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ABSTRACT 
An A-Team is a multi-agent organization for cyclic (iterative) processing. All the agents are 
autonomous. The cycles are asynchronously coupled, allowing them to be run in parallel and to 
collaborate without delaying one another. We conjecture that there are simple and effective ways of 
designing these couplings and offer three examples in support of the conjecture: A-Teams for 
solving sets of nonlinear algebraic equations, travelling salesman problems, and high-rise building 
design. 

INTRODUCTION 
A multi-agent system can be decomposed into two parts: (a) an organization consisting of the 
agents and mechanisms for their interaction, and (b) a computing environment for building and 
using the organization. Here we will focus on the organization, beginning with some terminology, 
then defining A-Teams, and finally, presenting some examples of the design of A-Teams. 

TERMINOLOGY AND MODELS 
Every multi-agent organization must contain a set of stores for the data its agents use and produce. 
This section develops models of the relations among agents and stores from three viewpoints: 
topology, operating policy and openness (potential for growth). 

TOPOLOGY 
Harel has developed a formalism called a Higraph [Harel 88] that is convenient for visualizing 
most features of organizational topology. In the succeeding material we will modify Higraphs by 
the addition of a few additional features to obtain what we call a Tao graph. We will also develop 
an algebraic equivalent of a Tao graph that is useful in analysis. 

Aspects and Stores 
Complex problem-solving processes invariably involve large amounts of data and many different 
representations. In recognition of this fact, we will use a coarse unit of data called an aspect. Con­
ceptually, an aspect is a view, model or partial description of some object of interest For example, 
circuit diagrams, lists of materials, operating manuals and behavioral specifications arc some of the 
many aspects of an electric motor. More formally, an aspect x is a double: x = (R, V), where R is 
the representational scheme used by the aspect and V is a collection of values that instantiates this 
representation. 

We define a storc as a set of aspects. A store is said to be homogeneous if all its aspects use the 
same representational scheme, otherwise, it is heterogeneous. Stores and their Cartesian products 
are denoted by closed figures (Fig. 1). 

Agents and Tasks 
We define an agent as an operator capable of mapping the elements of one store into those of an­
other. This mapping may be one-to-one, one-to-many or many-to-many, it may be deterministic or 
stochastic, and it may be into or onto. Pictorially, we will denote all these types of mappings by di­
rected arcs as shown in Fig. 2. Symbolically, an agent is denoted by the relation: 

y = fky (x), x e Sj and y e Sj (El) 

where k is the agent's name, Sx is the agent's input store and Sj is its the output store. 



Any computational task can be thought of as a transformation of a given aspect into a goal aspect. 
The task of designing a motor, for example, is equivalent to transforming an aspect that specifies 
the motor's behavior into an aspect that describes its structure. Thus, a task is defined by two 
aspects; the first is given; the second is to be calculated. If the semantic gap between these aspects 
is too large to conveniently bridge with a single agent, then intermediate stores may be placed to 
serve as stepping stones along the way. The connecting sequence of agents and intermediate stores 
is called a computational path or string. 

Tao Graphs, Data Flows and Authority Flows 
The purpose of a Tao graph is to help visualize the topology of an organization-the relative loca­
tions of its agents and stores, the tasks the organization can perform, the different paths it may 
take in performing these tasks, and the supervisory relations among its agents. 

A Tao graph has two components: a data flow and an authority flow. 

An authority flow is a set of broken arrows that represent the supervisory relations among agents. 
As such, an authority flow is equivalent to the"organization chart" that is traditionally used to de­
pict who supervises whom in human organizations. The four principal types of authority flows are: 
a simple hierarchy (Fig. 3), a compound hierarchy (one with more than two levels), a matrix (at 
least one agent has more than one supervisor), and a null flow (there are no supervisors and all the 
agents must be completely autonomous). 

A data flow is a directed graph whose nodes represent stores and whose arcs represent agents. We 
say that a data flow is functional redundant if at least one of its stores can be reached by more than 
one path. Cycles in a data flow (Fig. 4) make feedback and iteration possible, which in turn, make 
possible the reactive improvement and correction of computed results. 

Note that all the information in a data flow can be expressed by a set of equations obtained by 
writing (El) for every agent in the organization, as shown below: 

y = f^j (x), for x e Sj, y e Sj, and V k e K (E2) 

where K is the set of all agents. Though visually less appealing than a data flow, this set of equa­
tions has uses that we will get to shortly. 

OPERATING POLICY 
The operating policy of an organization is a collection of rules and regulations that govern its tem­
poral activities. Two of the main issues are (c.f. (E2)): 
• coordination: how is the input, x, for each agent to be selected from among the many entries that 
could accumulate in its input store? Does this selection require global information or can it be made 
locally? 
• coupling: do the interactions among agents impose an order on their invocation? Can some or all 
of the agents work in parallel? 

The coordination policy has a large effect on the quality, convergence and stability of an organiza­
tion's computations. In addition, it influences the coupling among the agents. To illustrate, con­
sider the following coordination policies for iteration with the cyclic data flow of Fig. 4: 

(OP1): v n + 1 = g ( v n , w n ) 
n = 0,1,2,--— 

w n + l = h ( v n + l > w n ) 

(OP2): v n + l = g < v n ' w n ) 



n = 0,1,2, 
w n + l - h < v n , w n ) 

(OP3): v n + 1 = g (v n , w.) 
n = 0,1,2, 

w n + l = h ( v * > w n ) 

where "*" means 'latest available," n is the iteration count, and v e V, w e W. 
The choice of inputs dictated by the coordination policy of (OP1) requires the agents h and g to be 
operated serially in alternating order: g, h, g, h,—. The coordination policy of (OP2) is less re­
strictive. It allows the agents to be operated in parallel, provided the faster agent waits for the 
slower one between iterations. Thus, it allows the sequence: g//h, g//h,—. The coordination pol­
icy of (OP3) places no restrictions on the order in which the agents may be invoked; both agents 
may proceed in parallel and at different speeds. 

When no agent has to wait for any other, we will say that the agents are asynchronously coupled. 
The advantage of asynchronous coupling is that it allows all the agents to work in parallel all the 
time. The disadvantage is that it is more prone to divergence and instability. 

GROWTH 
Two attributes that are useful in characterizing an organization's potential for growth are: 
•unit-of-growth: the quantum of expansion. Typical quanta are agents and stores. 
•cost-of-growth: the cost of any modifications that must be made to die organization to make it ca­
pable of accepting and using a new unit Note: this cost does not include any expenses incurred in 
assembling and packaging the unit-of-growth. 

A-TEAMS 
Rationale 
An A-Team (Asynchronous Team) is an organization-type that has evolved from a traditional 
blackboard [Nii 86a, b]. This sort of blackboard (Fig. 5) has three weaknesses. First, it does not 
allow its agents to work in parallel. Second, the single, centralized store is difficult to expand. 
Third, the system is overly dependent on its supervisor, errors made by the supervisor critically 
affect performance; also the supervisor must be modified every time a new type of agent is added. 
The first two weaknesses are easily remedied One could, for example, assemble a number of 
blackboards, distribute them over a network of computers, and assign some agents from each 
blackboard to handle interactions with other blackboards [LeSo 88]. One approach to eliminating 
the third weakness would be to seek more dependable and self modifying supervisors. Instead, we 
have chosen to eliminate the need for supervision. 

Definition 
We define an A-Team as any organization whose authority flow is null (there are no supervisors), 
whose data flow is cyclic, and whose agents are asynchronously coupled (so all the agents can 
work in parallel virtually all the time). 

A general form of the topology of an A-Team (Fig. 6) is very like that of its ancestor, the tradi­
tional blackboard (Fig. 5). However, there are differences in their operation and growth. Since A-
Teams are often confused with blackboards, it is worth wile to point out some of these differences 
as is done in Table 1. Clearly, a traditional blackboard is not an A-Team. However, one can make 
a strong case for including both scientific communities, as described in [Kornfeld 81], and insect 
societies in the class of A-Teams. The arguments are given in [Talukdar 91]; we do not have the 
space to reproduce them here. We merely note that any organization which can serve the needs of 
agents as diverse as scientists and insects must have many strengths. These include easy growth 



(new agents and stores can be added without making any modifications to the system), high de­
pendability (high functional redundancy allows some agents or computational paths to fail without 
compromising overall performance), and high performance (large numbers of agents working in 
parallel allow wide spaces to be searched in relatively short times). 

Attribute A-Team Traditional Blackboard 

Topology 
Authority flow none simple hierarchy 
Data flow strongly cyclic weakly cyclic 
Functional redundancy usually high low to moderate 

Operating Policy 
Coordination local, often randomized local 
Coupling asynchronous synchronous 

Growth 
Unit-of-growth string agent 
Cost-of-growth none moderate to high 

Table 1. Signatures (the values of some important organizational attributes) of an A-Team and a 
traditional blackboard. 

Designing A-Teams 
There are two principal steps to designing an A-Team: 
• select a data flow; and 
• devise a coordination policy for its agents. This policy must be locally implementable and allow 
the agents to be asynchronously coupled. (There are no supervisors to enforce coordination policy. 
Instead, each agent must make its own decisions with information contained in its input store.) 

A Conjecture 
We conjecture that there are a number of problem domains for which appropriate coordination 
policies (that is, policies that are local and asynchronous) can be devised that are simple (requiring 
no more than a few rules to be added to each agent), and effective (resulting in teams with high 
performance) 

Some support for this conjecture is provided by the following observations. 
• Consider a cyclic data flow with no functional redundancy (Fig. 4, for example), and the coordi­
nation policy of (OP3), namely: select the latest aspect placed in the input store. This policy is 
simple and local. Moreover, sufficient conditions for its convergence are only slightly more re­
strictive than the sufficient conditions for any synchronous policy, such as (OP1) [Talukdar 83]. 
• Many biological organizations with autonomous agents and a great deal of functional redundancy, 
flocks of birch and schools of fish, for example, appear to use simple, local and asynchronous co­
ordination policies to produce collective behaviors that are quite complex [Ermentrout 
91],[Reynolds 87], [Heppner 90]. 

In the next section we will provide slightly stronger support for our conjecture-some preliminary 
results from three computer-based A-teams that we have constructed. 

MULTI-ALGORITHM PROBLEMS 

A multi-algorithm problem is one for which: (a) several iterative algorithms are available, and (b) 
all the available algorithms are prone to failure. Sets of nonlinear algebraic equations and NP-hard 
problems, such as the travelling salesman problem (TSP), are two examples. We will attempt to 
design A-Teams for these examples that combine algorithms so as to capitalize on their strengths 
and protect against their failures. 



SETS OF NONLINEAR ALGEBRAIC EQUATIONS 

The Problem 
Given a set of nonlinear algebraic equations: F(X)=0, the problem is to find a solution, X*, such 
that IIF(X*)IM).. There are two types of iterative algorithms for searching for X*. The first has the 
form: X n + i » # ( X n ) f n«0,1,—, where X n is an approximation to the solution, d is an algorithm-
specific fraction, and decreasing values of IDF(Xn)ll indicate that the algorithm is making progress. 
The Levenberg-Nfarquaidt (LM) algorithm is widely held to be one of the best of this type. Other 
examples are Newton-Raphson and Gauss-Seidel 

The second type of algorithms has the same form as the first but uses populations (sets) of approx­
imations in place of individual approximations. A genetic algorithm (GA) is an example, and has 

the form: XQ+I^YCXQ) , n=0,1,—, where 3 ^ is a population of approximations. 

An A-Team Design 
The data flow of an A-Team that combines algorithms of both types is shown in Fig. 7. The coor­
dination policy for each LM-based agent is as follows: continue with (Al) as long as progress is 
being made, otherwise replace X n with X*, the best solution available from the store. The genetic 
algorithm is run continuously from a randomly selected starting population. In effect, the GA, 
which is good at global searches, is used to bring the LM algorithms into their effective range from 
a solution. In this range they are very fast and reliable. Outside it, they are tentative and slow. 
Results 
The coordination scheme ensures that the performance of the team as a whole will be no worse 
than that of its strongest member, working alone. In the tests conducted so far, the team has done 
much better than this lower bound, usually requiring many less function evaluations than either a 
genetic or LM algorithm, and finding solutions for problems where these algorithms fail [de Souza 
91]. 

THE EUCLIDEAN TSP (TRAVELLING SALESMAN PROBLEM) 

The Problem 
The Euclidean TSP is to find a tour (circuit) of minimum Euclidean length that connects each of a 
set of cities with given positions. The available algorithms, and there are many of them, fall into 
two classes: construction algorithms and improvement algorithms. The former transform a partial 
tour into a complete tour, the latter, improve complete tours. 

An A-Team Design 
The data flow for an A-Team that combines several of the simpler construction and improvement 
algorithms is shown in Fig. 8. The coordination policy used is very simple. All agents except D 
(the destroyer), select their inputs randomly and without repetition from their input stores. D limits 
the contents in the complete-tour-store to the best N tours, N being a user selected parameter. 
Thus, D provides a "suivival-of-the-fittest" screen that ensures monotonic improvement of the 
contents of the complete-tour-store. The process terminates when these contents reach a steady 
state. Many such states are possible, not all of them optimum. The randomization causes the termi­
nal steady state to vary from one run to another. 

Results 
We have tested the team on a number of problems including two of the larger ones for which opti­
mum solutions are known: the 318-city problem of Lin and Kernighan [Lin 73] for which the op­
timum tour is of length 4,1345 [Crowder 80], and the 532-city problem of Padberg and Rinaid for 
which the optimum tour is of length 27,686 [Padberg 87]. In all the tests, the team perform* much 



better than its members can. For instance, we made four runs on the 318-city problem. One found 
the optimum and the other three came within 0.01% of the optimum. In contrast, the best that any 
of the algorithms can do when working alone, even from exceedingly favorable starting condi­
tions, is to come within 5% of the optimum (and this computation took far longer than was re­
quired by the team). 

We have also made four runs with the 532-city, problem obtaining solutions of 27,703 (0.061% 
above optimum), 27,704 and 27,705 twice. In contrast, Johnson reports that in 20,000 indepen­
dent runs of the LK (Lin-Kernighan) algorithm the best result obtained was 27,705 [Johnson 90]. 
Note that the LK algorithm is one of the best in existence, and is far superior to any that we have, 
as yet, been able to code or obtain for our team. We expect the performance of our team to improve 
with the addition of better algorithms. 

CONFLICT RESOLUTION IN £ + N DESIGN 

The Problem 
Design problems often involve many more criteria (objectives and constraints) than existing syn­
thesis procedures can handle. The design of high rise buildings is a case in point. Some of the 
many classes of criteria: are client-specifications, building codes, initial cost, aesthetics, functional­
ity, comfort, maintenance, construction, and eventual demolition. Existing design processes can 
address only a very small fraction, say £, of these criteria. We call such processes £ design. One 
way to increase the coverage of an £ design process is to add feedback loops for other criteria. For 
example: produce an initial design that takes specifications, codes and cost into account; then eval­
uate this design from the viewpoints of thermal performance and construction; and finally, modify 
the design if it is inadequate from these viewpoints. The modification (feedback) signals can be 
generated by expert systems that are beginning to be called critics or design advisors. One diffi­
culty is that the signals they produce are often in conflict. Lacking mechanisms to resolve these 
conflicts, many researchers have resigned themselves to using only one advisor at a time. We call 
this £ + 1 design. The problem that we consider here is to incorporate N > 1 feedback loops into a 
design process along with conflict resolution mechanisms that drive solutions to Pareto optimality. 
We call such a process £ + N design to signify that £ criteria are handled by feedforward and N 
criteria by feedback. 

An A-Team Design 
Fig. 9 shows the data flow of an A-Team for £ + 3 design. This team was formed by adding three 
evaluators: El , E2, E3, three design advisors: a, {5, y, and a destroyer: D, to an existing system 
for £ design of high-rise buildings. 

The coordination policy is similar to that of the team for TSP; all agents except D select their inputs 
randomly and without repetition from their input stores. D repeatedly checks all the designs in its 
store. Any that is found to be inferior to the others (in the Pareto sense with respect to the evalua­
tion criteria: C, T and L) becomes a candidate for elimination. Whether it is actually eliminated or 
not is determined by a random process like that used in simulated annealing; the chances of elimi- * 
nation increase with the candidate's inferiority. The effect of D is to allow a few inferior designs to 
remain in a population most of whose members are moving toward the Pareto frontier. As in sim­
ulated annealing, these inferior candidates provide some of the diversity needed to obtain good 
coverage of the search space. Further details can be found in [Quadrel 91]. 

Results 
The original £ design process is deterministic and generates one design per run. The A-Team I N 
non-deterministic and produces many designs per run from which the user may select the one he or 
she likes the best. So far, we have conducted only one test on the A-Team. It produced five de 



signs, all of them superior in all respects (constructability, thermal performance and lighting) to the 
original design [Quadrel 91]. 

FUTURE WORK 

The work reported here indicates that A-Teams have promise* In our continuing work, we are are 
expanding the teams already built as well as moving to two new domains: real-time control of elec­
tric power systems and network diagnosis. 
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LM: Levenberg-Marquardt algorithm. 
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Fig 8. An A-Team for the travelling salesman problem. Fl (Furtherest Insertion) and 
Nl (Nearest Insertion) are constructive algorithms. 2-Opt and Or are 
improvement algorithms. The HK (Held-Karp) algorithm calculates a lower 
bound on the optimal tour length and also near-optimal but infeasible solutions 
called 1-Trees. The TA (Tour Analyzer) creates partial tours consisting of the 
common edges from two randomly selected complete tours. The Mixers 
randomly mix edges from two tours to create one tour. D (Destroyer) 
eleminates all but the best N tours from the Complete Tour store. (N is a user 
selected parameter.) All agents except D select their inputs randomly from 
among those available in their input stores. 
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Fig 9. The data flow of an A-team for the design of high-rise buildings. Only the more 
important stores and agents are labeled. Si: Site Data; So: Soil Data; M: 
Materials; Sp: Customer Specifications; Ma: Massing; F: Foundation; S: 
Structural System; R: Roof System;-P: Panels; G: Garage; V: Vertical 
Circulation; C: Constructability; T: Thermal Performance; L: Lighting; f2 : 
Design Constraints; E1, E2 and E3: Evaluators; a, p, y : Design advisors; D: 
destroyer. 


