
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Addressing the Tradeoff Between Standard and Custom ICs in
System Level Design

Jay K. Adams, Donald E. Thomas
EDRC18-28-92

Addressing the Tradeoff Between Standard and Custom ICs in
System Level Design *

Jay K. Adams and Donald E. Thomas

February 1992

A b s t r a c t

Digital design at the system level considers the implementation of a system with some mix
of standard ICs, custom ICs, and software. In the early stages of design the system is described
by a set of descriptions which may include software, hardware behavioral descriptions, and
specifications for standard parts. The implementation implied by the initial set of descriptions,
however, may not meet system performance goals (i.e. cost, throughput, physical sise). The
challenge of the early design stages, then, is to rework the set of descriptions into one whose
implementation meets the performance goals. One possibility is to consider designing custom
ICs for some parts of the system. This may be an attractive alternative when only a subset of the
functionality of a standard IC is needed by the system, or when the standard IC implementation
represents a poor use of P C board space (i.e. many SSI or MSI parts). This paper formalises
the tradeoff between using a custom IC and using standard ICs to implement part of a system.
The new design tool described in this paper brings together system-level and behavioral-level
synthesis paradigms and is capable of designing microprocessor-based computer systems which
include an ASIC. Effective use of the ASIC's gate capacity and I /Os results in designs which
require as little as 62% of the P C board area needed by designs with no ASIC.

I Introduction

Digital design a t the system level considers the implementation of a system with some mix of

s tandard ICs, custom ICs, and software. In the early stages of design the system is described

by a set of behavioral descriptions which m a y include software (using a programming language),

hardware (described behaviorally), and specifications for s tandard par t s (e.g. memory: 32K by

8) . T h e implementat ion implied by the initial set of descriptions, however, may not meet system

performance goals (i.e. cost, th roughput , physical size). The challenge of the early design stages,

then, is t o rework the set of descriptions into one whose implementat ion meets the performance

goals. Several possibilities exist: re-forming processes, reconsidering which processes should be

implemented in hardware and which should be implemented in software, repartit ioning the hardware,

and designing custom ICs for some par t s of the system.

Even though the initial description of the system suggests the logical s tructure of abstract par ts ,

the s t ructure of the physical par t s in the implementat ion may be quite different. Two abstract

•This work has been supported by the Engineering Design Research Center, a NSF Engineering Center

Carnegie Mzlten Cinivergftv
Pittsburgh PA lMil%ri$

1

2 I INTRODUCTION

par ts may be combined when a single physical par t subsumes their functions; a single abstract par t

may be decomposed when no s tandard par t performs its function; or the abstract par t may be

implemented as pa r t of a custom IC . T h e last situation may arise when only a port ion of a s tandard

par t ' s functionality is needed, thus it could be more efficiently implemented using an ASIC. It may

also arise when the s tandard par t alternative represents a poor use of P C board space; such is often

the case for interface or "glue" logic.

In this paper we begin to explore the issues involved in choosing between s tandard and custom

ICs for par t of a system. By combining and extending the capabilities of two existing digital design

tools, the System Architect 's Workbench (SAW) [1] and the MICON System [2] [3], we have created

a tool capable of addressing these issues. T h e new tool is able to design single board computer

systems according to high level specifications which among others include: the target system cost,

the available P C board area, the target power dissipation, and the sise of an ASIC (in terms of gate

capacity and I / O count) t h a t may be used in the design. The ASIC may be used to implement a

number of functions t ha t would otherwise require the use of s tandard par ts . The result is the design

of a processor board (a pa r t list, a description of the ASIC behavior, and a net list) t ha t meets the

specifications.

The new design tool brings together two synthesis paradigms, system-level synthesis and compon­

ent-level behavioral synthesis. Figure 1 shows how the system-level and component-level synthesis

tools interact . At various points in its design process the system-level synthesis tool must decide

between using one or more s tandard par t s and incorporating their behavior into an ASIC. In or­

der to make a decision the system-level tool provides specifications for a new component to the

component-level synthesis tool. T h e component-level synthesis tool creates a component t ha t meets

the specifications and reports t o the system-level synthesis tool the characteristics (e.g. circuit area)

of the new component . T h e system-level tool then makes its decision based on the characteristics of

the new-component and those of the s tandard par ts .

The specifications for a new component consist of a behavioral description, clock frequency

requirements, t iming constraints , and functional parameters. Functional parameters describe how

the component is t o be used in the system and may implicitly or explicitly declare t ha t some of the

functionality included in the behavioral description is not used. The functional parameters , then,

allow the component-level synthesis tool to make use of knowledge about how the component is to

be used in the system.

The exchange of information between the two tools allows the component-level synthesis tool to

specialize the component for i ts intended use while allowing the system-level synthesis tool to reason

about the exact cost of implementing the new component . It is the j o b of the component-level tool

to efficiently synthesize a component which meets the specifications; and the j ob of the system-level

tool to determine whether or not the new component should be included in the system.

3

system specifications

i
System-Level

Synthesis

T

component
specifications

component
characteristics

Component-Level
Synthesis

system design

Figure 1: T h e interaction between system-level and component-level synthesis tools.

As a n example of the interaction between the two synthesis tools, suppose t h a t the system-level

tool needs t o implement a serial I / O controller. I t knows t ha t the Intel 8251 will suffice. In order

to find ou t how much circuit area would be used if the serial I / O controller were incorporated into

the ASIC, the system-level tool passes a behavioral description of the i8251 to the component-level

synthesis tool along with the clock frequency requirements (e.g. max imum baud ra te) . Suppose

further t h a t t he i8251 will always be operated in asynchronous mode. T h e system-level tool could

pass t h a t information along in the form of a functional parameter . The component-level tool would

then synthesise a n ASIC version of the i8251 which only suppor ts asynchronous mode a n d report

i ts characteristics back t o t he system-level tool. T h e system-level tool would then choose between

using t he i8251 and including its functionality on an ASIC.

T h e system-level synthesis tool m a y also choose t o include the functionality of an SSI or MSI

par t on the ASIC. In t h a t case we assume tha t a macro exists for the ASIC version of the SSI or

MSI pa r t and t h a t no synthesis is necessary; the system-level tool simply makes i ts choice based on

the characteristics of the macro and those of the SSI or MSI pa r t .

Given t h a t the component-level and system-level synthesis tools exist, only two issues remain:

how the component-level synthesis tool can make use of functional parameters t o customize a design

for a given application, and how the system-level synthesis tool chooses between the new component

and s t andard ICs.

The following section briefly discusses previous research along these lines. Section III describes

4 III FUNCTIONAL PARAMETERS

how functional parameters are handled by the component-level synthesis tool. Section IV describes

how the system-level synthesis tool selects between the s tandard and custom IC alternatives. Section

V describes the results of experiments with the new design tool. Finally, Section VI offers some

conclusions as well as indications of future directions.

II Related Research

System level synthesis has been the focus of the MICON project [2][3] for several years. MICON is

a knowledge-based expert system capable of producing designs for single-board computer systems

based on system-level goals such as the to ta l amount of P C board area, system cost, and power

dissipation. MICON, however, is currently only able to use s tandard , off-the-shelf components in

the systems it designs. This paper will show how adding a high-level synthesis engine to a system-

level synthesis tool such as MICON allows it to design systems which include custom ICs.

High level synthesis (register-transfer level synthesis from a behavioral description) has been an

active area of research for some t ime. T h e System Architect 's Workbench (SAW) [1], for instance, is

able to design an ASIC according to a high-level behavioral description. High-level synthesis systems

are able t o take into account performance goals such as t iming constraints [4], clock speed, and circuit

area. They are also able t o part i t ion functionality among several physical components [5] [6]. Current

high-level synthesis techniques are inappropriate for system-level design, however, because of their

inability to reason abou t complex physical components (e.g. memories, microprocessors). This

paper builds on previous high level synthesis work by incorporating it into system-level synthesis

and adding par t ia l evaluation as a way of synthesizing a subset of a behavior.

Par t ia l evaluation, especially as it applies to compiling and compiler generation, has also been an

active topic of research [7]. Recently, Berlin [8] and Weise [9] reported the use of part ial evaluation

as a way of specialising scientific code for a given situation (e.g. turning a program for solving the n-

body problem in to a more efficient one for solving the 3-body problem). We apply part ial evaluation

in order t o produce a specialized component from a general behavioral description. Although the

goal of the Berlin and Weise use of par t ia l evaluation is similar to ours, part ial evaluation, to our

knowledge, has never been used to specialize a hardware description prior to synthesis.

III Functional Parameters

The purpose of functional parameters is to allow the component-level synthesis tool to make use of

knowledge abou t how the component is to be used in the system. Functional parameters appear

in a behavioral description as constant declarations. T h e values t ha t are declared to be constant

may either be inputs to the component (e.g. a pin on the component t ha t means "operate in mode

A" or "operate in mode B") or "flags" in the behavioral description (i.e. a variable t ha t means "is

5

function X required") . For example, if t he behavioral description described an u p / d o w n counter, a

functional parameter might imply t ha t the w count u p " input is always false. In t ha t case, the parts

of the behavioral description t h a t deal with counting up could be eliminated.

Our approach to making use of functional Parameters relies on part ial evaluation to eliminate

par ts of a behavioral description which are not need. T h e goal of part ial evaluation, as it is imple­

mented here, is to remove pa ths in the control flow tha t cannot be executed. Specifically, we wish to

determine, for every n-way branch in the behavioral description, which alternatives cannot be taken

in light of functional parameters .

First , we define an n-bi t partial constant, P , t o be Pipi—Pn where p € { 0 , 1 , — } . We say tha t a

constant , A = aia^.^On where a € { 0 , 1 } , is consistent with a part ial constant , P , if and only if for

every t for which p» € { 0 , 1 } , a+ = p». Intuitively, a part ial constant represents a binary number in

which some of the bits are constant and some are variable.

Let C (P) be the set of all constants t ha t are consistent with P . If P is an TO-bit part ial constant

and Q is an n-bit par t ia l constant , then a part ial evaluation, P E , of an n-bit function applied to P

is is defined to be

P E (/ , £) = Q iff € C(P) : f(A) € C(Q)

This definition guarantees t h a t a P E operator preserves the semantics of the function. I t says nothing

about the ability of a P E t o propagate constant information.

In order t o make use of the constants in P we define P E so t ha t " 1 " OR 'ed with " l f " a 0 , w or a - w

yields a a l " ; and "0" AND'ed with a l , w «0» or «-w yields a "0 ." Using similar reasoning, we define

P E to take advantage of constant bits in the inputs of any logical or ari thmetic operation. Figure 2

shows examples of our P E applied to A N D (*), O R (I) , G R E A T E R (>), and PLUS (+).

We assume t h a t an n-way branch construct (analogous to a C A S E or I F - T H E N - E L S B s ta tement)

consists of a selector and a number of al ternatives. T h e selector is a function and a set of inputs;

and each al ternat ive is a constant and a list of operat ions. T h e semantics of an n-way branch are

such t h a t a n al ternat ive is active when i ts constant equals the value of the selector function applied

to the inputs . When an al ternative is active, control passes from evaluating the selector function to

the list of operat ions associated with t ha t al ternat ive.

Unreachable branch alternatives are removed by considering each n-way branch in the behavioral

description. T h e selector function of the branch is evaluated with the inputs (a part ial constant) to

obtain the selecting part ia l constant . Then , any branch alternatives whose constant is not consistent

with the selecting part ia l constant can be removed. If only one alternative is left, we remove the

branch construct itself, and replace it with the operations associated with the al ternative. The

definition of a P E operator given above, ensures t h a t removing branch alternatives in this way will

not alter the semantics of the branch. An example is shown in Figure 3.

6 III FUNCTIONAL PARAMETERS

0100 I 1 - 1 -1

010- ft 0—1 -> 0-0-

1-11 > 10-0 -> 1 (true)

00-1 + 10-0 —> s u m = l — 1 , carry=0

Figure 2: Par t ia l Evaluation: Even though some of the bits in the operands are unknown, some
conclusions can be drawn abou t the result.

P = 010; P = 010;
Q = i n p u t 1 ; q = i n p u t 1 ;

case (P 1 Q) case (P 1 q)
0:

begin •.< end

begin . . , end
2 : 2 :

begin .•< end begin • . . end
3 : CA

)

begin . . . end begin . . . end
4 :

begin . • . end
5 :

begin . • . end
6: 6:

begin . . . end begin . • end
7 : 7 :

begin . . . end begin . . end
endcase; endcase;

Figure 3: P E applied t o a P I q" results in the part ial constant a-r- w . The alternatives t ha t are
inconsistent with a - l - w are removed.

7

IV Standard versus Custom ICs

T h e system-level design tool must be able to choose between ASIC-based and a s tandard part

based implementat ions. Our approach to this problem is similar t o t h a t used by MICON to choose

among al ternat ive s t andard parts[10]. T h e system-level synthesis tool calculates wha t impact each

al ternative will have on the physical size, dollar cost, to ta l power dissipation, available ASIC area,

and available ASIC I / O s of the evolving design. S tandard ICs wiH contr ibute t o the physical size,

dollar cost, and power dissipation of the design bu t will not affect the available ASIC area or I /Os .

An ASIC-based implementat ion, on the other hand, will affect the available ASIC area and I /Os

bu t will not contr ibute to the physical size, dollar cost, or power dissipation of the design.

T h e actual choice is made by computing a cost for each alternative then choosing the alternative

with the lowest cost. T h e cost is a weighted sum of the percentage of each system resource (i.e. P C

board area, cost, power dissipation, ASIC area, and ASIC I /Os) consumed by the alternative. The

cost is determined by

C o s t = £ . W i f

where N4 is the a m o u n t of resource i required by the par t , Ti is the initial amoun t of resource i in

the system, and W% is the variable weight factor. As the design evolves, W* changes to express how

impor t an t i t is t o conserve resource t. W» increases as resource i is consumed. If W% for a particular

resource becomes larger t han the weight factors of the other resources, i t indicates t ha t resource i

is in relatively short supply and, consequently, resource i should be conserved if possible.

T h e weight factor for each resource, Wi, is given by

W i = * + (0 . 0 1) T i 5 <

where A» is the amoun t of each resource t h a t is currently available and 5« is a constant scale factor

for each resource. T h e scale factor addresses the fact t ha t the use of some percentage of one resource

m a y not be comparable t o the use of the same percentage of another resource. For example, i t may

be desirable to choose a component t ha t requires 10% of the ASIC resources and no additional board

area over one t h a t requires 5% of the board area and no ASIC resources. While there will usually

be only enough ASIC resources to implement a fraction of the entire system, there must be enough

board area t o implement the entire system, including par t s for which no ASIC alternative exists

(e.g. the C P U or the memory) . Thus , we expect t h a t the amoun t of ASIC resources needed to

implement some function will be a larger fraction of the tota l than t h a t of the board area needed to

implement the same function. Experiments have shown tha t when the scale factors for board area,

cost, and power dissipation are unity, ASIC area and ASIC I / O scale factors of 0.05-0.10 work well.

In order for ASIC I / O usage to be figured into the cost function, the system-level synthesis tool

must be able to determine, a t any point in the design, how many I / O ' s are available on the ASIC

8 V RESULTS

I/O count = 3 I/O count = 4 I/O count = 2

•
o

Figure 4: An example of how ASIC I / O s are counted by the system-level synthesis tool.

and how many will be consumed if some function is added to the ASIC. We assume tha t an ASIC

I / O must be used for every signal t h a t connects an ASIC circuit to a non-ASIC circuit (i.e. I / O s

are not multiplexed). At any point in the design process, the number of I / O s in use is determined

by two rules:

1. Count one I / O for each net which connects to bo th an ASIC circuit a non-ASIC circuit.

2. If the design of any component on a net is unfinished, assume the net is connected to a

non-ASIC circuit.

Rule 2 ensures tha t the I / O count is always pessimistic. It also ensures tha t , a t any point in the

design, the decision to use a s tandard IC does not impact the ASIC I / O availability. Figure 4 shows

an example of how the ASIC I / O count progresses as the design evolves.

SAW and MICON enhanced and combined to implement the design tool described in the previous

sections. The new tool is capable of designing single-board computer systems which may contain

a single ASIC. We limit the design to a single ASIC in order to avoid the problem of parti t ioning

functionality among ASICs. T h e design tool takes as input the target system cosi, the available

P C board area, the system I / O requirements, the target power dissipation, the gate capacity of an

ASIC, and the I / O count of an ASIC. I ts ou tpu t is the design of a single-board computer system

system, which includes a par t list, a description of the ASIC, and a net list.

V Results

9

Partial Evaluation

Figure 5 shows the results obtained when par t ia l evaluation was applied to several behavioral de­

scriptions prior t o synthesis. T h e physical sise of the design is shown in terms of controller states,

register bits , functional uni t gates, and MUX inputs . The CDP1802 is an 8-bit microprocessor. It

was synthesised for the case in which the interrupt and DMA inputs were declared to be inactive.

T h e AM2903 is a 4-bit processor bitslice. T h e AM2903 was synthesised for three cases: one in which

the pa r t was to be the least significant slice, one in which the pa r t was to be the most significant

slice, one in which the pa r t was t o be a n intermediate slice. T h e ¡8251 is a serial I / O interface whose

behavioral description consists of three processes. T h e results shown are for the t ransmit ter process

only. I t was synthesised for two cases: one in which the only synchronous mode was enabled and one

in which only asynchronous mode was enabled. ATBI is a memory and I / O bus interface designed

for an 80386-based workstat ion. ATBI may or may not include a write buffer. I t was synthesized

for the two cases in which a single write buffer entry is and is not required. All descriptions were

also synthesised without using par t ia l evaluation so tha t hardware would be created for all of the

behavior in the original description. In all examples, part ial evaluation was able t o reduce the size

of the resulting hardware by eliminating those par t s of the behavior which are not needed.

Standard versus Custom ICs

T h e new tool was used t o produce designs for an 80386-based processor board in a variety of

scenarios. T h e scenarios differ only in the specifications supplied for the available P C board area,

ASIC ga te capacity, and ASIC I / O count . T h e design of the processor board is such t h a t the

keyboard controller and the serial I / O (SIO) controller m a y be implemented either by a s tandard

par t or as pa r t of an ASIC. Also, the memory bus interface m a y be implemented either as pa r t of

the ASIC or with s t andard SSI and MSI T T L par t s . In addition to these subsystems, some of the

processor's glue logic m a y also be implemented with the ASIC, eliminating the need for it to be

realised with discrete T T L pa r t s .

Early experiments revealed t h a t bet ter results are obtained when the decisions were made in

order of their impact on the final board area. Since implementing the bus interface using the ASIC

rather t h a n discrete T T L components results in the greatest reduction in board area, the system-

level tool is p rogrammed t o decide how the bus interface is implemented before considering the other

subsystems. I t then makes decisions abou t how the keyboard controller and SIO controller (in tha t

order) are implemented.

Over the many scenarios t h a t were a t t empted several tendencies, with respect to selecting a

custom rather t han a s t andard IC , were observed. The tool chose to implement the bus interface

with the ASIC in all cases in which the ASIC had sufficient area and I / O s . This is clearly due to

10 V RESULTS

(a) CDP1802 AM2903
l.o T

0.8 -

0.6 -

0.4 -

0.2 -

0.0 4-
Ctrl states reg. bits FU gatesMUX inputs

Entire behavior w/o INT, DMA
Ctrl states reg. bits

B Entire behavior
B LS slice

FU gates MUX inputs

H intermed. slice

• MS slice

(0 Î8251 (d) ATBI
1.0 - p

0.8 -

0.6 -

0.4 -

0.2 -

0.0 J j 11111110
ctrl states reg. bits FU gates MUX inputs

B Entre behavior

B Sync mode only

B Async mode only

ctrl states reg. bits FU gates MUX inputs

B Entire behavior

B No WB entries

B One WB entry

Figure 5: Par t ia l evaluation results. The amount of hardware produced is normalized to the size of
the "entire behavior" case.

11

the fact t h a t implementing the memory bus interface with the ASIC saves a considerable amount of

board area. T h e keyboard controller was usually realised with the ASIC if enough area and I /Os

were available. Since the keyboard controller shares many I / O ' s with the bus interface, adding it

to the ASIC requires using only a few additional ASIC I /Os (provided tha t the bus interface is also

being implemented by the ASIC). The tool chose to use the ASIC for the SIO controller only when

ASIC area was in ample supply, either because a large ASIC was specified or because the ASIC

was not used to implement the bus interface or keyboard controller. This too was expected since,

due to the small physical sise of the s tandard component t ha t may be used to implement the SIO

controller, it does not provide as much opportuni ty for saving board area.

We believe t h a t in general our tool will always choose an ASIC implementat ion over one composed

of m a n y discrete logic par t s (provided tha t the ASIC has sufficient ga te capacity and number of

I /Os) because of the amoun t of board area t ha t is saved. When the choice is between using a single

s tandard pa r t and adding to the ASIC, the use of the ASIC does not offer as much reduction in

board area. We believe t h a t in these cases, our tool will choose to use the ASIC only if doing so

does not consume a great deal of the ASIC I / O s and gates. This may be the case when, as in the

case of the keyboard controller, relatively few addit ional ASIC I / O s are needed due to sharing I /Os

with other functions implemented by the ASIC.

ASIC versus Discrete Logic

In order t o observe how efficiently the new tool uses the ASIC to implement glue logic we observe

how the physical sise of the resulting design varies with the number of ASIC I / O s used. Early

experiments showed t h a t the amount of glue logic t ha t could be implemented with the ASIC was

primarily a function of the number of I /Os on the ASIC.

Figures 6 and 7 show how the final P C board area of the system varies with the number of ASIC

pins used when the ASIC gate capacity is fixed a t 8000 and 12000 gates, respectively. Without

using a n ASIC, the system would require 105 i n 3 of board area. In some cases the board area does

not change even though more ASIC pins are used. Such is the case in Figure 6 when the number

of ASIC pins goes from 89 to 97 and in Figure 7 when the number of pins goes from 97 to 108.

This happens when the ASIC is used to implement one or more logic gates which would otherwise

be par t of some other multiple-gate package. For instance, suppose a design contains four NAND

gates. They m a y all be implemented either with a single 7400 or an equivalent par t . If, however,

the ASIC were used to implement three of the NAND gates, a 7400 would still be needed for the

remaining NAND gate and no improvement in board area would be seen.

Closer examination of the results reveals tha t par t s which represent a high board area to I / O

count rat io (the amount of board area needed to implement the function with discrete par ts versus

the number of addit ional ASIC I /Os needed to implement the function with the ASIC) are likely

V RESULTS

ASIC pins

re 6: Board area obtained versus ASIC pins used with ASIC area fixed a t 8000 gates.

13

14 VI CONCLUSIONS

to be implemented with the ASIC even when the availability of ASIC I / O s is limited. Individual

logic gates axe examples of functions which exhibit a high board area to I / O count ratio especially

when they share I / O s with other functions implemented by the ASIC. Only when ASIC I /Os are

abundant are par t s which represent a relatively low board area to I / O count ratio implemented with

the ASIC. This phenomenon is apparent in the graph shown in Figure 6. The difference in board

area between using 100 and 150 ASIC I /Os is approximately 5.5 i n 3 while the difference between

using 200 and 250 ASIC I /Os is only about 2 .0 in 3 . A similar observation could be made about the

graph shown in Figure 7.

VI Conclusions

The design tool described in this paper a formalizes the decision between s tandard and custom

ICs. Functional parameters allow a system-level synthesis tool to communicate knowledge about

a component 's use to a component-level synthesis tool. Furthermore, part ial evaluation allows a

component-level behavioral synthesis tool to use t ha t knowledge to produce more efficient designs.

By combining the functionality of complex s tandard ICs and with t h a t of low-level SSI and MSI

ICs, the new design tool is able to specify an ASIC which subsumes the function of many s tandard

ICs.

This work offers some oppor tuni ty for improvement and extension. Considering the use of multi­

ple ASIC's, for instance, would allow more of the system's functionality to be integrated into custom

ICs. However, it would require the ability to effectively part i t ion the functionality.

Par t ia l evaluation in high-level synthesis provides a way to specialize hardware in much the same

way it does certain types of computer programs. This capability could allow digital designers (be

they human or automat ic) to tailor a fairly general hardware description to many situations. The

result could be less t ime spent developing hardware descriptions and the ability to use high-level

abstractions in hardware descriptions without compromising efficiency.

The ideas presented in this paper might also be extended to address the issue of hardware versus

software implementat ions. If the specifications for a system include software, we could consider

designing special purpose hardware to replace the software and the processor on which it runs. The

choice between the software implementat ion and the special purpose hardware could then be made

in a manner similar to t h a t used for s tandard versus custom ICs.

REFERENCES 15

References
[1] D . E . T h o m a s , E. D . Lagnese, R. A. Walker, J . A. Nestor, J . V. Rajan, and R. L. Blackburn,

Algorithmic and Register-Transfer Level Synthesis: The System Architect's Workbench. The

Kluwer Internat ional Series In Engineering and Computer Science. Kluwer Academic Publishers,

1990.

[2] W . P . Birmingham, A. P . Gup ta , and D. P . Siewiorek, "The MICON System for Computer

Design," in Proceedings of the 26th Design Automation Conference, IEEE Computer Society

and ACM-SIGA, 1989.

[3] A. P. G u p t a and D . P . Siewiorek, " M l : A Small Computer System Synthesis Tool," in 6th

IEEE Conference on AI Applications Proceedings, 1990.

[4] J . A. Nestor, Specification and Synthesis of Digital Systems with Interfaces. P h D thesis,

Carnegie-Mellon University, April 1987.

[5] E. D. Lagnese, "Architectural Part i t ioning for System Level Synthesis of Integrated Circuits,"

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 10, pp .

847-860, July 1991.

[6] R. G u p t a and G. De Micheli, "Part i t ioning of Functional Models of Synchronous Digital Sys­

tems," in Digest of Technical Papers: IEEE International Conference on Computer-Aided De­

sign, (San ta Clara) , November 1990, pp . 216-9 .

[7] D. Bjorner, A. P . Ershov, and N. D. Jones, eds., Partial Evaluation and Mixed Computation.

North-Holland, 1988.

[8] A. A. Berlin, "A Compilation Strategy for Numerical Programs Based on Par t ia l Evaluation,"

Master 's thesis, M.I .T. , 1989.

[9] A. A. Berlin and D . Weiss, "Compiling Scientific Code Using Par t ia l Evaluation," Computer,

p p . 25-37, December 1990.

[10] A. P . G u p t a , "Private Communicat ion," 1991.

