83 > 0

This analysis suggests that if the proportional control constant, K, is not larger than the

size of the rest of the parameters Qj then the given structure is stable. This is a sufficient

condition for stability.

These results can be summarized in the following heuristic:

// the capacitances of the vessels are approximately equal, the described

stationary state is stable provided that the proportional controller gain, K, is not

larger than the average capacity. Since Cifs are measures of inverse

capacitance, the smaller the capacitance, the better the stability of the system.

33 Material Capacitors with Temperature Control

A part of the startup problem is to maintain a low reactor temperature. Consider a situa-

tion with isomolar feed, fA = fB» where medium temperatures promote the undesirable

exothermic reaction A + B -> U, with reaction rate, qj = k [A] [B],

Species U precipitates from the solution and is be removed from the bottom of the reac-

13



tor. One procedure plan involves adding a proportional controller to the flowsheet, which tries

to keep the reactor temperature at or below a set-point value, Tsp. To avoid recycling hot mate-

rial, the downstream valve from to the splitter is now closed until the reactor temperature is

achieved. It is assumed that the set-point temperature may be reached before exhausting the re-

actor capacity for material. We assume constant heat capacity, cp, for both the reactor and pre-

cooler mixtures. Figure 3-3 shows the flowsheet configuration.

Proportional
Controller

Precooler

- To
Splitter

To
Sideproduct

Purge

Figure 3-3. Introduction of a Temperature Controller

The system is described by the following equations.

Precooler Energy Balance:

— foCpTo - fpCpTp + Qc (a)

Qc = Kc (Tsp - Tui) (b)

Qc is the rate of heat generation from the controller. Combining (a) and (b) we get

mPcP"dtE = f°cPT° " fPcPTP + Kc (Tsp " Tth) (c)

Reactor Energy Balance:

= fpCpTp + Qrxn (d)

,n = k [A] [B] (- AHrxn) (e)

Qrxn is the heat generation from the reaction. The feed is isomolar, so [A] and [B] re-

main constant, because they are depleted at the same rate. We assume constant AH^n and lin-

ear k with the reactor temperature, k = X Tr. Defining M s X [A] [B] (- AHrxn), a new con-

stant, produces the following reactor energy balance.

14



dTr

Temperature Sensor Energy Balance:

dT

(f)

j f = hA (Tr - Tts) (g)

In the equation above Cpjts and A are the heat capacity and the area of the temperature

sensor respectively, and h is the heat transfer coefficient between the sensor and the reactor

liquid.

Combining equations (c), (f) and (g) in matrix form we get -^ = AT + B, where

Tr , A =

la-
mp

k.
mr

0 .:

0

M
mrCp

hA

-Kc

mpcp

0

-hA

, B -

mtscp,ts mtscp,ts

0

o J
Also, A =

-an 0 -ai3

a21 a22 0

_ 0

Note that one diagonal element in matrix A is positive. The system can, therefore, be-

come unstable even without the interactions across units, represented by the off-diagonal

terms. In physical terms the positive element, a22. represents the exothermic reaction which

can promote itself through the reaction constant and drive the system unstable unless counter-

acted by the remaining diagonal elements. The Routh-Hurwitz conditions are as follows:

> 0

a2i > 0
2

a22
2 2

a22) - (a u

2
a33 > 0

- an
2 2

82 = (at j a33 + aii a33

63 = k3 52 > 0

In this example no Routh-Hurwitz conditions are satisfied based on the (+, 0, -, =) repre-

sentation. An order of magnitude restriction of the parameters, an = an = a2i = a32 = a33 = a

and a22 « a, i.e. the reaction term is much smaller than the other terms in the matrix, gives

conditions under which these assumptions are sufficient for stability. The following results are

obtained:

ki = 2a - a22 > 0

k2 = a (a - 2a22) > 0

k3 = a2 (a - a22) > 0
52 = a2 (2a - 5a22) > 0
53 = k3 52 > 0
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These results have shown that the Routh-Hurwitz conditions are satisfied provided that

is at least one order of magnitude smaller than a. Therefore the order of magnitude as-

sumptions have been sufficient for guaranteeing stability.

The following heuristic may be deduced from this example:

If the effect of the exothermic reaction ((122) is much smaller than the effect of the

other elements then the described system is stable. This condition is sufficient for

stability.

4. DISCUSSION

The renewed interest in qualitative reasoning within the AI literature has made available

various formalisms for qualitative representations. These formalisms provide a springboard

for qualitatively investigating traditional problems in engineering like stability. This paper pre-

sents an integration of ideas from control theory and qualitative reasoning applied in the context

of the process plant start up.

The examples in the previous section illustrate that the stability of a system can be

guaranteed with qualitative parameter estimates. In examples 3.1 and 3.2 the parameters are

specified at the (+, 0, -, =) level of representation which is sufficient for satisfying the Routh-

Hurwitz conditions. In example 3.3 order of magnitude assumptions about the parameters are

shown to be sufficient for guaranteeing the stability of the system. This suggests that for any

given representational level there exist some restrictions on the structure of the system which

are sufficient for proving stability. As the investigation extends to more detailed levels of

qualitative representations, additional stable structures will become available for operating pro-

cedure problem solving. This paper presents a methodology to explore this direction further.

The qualitative analysis of stability emerged from the fields of economics and ecology.

The initial focus of this work was restricted to the (+, 0, -) representation and Jeffries (1977)

proved that at this level of resolution systems with feedback of length no greater than two can

be shown to be stable. This result was of significance in ecology where the predator-prey

models have feedbacks of length two. Engineering domains, however, are more complex in

that systems are generally designed with feedback of larger lengths, as illustrated by example

3.1. In order to reason qualitatively about the stability of feedback systems with lengths greater

than two the (+, 0, -) representation is inadequate.

Examples 3.1 and 3.2 illustrate that the (+, 0, -, =) representation is sufficient to prove

stability in some cases, suggesting that the (+, 0, -, =) level is a suitable candidate for further

investigations. This level of representation has been used to show that capacitors in series

(example 3.1) are inherently stable. This result can be generalized to a nxn matrix structure

which allows for feedback of length n. The (+, 0, -, =) level has been used in example 3.2 to
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illustrate that a system with 2 feedback loops of length three is stable. This suggests that a

whole class of structures may be proven stable at this level. The necessary and sufficient con-

ditions for stability at this level is an open question.

Example 3.3 presents a system for which the (+, 0, -, =) level is inadequate to reason

about stability. Stronger assumptions about the relative magnitudes of the elements in matrix

A are required to prove the stability of the system. This suggests that order of magnitude rep-

resentations might yield another class of qualitatively stable structures.

5. CONCLUSIONS

High integrity operating procedures utilize stationary states for the safe and reliable op-

eration of chemical processes. The analysis of stability is a critical aspect of evaluating station-

ary states. In the context of the process plant start up, this problem is confounded by the un-

availability of precise information regarding the parameters of the system. Three examples are

presented which illustrate how qualitative descriptions of the parameters are often sufficient for

reasoning about stability. The qualitative analysis of stability brings to bear some results from

the qualitative reasoning literature in AI, mathematical economics and ecology.

Qualitative analysis of stability based on the signs of parameters may be used for sys-

tems with feedback loops of length no greater than two. In this paper, we introduce the (+, 0, -

, =) and the order of magnitude representations and extend the scope of qualitative stability

analysis to systems with feedback loops of length greater than two. At the (+, 0, -, =) level, we

present sufficiency conditions which guarantee stability for systems with one feedback loop of

length n (number of state variables). It is indicated how at each representational level, classes

of stable structures may exist. It is also illustated that this analysis can provide analysis and

synthesis heuristics by identifying process structures which are inherently stable.
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