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Abstract

It has been observed that a careful selection of training examples improves the performance of
supervised concept learning systems. This observation is important when examples are not available
and are expensive to generate, or when using incremental learning systems. These two reasons are
manifested in the context of BRIDGER, a system that learns to design cable-stayed bridges. This paper
describes example selection techniques for the concept formation system ECOBWEB—the system
that is used to acquire the synthesis knowledge in BRIDGER. The approach was implemented and
tested. Preliminary results show that small improvements in syi uesis performance can be obtained
by using the new technique.

1 Introduction

Machine learning techniques are emerging as important tools for. extracting knowledge from either

existing designs or simulation of behavior of designs (Arciszewski, 1991; Buchanan et al., 1988; Lu

and Chen, 1987; Reich, 1991). The availability of good sources of examples is crucial for obtaining

a satisfactory performance of machine learning techniques. In many domains examples do not exist,

but can be generated by running time-consuming simulation programs or by designing examples. This

is the case for BRIDGER, a system that learns to design cable-stayed bridges. There are relatively few

examples of cable-stayed bridges available and the generation of new examples is time consuming; it

involves the selection of *good' specification and the synthesis, analysis and redesign of solutions to

the selected specification. It is therefore important to devise a method that will allow the generation of

the most useful examples, such that the improvement in knowledge due to learning is maximized at the

expense of little resources spent for training.

The problem of selecting good examples is especially dominant when using an incremental learning

system. In this case, even if all the examples are available, it is useful to impose a good ordering on

the training examples. While using COBWEB (Fisher, 1987) in several design domains (Reich, 1991)
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it has been observed that the order of training examples used to generate synthesis knowledge had a
substantial effect on the synthesis ability. Deviations of 90% in synthesis performance were observed in
statistical experiments with random orderings of training examples drawn from various domains. It may
seem that if one orders examples to improve performance by analyzing all the examples, one defeats the
advantage of the incremental nature. However, if all the data is available, there is no reason not to take
a full advantage of it.

In the development of COBWEB, the order effect on learning performance was partially addressed by
the incorporation of two learning operators, split and merge, that simulate backtracking. These operators
can perform relatively major modifications to the knowledge generated previously and therefore allow
COBWEB to partially overcome from bad orderings of examples. Statistics of operator applications
show that these two operators are usually used 10-15% out of the total number of operator applications.
Therefore, the operators seem to reduce order effects, but according to the variations in synthesis
performance described before, do not eliminate them.

Two important questions arise in relation to the order effect. The first question is whether order
effects should be completely eliminated, loosing the ability to detect knowledge change? The answer is
negative. Since design domains evolve, the detection of changes in knowledge is valuable. The second
question is how can we avoid bad orderings of examples and exploit the incremental nature of concept
learning systems to enhance their behavior? This may be achieved by a method that actively selects or
orders examples. In the machine learning terminology, an acti\ e selection of examples is also called
experimentation. The second question is the focus of this study.

Machine learning research provides some insight into the effects of order of training examples on
learning. Amsterdam, 1988 has shown that in a simple case of concept learning, adaptive example
selection is more powerful than receiving a stream of examples from a teacher1. This suggests that
there is merit to example selection as a solution to the second q lestion. Furthermore, concept learning
systems have benefited from experimentations for some time (Mitchell et al., 1983; Gross, 1988). In
addition, it has been observed that complex procedures can be learned by using a good sequencing of
lessons (VanLehn, 1987).

More broadly, the performance of a learning system depends on its knowledge (learning operators
and background information), bias2 (concept description language) and its input.3 A change in any of
these aspects modifies the system performance. In cases of weak bias and knowledge, proper sequencing
of examples can not only increase efficiency, but can also determine leamability.

This paper explores the way by which examples can be ordered or actively generated/selected
to enhance the performance of ECOBWEB — a concept formation system for synthesis knowledge

1A slightly contradicting result on the type of example selection needed is reported by Ruff and Dietterich, 1988, who have
shown that for a simple domain, the utility of simple selection scheme is higher than that of random observations and matches
that of a careful example selection.

2The distinction between knowledge and bias can often be eliminated (Russell and Grosof, 1987).
3This roughly corresponds to (VanLehn, 1987) categories of inductive learners: the partially blind, the strongly prejudiced

and the felicitiosly taught.
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acquisition that extends the original COBWEB along several dimensions. We describe several heuristic
approaches for example selection and contrast their behavior with previous experiments in the domain of
Pittsburgh bridges (Reich and Fenves, 1991). We also test the approaches on several artificial domains.
The comparison shows that ECOBWEB slightly improves its performance when it uses the new ordering
methods.

The remainder of the paper is organized as follows. Section 2 briefly reviews BRIDGER, it focuses

on the aspect of synthesis knowledge acquisition which is performed by ECOBWEB. Section 3 discusses

the issue of order effect and some potential remedies for reducing it. Section 4 describes the method

ECOBWEB uses for example selection. Section 5 provides two examples of using the new ordering

schemes. Sections 6 and 7 describe possible extensions and conclude the study.

2 A brief overview of BRIDGER and ECOBWEB

BRIDGER is a system that assists in the preliminary design of cable-stayed bridges. Its architecture is

based on a sequential view of design composed of problem analysis, synthesis, design analysis, redesign,

and evaluation (Reich, 1990). The system is intended to provide computational support for all except

the first task.
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Figure 1: An overview of BRIDGER's architecture

BRIDGER contains two main subsystems: synthesis and redesign. The synthesis system is responsible

for synthesizing several candidates from a given specification. It also augments its knowledge by

successful design examples that are selected by the user. Candidate designs are submitted to the redesign
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system for analysis and redesign. These processes iterates until acceptable designs are generated. The
user can evaluate the solutions and select a subset for further training the synthesis system.

The synthesis system employs concept formation to incrementally create a hierarchical classification
knowledge structure from the examples. Concept formation ability is believed to be fundamental to
design (Reich and Fenves, 1991). The more examples BRIDGER incorporates, the better the quality of
the knowledge generated. The classification hierarchy generated is used in synthesis of new designs.
BRIDGER'S synthesis uses an enhanced version of COBWEB (Fisher, 1987), called ECOBWEB, that allows
the use of continuous, ordinal, or nominal property types in bridge descriptions; and that can forget
examples and correct the hierarchical knowledge organization based on some evaluation criteria (Reich
and Fenves, 1991; Reich, 1991).

ECOBWEB (as well as COBWEB) builds the classification hierarchy in the following way. When a new
design is introduced, ECOBWEB tries to accommodate it into the existing hierarchy starting from its top
class. ECOBWEB can perform one of the following operators:

(1) expanding the root, if it does not have any sub-classes, by creating a new class and attaching
the root and the new design as its sub-classes;

(2) adding the new design as a new sub-class of the root;
(3) adding the new design to one of the sub-classes of the root;
(4) merging the two best sub-classes and putting the new design into the merged sub-class; or
(5) splitting the best sub-class and considering again all the alternatives.

If the design has been accommodated into an existing sub-class, the process recurses with this class
as the top of a new hierarchy. ECOBWEB uses an evaluation function, called category utility (CU), to
determine the next operator to apply. The operator that its execution maximizes the utility function is
selected. Category utility is calculated as follows:

CU = £*=iP{Ck) £' ^iP{Ai = Vi^Ck)2 ~ & Z j W i = VH)2
 ( 1 )

n
where: C* is a class, At = V,y is a property-value pair, P(x) is the probability of x, and n is the number of
classes, The first term in the numerator measures the expected number of property-value pairs that can
be guessed correctly by using the classification. The second term measures the same quantity without
using the classes. Thus, the category utility measures the increase of property-value pairs that can be
guessed above the guess based on frequency alone. The measurement is normalized with respect to the
number of classes.

ECOBWEB synthesizes using a mechanism similar to the one used for augmenting the hierarchy by
new designs, but allowing only operator (3) to apply. The synthesis mechanism also extends the original
prediction methods of COBWEB (Reich, 1991).
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3 Order effects and their elimination

Experimental studies in concept learning have used various example selection schemes to enhance their
learning performance. Most of the strategies are based on focusing on the part of the example-space
that is uncertain with respect to the concepts being learned (Mitchell et al., 1983; Gross, 1988). These
•methods rely completely on the labeling (e.g., positive or negative instances of the concept) of examples
to determine the best area in the example-space to explore next. However, in concept formation, which
is unsupervised, there are no a priori concept classes that serve as boundaries for focusing. Furthermore,
concept classes are dynamically formed, modified and even discarded. Therefore, the focusing technique
is inappropriate for our problem.

Ignoring the details of the * focusing' methods, they all use a metric that evaluates the current status
of knowledge for determining the next step. If such a metric existed for a concept formation system, it
could have been used as the basis for example selection.

Another approach for using a simple form of example selection is exemplified by ISG (Wisniewski

et al., 1987). ISG creates a hierarchy of equivalence classes of situations (i.e., examples) that is used to

generate diagnostic rules. ISG uses the ordering of properties and a perfect domain theory in the form

of linear linkage rules (inverse of diagnostic rules) to generate one equivalence class at a time. ISG

selects its own examples such that they do not belong to any of the existing equivalence classes. This

approach will not work in general, and in particular not in the target domains of BRIDGER where such

linkage rules do not exist.

4 ECOBWEB ordering scheme

Since the category utility function (CU) serves as a measure of the increase of property-value pairs

that can be predicted using the classification, it can serve as a metric for evaluating the quality of

the knowledge structure. As discussed previously, such a measure can be used for guiding ECOBWEB

through a search in the space of possible knowledge structures by trying to maximize CU while learning

additional examples. In general, this search yields a combinatorial explosion since the next training

example can be constructed from any combination of property-value pairs. Therefore, such an approach

requires heuristics for its practical application.

One such heuristic suggests that only small increments in knowledge are allowed. Small increments
arise if the experiments generate examples that are relatively similar to previous examples. In ECOBWEB

this is easily done by selecting examples that only vary slightly from the most frequent property-value
pairs in the domain. In ECOBWEB these values are readily available at the root of the classification
hierarchy. The collection of the most frequent property-value pairs is called the frequent example (FE).

There are several ways to design an example selection/generation technique for ECOBWEB. These

ways differ in the amount of information they use. Three classes of techniques are discussed below.

Program independent/slight example-set dependent strategy (PISED).
This technique does not rely on any feature of ECOBWEB; therefore, it is independent of the program
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that is learning from the data. It only makes a small use of the examples that have already been learned.
The only information that is used is the one summarized in FE. Two variants on the approach exist.

• Most-frequent technique. This approach is only applicable for an ordering scheme, not for example

creation. In this approach, the next example that is selected from the training set is the one that is

most similar to FE. If this approach would be used for example creation, all the examples would

be the same.

• Most-distant technique. This approach applies to both ordering end experimentation. In the

ordering scheme, an example that is most distant from FE is selected from the training set. In

the experimentation an example that is most distant from FE is generated from the domain. This

approach relies on a heuristic opposite to the one described before; its application results in

exploring aspects of the domain that were not covered by previous examples.

Program dependent/Average example-set dependent strategy (PDAED).
This technique makes use of the program mechanisms and significant aspects of the data for select-
ing/creating the next example. In the context of ECOBWEB, the techniques makes use of CU as an
evaluation function for classifications. It attempts to find an example that when learned, will maximize
the CU value of the top classification. The dependency on the example set is determined by the use of
the top level of ECOBWEB'S hierarchy to make the decision. This level summarizes a rough classification
of the example set. There are several ways to maximize CU\ for example by the use of gradient methods.

• Univariate. In this approach, FE is calculated first. Then, for each of the properties/?, np examples

are generated where np is the number of possible values that property/? has. Each of the examples

is generated by replacing the value of p in FE by the riff possible value. The category utility

function of the top classification is calculated as if this example was a training example. This

process is done for all the properties.

At the end, the example that yielded the highest CU score is selected as the preferable new

example. This constitutes a simple hill-climb control. In an example selection problem, the actual

new training example is an existing example that is closest to the preferable example and in an

example generation problem, the new training example is the preferable example.

This calculation requires knowledge about the possible values of the nominal properties. The

more values the program is familiar with, the richer the possible set of calculation performed.

• Steepest. This approach follows the univariate approach except that the preferable example is an

example that each of its property-value pairs is replaced by the property-value pair that resulted

in the highest CU score. Although the new example is completely different than FE, the approach

still uses FE to calculate the CU values from which the new example is calculated. Therefore it

also subscribes to the first heuristic discussed before.

This approach is very simple and general. It uses a very simple metric - CU - that only evaluates the

clustering quality of the top level of the hierarchy. It follows a very simple heuristic for restricting the
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search for the new example, i.e., calculating the gradient about the frequent example (FE). As a result,
the complexity of the process is O(m2 n2), where m is the number of properties describing examples and
n is the maximum number of values for a nominal property.

Major Program dependent/Major example-set dependent strategy (PDMED).

This technique uses the complete structure of the knowledge that ECOBWEB generates. It requires an
evaluation function that is based on the complete hierarchy. For example, knowledge (or hierarchy)
utility is a measure that is derived by applying CU recursively starting from the root of the hierarchy
(Reich, 1991):

knowledge - utility (class) (2)

if class is a leaf class

return 0.0

else

return CUxn+ ]P P(Ck) x knowledge-utility (son).
kGsonsof class

After the calculation, the value is normalized by the number of properties describing artifacts.

5 Test cases

Two experiments were performed to assess the potential of the iew experimentation techniques. The

first experiment tests the technique on a set of artificial domains and the second on the domain of

Pittsburgh bridges. Artificial domains can help calibrate a learning method against known data, and real

domains test a technique on data that is imperfect and noisy; both experiments are beneficial. In addition,

the artificial domains test the experimentation aspect because examples that do not exist a priori are

generated; whereas the real domain tests the ordering aspect of the technique because the technique

is used to select examples from a pre-existing example set. In both experiments, the performance of

ECOBWEB with with either the most-distant or the steepest gradient techniques was compared to the

performance with random ordering of examples.

5.1 Artificial domains

The description of the three domains is given in Figure 2. They are represented as finite-state machines

that can generate strings. These domains are similar to the domains appearing in (Fisher, 1987). Tests

were performed with these and other artificial domains. In the tests, random example selection was

compared to the most-distant and the steepest-gradient selection techniques. Since it is a selection task,

the actual new training example is generated from the class that best matches the example selected by

the strategy.

The metric for evaluating the experimentation scheme is the values of CU obtained in the learn-

ing process, the number of split and merge operators performed during training, and the prediction
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2 Domain 1: Optimal partition = 0.888

Domain 2: Optimal partition = 0.750

Domain 3: Optimal partition = 0.50

Figure 2: Artificial domains

performance on unseen examples.

The results of the experiments can be summarized as follows. The category utility (CU) of the top

level classification was always higher than the CU of the opti nal partition of the domains given in

Figure 2. In average, the following observation has been made: CU distant > CU random > CU steepest- The

differences in the CU values were small.

The number of split and merge operator applications (OA) ws reduced by using either of the active

selection techniques. In average, the following observation has been made: 0ATandom > OAsteepest >

CU distant* The differences in the OA values were small.

Finally, the performance of the classification of examples was increased using either of the active

selection techniques. The increased performance ranged from 0.1% in the simpler domain (Domain 1)

to 3% in domain 2. The most-distant and the steepest-gradient selection resulted in similar results.

5.2 The domains of Pittsburgh bridges

The second experiment was conducted on the domain of Pittsburgh bridges. A detailed description of

this domain appears in (Reich, 1991)4. We will only note that each of the 108 examples is described by

a set of 7 specification properties and 5 design-description properties. Some of the examples are only

4The complete data with the documentation was donated to the repository of machine learning databases at the University
of California, Irvine. This database and others can be accessed by ftp to ics.uci.edu, using anonymous as usemame and
password. The files are in the /pub/machine-learning-databases directory.
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partially specified.

The testing procedure for this domain was as follows. A seed example initializes the process. A new
example is calculated by the experimentation algorithm using only the specification properties. The
actual example learned is selected as the best match from the data set; if more than one match exists, one
is selected randomly). This example is discarded from future considerations. The experiment terminates
when the data set is exhausted.

If the experiment would generate a learning curve where some of the examples are used for training

and the remaining for testing the following behavior is expected. Initially, learning performance should

improve compared to performance without experimentation. Later, performance should improve but

gradually deteriorate since matching between the proposed example and the available examples will be

worse as more examples are used and discarded, and since the examples remained as test cases are not

typical of those learned; otherwise, they would have been chosen as training examples. To avoid this

behavior we used the nxV-CV test5 which was modified such that the hierarchy was created using the

selection strategy.

The results of these experiments confirm the observations made in the tests of the artificial domains.
The results, however, were not statistically significant.

5.3 Discussion

The problem of alleviating order effects on incremental learning is hard. The experiments performed

show that small improvements of performance are obtained by usi ag various experimentation techniques.

The small increase in performance suggest that These techniques, however, do not provide the optimal

solution to the experimentation problem.

In many of the runs on the artificial domains, ECOBWEB has gz lerated approximate concepts at the first

level. These approximations can easily be corrected by the hierarchy-correction scheme implemented in

ECOBWEB (Reich and Fenves, 1991; Reich, 1991). In this process, examples that violate certain criteria

(for example, their description contradicts characteristic values of parent nodes) are erased from the

tree and re-learned. In most cases, this will place the examples in a more appropriate classes than their

current location.

The behavior of ECOBWEB in these experiments can possibly be an artifact of the specific domains

tested. For example, the artificial domains are too amenable to the random selection scheme of examples.

In addition, the experimentation scheme tries to maximize the information extracted from the examples.

In the beginning of the process, even irrelevant properties have some information that causes them to

participate in the calculation of ClTs gradient. The use of large databases and more complex artificial

domains can give better estimate to the ability of the approach.

The experiments and their results also point to the shallow understanding of the relations between

5Scc (Reich, 1991), Appendix D for a detailed description of this and other statistical test procedures for evaluating learning

systems.
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ECOBWEB's (as well as COBWEB'S) mechanisms and its subsequent behavior. There has not been any
extensive study that tried to uncover the contribution of each of the system parts to the final system's
performance.

6 Extensions and additional testings

One immediate extension is handling continuous properties in experimentation. This can be done by

using our approach and calculating the gradient of CU by using two values: current- value ± d, where

d is a pre-specified increment. Alternatively d can be dynamically calculated, for example from the

standard deviation of the values of the continuous property.

Other extensions involve the understanding of the influence of different evaluations of the clustering

on the ability to exploit experimentation. We hypothesize that a good evaluation maximizes such ability.

An interesting evaluation method is the information measure of the classification (Boulton and Wallace,

1973) which can be used as an objective function to be maximized. In this view, additional examples

lead to a more concise description of the domain. Since we are ultimately interested in the performance

of the system after learning, a measure that correlates with performance will yield the best results.

Finally, using domain knowledge in the experimentation, as described in the previous section, and

also as described by Kulkarni and Simon, 1988, can provide a much richer path for further extensions.

In particular, knowledge can take into account the cost of experiments; it can analyze the benefits of

experiments and suggest them dynamically; and it can integrate several experimentation scheme.6

7 Summary

We first elaborated on the problem of order effect in incremental leaming systems and provided several

possible solutions. We have described a general experimentation scheme for concept formation tasks.

Although the task is more complex than concept learning, the method is very simple. It only requires

a metric for evaluating the quality of the knowledge structure before selecting the next example. The

method was tested in several experiments that produced partially satisfactory results. Further extensions

were suggested to improve the capabilities of method proposed.

We did not prove that the approach described is a good one; however the experiments conducted

point to some important phenomena in the behavior of ECOBWEB (as well as of COBWEB) as a concept

formation system and provides a path to explore experimentation methods for this task.
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