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Abstract: ThispaperisPart Il of astudy advocating the use of the scientific method for con-
ducting design research. Part | critically reviewed General Design Theory (GDT)—aformal

theory of desi gn—énd discussed its influence on the construction of design support systems.
This part presents an experimental system built based on the guidelinesset by GDT. It evalu-
ates the experimental system and compares the theory and the experimental approaches. The
comparison generates recommendations for enhancements of the experimental system and
refinements to the theory. These recommendations complete a single, successful scientific
cycle of this research. The recommendations that are grounded in testings show the benefits
from subscribing to the scientific method of conducting design research.

1 Introduction

This study advocates to, and demonstrates, the use of a scientific method in design research, illustrated
|n Figure 1. This method consists of an essential recurring process of hypothwes generation, experiment
design and execution, results evaluation, and hypotheses refinement. The first part of the study (Reicji,

1991c¢) discussed three methods for conducting research: the theoretical, empirical, and scientific. These
methods were briefly reviewed in the context of design research. To prepare the argument that the
scientific (i.e., theory plus empirical) method is best, the first part of the study concentrated on one
theoretical approach to design, called General Design Theory (GDT) (Y oshikawa, 1981; Tomiyama and
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Y oshikawa, 1986). It critically reviewed it and discussed itsimplicationsto building design systems.

(4) Evaluate (1) Generatemodify
experiments hypotheses
The scientific
methodology
practice
(3) Parform (2) Design
experiments experiments

Figure 1. The scientific method cycle

SinceGDT isamathematical theory, it can beevaluated based on " aesthetic” or parsimony principles:
if two theories prove the same theorems, the one that makes less assumptions is better. The review of
GDT, which discussed potential revisionsto the assumptions, can be viewed as a " thought™ experiment
that suggested revisions to the theory. Therefore, the scientific method was exercised already. This
exer cise, however, isnot sufficient. GDT needsto betested in actual experiments. Thispart of the study
completes theArgument favoring the scientific method by discussing such an experiment, its evaluation
and implications. The next two paragraphs briefly preview the observations of the sudy.

GDT suggested guideines for building design systems. The experimental design system discussed
in this sudy, BRIDGER, incorporates some of these guidelines, but also relies on the task analysis of
the application domain. Overall, BRIDGER makes considerably weaker assumptions about the nature
of design knowledge than GDT makes. BRIDGER was implemented and evaluated successfully (Reich,
1991b). It has shown that a competent design behavior can be obtained with assumptionsless restrictive
than GDT's. Therefore, the results challenge GDT's scope.  Although the performance was good, it
was not, and never will be, perfect. Thisis different from the perfect performance predicted by GDT's
theorems. Could this be the result of the large discrepancy between the knowledge sructures of GDT
and BRIDGER? These two observations suggest two lines of future research. First, some of GDT's
assumptions can be relaxed to result in a better theory. Alternatively, a new theory that can explain

the results obtained by BRIDGER needs to be formulated. Second, the provision of a more eaborate -
knowledge sructure may give BRIDGER the opportunity to achieve better design performance.

These two lines of research demondrate the usefulness of subscribing to the scientific method.
Instead of creating ad hoc design theories and experimental systems, the interleaved theoretical and

experimental investigation focuses research on the crucial aspects of the inquiry. Observing current
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trendsin design research, thisconclusion advocates for balancing the effort expended in design research
towar ds additional studies on theory as opposed to experimental research; both theory and experimental
studies are necessary ingredientsof progress in this fidd.

Plan of the paper. The remainder of thispaper is organized as follows. Section 2 reviews ECOBWEB,
an experimental system for learning synthesis knowledge. Section 3 describes BRIDGER, a system
that employs ECOBWEB and other procedures for learning to design cable-stayed bridges. Section 4
discusses the reationships between GDT (state of ideal knowledge) and ECOBWEB, and GDT (date of
real knowledge) and BRIDGER. Section 5 summarizes the implications of this study.

2 ECOBWEB

ECOBWEB is a system that learns and uses knowledge for synthesis. It isthe core part of BRIDGER, the
system that will be discussed later. ECOBWEB is an extension of the concept formation learning program
coBWEB (Fisher, 1987) to synthesistasks. Therefore, many properties of ECOBWEB discussed here are
inherited from its predecessor. Since the purpose of this paper is not the evaluation of ECOBWEB, we
do not emphééize the digtinctions between the two learning systems. Such evaluations are described
dsewhere (Reich, 1991b; Reich and Fenves, 1991a). Rather, this section reviews the assumptions
underlying ECOBWEB and illustrates its operation using the chair domain which was described in Part |
of the study.

2.1 Assumptions

ECOBWEB makes the following assumptions about design that are believed to be appropriate for the
preiminary design of a large class of design problems.

ASSUMPTION 1 (Artifact representation): Artifactsand their specifications arc described by (finite)

lists of property-value pairs.

This assumption restrictsthe scope of designs to those with fixed topologies. Therefore, the design
of artifacts that are described via graphs, such as layouts, cannot be supported under this assumption. If
theredriction on the finite number of propertiesis removed, ther epresentation becomes general, but of

cour se, impossibleto implement computationally.




ASSUMPTION 2 (Structur eof design knowledge): Designknowledgeisrepresentedin ahierarchical
classification tree.

This assumption does not impose any restrictions on the potential application. The crucial issue is
how the knowledge structure is being used.

ASSUMPTION 3 (Quality of design knowledge): The quality of design knowledge is recursively
determined by a syntactic function called category utility.

To elaborate the assumption, ECOBWEB evaluates a classification of a set of designs into mutually-
exclusiveclassesC\,C2,..., C, by astatistical function called category utility (CU):

rer E**i*‘>(£*) Ei ZjPJA] = Vjj\C\)? -ZiZjPjAj = Vf
CuU = n D

where Ck isaclass, A; = V,j is aproperty-value pair, P(X) is the probahility of x, and n isthe number of
classes. Thefirst term in the numerator measures the expected number of property-value pairs that can
be guessed correctly by using the classification. The second term measures the same quantity without
using the classes. Thus, the category utility measures the expected increase of property-value pairs that
can be guessed above the guess based on frequency alone. The measurement is nonnalized with respect
to thé number,of classes. The higher isthe value of CU, the better the quality of the knowledgeis.

The knowledge quality assumption approximates the more desired quality measure stating that a
classification is 'good* if the description of a design can be guessed with high accuracy, given that it
belongs to a specific class, or even the better measure, that aclassification is 'good' if it resultsin good
design performance. Although the quality assumption compromises quality, it supports the use of an
efficient algorithm for building the knowledge®.

ASUMPTION 4 (Design process): Design is adirect mapping from the specification to the artifact
_ description.

Defining design as a mapping is very general unless the nature of the mapping is restricted to be
direct as it is in the above assumption. This assumption aimost excludes the use of explicit knowledge
in design. On the‘other hand, information can be compiled into implicit knowledge embedded in the

mapping.

ASSUMPTION 5 (Natur e of design knowledge):. The structure of design knowledgeis static. It can

only be altered incrementally if new design knowledge warrants it.

'In this paper, we are using the terms design knowledge and its quality rather loosely; elsewhere, we try to address these
issues in more detail while pointing at some of the difficultiesin being precise about them (Reich, 1991d).
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Thisassumption Satesthat knowledgeisbelieved to becorrect, unlessadditional information becomes
available. The nature of the additional information is resricted to the description of new designs and
to procedures that evaluate the knowledge quality. Another consequence of this assumptions is that
knowledgeis built incrementally and continuoudy since it will always be incomplete.

Assumption 5 determines that a system that supports design must be able to learn and modify its
content incrementally. Assumption 2 establish the structure of the knowledgethat needs to be gener ated
and Assumption 3 determines how this knowledge should be evaluated. Assumption 1 redricts the
scope of artifact discussed, thereby allowing available lear ning techniques to be used for the knowledge
generation. Of course, all these assumptionslead to the selection of COBWEB (Fisher, 1987) asa potential
tool. Since COBWEB has several limitationsin the context of design (Reich, 1991b; Reich and Fenves,
1991a), a new system was developed, called ECOBWEB, that will be ableto support all the assumptions

in design domains.

The next two subsections describe the realization of these assumptions in ECOBWEB learning and

synthesis processes.

2.2 EcoBWEB's learningalgorithm

ECOBWEB learns from a sequence of design examples. Examples need not be classified as feasible,
optimal, or by any other classification scheme. However, any a priori classfication can be assigned
to an example and treated as any other property. When a new design is introduced, ECOBWEB tries to
accommodate it into the existing classification hierarchy sarting at the root. The system performs one

of the following operators (see (Fisher, 1987) for a detailed description of these operators):

(1) expandingtheroat, if it does not have any sub-classes, by creating a new class and attaching
theroot and the new design asits sub-classes;

(2) adding the new design as a new sub-class of the root;

(3) addingthe new design to one of the sub-classes of the roat;

(4) mergingthetwo best sub-classes and putting the new design into the merged sub-class; or

(5) splittingthe best sub-class and again considering all the alter natives.

If the design has been assmilated into an existing sub-class, the process recurses with this class as the
top of a new hierarchy. ECOBWEB uses the category utility function (CU) to evaluate the results of the
operator applications and selects the operator that resultsin the highest CU score.

Figure 2 shows the hierarchy generated from the eight chairs (see Part | of the sudy (Reich, 1991c)
for adetail description) by ECOBWEB. The classes are described with all their properties. The properties
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Figure2: A classification hierarchy of the chair domain generated by ECOBWEB. The property names are

obvious abbreviations of those appearing in Tables 1 and 2 of Part | of the study.




that are shown in bold font are the characteristic properties. Intuitively, characteristic property values of
aclass are those property valuesthat are very common in the class and rarely appear in the other classes
of the same level. Translating this intuition into probability terminology, characteristics are property
values that satisfy P(Ai = V(]C*) > threshold and P(Ck\Ai = Vij) > threshold, where threshold is a
pre-detennined fixed value that potentially, can be learned for each domain. The figure also shows the
name of each class and the value of P(Ai = Vy|C*), denoted by P, for each property value of an abstract

concept.

23 ECOBWEB'S synthess process

ECOBWEB has several synthesis methods which can be described along two dimensions: the refinement
dimension which can be extensional or intentional; and the generation dimension which can be case-
based or prototype-based. Figure 3 illustratesthese dimensions. Inthe extensional approach, refinement
classifies a new specification with a new subclass starting from the top class (class 1 in Figure 3) until
the process terminates at class 3. In the intentional approach, while classifying the new specification,
characteristic property-values of the classes traversed (classes 1, 2, and 3 in Figure 3) are assigned to
the new design. In the generation stage, the case-based approach views a class as representing the
extension of aii itsleaves. Therefore, leaves4, 5, and 6 are selected as candidates in conjunction with the
extensional refinement approach, or are used to complete the missing properties in conjunction with the
intentional refinement approach. The prototype-based generation approach takes the current class (class
3 in the example) and uses its property-value pairs to create candidate designs in conjunction with the
extensional refinement approach, or to complete severa descriptionsin conjunction with the intentional

refinement approach.

Three design scenarios from the chair domain illustratethe synthesistechniques. Thedesign scenarios

assume that the current state of knowledge is as appears in Figure 2.

EXAMALE 1. Thefirst design scenario deals with designing a chair that is movable, contemporary
and stably support back (Reich, 1991c; Example of Definition 7). Even though, the set of examples
that satisfy this specification is empty, ECOBWEB till proceedsto synthesize acandidate. Inthe case-
based/extensional method, ECOBWEB starts by selecting GS for further refinement. It is interesting ‘
to note that the sel ection between classes G5 and G3 is almost arbitrary since both are almost equally
good for the first refinement step. The final candidate is a random choice between chairs F and G,
which both satisfy two of the three specification properties. In the case-based!intentional method,
the characteristic property values of G2 is used to refinethe specification (revolve, seat, support back)
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Figure 3: Synthesis methods

and the design (light-weight, not hanging, no stopper). Again, G5 is selected for further refining
the design and the final result is the addition of the properties of F to the current partial design
description. Thetwo prototype approachesyield the same behavior sincethe process does not end at
an intermediate class; thereforethereisno "true' prototypethat can generate several alternatives.

EXAMALE 2.  The second design scenario dealswith designing a chair that revolves and ismovable
(Reich, 1991c; Example of Theorem 2). In the case-based/extensional method, ECOBWEB stops
at class G2 since both the specification properties are matches by characterigtic values. Therefore,
all the eight chairs are candidate designs. In the case-based/intentional method, the characteristic
property values of G2 are used to refine the specification (ordinary, seat, support back) and the design
(has seat, light-weight, not hanging, no stopper). The eight chairs that arc again candidates arc only
used to complete the partial description accumulated thus far from the characteristic values. In the
prototype! extensional method, ECOBWEB generates 14 candidates from the various combinations of
property values represented in class G2. The prototype/intentional approach yields 14 candidates
from variations on property valuesthat are not characteristics. As a reference, for the same problem
GDT outputs {D,E,F,G} as the set of candidate designs.
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EXAMALE 3. Thethird problem istodesign acontemporary chair. Thefirg refinement step chooses
classG3. In the case-based/extensionalmethod, ECOBWEB selectschairsfl, C, D ascandidates. This
isalsothesolutionthat GDT produces. In the case-based/intentionalmethod, ECOBWEB generates 6
candidates from class G3. Asin example 1, Thetwo prototype approachesyield the same behavior
sincethe processdoesnot end at an intermediateclass.

There aretwo observations from the three examples and other examples not decribed here. Fird,
ECOBWEB is always less conservative than GDT. It generates more alter natives that not always satisfy
all the requirements and it gener ates alter nativesthat did not existin theoriginal set of potential designs.
Second, in deep hierarchies generated by many examples, it is observed that the path traversed by the
guidanceof the category utility function can beinterpreted as a progr essvematching of the specifications
or even asadesign derivation®. Thisbehavior isdesirable, even though the coher ence of theknowledge

sructure generated is not conceptualized as a criterion for the success of the lear ning approach.

2.4 Performance

ECOBWEB wastested in many domains (Reich, 1991b) and demonstrated performance comparable and
often better than other learning programsin classification domains. But moreimportant, it demongrated
good performance in design domains (Reich, 1991b). To illugtrate the performance, we review some
results of ECOBWEB's evaluation in the domain of cable-stayed bridge design (Reich, 1991b).

Table 1;_Scaling statistics of candidates
Knowledge Scaling

KX 3.07
K> 2.15
K 2.09
K, 132

Table 1 illugtratesthe performance of ECOBWEB by providingthevalues of one performance measure
generated from statistics of 48 test problems. The measure, called Scaling, calculates how close was
the span of the synthesized bridge to the required span. The-measure is provided for four knowledge
hierarchies, K\,Ki,K*, and K4, generated by learning. Hierarchy K\ was generated from the original 96
bridge examples. Hierarchy Ki was generated from the 96 examples after their analysis and redesign;

%t isimportant to acknowledgethat the sequence of design description property-value assignments doesnot approximatein
any way the explicit intent and domain knowledge on the order in which design derivations are to proceed. Such concerns may

be supported when domain knowledgeis incorporated in the learning or synthesis processes.
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192 good quality examples, respectively. Since K\ was built from lower-quality examples it does not
participate in the statistical analyses performed. Two models were hypothesized: (1) scaling linearly
depends on the number of examples in a hierarchy; and (2) The logarithm of scaling depends on
the logarithm of the number of examples. The latter reflect the power low of practice (Newell and
Rosenbloom, 1981).

A General Linear Modd (GLM) procedure with a MANOVA analysis was performed to assess the
differences between the scaling values observed according to the two maodels. In both models, the
scalingvaluessatisfy: K%, K3 >..0i K*\ wherethe >0.0i indicatesthat K, and AT; are greater than K, with
statistical significanceat thep < 0.01 level and that the differ encebetween K, and AT; wasnot statistically
significant. Note that the second modd was better than the firt, although the statistical significance of
thisstatement wasnot assessed. Therefore, themore knowledge ECOBWEB has, themorerelevant are the
retrieved candidates. The improvement isnot a smooth function, but occursin steps. Thisperformance
evaluation showsthat ECOBWEB captures knowledge and gradually usesit more effectively in design.

3 BRIDGER

BRIDGER isasystem that assistsin theprdiminary design of cable-stayed bridges. It containsECOBWEB as
itscorepart but addson additional modulesthat support analysis, redesign and evaluation. Theseadditions
are the reault of initial studies with BRIDGER when it only contained ECOBWEB (Reich, 1990a). These
studiestried to provide a framework in which examples could be assimilated to resultsin knowledgethat
highly approximates the sate of ideal knowledge, namely, design could be obtained with high accuracy
for a given specification. This behavior would require learning many design examples. In reality
however, good design performance is expected after learning a moderate number of examples. In this
case, the hierarchy would be insufficient to perform as accurately as required. Consequently, additional
mechanismsthat conect the synthesized designs, such as analysis, redesign, and evaluation, would have
to beintroduced. This observation confirms the understandingthat GDT-IDEAL has a limited scope and
that a better model of design (i.e, GDT-REAL) must be devised to account for the imperfections of real
design knowledge. ’

The introduction of analysis, redesign, and evaluation as sub-tasks of design redefines the task of
ECOBWEB as being synthesis, rather than design. Therefore, the assumptions stated in Section 2 as
underlying design, nowrelateto synthesis. This section, describesthe assumptionsunderlying BRIDGER

development and reviews its ar chitecture.
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3.1 Assumptions
Since the mgjor component of BRIDGER is ECOBWEB, the following remark holds.
REMARK: BRIDGER inheritsthe assumptionsof ecoewes discussed in Section 2.1

AssuMPTION 6 (Structureof design process): Design isa sequence of fivetasksexecuted sequen-
tially with one feedback loop (Reich, 1990b).

Knowledge used Design tasks Traditional Al tasks
problem statement
common sense roblem )
domain knowledge g gnalysls modeling
intentional
l description

- & Of design!
CERE Ptz

control  knowledge g synthesis

gener ative process

(specifications,

" design-description)
space of candidate
designs X
v .
domain theory e
heuristic knowledge g analy“s classification

g
C_nugmened desigrs X 5>

l (specificationsdesign-descripcion
performance)

causal model g . .
- redesign diagnosis
heuristic knowledge o (interpretation)

L

¥

Qeasib!e solutiom)
'

subjective knowledge I
heuristic knowledge g evaluation classification

@epuble solmi@

Figure4: The dructure of design

Figure 4 illustrates Assumption 6. The design tasks are denoted by rectangles, and ellipses denote
the. information flowing in and out from the tasks. The type of knowledge used in each of the tasks
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is shown on the left of each task; only theitalicized items are addressed by BRIDGER. The traditional
artificial intelligence (Al) task corresponding to each design task is given to theright of each task. This
view is a smplification of real design but is sufficient for the intended domain of preliminary design of
cable-stayed bridges.

3.2 BRIDGER'sarchitecture

BRIDGER's ar chitecture isbased on the design task analysis. Furthermore, BRIDGER's main emphasisis
on mechanismsfor synthesisknowledge acquisition and therefore, the complete ar chitectureisintended
to support thistask. Figure 5 shows an overall view of BRIDGER's ar chitecture which consists of two

main systems. synthesisand redesign.

C Ut J
examples of specifications
designs
: *1.1 existing [ §
Iearnlng knowledge synthesis
synthesis module
knowledge
Synthesis System
candidate designs
Redesign System
learning  |geedd redesign *—4 analysis
afredesign kgl  module p—im modyule
knowledge
user selection

acceptabledesigns ¥

Figure5: Overview of BRIDGER's ar chitecture

The synthesis system isresponsible for synthesizing several candidates from a given specification.
Synthesisknowledgeisgenerated by lear ning from existingdesignsand from successful design examples
that aresdlected by theuser. Thesynthesismodulecontainstwoinstantiationsof ECOBWEB.

The firg ingantiation creates a dassification hierarchy from the ori'ginal bridge examples. This
hierarchy is subsequently used to synthesize bridges as disﬁuwd in Section 2. When dealing with -
specificationsthat arc expressed by real numbers, rarely will asynthesized design match the specification.
Thisproblem can beremedied by performing various scaling operations to fit the synthesized design to
the specification. In onler for performing sensible scaling, relevant scaling values areretrieved from a
second instantiation of ECOBWEB. T his ingantiation builds the classification hierarchy by learning from
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proportions of various components of bridges. The process of retrieving scaling values and using them
to modify the design is called adaptation (see (Reich, 1991a; Reich, 1991b) for additional details). Since
both classification hierarchiesrepresent heurigtic knowledge, candidate designs are usually inadequatein
some aspects even after the adaptation process. Theredesign system resolves this problem.

Candidate designs are tranderred to a module that analyzes them and submits them to a redesign
module, if necessary. The redesign module is responsible for modifying designs after their analysis. On
receiving the analysisresults, thismoduleretrievesthe best design modification for the bridge. The user
can overridethe redesgn modifications and supply explanationsthat enhance redesign knowledge. The
results of the redesign system are acceptable designs. The designer evaluatesthe results and can submit
a subset of them to the synthesis system for further training.

There are many possible interactionsbetween the different modules and within their internal mecha-
nisms. BRIDGER exer cises a smple sequential control srategy. At the beginning of any design session,
BRIDGER loads the knowledge base from permanent storage and waits for an input problem. When a
new specification is obtained, BRIDGER generates a list of candidate designs. Each of the candidates is
submitted to an iterative cycle of analysis and redesign. When this cycle terminates, the human user
evaluatestheresultsand submitsa subset of them to the synthesissystem for further training. At theend
ofthesession,_BRIDGER stores the current knowledge base.

3.3 Peformance

BRIDGER's performance was partially assessed quantitatively. The quantitative evaluation was mainly
concerned with the ability to acquire synthesis knowledge. Thefirst part of the evaluation was demon-
strated by ECOBWEB in Section 2 and isnot discussed further. Theadaptation part wastested by calculating
the Quality of the bridges, where the quality is a weighted summation of the squares of the congraints
that a candidate bridge violates.

Table 2: Quality statigtics of candidates
Knowledge Quality '

Kx 278.36
Ks 50.19
Ks 2,89
Ks 120

Table 2 illustrates the performance of BRIDGER by providing the values of the quality measure
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generated from statistics of 48 test problems. The same models that were used to test scaing in the
previous section were used again: (1) alinear model, and (2) apower law model. According to the first
model, the quality values satisfy: Kz >0.0i Kz,K*\ but according to the second: Kz >0.0i £3 >0.0i £4.
The second model was better but no statistical test was performed to differentiate between thetwo models.
Both reaults saysthat the more knowledge BRIDGER has, the better the quality of candidatesit generates.
The second model describes the behavior more conclusively. This demonstrates the importance of
hypothesizing amodel and testing it even in this problem.

This evaluation shows fast convergence of BRIDGER to good design competence. Future evaluations
may include the assessment of the redesign and the evaluation of the compl ete system.

4 A comparison

The comparison between GDT and BRIDGER is done in two stages. First, both GDT-IDEAL and GDT-
'REAL, denoti ng GDT inthe state of ideal knowledge and in the state of real knowledge, respectively, are
compared with ECOBWEB. Second, GDT-REAL is compared with BRIDGER.

4.1 Comparison between GDT and ECOBWEB

This section establishes acorrespondence between GDT and ECOBWEB. First the assumptionsunderlying
both approaches are compared. Second, the mapping of GDT's concepts into ECOBWEB's knowledge
representation scheme is discussed; and third, the mapping is used to explain the learning processes in
terms of improvement in real knowledge. Figure 6 reflects the mapping between GDT and ECOBWEB as
discussed below.

4.1.1 Assumptions

Artifact representation.

GDT. GDT determines that entities can be described intentionally and abstract concepts extensionally.
Also, when specifying design solutions, the attribute representation is used and with potentially
infinite number of attributes. GDT-REAL relaxes the number of attributes to be finite with the use

of models to describe entities.

ECOBWEB. Assumption 1 states that artifacts are represented by finite listsof property-value pairs. The

representation of artifacts is intentional which is in correspondence with GDT. The finiteness of
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Figure 6: Mapping GDT onto ECOBWEB

the representation is in correspondence with GDT-REAL.
Structure of knowledge and its quality.

GDT. Axiom 3 statesthat desi gn knowledge is atopology. Since knowledge is atopology and ideal
knowledge can separate well between entities, the quality of knowledge is perfect. It therefore
never changes. Hypothesis3 suggeststhat inreality, however, knowledge structureishierarchical.

ECOBWEB. Assumption 2 states that design knowledgeis represented by ahierarchy. The hierarchy is
heuristically organized toward good design performance asimplicitly embedded in CU. Theclasses
in the hierarchy are extensions of their entities. They represent abstract concepts in the domain.
Therefore, although entities are originally represented in an intentional form, knowledge structure
isextensional. Each cllass has also an approximate intentional representation by the characteristic
properties. This representation alleviates the difficulty of understanding the complete meaning
of extensional description_s. The hierarchical structure only approximates topology by explicitly
defining which unions of abstract concept are part of the knowledge.

Design process.

GDT. Theorem 2 says that a specification can be described by the intersection of abstract concepts.
Definitions 12 defines design as a designation of adomain in the attribute space that corresponds to
the domain used to describe the specification. Theorem 9 determines that this process terminates
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with a design solution when the specification is given. GDT-REAL relaxes the nature of design to
an evolutionary process that terminates with a set of candidate designs.

ECOBWEB. A specification isdescribed by abstract concepts. Assumption 4 says that the mapping from
the specification to the design is direct. Thisis in correspondence with Theorem 9. The design
terminates when the specification is described completely, but with a set of candidate designs, not
with asingle solution. Thiswas demonstrated by the design examplesin Section 2.3. Later we see
that the same process can be viewed as in correspondence with GDT-REAL as well.

Nature of design knowledge.

GDT. Sincedesign knowledge is perfect, it is static. Knowledge remains static in GDT-REAL in spite
of its inherent imperfections.

ECOBWEB. Design knowledge only approximates perfect knowledge. Design knowledge evolves by
the assimilation of new information. Therefore, knowledge increasingly becomes more refined and
closer to idea knowledge through learning. Learning is the main difference between ECOBWEB
and GDT; it does not correspond to any process in the framework of GDT. Learning consists of
the addition of abstract entity concepts that modifies the topology of the domain; thereby, leading
to enhanced correspondence between the specifications and the design descriptions, and to abetter
design process. While learning, abstract concepts may be changed (i.e., by the add-to-existing-
class oberator), constructed (i.e., by the merge or add-new-class operators), or eliminated (i.e., by
the split operator). Only useful concepts are generated and retained.

Learning gradually enhances real knowledge by increasing its scope and refining its granularity.
The scope of knowledge expands by |earning additional property-value pairs that describe artifacts.
Additional similar designs add information that refines the existing abstract concepts such that better
designs can be obtained for each specification. These two enhancements advance real knowledge
towards"ideal" knowledge.

4.1.2 Performance versus prediction

Thisis the most crucial comparison between GbT -and ECDBWEB It evaluates the purpose of building
ECOBWEB by contrasting its performance with the predictions produced by the theory. The discrepan-
cies between thé performance and the predictions are then discussed in light of the differences in the
assumptions between GDT and ECOBWEB.




Design process.

GDT. Thereisalways a solution to afeasible specification, and it is found when the specification is
provided. GDT-REAL relaxes this prediction to guarantee finding a set of candidate designs for a
feasible specification.

ECOBWEB. ECOBWEB finds a set of candidate designs for any specification: feasible or infeasible.
It finds the solutions by trying to satisfy heurigtically as many requirements as possible. The
candidate designs may have unexpected behavior as suggested by Theorem 34 of GDT-REAL.
some candidate may violate a given specification requirement. In addition, not all the possible
good designs are generated by ECOBWEB. The behavior described becomes increasingly better as
moreknowledgeisaccumulated. Statigtical tests show that good perfor mance can be obtained with
a relatively moderate number of examples. Therefore, ECOBWEB gradually approximates better
the predictions of GDT about design performance. '

Nature of knowledge.

GDT. = Topological gructure of knowledge is the key to obtain a perfect design performance. Ih
GDT-REAL, compactness is also required to facilitate the mapping between the specification to the
candidate designs.

ECOBWEB. Design knowledge improves with additional information. The knowledge structure is
restricted to ahierarchy. Thisstructureistuned to capturethe specificationsthat are" most likely'®
toarisein thefuture, based on past experience. Although thereisno chance that the hierarchy will
ever be atopology, the more examples are assmilated the better isthe quality of knowledge.

ECOBWEB can be compared also to GDT-REAL. In thiscase, the abgract concepts of the hierarchy
are perceived as modelsthat mediate between the specification and thefinal design. These models
do not contain any semantic information. Thismay be acceptable theor etically but not practically.
An daboration on this subject appears in the comparison between BRIDGER and GDT-REAL.

It can be observed that the ideal topological representation of knoWIedge cannot be generated by
ECOBWEB. Thisprecludesmaking precisepredictionsabouttHeabiIitytodesign. Nevertheless, ECOBWEB |
demondrates increasingly corhpetent design ability when it learns, using a considerably less redrictive
knowledge structure. This has two implications. Firg, if we wish that ECOBWEB will design better, we
need to have it generate a knowledge structure that is closer to topology. A step towardsthisend isthe
generation of dynamic graph sructures of knowledge, currently under development. Second, if GDT is

17




to be more relevant to real domains, the topological structure of knowledge must be relaxed. This may
cause making lessprecise satementsabout design, but still ssatementsthat can further guide experimental
research.

The predictions of the revised GDT can aid in measuring BRIDGER's performance (i.e., how far is
its knowledge from the ultimate "ideal" knowledge?). This measurement is critical if we wish to have
some measur e of confidence in BRIDGER's solutionsother than the indication from experimental studies.
Also, such analysiswill allow the prediction of the number of design examples necessary for producing
a given desired level of design performance.

4.2 A comparison between GDT-REAL and BRIDGER

Since BRIDGER design knowledgeis captured by ECOBWEB, this section only compar esthedesign process
in both BRIDGER and GDT-REAL. This section illustrateshow Assumption 6 that isillustrated in Figure
4 and implemented in BRIDGER correspondsto the design processin GDT-REAL.

Figure 4 matches GDT-REAL design process via the use of models (Figure 6 in (Tomiyama et al.,
1989)). A refinement in the terminology of GDT corresponds to the synthesis task, and local redesign
mechanisms éorr&pond exactly to theredesign task. Meta-models are the mechanismsthat generatethe
different pointsof view of the artifact and allow the application of analysisand specific redesign methods.

The above correspondencer efer sto the sate of real knowledge. In addition, all tasksre-iteratewhen
different meta-models arc used to generate different point of views of the artifact. In the presence of
ideal knowledge, the mapping is different. In ideal knowledge, only sraightforward synthesis occurs.

In the previous section, the synthesis module was described as implementing GDT's knowledge
representation and processes. This analysis may be viewed as imputing consider able functionality and
capability to the simple synthesis mechanisms currently implemented in BRIDGER. This section shows
how BRIDGER asawholecan beviewed as an ingantiation of themetamode view of design in the context
of GDT.

Reiterating on the convergence process with the aid of models, in real knowledge there is no direct
mapping from specifications to design descriptions. Models of the artifact serve to Iiteratively and
incrementally detail the design. Each.model is arepresentation of the artifact based on some theory
(e.g., linear behavior theory). GDT datesthat there is a conver gent sequence of models that is bound to
converge at candidate design solutions.

Figure 7 shows a possible sequence of models that mediates the conver gence from specifications to
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design descriptions. BRIDGER can be viewed as the ingtantiation of a singlemode: the linear behavior
model. Bridges arc detailed by synthesisto a level that allows for their analysis according to the modd.
Backtracking is used to modify the design until it satisfies the behavioral congtraints associated with the
modd (e.g., stresses and deflection congtraints). Additional models can be implemented and used to
complete the transformation from the specification to thefinal design description.

Hierarchical Linear 2D Non-Linear 3D Cost Congtractibility ~ Maintainability
Classification Finite-Element  Finite-Element
Analysis Analysis

Specification

Meta-M odd

Figure 7: A comparison between GDT (date of real knowledge) and BRIDGER

Sincethereisno intermediate/approximate analysisin BRIDGER, every design must be detailed to the
same level. Thisisnot a desrable situation. For example, it preventsthe output of absract designs for
given abgract specifications. This situation can be remedied by the addition of approximate models and
by modifying the control of BRIDGER to sequentially use these models. Such a sequence of approximate
modelsisillusrated in Figure 8. It expandsthe modd of the generation of candidate designs shown in
Figure 7. The mechanisms shown make use of a single synthesis hierarchy.

Toillustratetheuse of such a sequence of models we use the chairs domain. Thedesign problem isto
detail a chair that ismovable, contemporary, and that stably support back. Assumethat based on domain
knowledge thefirst specification property to be satidfied is the stably support back. The specification is
sorted through the hierarchy until a characterigtic value of stablysuppoﬁ back is found (point 2 on Figufe
8). Atthisstage, asimpleanalysis(e.g., 2D stability) 'isperformed. Thisanalysisprovidesfeedback tothe
path from 1 to 2. Then, the classification of the specification, now augmented by the stably support back
property, continues to 3 where the movable property is determined by matching it with a characterigtic
values. The analysis performed at this stage is visual (e.g., determine whether the chair can move), or
physical (e.g., determine whether the chair can be carried). The feedback from this analysis may only
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changethe path from 2to 3. Last, the style specification is satisfied by a similar process.

analysisifeedback “/analysis/feedback. analysis/feedback
for path_l_—_>__2__x A for path 2->3 for path 3->4

Figure 8: A sequence of approximate models

The above procedure would allow BRIDGER to exer cise intent and domain knowledge and essentially
follow a specific design derivation. Learning such derivations may be a task for future research. No
change needs to be made to the synthesis module when approximate models are used, since it fully
supportsthe generation of abgract designs. A different implementation may include a separate hierarchy
for each path. This, however, is not expected to provide better results if sufficient number of examples
is provided.

Theuse of aseparatehierarchy for each path has an advantage over a singlehierarchy for representing
flexible artifact rcpicsentations. In fact, it can better support extensional descriptions of artifactsthan the
single hierarchy. Using a separate hierarchy for supporting the refinement associated with each mode
used, doesnot present any difficulty. In fact, although not detailed here, the synthesismodule of BRIDGER
makes use of two instantiations of ECOB\NEB that each provide different information for the synthesis
process (Reich, 1991a; Reich, 1991b): one hierarchy is used to synthesize candidates and the other to
retrieve scaling values that modify the candidatestofit the specificatioh.

To summarize, the comparison between BRIDGER and GDT-REAL shows how BRIDGER can be
extended to account for additional. models and design concerns and still remains within the framework
of GDT.
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5 Summary

Part | of the study discussed three methods for conducting design research and focussed on one instance
of a theoretical approach to design. That part critically discussed the ramifications of some of GDT's
crucial assumptions and how they can be relaxed. This critical review isthe firg contribution of this
gudy. Since, thereview suggested waysin which the assumptionsof thetheory can be potentially relaxed
thereby expanding the scope of the theory, the review can be treated as a smple form of executing the
scientific method. Thismethod isthe subject of Part 11 of the sudy.

Part Il showshow an experimental system for design, called BRIDGER, is built on the foundations of
GDT. Thiscongtitutesstep 2 in thescientificcycle. Therefore, GDT servesasthetheor etical foundation of
~ BRIDGER. For example, GDT supportsthe use of concept formation asamethod for synthesisknowledge
acquisition since concept formation gradually better approximates topology. The implementation of
BRIDGER (step 3 in the cycle) wastested in experiments and found to produce successful results. These
results provide experimental support for GDT as a theory of design.

A careful analysis of the discrepancies between GDT and BRIDGER shows that GDT assumptions
are too redrictive. These assumptions are necessary for guaranteeing a perfect design performance.
In redlity, a lesser quality design is acceptable, and thisis aobtained gradually through learning, by an
experimental system that makes consider ably less regtrictive assumptions about design.

This analysis contributes to both the theory and the experimental systerﬁ. The contribution to both
studiesdemonstr ates the benefits from executing the scientific method. By illugtratingthese benefits, this
_study advocates for subscribing to the scientific methodology. It isour belief that following this method
is also essential for generating high quality design research.

The lagt contribution of this study is the presentation of learning as a necessary ingredient of design
systems; lear ninggener atesand r efinesknowledge structur esthat gradually better approximatetopol ogies.
BRIDGER has demonsgrated that the introduction of learning is not a burden but a necessary ingredient
that can be integrated naturally with the design activity. Beside this, learning implicitlyforces the use
of an adequate research method since it requires the use of experiments to show improvement in design
performance. This necessitates generating some performance metrics, even i_f oVerIy smplistic, and
using them to test performance. - | )
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