
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Mathematics Studies Machines.

by

Daniele Mundici and Wilfried Sieg

May 1993

Report CMU-PHIL-36

Philosophy
Methodology
Logic

Pittsburgh, Pennsylvania 15213-3890

Mathematics Studies Machines
Daniele Mundici and Wilfried Sieg

To appear (in Italian) in: Le Scienze della Mente. C. Mangione (ed.),
volume of the encyclopedia Le Scienze e le Tecnologie. ieri oggi e
domani, Grandi Opere

University Libraries
Carnegie Mellon University

tr;, Pennsylvania 1 5 2 b

INTRODUCTION. Machines were introduced as calculating devices
to simulate operations carried out by human computors following
fixed algorithms: this is true for the early mechanical calculators
devised by Pascal and Leibniz, for the analytical engine built by
Babbage, and the theoretical machines introduced by Turing. The
distinguishing feature of the latter is their universality: They are
claimed to be able to capture any algorithm whatsoever and,
conversely, any procedure they can carry out is evidently
algorithmic. The study of such "paper machines" by mathematical
means is the topic of our contribution. This is not only in accord
with its usual understanding in computer science, but conceptually
and historically right, when we recall the purpose for which Turing
machines were introduced.

Section one, entitled "STEPS (towards Turingfs analysis)",
reexamines the analysis of effective calculability as it emerged in
the thirties. By way of providing crucial "LOGICAL BACKGROUND" we
describe in section zero the decision problem for first-order logic
as formulated in the twenties by Hilbert. Then we shall argue that
the subsequent work of Godel, Church & Kleene, and Hilbert &
Bernays focused on one central informal notion, namely the stepwise
calculation (by a human computor) in a symbolic calculus. However,
in each case a serious stumbling-block to a convincing analysis
emerged, as the restricted nature of the steps in computations was
characterized by recourse to (primitive) recursiveness or, in GodePs
case, to very specific and obviously mechanical rules. That
stumbling-block was overcome only by Turing, who formulated
finiteness conditions and reduced the notion of a mechanical
procedure (carried out by a human computor satisfying these
conditions) to a mathematically very convenient concept of
computability by machines.

For Godel this mathematical notion of computability captured
the informal one of calculability exactly and it allowed him to
formulate his Incompleteness Theorems for all "formal" theories
(satisfying some basic conditions). This is discussed in section
two, "STEPS (towards the mathematical theory)", after describing
results that are on the one hand central to recursion theory but on
the other hand reinforce the conceptual analysis given in section
one. The idea of stepwise calculation is reflected most directly in
Kleenefs fundamental Normal Form Theorem discussed in section 2.0.
With hardly any additional work this theorem implies in section 2.1
the existence of a "universal" machine; such a machine was

explicitly constructed by Turing, and the underlying idea turned out
to be crucial for the architecture of modern computers. Then we
discuss the unsolvability of the Halting Problem together with a
concept of effective reducibility: by reducing the Halting Problem to
the decision problem Turing established the unsolvability of the
latter.

The computability notion based on Turing machines is highly
idealized in at least two respects: although the number of different
kinds of steps and different types of symbols is strictly bounded,
the number of applications of steps and occurrences of symbols that
may be used in a computation is not bounded at all. This means more
intuitively that the time and space a computation can take are not
restricted. By imposing suitable time or space limitations one
attempts to characterize "tractable" problems and "feasible"
algorithms. That is the central topic of section three, "COUNTING
THE NUMBER OF STEPS"; it discusses in particular the functions that
can be computed in polynomial time (restricting trivially also
space).

In section four, "PHYSICAL LIMITS OF STEPS", we continue the
analysis of computation steps. Turing's finiteness conditions are
crucially motivated by limitations of the human sensory apparatus,
but ultimately, Turing claims, by necessary limitations of human
memory. Physical restrictions that may provide reasons for such
memory limitations are among those discussed in this section. We
argue that, for good physical reasons, steps cannot be accelerated
arbitrarily and cannot be made arbitrarily complex. So one is led to
a different sense of the mathematical study of machines, namely,
the mathematical formulation of physical principles governing the
operations of physically realizable machines. Our mathematical
inquiry into "paper machines" will lead us to a point where
(effective) mathematical descriptions of nature and (natural)
computations for mathematical problems coincide.

0 LOGICAL BACKGROUND. In some respects, the issues go back to
Greek mathematics and philosophy, as they concern, on the one hand,
the axiomatic presentation of geometry (by Euclid) and, on the other
hand, the formalization of logical reasoning (by Aristotle and, for
sentential logic, by the Stoics). But it was only Gottlob Frege who
provided, with his 1879 "Begriffsschrift", an expressive formal
language and a logical calculus that allowed the realization of the

earlier intentions with respect to mathematics. Frege required that
all assumptions be explicitly formulated in the formal language, and
that each step in a proof be taken in accord with one of the
antecedently specified rules of the logical calculus. The second
requirement was Fregefs way of sharpening the axiomatic method
explicitly traced back to Euclid. With this sharpening Frege pursued
the aim of recognizing the "epistemological nature" of theorems.
Because that can be done only if inferences do not require contentual
knowledge Frege realized that the application of inferences has to
be recognizable as correct on account of the syntactic form of the
sentences occurring in them. Indeed, Frege claimed that in his
logical system "inference is conducted like a calculation". In
formulating such inference rules, Frege went beyond the efforts of
his contemporary Peano, who also pursued the goal of expressing
mathematics in a formal or symbolic language.

Almost half a century later, in 1933, Godel referred back to
Frege and Peano when he formulated "the outstanding feature of the
rules of inference" in a formal mathematical system. The rules,
Godel said, "refer only to the outward structure of the formulas, not
to their meaning, so that they can be applied by someone who knew
nothing about mathematics, or by a machine." Frege had not
considered the possibility of mechanically drawing inferences to be
among the logically most significant achievements of his
"Begriffsschrift". But Hilbert grasped the potential of this aspect,
radicalized it, and exploited it in his formulation and pursuit of the
consistency problem; a research program that started in a rough and
tentative way around 1900 and was pursued with great intensity in
the twenties. Over the years the strict formalization of
mathematics seemed to open up new ways of solving mathematical
problems - through calculation. The most famous problem among
these is the so-called Entscheidungsproblem or decision problem. It
is closely related to the consistency problem and was pursued by
some (e.g., Herbrand) on account of this connection. Its classical
formulation in terms of validity and satisfiability is found in
Hilbert and Ackermannfs 1928 book "Grundzuge der Theoretischen
Logik": "The Entscheidungsproblem is solved if one knows a
procedure that permits the decision concerning the validity,
respectively, satisfiability of a given logical expression by a finite
number of operations."

Hilbert and Ackermann emphasized the fundamental importance
of a solution to the decision problem, and researchers in the Hilbert

school realized full well that a positive solution for predicate logic
would allow the decision concerning the provability of any
mathematical statement. For some, e.g. von Neumann in 1927, that
was sufficient reason to expect a negative solution; at that time von
Neumann also claimed that there was no clue as to how a proof of
undecidability would go. In support for this claim, he pointed to the
underlying conceptual problem: There were well-known proofs for
the unsolvability of certain mathematical problems; but all such
impossibility results were given relative to a determinate class of
admissible means, e.g., doubling the cube by using only ruler and
compass. And exactly here lies the problem: A negative solution to
the Entscheidungsproblem required a mathematically precise answer
to the question, "What are mechanical procedures?"

Examples of mechanical procedures when operating with
natural numbers were familiar from mathematical practice; indeed,
the values of all "primitive recursive" functions can be calculated
mechanically. And most functions from elementary number theory
are in this class, e.g., addition, multiplication, exponentiation, the
sequence of prime numbers and the sequence FIB of Fibonacci-
numbers. For the latter sequence of 1,1,2,3,5,8,... this means that
the values of FIB for the first two arguments are given outright by
FIB(0)=1 and FIB(1)=1, and for arguments of the form n+2 they are
given by FIB(n+2)=FIB(n+1)FIB(n). I.e., to fix the value for n+2 one
recurs on the values of FIB for the preceding arguments (n+1) and n.
What is historically most important here is the fact that Ackermann
discovered in the mid-twenties a function that was not primitive
recursive, but whose values could nevertheless be determined by a
mechanical procedure. In his classical 1931 paper "Ueber formal
unentscheidbare Satze der Principia Mathematica und verwandter
Systeme", Godel had used the primitive recursive functions to
describe, after a number theoretic coding, the syntax of particular
"formal" theories. Being concerned to use a general concept of
formality, through an underlying concept of calculability, there was
no good reason to focus attention on theories whose syntax could be
presented primitive recursively.

1 STEPS (towards Turing's Thesis). Let us re-emphasize that
for our investigations it is absolutely crucial to have convincingly
analyzed notions or, in case no convincing case has been made yet, to
be clear about scope and limit of the mathematical concepts that
are used as "first approximations" to the informal concept.

According to the conventional view we were given by the work of
Godel, Church, Turing, and others (e.g., Kleene, Post, Hilbert,
Bernays) mathematical definitions of mechanical procedures. The
fact that these definitions turned out to be equivalent, in the sense
that they characterize the same class of number theoretic functions
as computable, is taken as significant support for Churchfs Thesis.
The question for us is: What are the grounds for accepting the
various notions as constituting a mathematical description of
mechanical procedures? (The considerations in this section are
based on [Sieg 1993].)

1.0 RECURSIVENESS. In his 1934 Lectures at Princeton Godel
strove to make his incompleteness results less dependent on
particular formalisms, but he did not succeed to his own
satisfaction in resolving the main conceptual issue, namely, to give
a general notion of "formal theory". He still viewed the primitive
recursive definability of formulas and proofs as a precise condition
which in p r a c t i c e suffices to describe particular formal
systems, though he was clearly looking for a condition that would
suffice in p r i n c i p I e. But in what direction could one search?
Godel considered it as an "important property" that, for any
argument, the value of a primitive recursive function can be
computed by a "finite procedure" and he added in a footnote: "The
converse seems to be true if, besides recursions according to the
scheme (2) [of primitive recursion, M&S], recursions of other forms
... are admitted. This cannot be proved, since the notion of finite
computation is not defined, but it can serve as a heuristic principle."
In the last section of the Lecture Notes Godel described "general
recursive functions"; they are obtained as unique solutions of
certain functional equations, and their values must be calculable in
an "equational calculus". For Godel the crucial point of his proposal
was the specification of particular mechanical rules for the
computation of function values. Though the footnote we just quoted
may seem to express a form of Churchfs Thesis, Godel emphasized in
a 1965 letter to Martin Davis that no formulation of ChurcfVs Thesis
was intended. He wrote in that letter: "The conjecture stated there
only refers to the equivalence of 'finite (computation) procedure1 and
'recursive procedure1. However, I was, at the time of these lectures,
not at all convinced that my concept of recursion comprises all
possible recursions; ... "

At the time, Godel was equally unconvinced by Church's
proposal to identify effective calculability with lambda-

definability. Church recalled (in a letter to Kleene dated November
29, 1935) a conversation with Godel in early 1934 , when Godel
called this proposal "thoroughly unsatisfactory". Nevertheless,
Church announced his thesis in a talk at the meeting of the American
Mathematical Society on April 19, 1935; he formulated it in terms
of recursiveness, not lambda-definability. In his subsequent famous
1936 paper "An unsolvable problem of elementary number theory"
Church wrote: "The purpose of the present paper is to propose a
definition of effective calculability which is thought to correspond
satisfactorily to the somewhat vague intuitive notion in terms of
which problems of this class are often stated, and to show, by
means of an example, that not every problem of this class is
solvable." Church proposed again to identify effective calculability
with recursiveness. The fact that lambda-definability was known to
be an equivalent concept simply added for Church "... to the strength
of the reasons adduced below for believing that they [these precise
concepts] constitute as general a characterization of this notion
[i.e., effective calculability] as is consistent with the usual
intuitive understanding of it."

1.1 STEP-BY-STEP. To give a deeper analysis Church pointed out
that the notion "calculability in a logic" suggests itself as one way
to characterize effective calculability of number theoretic
functions, and he argued that it does not lead to a definition more
general than recursiveness. Let us indicate briefly the argument:
Church considered a logic L, i.e. a system of symbolic logic whose
language contains the equality symbol =, a symbol { }() for the
application of a unary function symbol to its argument, and numerals
for the positive integers. He called unary functions F effectively
calculable if and only if there is an expression f in L such that
{f}(M)=N is a theorem of L exactly when F(m)=n; M and N are
expressions of L that stand for the positive integers m and n.
Church claimed such F are recursive, when L satisfies conditions
that guarantee essentially the recursive enumerability of Lfs
theorem predicate; the claim follows by an unbounded search. The
crucial condition in Church's list requires the STEPS in derivations
of equations to be, well, recursive! Here we hit on a serious
stumbling-block for Church's analysis, since an appeal to the thesis
when arguing for it is logically circular. And yet, Church's argument
achieves something: The general concept of calculability is
explicated as derivability in a symbolic logic, and the step-condition
is used to sharpen the idea that we operate by effective rules in

such a formalism. We suggest that the claim "Steps of any effective
procedure must be recursive!11 be called Church's Central Thesis.

The concept of "calculability in a logic" used in Church's
argument is an extremely natural and fruitful one. It is directly
related to decidability (Entscheidungsdefinitheit) for relations and
classes introduced by Godel in his 1931 paper and to
"representability" as used in his Princeton lectures. It was used
also in other analyses: Godel defined that very notion in his 1936
note "On the length of proofs" and emphasized its (type-)
absoluteness. In his contribution to the Princeton Bicentennial
Conference (1946) Godel reemphasized absoluteness in a more
general sense and took it as the main reason for the special
importance of recursiveness. Here we have according to Godel the
first interesting epistemological notion whose definition is not
dependent on the chosen formalism. But the stumbling-block Church
had to face shows up also here: absoluteness is achieved only
relative to the description of f o r m a I systems. The more general
definition of absoluteness Godel gave in 1946 is already explicit in
the work of Hilbert and Bernays in the second volume of their book
"Grundlagen der Mathematik". They called a number-theoretic
function reckonable according to rules ("regelrecht auswertbar"), if
it is computable in some deductive formalism. Then they formulated
three recursiveness conditions for such formalisms and showed: (i) a
function that is computable in some deductive formalism satisfying
the recursiveness conditions can be computed in a very restricted
number theoretic formalism, and (ii) the functions computable in the
latter formalism are exactly the recursive functions.

Hilbert and Bernays1 analysis is a natural and satisfactory
capping of the development from Entscheidungsdefinitheit to an
"absolute" notion of computability. But their analysis does not
overcome the major stumbling-block; rather, it puts the stumbling-
block in plain view through the recursiveness conditions that
deductive formalisms must satisfy. The crucial condition requires
the proof predicate for such formalisms to be primitive recursive!
We want to show now, how Turing got around this fundamental
difficulty and start out by describing Turing machines; in the
presentation of these machines we follow Davis [1958], not Turing's
original paper.

1.2 MACHINES & WORKERS. A Turing machine consists of a
finite, but potentially infinite tape; the tape is divided into squares,

and each square may carry a symbol from a finite alphabet, say, just
the two-letter alphabet consisting of 0 and 1, or B(lank) and |. The
machine is able to scan one square at a time and perform, depending
on the content of the observed square and its own internal state, one
of four operations: print 0, print 1, or shift attention to one of the
two immediately adjacent squares. The operation of the machine is
given by a finite list of commands in the form of quadruples qjS|<Ciqm

that express: if the machine is in internal state qi and finds symbol
Sk on the square it is scanning, then it is to carry out operation c\
and change its state to qm . The deterministic character of the
machine operation is guaranteed by the requirement that a program
must not contain two different quadruples with the same first two
components.

In 1936, the very year in which Turing's paper appeared, Emil
Post published a strikingly similar computation model in a brief
note that appeared in the Journal of Symbolic Logic under the title
"Finite Combinatory Processes - Formulation 1". Here we have a
worker who operates in a symbol space consisting of "a two way
infinite sequence of spaces or boxes, i.e., ordinally similar to the
series of integers The problem solver or worker is to move and
work in this symbol space, being capable of being in, and operating
in but one box at a time. And apart from the presence of the worker,
a box is to admit of but two possible conditions, i.e., being empty or
unmarked, and having a single mark in it, say a vertical stroke".
(Post remarks that the infinite sequence of boxes can be replaced by
a potentially infinite one, expanding the finite sequence as
necessary.) The worker can perform a number of primitive acts',
namely, make a vertical stroke [V], erase a vertical stroke [E], move
to the box immediately to the right [Mr] or to the left [M|] (of the box
he is in), and determine whether the box he is in is marked or not [D].
In carrying out a particular combinatory process the worker begins
in a special box (the starting point) and then follows directions from
a finite, numbered sequence of instructions. The i-th direction, i
between 1 and n, is in one of the following forms: (i) carry out act V,
E, Mr, or M| and then follow direction jj, (ii) carry out act D and then,
depending on whether the answer was positive or negative, follow
direction jj1 or jj". (Post has a special stop instruction, but that can
be replaced by the convention to stop, when the number of the next
direction is greater than n.)

Are there intrinsic reasons for choosing Formulation 1, except
for its simplicity and Post's expectation that it will turn out to be

equivalent to recursiveness? An answer to this question is not
clear (from Post's paper). Post wrote at the very end of his paper:
"The writer expects the present formulation to turn out to be
equivalent to recursiveness in the sense of the Godel-Church
development. Its purpose, however, is not only to present a system
of a certain logical potency but also, in its restricted field, of
psychological fidelity. In the latter sense wider and wider
formulations are contemplated. On the other hand, our aim will be to
show that all such are logically reducible to formulation 1. We offer
this conclusion at the present moment as a working hypothesis. And
to our mind such is Church's identification of effective calculability
with recursiveness." Investigating wider and wider formulations
and reducing them to Formulation 1 would change for Post this
"hypothesis not so much to a definition or to an axiom but to a
natural law" .

1.3 CONCEPTUAL ANALYSIS. It is methodologically remarkable
that Turing proceeded in exactly the opposite way when trying to
justify that all computable numbers are machine computable or, in
our way of speaking, that all effectively calculable functions are
Turing computable: He did not try to extend a narrow notion
reducibly and obtain in this way additional quasi-empirical support,
but analyzed the intended broad concept and reduced it to a narrow
one -- once and for all. Turing's classical paper "On computable
numbers" opens with a description of what is ostensibly its subject,
namely, "real numbers whose expressions as a decimal are
calculable by finite means". Turing is quick to point out that the
fundamental problem of explicating "calculable by finite means" is
the same when considering, e.g., computable functions of an integral
variable. Thus it suffices to address the question: "What does it
mean for a real number to be calculable by finite means?" In §9 he
argues that the operations of his machines "include all those which
are used in the computation of a number". But he does not try to
establish the claim directly; he rather attempts to answer what he
views as "the real question at issue", i.e., "What are the possible
processes which can be carried out [by a human computor, M&S] in
computing a number?"

Turing imagines a computor writing symbols on paper that is
divided into squares "like a child's arithmetic book". As the two-
dimensional character of this computing space is taken not to be
essential, Turing takes a one-dimensional tape divided into squares
as the basic computing space and formulates one important

restriction. That restriction is motivated by definite limits of our
sensory apparatus to distinguish -- at one glance -- between
symbolic configurations of sufficient complexity. It states that
only finitely many distinct symbols can be written on a square.
Turing suggests as a reason that "If we were to allow an infinity of
symbols, then there would be symbols differing to an arbitrarily
small extent", and we would not be able to distinguish at one glance
between them. A second (and clearly related) way of arguing the
point uses a finite number of symbols and strings of such symbols.
E.g., Arabic numerals like 9979 or 9989 are seen by us at one glance
to be different; however, it is not possible for us to determine
immediately that 9889995496789998769 is different from
98899954967899998769.

Now let us turn to the question: "What determines the steps of
the computor, and what kind of elementary operations can he carry
out?" The behavior is uniquely determined at any moment by two
factors: (i) the symbols or symbolic configuration he observes, and
(ii) his "internal state". This uniqueness requirement may be called
the determinacy condition (D); it guarantees that computations
are deterministic. Internal states are introduced to have the
computorfs behavior depend possibly on earlier observations and,
thus, to reflect his experience. Since Turing wants to isolate
operations of the computor that are "so elementary that it is not
easy to imagine them further divided", it is crucial that symbolic
configurations relevant for fixing the circumstances for the actions
of a computor are immediately recognizable. So we are led to
postulate that a computor has to satisfy two finiteness
conditions:

(F.1) there is a fixed finite number of symbolic configurations a
computor can immediately recognize;

(F.2) there is a fixed finite number of internal states that need be
taken into account

For a given computor there are consequently only finitely many
different relevant combinations of symbolic configurations and
internal states. Since the computer's behavior is -- according to
(D) -- uniquely determined by such combinations and associated
operations, the computor can carry out at most finitely many
different operations. These operations are restricted as follows:

(0.1) only elements of observed symbolic configurations can be
changed;

(0.2) the distribution of observed squares can be changed, but each
of the new observed squares must be within a bounded distance L of
an immediately previously observed square.

Turing emphasizes that "the new observed squares must be
immediately recognisable by the computer11, and that means that the
distributions of the new observed squares arising from changes
according to (0.2) must be among the finitely many ones of (F.1).
Clearly, the same must hold for the symbolic configurations
resulting from changes according to (0.1). Since some of the
operations may involve a change of internal state (or, as Turing also
puts it, "state of mind"), Turing concludes: "The most general single
operation must therefore be taken to be one of the following: (A) A
possible change (a) of symbol [as in our (0.1)] together with a
possible change of state of mind. (B) A possible change (b) of
observed squares [as in our (0.2)] together with a possible change of
state of mind." With this restrictive analysis of the possible steps
of a computor, the proposition that his computations can be carried
out by a Turing machine is established rather easily. Indeed, Turing
first "constructs" machines that mimic the work of computors
directly and then observes: "The machines just described do not
differ very essentially from computing machines as defined in § 2,
and corresponding to any machine of this type a computing machine
can be constructed to compute the same sequence, that is to say the
sequence computed by the computer [in our terminology: computor]."
Thus we have Turing's Theorem: Any number theoretic function F
that can be computed by a computor, satisfying the determinacy
condition (D) and the conditions (F) and (O), can be computed by a
Turing machine.

1.4 TURING'S THESIS. Turing's analysis and his theorem can be
generalized by making an observation concerning the determinacy
condition: (D) is not needed to guarantee the Turing computability of
F in the theorem. Computors that do not satisfy (D) can be
mimicked by non-deterministic Turing machines and thus, exploiting
the reducibility of non-deterministic to deterministic machines, by
deterministic Turing machines. That allows us to connect Turing's
considerations with those of Church we discussed earlier. Consider
for that purpose an effectively calculable function F and a non-
deterministic computor who calculates the value of F in a logic L.

Using the generalized form of Turing's Theorem and the fact that
Turing computable functions are recursive, F is recursive. This
argument for Ps recursiveness does no longer appeal to Church's
Central Thesis; rather, such an appeal is replaced by the assumption
that the calculation in the logic is done by a computor satisfying the
conditions (F) and (O). If that assumption is to be discharged, then
a substantive thesis is needed again. And it is this thesis we call
Turing's Central Thesis. It expresses the fact that a mechanical
computor indeed satisfies the finiteness conditions (F) and that the
elementary operations he can carry out are restricted as conditions
(O) require.

Church wrote in a 1937 review of Turing's paper when
comparing Turing computability, recursiveness, and lambda-
definability: "Of these, the first has the advantage of making the
identification with effectiveness in the ordinary (not explicitly
defined) sense evident immediately ..." For Godel Turing's work
provided "a precise and unquestionably adequate definition of the
general concept of formal system". In the historical and systematic
context Turing found himself, he asked exactly the right question:
"What are the possible processes a human computor can carry out in
computing a number?" The general problematic required an analysis
of the idealized capabilities of a mechanical computor. Let us
emphasize that the separation of conceptual analysis (leading to the
axiomatic conditions) and rigorous proof (establishing Turing's
Theorem) is essential for clarifying on what the correctness of his
general thesis rests; namely, on recognizing that the axiomatic
conditions are true for computors who proceed mechanically. We
have to remember that quite clearly when moving to methodological
discussions in artificial intelligence and cognitive science. Even
Godel got it wrong, when he claimed that Turing's argument in the
1936 paper was intended to show that "mental processes cannot go
beyond mechanical procedures".

2 STEPS (towards the mathematical theory). We focus on
results that are central for recursion theory and computer science;
these results reinforce our conceptual analysis and are frequently
appealed to in support of Church's Thesis. If we take for granted a
representation of natural numbers in the two-letter alphabet of
Turing machines and a straightforward definition of when to call a
number-theoretic function Turing computable, we can recast our
earlier question: Why does this notion provide "an unquestionably

adequate definition of the general concept of formal system"? Is it
at all plausible that every effectively calculable function is Turing
computable?

2.0 NORMAL FORM. It seems that a n a i v e inspection of the
very restricted notion of Turing computability should lead to "No!" as
a tentative answer to the second and, thus, also to the first
question. However, a systematic development of Turing
computability convinces one quickly that it is indeed a powerful
notion. One goes almost immediately beyond the examination of
particular functions and the writing of programs for machines
computing them; instead, one considers machines that correspond to
operations on functions and that yield, when applied to computable
functions, ones that are also computable. Three such functional
operations are crucial, namely, composition, primitive recursion,
and minimization. The latter operation allows an unbounded search
for a solution to equations of the form g(y, x1, ... , xn)=0: given a
recursive function g such that for every x1, ... , xn there is a y with
g(y, x1, ... , xn)=0 one can define (by minimization) a new computable
function f(x1, ... , xn) whose value for the indicated arguments is the
smallest y with g(y, x1, ... , xn)=0. This is usually indicated by
f(x1, ... , xn)=muy.g(y, x1, ... , xn)=0.

Kleene established in 1936 the equivalence between Godel's
recursiveness (defined via an equational calculus) and "mu-
recursiveness11. The latter notion is characterized by an inductive
definition that is obtained from that for the primitive recursive
functions by adding just one additional clause - for minimization
as described above. This characterization of the recursive functions
together with the closure of computable functions under the above
functional operations and the computability of a few simple initial
functions implies the computablity of all recursive functions.
Conversely, we can use the idea underlying Church's argument for the
recursiveness of functions "calculable in a logic" (discussed at the
end of section 1.1) and Kleene's argument for the recursiveness of
functions "calculable in Godel's equational calculus" to show that
every total computable function is actually recursive! This is an
instance of an argument, where conceptual analysis and "technical"
work go fortuitously hand in hand.

Gandy called ChurcIVs argument for his thesis the "step-by-
step argument": if the steps in "logical calculations" are recursive,
then the functions being calculated are recursive. But in what sense

can steps be "recursive11, as they are taken in a logical calculus,
whereas recursiveness is a property of number theoretic functions
and predicates? It was Goedel who had shown in his 1931 paper,
how to "code", "arithmetize", or -- as we often put it in recognition
of the fundamental character of his technique -- "Goedel-number"
the finite syntactic objects of a logical calculus; given the
arithmetization of syntactic objects, it is tedious, but not difficult
to see that the syntactic notions (like formula or derivation) for
"standard" formal theories are indeed (primitive) recursive.
Computations of Turing machines can be described in exactly the
same way to yield ultimately that every Turing computable function
is recursive.

This result was generalized by Kleene, who associated in the
late thirties partial recursive functions with computations; i.e., the
domain of a function is now taken to coincide with the set of
arguments for which the corresponding Turing machine computation
terminates. The mathematical essence of the earlier observations
is captured for such partial recursive functions by Kleene's Normal
Form Theorem. In the formulation (for a one-place function f to keep
matters simple, but without losing generality) one uses a particular
three-place predicate T and a one-place function U. The T-predicate
applied to numbers e,x,y expresses that y is the code of a
computation of a Turing machine with code e for the numerical
argument x; U extracts from the computation, in case it does
terminate, the numerical result. Kleene's Theorem can now be
stated as follows: For every partial recursive function f there is a
natural number e, such that for all x in the domain of f,
f(x) = U(muy. T(e,x,y)).

2.1 UNIVERSAL MACHINES. Kleene's theorem exploits the uniform
description of Turing machine computations and has most important
consequences. Consider, first of all, the two-place function
g(e,x)=U(muy. T(e,x,y)); g is partial recursive and provides an
enumeration of all one-place partial recursive functions (Kleenefs
Enumeration Theorem). Together with the fact that the partial
recursive functions are exactly the Turing computable ones this
theorem guarantees the existence of a universal Turing machine.
Such a machine was explicitly constructed by Turing, and the idea
underlying his construction was fundamental for the development of
the architecture of digital computers through von Neumann; see [von
Neumann 1958]. How is the existence established here by using
Kleenefs mathematical work? Note that by the above observations

the two-place function g can be computed by a Turing machine M[g].
M[g] interprets its first argument as the code e of a Turing machine
M[f] computing the one-place function f; its second argument is
taken by M[g] as the argument for f or rather M[f]. Then M[g] proceeds
to compute f(x) by following the program for M[f]; thus, M[g] is able
to duplicate the computation of ANY Turing machine.

The existence of a universal machine is established here
without the elaborate construction of Turing's; clearly, if one
desires to do so, one can extract from the above argument a program
for a universal machine. In a similar way it is possible to avoid a
detailed construction of von Neumann's to create a "self-
reproducing" automaton; cf. the discussion of cellular automata in
section 4.2. First one notices the possibility of performing
operations on machines effectively (indeed, primitive recursively)
on the codes of their programs; the most pervasive operation is
captured in Kleene's S-m-n-Theorem, that allows to determine the
code of a machine for n arguments from a machine for (m+n)
arguments, when m arguments are fixed. Then one can establish a
fundamental fact, the so-called Recursion or Fixed-Point Theorem;
and that in turn allows the proof of the existence of a self-
replicating automaton in the following sense: there is an m, such
that g(m,y)=m for all y. For details concerning these arguments we
have to point to the literature; a very good presentation can be found
in [Davis 1958] and [Cutland].

For our purposes some "negative" results are most important.
In contrast to Kleene's Enumeration Theorem for partial recursive
functions, we can show by a classical "diagonal argument" that the
one-place total recursive functions cannot be enumerated by a total
two-place recursive function. The argument proceeds as follows:
Assume (to obtain a contradiction) that there is a total recursive
function g enumerating all one-place total recursive functions f; i.e.,
for every function f there is a natural number e such that g(e,x)=f(x)
for all x. Clearly, as g is (assumed to be) recursive the one-place
function f* defined by
(1) f*(x) = g(x,x)+1
is also recursive; thus, as g is an enumeration, we have for f* an e*
such that for all x :
(2) g(e*,x)=f*(x).
For x equals e* we obtain from (2):
(3) g(e* ,e*)=f* (e*) ;
and from (1) we obtain by setting x equal to e*:

(4) f*(e*)=g(e*,e*) +1.

Obviously, (3) and (4) imply the contradiction g(e*,e*)=g(e*,e*)+1.
Thus we know that an enumeration function for the total recursive
functions cannot be recursive. And, similarly, functions
enumerating Turing machines that compute total number theoretic
functions cannot be calculated by Turing machines.

2.2 REDUCIBILITY. The diagonal method of proof goes back to
Cantor who used it to show that the set of real numbers is not
enumerable. A modification of the above argument shows that
particular questions concerning Turing machines cannot be answered
by Turing machines; the most famous question is this: Does the
computation of machine M for input x terminate or halt? This is the
Halting Problem as formulated by Turing in his 1936 paper; it is
clearly a fundamental issue concerning computations. Turing used
the unsolvability of this particular problem to establish the
unsolvability of related machine problems, e.g. the Self-halting
Problem and the Printing Problem. For that purpose Turing made
implicit use of a notion of (effective) reducibility; a problem P,
identified with a set of natural numbers, is reducible to another
problem Q iff there is a recursive function f, such that for all x: P(x)
iff Q(f(x)). Thus, if we want to see that x is in P we compute f(x)
and test whether that number is in Q! In order to obtain his
negative answer to the decision problem Turing reduced (in a most
elegant way) the Halting Problem to the Decision Problem; thus, if
the Decision Problem were solvable, the Halting Problem would be.
This idea of Turing's will re-appear in our discussion of complexity,
in particular in the context of Cook's Theorem in section 2.2.

The self-halting problem K is the simplest in an infinite
sequence of increasingly complex and clearly undecidable problems,
the so-called jumps. First of all notice that for a machine M with
code e the set K can be defined arithmetically by the statement
"there exists a y, such that T(e,e,y)lf. K is indeed "complete" for sets
A definable by a formula that is obtained from a recursive one by
just prefixing one existential quantifier; i.e. any such A is reducible
to K. To obtain the jump hierarchy the concept of computation is
relativized to sets of natural numbers whose membership relations
are revealed by "oracles". The jump K1 of K, for example, is defined
as the self-halting problem, when an oracle for K is available. This
hierarchy can be associated in a most informative way to

definability questions in the language of arithmetic: all jumps can
be defined by increasingly complex arithmetical formulas, and all
arithmetically definable sets are reducible to some jump.

2.3 INCOMPLETENESS. The above considerations underly the
"arithmetic hierarchy" introduced by Kleene and Mostowski in the
fifties. But there are sets of natural numbers that are not definable
by arithmetic formulas; a particular example is the set of Godel-
numbers of sentences of true arithmetic statements. If that set
were arithmetically definable, one could formulate arithmetically
the "liar sentence" that expresses its own falsity. This observation
of Tarski and Godel is the cornerstone for proving that any sound
formal theory of arithmetic is incomplete: No matter which true
statements we choose as axioms and no matter which inferences
leading from true statements to true ones we select, there will be
true statements that are not provable in the theory. That is correct
as long as formality requirements are imposed on the theory,
meaning — in mathematical terms and using the identification of
formality with recursiveness -- that the set of theorems can be
listed by a recursive function or that it is "recursively enumerable".
Recursively enumerable sets can be defined by a formula that is
obtained from a recursive one by just prefixing one existential
quantifier, and thus the sets of theorems of such formal theories are
reducible to K . In all of this it has to be assumed that the formal
theory is strong enough to allow the calculability of all recursive
functions. To summarize: This argument, under the explicit
assumptions on the theory, establishes incompleteness.

Godel, in his 1931 paper, constructed a particular unprovable
statement for a theory PM inspired by Russell and Whitehead's
"Principia Mathematica", namely, the self-referential statement G
expressing that it itself is not provable in PM. This is Godel's First
Incompleteness Theorem for PM; recall that the latter theory was
taken not only as a fundamental, but indeed universal theory for all
of mathematics. Using an improvement of Godel's construction due
to Rosser, one can formulate a sentence R whose independence from
PM is established under the sole assumption of PMfs syntactic
consistency -- without appealing to its semantic soundness. In this
form the First Incompleteness Theorem is taken to refute an
underlying assumption of Hilbert's Program, namely that formal
theories like PM can capture "completely" mathematical practice.
The aim of establishing the consistency of formal theories by
restricted mathematical, so-called finitist, means was taken to be

unreachable on account of GodePs Second Incompleteness Theorem.
This theorem states that the proposition "PM is consistent", when
formulated in the language of PM, cannot be proved in PM. To reach a
definite verdict on Hilbert's Program, as formulated in the twenties,
it has only to be assumed that finitist mathematics can be
formalized in PM. Indeed, it is generally assumed that finitist
mathematics can already formalized within elementary number
theory and coincides, possibly, with a weak fragment of number
theory, primitive recursive arithmetic.

In order to formulate the theorems for arbitrary "formal
systems" satisfying certain basic requirements Godel needed a
general concept of "formality", and he tried to approach such a
general notion in his Princeton lectures of 1934; but it was only
Turing's notion that provided it in a convincing way. Given the
background for Turing's work on the decision problem and Godel's
work on incompleteness, it is quite clear that they needed as broad a
notion as possible. Now we turn our attention to contexts that
require more restricted notions of computability.

3 COUNTING THE NUMBER OF STEPS. To re-emphasize, Turing
computability is a highly idealized concept, because it disregards
limitations on two resources, namely, space and time. The former is
disregarded, as the number of tape squares involved in a computation
is unbounded; the latter is disregarded, as the number of
computation steps is not limited. If we insist that the number of
steps be bounded, we automatically insist on a bound for the number
of tape squares that can be used in a computation. Yet it seems only
too necessary to impose such bounds: Our lifespan is limited, and the
size of the physical universe is bounded.

3.0 INTRODUCTION TO TRACTABILITY. Draw an edge between each
pair of distinct vertices of a hexagon. The resulting graph is known as the
6-clique and is denoted by K6. Now follow freely your inspiration and
color the 15 edges of K6 red or blue. Then, necessarily, there will
exist a monochromatic 3-clique, i.e. a triangle with only blue or only
red sides. For a proof of this claim, choose your favorite vertex V in K6
and suppose for the moment that there are at least three red edges VA,
VB, VC. If the triangle ABC is blue, we are done, otherwise one of the
triangles VAB, VAC, or VBC must be red, and we are done. What, if our
hypothesis fails? In this case V will be a vertex with at least three blue

edges, and a photocopy of the above argument, possibly printed in red ink,
yields a monochromatic triangle. Q.E.D.

Who would set out to check all possible 2A15 colorings, now that
the existence of a monochromatic triangle is guaranteed by the above
argument? In a similar way, it makes little sense to inspect, whether
energy is conserved through all stages of the evolution of a physical
system, such as a pendulum, once its complete description is achieved
by solving a simple differential equation. From the solution one
immediately gets energy conservation, just as from the above argument
one immediately gets a direct and fast way of finding a monochromatic
triangle for each possible coloring of the hexagon. Passing now from six
to forty five points and coloring all edges of the 45-clique K45 red or
blue, consider the question, whether all such colorings have a
monochromatic 5-clique. Experimentally, the answer seems to be
affirmative, yet nobody has an argument to exclude the existence of a
counterexample -- and nobody is willing to check all possible colorings.
This problem originated from a theorem of Ramsey and is just one among
many famous problems that can be easily explained to the layman, but that
cannot be solved even by the experts of the Government with their latest
supercomputers.

Intuitively speaking, a problem is tractable if it can be solved
"quickly" — possibly via some instructive shortcut argument using new
and sophisticated concepts, such as symmetry, counting, induction,
continuity. Such concepts may take care of an enormous number of
elementary subcases, just as a single multiplication takes care of many
additions. Can the notion of tractability be given a mathematically
precise sense in the same way as it was done for the general notion of
computability in section one?

3.1 POLYNOMIAL-TIME AND ITS ROBUSTNESS. In a letter to von
Neumann of March 20, 1956, Goedel considered a Turing machine T with
the property that, for every formula F of the predicate calculus and every
natural number n, T decides whether F has a proof of length n. Let
TIME(F,n) be the number of steps T requires to decide, whether F has such
a proof; let MAXTIME(n) be the maximum of TIME(F,n) as F ranges over all
formulas. Goedel asked von Neumann to confirm his belief that
MAXTIME(n) is a slow growing function, perhaps growing proportionally to
n or to the square of n. Goedel noted that, if his belief were true, then
computers could somehow replace human reasoning for yes-no problems --
in spite of the undecidability of the Entscheidungsproblem. Goedel asked
von Neumann also about the possibility of fast procedures for deciding

such questions as to whether a given number is prime. We donft know
about von Neumann's answer to GoedePs letter. Von Neumann was
seriously ill at the time and died on February 8,1957. In any event, Goedel
adumbrated a quantitative measure for the complexity of solutions to
decidable problems and, thus, a measure for their tractability.

The step from decidability to tractability is the birth of complexity
theory: Instead of asking whether a problem is algorithmically solvable,
attention is focused on the resources needed for a solution. Today we
know that MAXTIME(n) is bounded by a polynomial iff P = NP (see below).
Goeders optimism on the growth of MAXTIME(n) was not shared by the
Russian cybernetic school: That school investigated, around 1956, the
role of exhaustive search ("perebor") and came to the conclusion that
for several important problems perebor seems to be inevitable. However,
a formal definition of a "universal perebor problem" was introduced by
Levin only in 1972, almost at the time of Cookfs theorem (see below). Why
might we be curious about a theory whose decidability is established, thus
making problem-solving in the theory seemingly a matter of mechanical
computation and not a matter of human ingenuity? Well, let us consider
the theory of addition, i.e. the set of all first-order statements which are
true in the additive semigroup of natural numbers. Presburger proved in
1929 that this theory is decidable, and Hilbert and Bernays regarded this
result as a significant building block in the foundations of mathematics.
However, Fischer and Rabin proved in 1974 that the theory has very high
complexity. More precisely, they showed that there exists a real number
c > 0 such that for every Turing machine T deciding the theory, there exist
true statements s, say of length n, for all sufficiently large n, such that T
will recognize their truth only after a number of steps larger than
2A(2A(cn)). (We say that s is of length n if it consists of n occurrences of
symbols.) Thus, the theory of addition is quite intractable, despite its
decidability. (For further information, see Rabinfs chapter in the "Handbook
of Mathematical Logic".) It was in 1960, that Rabin made explicit for the
first time the notion of computational complexity for functions. Let us
turn to the central definitions as they are standard now.

In the following complexity-theoretic definitions a word
over a finite set A is simply a finite string of elements of A; A is
conveniently regarded as an alphabet, and its elements are the
alphabet's symbols. We denote by A* the set of all words. A problem L
concerning A* is identified with a subset of A*. Thus, for A = (0,
1,.. . , 9) the problem of recognizing composite numbers is the set
COMPOSITE = (0, 1, 4, 6, ...), and the problem of recognizing prime
numbers is the set PRIME = (2, 3, 5, 7, 11, ...). For the alphabet A1

= (0 , 1 , ..., 9, *) the KNAPSACK problem is the set of all strings of
A1 of the form n1*n2*...*nk*m such that it is possible to obtain a
total weight of m kilograms by a suitable choice among the weights
n1,...,nk. The satisfiability problem SAT is the set of Boolean
formulas having a satisfying assignment. We say that a problem L is
decidable in polynomial time (for short, L is in P) iff there is a
polynomial r and a Turing machine T with the following property:
Having as its input an arbitrary word x with n (occurrences of) symbols,
T decides membership of x in L within at most r(n) steps.

In the mid-sixties, Cobham noted that many problems can be
computed in polynomial time, and he noted also that the notion of
polynomial time computability is robust, i.e. it is invariant under many
models of computation. Edmonds called an algorithm good whose
complexity grows polynomially with the length of the input.
As above, P denotes the class of problems that can be solved by a
Turing machine working in polynomial time. The reader who has
consulted at least two textbooks on Turing machines may have
observed that there is no unanimity about the equipment of Turing
machines: some books use quadruples, others use quintuples, or
right-infinite tapes, or double tapes, etc... . Fortunately, a simple
simulation argument shows that if a problem is solvable in
polynomial time by machines in one model, then it is also solvable in
polynomial time by machines in any other reasonable model.
Technically speaking, the class P is "robust", or textbook-invariant.
It would not be as simple to define a robust notion of quadratic, or
cubic time.

There is a very long list of problems, coming from all fields where
computation is done, for which no polynomial time algorithm is known.
The list includes PRIME, KNAPSACK, SAT, and, a fortiori, the decision
problem of every theory in first-order logic. A closer examination
shows that for every formula F, the task of deciding whether F is in SAT
can be split into two sub-tasks:

(i) magically guessing a satisfying assignment for F,
(ii) trivially checking that the guessed assignment satisfies F.

Replacing assignments with choices of weights, with divisors, or more
generally with "certificates", one easily sees that (i) and (ii) still
hold for KNAPSACK, COMPOSITE, and many other problems. Edmonds called
a problem well characterizable iff every solution has a polynomial time
checkable certificate.

To enable a Turing machine T to perform subtask (i), we drop the
determinacy condition that whenever qjSkCiqm and qjSkCrqm- are
instructions of T, then ciqm= crqm«; in other words, we allow T to choose
non-deterministically its next state. Given input x, the possible
configurations of T are conveniently located in a tree: The initial
configuration is at the bottom of the tree, and at each branching point
there is a configuration C having finitely many possible immediate
successors C\C", ... as given by the quadruples of T taking effect in
configuration C. T accepts x iff the tree has a path of successive
configurations ending with a halting configuration. We say that a problem
L is in NP iff there is a polynomial r and a nondeterministic Turing
machine T such that for any n and string x of length n, T has an accepting
computation of less than r(n) steps, if x is in L, and T has no accepting
computation at all, if x is not in L. It follows from the definition that
SAT, COMPOSITE, and KNAPSACK are all in NP. In 1975 Pratt observed that
PRIME is in NP because of the following well-known number-theoretic
result: n is prime iff for some a, aA(n-1) is congruent to 1 modulo n, and
aA(n-1)/q is not congruent to 1 modulo n for each prime divisor of n-1.

3.2 REDUCTIONS AND NP-COMPLETE PROBLEMS.. By analogy to
section 2.2 we now introduce the appropriate dynamic machinery
that enables us to pass from one problem to another. Suppose we
need a prime number recognizer, but the best we can get is a
machine R that recognizes successors of prime numbers: Thus, over
input 3,4,6,8,12,... R outputs a green light, while over input
0,1,2,5,9,... R outputs a red light. Still, we can efficiently use R to
recognize, whether a number y is prime by transforming y into y1 =
y+1 (here is the dynamics) and then looking at the output of R over
input y\ Needless to say, y will be prime iff the output is green.
The transformation from y to y1 quickly reduces the problem of
prime number recognition to prime successor recognition.

The following definition is due to Karp: A subset L of A* (i.e. a
problem L over alphabet A) is polynomially reducible to a subset M
of B* iff there exists a polynomial r and a deterministic Turing
machine T such that, for every string x of A* of length n, T outputs a
string x1 of B* in not more than r(n) steps with the property that x is
in L iff xf is in M. When problem L is polynomially reducible to
problem M we naturally regard M as being at least as difficult as L.
In the class NP there exist problems M that are maximally difficult
in the sense that every problem in NP is polynomially reducible to M.
These problems are called NP-complete, and are currently thought to

be intractable by the majority of computer scientists. In this sense,
a problem in P is regarded as not as intractable as an NP-complete
problem -- but see our remarks below.

Cook proved in 1971 the NP-completeness of SAT as follows: Let L
be a problem in NP, let r be a polynomial, and let T be a nondeterministic
Turing machine recognizing, whether a string s of length n belongs to L in
at most d = r(n) steps. We must quickly transform s into a Boolean
formula which is satisfiable iff s is in L. Since T can visit at most d
consecutive squares to the right or to the left of the scanned square, we
may safely use a tape with just 2d+1
squares. Since the alphabet of T and the number of states of T are both
finite, a suitably chosen Boolean formula B1 can express that T is in
its initial state, that its scanner is placed over the central square of
the tape containing the first symbol of the input, and that the tape
contains only the input surrounded by blank squares. There is no
difficulty in writing down a Boolean formula B2 saying that in the t-th
configuration, t = 0, 1,...,d, T is in a particular state, its scanner is
placed over a particular square, and each square contains a particular
symbol. Satisfying assignments of B2 are in one-one correspondence with
sequences CO, C1,...,Cd of configurations. It remains to be ensured
that each Ct+1 follows from Ct in accord with the rules imposed by the
quadruples of T. For this purpose we let a Boolean formula B3 say that
if the scanner of T at time t is on the x-th square, x = 0, 1,..., 2d, then the
remaining squares will maintain their symbols at time t+1, while the
symbol on the x-th square at time t+1 (or the next move of the scanner of
T) and Tfs state will be as prescribed by the quadruples of T. Finally, we
let Boolean formula B4 say that T is in the halting state at time d. Now
it is straightforward to show that satisfying assignments for the Boolean
formula S given by B1 & B2 & B3 & B4 are in one-one correspondence with
accepting computations CO, ..., Cd for s. The reduction of s to S can be
performed by a deterministic Turing machine working in polynomial time.
This yields the required fast reduction of L to SAT. Q.E.D.

KNAPSACK and many further problems were shown by Karp and
others, using polynomial reductions, to be NP-complete. Today the list of
NP-complete problems contains hundreds of examples from such diverse
areas as logic, combinatorial optimization, number theory, cryptography,
algebra, graph theory (see Garey and Johnson). Although all NP-complete
problems are polynomially reducible to one another, the fact that their
progenitor was the SAT problem is worth mentioning: Indeed, short
Boolean formulas describe short non-deterministic computations much
more immediately than, say, KNAPSACK weights, just as arithmetic

formulas immediately describe Turing computations. Furthermore,
although finite Boolean algebras are trivial, their presentations in terms
of short formulas in the propositional calculus, or switching circuits, or
binary codes, are a source of many important problems having deep
relations with various areas of mathematics. To quote Garrett Birkhoff in
his article "The Role of Modern Algebra in Computing" (SIAM-AMS
Proceedings, "Computers in Algebra and Number Theory", Volume IV 1971,
page 5): "...I regarded finite Boolean algebras as trivial because they
could all be described up to isomorphism, and completely ignored the
basic "shortest form" and "optimal packing" problems described above. "

3.3 RELATIVE INTRACTABILITY. The analogy recursive/re. =
P/NP is very suggestive, and in several cases recursion-theoretic
results have found their complexity-theoretic counterparts. Thus,
one can find in particular the analogue of the Kleene-Mostowski
hierarchy. However, while we saw that there are r.e. problems that
are not recursive, it is not known, whether there are NP problems
which are not in P. I.e., the main problem in Goedel's letter to von
Neumann is still unsolved. A simple simulation argument shows that
every problem in NP can be solved by a deterministic Turing machine
working in exponential time. More generally, for every language L
virtually the same simulation argument would also hold in the "L-
relativized" situation, when Turing machines are allowed to consult
an oracle that, in one step, recognizes whether a string is in L.
Thus, if a simulation argument were able to prove, say, P = NP, then
with the same proof one could also settle the L-relativized version
of the problem. Baker, Gill and Solovay found in 1975 two recursive
languages A and B yielding opposite answers to their respective
relativized versions of the P/NP problem—thus showing the
inadequacy of simulation arguments to solve the P/NP problem.

One of the major consequences of Cook's theorem is that, if a
polynomial time algorithm were found for just one NP-complete problem,
then all problems in NP would be solvable in polynomial time. One might
hope that the borderline between tractability and intractability would be
sharp in the following sense:
(i) If a problem is tractable, then sooner or later a polynomial time
algorithm for it will be found.
(ii) If a problem is intractable, then a proof of intractability will be
found.
Unfortunately, the following may also happen:
(iii) The problem can be shown to have a polynomial time decision
procedure, but, due to the non-constructive character of the proof of

tractability, nobody has an idea of how to construct a polynomial
algorithm for it.
(iv) The existence of a polynomial time algorithm might depend,
in a rather embarrassing way, on our adherence to this or that
set-theoretic school. (And conversely, as Goedel hinted at, our
set-theoretic beliefs might depend on which algorithms we wish to
homologate as tractable).
A "for instance" of (iv) is this: Let F be an arbitrary class of graphs
G with loops and multiedges and let F have the following property:
whenever G is in F and Gf is obtainable from a subgraph of G by a
sequence of edge contractions, then Gf is also in F. Robertson and
Seymour proved that membership in F is decidable in polynomial time.
Their proof, however, is irremediably nonconstructive and gives no hint
whatsoever for the construction of a polynomial time algorithm.
Similarly, Miller proved in 1976 that a polynomial time decision method
for primality exists, provided a certain extended form of Riemann's
hypothesis is true - this hypothesis being a generalization of a
well-known classical open problem. Thus, one of the problems raised
in Goedel's letter to von Neumann depends on a fundamental problem, to
which Riemann, Hilbert, and many other mathematicians devoted their
best efforts without solving it.

Having been incorporated into the large body of mathematics under
the name of "polynomial time computability" the notion of tractability is
acted upon by the dynamic elements streaming through the mathematical
body. One can clearly investigate different kinds of resources, other
than Turing time, and different measures of input complexity. What might
be highly interesting is to switch from the "worst case" scenario
adopted throughout this subchapter and consider instead the "average
case" complexity of a problem -- and try to explain rigorously, why many
exponential time algorithms work so well in practice. Alternatively, it
is interesting to study algorithms that toss coins during their
execution: This turns out to be very efficient for prime number
recognition. In the worst case scenario, a randomized algorithm makes
it difficult for the malicious adversary to choose instances of maximal
difficulty. But whether a mathematical concept can indeed capture all the
crucial features of "feasibility" remains to be seen: Conceptual analysis
followed by mathematical development and computational experience will
be crucial ingredients for an informed judgement.

4 PHYSICAL LIMITS OF STEPS. We discussed limits of
computations in the logical sense first and were concerned with the

Incompleteness Theorems and the unsolvability of the
Entscheidungsproblem. Then we described limits of computations in
the sense of feasibility w.r.t. particular machine models and
insisted on space and time limitations. Now we want to give "flesh"
to the abstract machines and ask: What are general physical
constraints on computational devices? We begin, however, with
some remarks about undecidability and unpredictability.

4.0 INCOMPLETENESS (revisited). As shown by Godel's First
Incompleteness Theorem, most mathematically interesting theories
contain undecidable statements. And, as the theory of addition shows,
even decidable theories may contain practically undecidable statements.
In the prototypical case of Peano arithmetic the existence of undecidable
sentences was regarded for many years as irrelevant to the working
mathematician. Then, in 1977, Paris and Harrington (see their chapter in
the "Handbook of Mathematical Logic") exhibited an undecidable sentence
in Peano arithmetic that has direct significance, at least, for the
mathematician working in Ramsey theory. Their sentence can be promptly
decided in, say, Zermelo-Fraenkel set theory with the axiom of choice
(ZFC) -- the first-order theory most frequently adopted as the official
foundation for the whole edifice of mathematics. However, ZFC is no less
incomplete than Peano arithmetic: For instance, as shown by Godel and
Cohen (see the chapters by Devlin and Burgess in the "Handbook of
Mathematical Logic"), one cannot settle in ZFC the long-standing
conjecture that there is no set whose cardinality lies strictly between
the cardinality of the continuum and that of the set of natural numbers.

Even the founders of set theory were not unanimous on the
problem, whether the evolution of set theoretic relativism would
follow the lines of the evolution of geometry after the discovery
of the independence of the parallel postulate. For instance, consider
the following concluding remarks in SkolenrTs 1922 paper "Einige
Bemerkungen zur axiomatischen Begrundung der Mengenlehre": "The most
important result above is that set theoretic notions are relative. I had
already communicated it orally to F. Bernstein in Gottingen in the winter
of 1915-16. There are two reasons why I have not published anything
about it until now: first, I have in the meantime been occupied with other
problems; second, I believed that it was so clear that axiomatization in
terms of sets was not a satisfactory ultimate foundation of mathematics
that mathematicians would, for the most part, not be very much concerned
with it. But in recent times I have seen to my surprise that so many
mathematicians think that these axioms of set theory provide the ideal

foundation for mathematics; therefore it seemed to me that the time had
come to publish a critique."

This Concluding Remark of Skolem's was preceded by the question:
"What does it mean for a set to exist if it can perhaps never be defined?"
to which Skolem gave a most interesting answer. "It seems clear that this
existence can be only a manner of speaking, which can lead only to purely
formal propositions - perhaps made up of very beautiful words -- about
objects called sets. But most mathematicians want mathematics to deal,
ultimately, with performable computing operations ..." And there are
developments in mathematics and proof theory (traceable to some of
Skolem's work, contemporaneous work of H. Weyl in "Das Kontinuum", and a
long constructivist tradition within mathematics) that develop the
scientifically applicable parts of set theoretic mathematics in weak
formal theories. And these theories are very much motivated by
computational concerns; cf. [Feferman].

It is possible that from a long process of natural selection
Euclidean-like set theoretic primates will emerge. But, perhaps, the
first-order treatment of sets rather parallels the Hamiltonian treatment
of the forced pendulum, where the official a-priori determinism is made
ineffective by a teeming microcosm of capricious details. If that were so,
the incompleteness of ZFC -- in the framework of a complete logic -- may
be ascribed to uncontrollable, uninteresting details in our set theoretic
stipulations/observations, just as unpredictability of a forced pendulum -
- in the framework of deterministic Hamiltonian mechanics -- is caused
by uncontrollable, uninteresting microscopic perturbations in the
preparation/measurement of the system. A forced pendulum is a small
sphere attached to the bottom end of a string; the sphere may oscillate in
any direction, while the top end of the string is forced to oscillate along a
horizontal line under the action of a crank shaft. Assume that the forcing
frequency is a little higher than the natural frequency of the pendulum.
Initially, the sphere will oscillate in parallel to the forcing oscillations,
but then a perpendicular component of motion appears. Eventually, the
motion becomes stationary along a circle with the period of the rotation
being equal to the frequency of the forcing oscillation. But however
precise we try to make our knowledge of the initial conditions of the
forced pendulum, and notwithstanding the deterministic character of the
Hamiltonian theory describing the forced pendulum, we cannot predict,
whether it will eventually rotate clockwise or counterclockwise.

Unpredictability follows from the fact that a multitude of
infinitesimal perturbations in the initial conditions causes macroscopic

bifurcations already in the short-term evolution of the system.
Bifurcation entails a sort of incompleteness of the underlying
deterministic theory, at least concerning the problem of inferring from
the initial conditions a precise truth value for the proposition "The
system shall eventually rotate clockwise". The best technology can't help
the Hamiltonian mountain to bring forth the appropriate clockwise or
counterclockwise mouse. The reader will recall that Plato and Galileo had
different views on the readability of the Book of Nature: The former
believed that the plethora of accidental perturbations affecting the
physical world and our perception of it would not allow any experimental
physical theory at all. The latter regarded the Book of Nature as written
in terms of triangles and circles in such a way that we can read it
"provando e riprovando" (by repeated experiment).

A typical reaction to incompleteness phenomena in mechanics is to
regard them as unphysical -- just as undecidable sentences in
mathematics are sometimes regarded as not genuinely mathematical. This
attitude is made explicit in quantum statistical mechanics by the slogan
"Nature does not have ideals": Whenever a physical system is described by
an algebra A of operators, A should have no nontrivial quotient structure,
i.e., A should have no nonzero ideal I. As a matter of fact, whenever A has
such an ideal, the quotient structure A/I and not A describes the relevant
physical system. Now, approximately finite-dimensional C*-algebras A
describing the thermodynamic limit process in quantum statistical
mechanics turn out to be presentable as sets of axioms in the infinite-
valued calculus of Lukasiewicz. Such an A is called "Godel incomplete"
just in case there is a presentation of A as a theory whose set of
theorems is recursively enumerable, but not recursive. However, it can be
proved that every Godel incomplete C*-algebra A must have a nontrivial
ideal; see [Mundici 1986]. Thus, if Nature does not have ideals, then no
natural system can be presented by a recursive set of axioms whose set of
consequences is not recursive. A fortiori, Nature must abhor
presentations which are essentially Godel incomplete; for in this case
any attempt to complete our knowledge of the system by eliminating all
quotient structures will irreparably destroy the original effective
presentability of the system.

As for the additive-multiplicative system of natural numbers in
Peano's axiomatization, or for the ZFC axiomatization of set theory, the
incompleteness of any quantum statistical system will show the
incompatibility of two desiderata, namely:
(i) completeness of the information available within the formalization,
and

(ii) effective computability of (the consequences of) this information.
It is, perhaps, of interest in this context to mention that the
undecidability of the halting problem has been used by da Costa and Doria
to show the undecidablity of problems in classical mechanics (and the
incompleteness of suitable axiomatizations of the theory). But here we
are not so much interested in what computation theory can do for
(axiomatizations of) mechanics, but rather what physics has to tell us
about limitations of computing devices; and it is to that topic that we
turn now.

4.1 ONE PHYSICAL STEP. Recall that Turing appealed in his analysis to
the limitations of the sensory apparatus of human computors; however, he
claimed that the justification for his (central) thesis lies ultimately "in
the fact that the human memory is necessarily limited". This remark is
not expanded upon at all, and we can only speculate as to Turing's
understanding of this "fact": Did he have in mind more than the spacial
limitations for "encoding" finite configurations (discussed below)? If
such limitations also hold also for computing devices, are there ways of
getting around their effect, e.g. by speeding up operations or by using more
complex ones?

Here is the description of a "concrete" Gedanken Turing machine T
deciding in less than 60 minutes, whether there exists an exceptional
coloring of K45, i.e. a red-blue coloring having no monochromatic 5-
cliques:
(1) T systematically tries all possible n=2A990 colorings of K45, unless an
exceptional coloring is found, in which case T rings a bell and stops;
(2) It is easy to write down the instructions for T in such a way that for
each individual coloring, T decides in less than half an hour, whether or
not the coloring has a monochromatic 5-clique: the number of 5-cliques to
check is (45 binomial 5)=1221759 -- a relatively small number;
(3) Having thus taken care of the software, we accelerate the tape of T, as
is frequently done in comic movies, in such a way that the second coloring
is checked in (1/4)-th, the third in (1/8)-th the n-th in 1/(2An)-th of an
hour;
(4) In this way T solves the problem in less than 60 minutes, as required.

What is wrong with this T? Does relativity theory impose an
insurmountable upper bound on the number of steps T can perform in one
second? Does quantum thermodynamics impose a lower bound on the
amount of heat being produced by T during the computation? We can argue
as follows: Suppose T is a physical Turing machine satisfying the
following two conditions:

(i) time is not recycled, i.e. no portion of the time used for one step can be
used for another step -- this is just a reformulation of the sequential
behavior of Turing machines;
(ii) energy is not recycled, i.e. no portion of the energy used for one step
can be used for another step.
Then, if f is the number of steps performed by T in one second (Tfs
frequency) and if W is the power used by T measured in watt (power =
energy per second), T will obey the inequality

fA2 <= (2 Greekpi W)/h,

where h is Planck's constant; that means the power absorbed by T grows
at least as fast as the square of its frequency. The argument for this
inequality is roughly this (for details, cf. [Mundici 1981]): The portion of
the tape that is scanned during a computation step undergoes a noticeable
modification of its physical properties. Hence, by the Heisenberg
inequality, the energy uncertainty (delta E) of the tape square must be
greater than h/(2 Greekpi delta t), where (delta t)=1/f is the time needed
for the step. A fortiori, the energy used for the step must be greater than
(delta E), and the inequality immediately follows from (i) and (ii).

Albeit small, the multiplication constant h has an effect, and the
quadratic lower bound for W can be used as a convincing argument for the
unfeasibility of (3) for Turing machines. Of course, one might
argue that parallel computers are able to circumvent condition (i), and
that a carefully designed Turing machine could, at least partially,
circumvent condition (ii). More radically, one might argue that
Heisenbergfs uncertainty principle need not imply that any amount of
energy is "used" for a computation step. In any case, no real computer has
so far violated the above lower bound. (There is a large literature on the
subject of physical limitations of the computing process. We refer the
interested reader to volume 21 of the International Journal of Theoretical
Physics, published in 1982; it is entirely devoted to the physics of
computation.) In the next subsection we want to explore, how space-time
features of computations are physically constrained, and how such
constraints prevent us from having "arbitrarily" complex operations.

4.2 ONE PHYSICAL REGION. In the above analysis of steps, there is no
allusion to the details of the (physical) construction of Turing machines -
- except that each step requires an interaction between the square being
scanned and the scanning head. Recall from section 1.3 that the restricted
formulation of Turing-machines achieves a mathematically uniform and
simple description of computations and recall further that its adequacy is

guaranteed by Turing's Theorem. The starting-point of the analysis was,
however, the "mechanical behavior" of a human computor operating on
finite configurations. This behavior can be described directly and
mathematically precisely.

But first we take a preliminary step and replace the states of mind
by a "physical and definite counterpart". This is done by considering
"states of mind" not as a property of the working computor, but rather as
part of the configuration on which he operates. Turing discusses this
replacement very vividly in section 9, III, of his classical paper "On
computable numbers": "It is always possible for the computer [i.e., in our
terminology, the computor] to break off from his work, to go away and
forget all about it, and later to come back and go on with it. If he does
this he must leave a note of instructions (written in some standard form)
explaining how the work is to be continued. This note is the counterpart
of the "state of mind". We will suppose that the computer works in such a
desultory manner that he never does more than one step at a sitting. The
note of instructions must enable him to carry out one step and write the
next note." Mathematically that is done quite beautifully in [Davis 1958]:
instantaneous descriptions of machines, that means finite sequences in
the alphabet of a Turing machine, contain exactly one state symbol that
indicates also by its position in the sequence which symbol is being
scanned; programs of Turing machines can then be viewed as a set of Post
production rules operating on (a single symbol of) such instantaneous
descriptions.

If in this way of describing Turing machines one replaces
finite sequences by finite graphs (with a few well-motivated
properties) and the simple Post-Turing operations on one symbol at
a time by operations on (a fixed finite number of) "distinguished"
graphs, then one arrives at the notion of a "Kolmogorov Uspensky
Machine". This latter notion, or rather a general concept of
algorithm, was introduced by Kolmogorov and Uspensky in 1958; for
an informative discussion see [Uspensky 1992]. As it turns out KUMs
compute exactly the Turing computable number theoretic functions,
i.e. the partial recursive functions. -- The focus on a fixed finite
number of distinguished graphs can be motivated by thinking again of
a human computor operating according to rules; and with this
understanding, the KUMs provide what we called above a
mathematically direct and precise description of Turing's computor.
But the restriction can also be motivated by physical considerations;
let us look at the underlying relativistic limitations, following
(Mundici [1981], pp.302 ff, Mundici [1983], pp. 43 ff, and Sieg [1993],

section 3.3 for the connection to Turing's claim that memory
limitations provide the justification for the finiteness conditions).

Assume a machine to operate on configurations containing z
different "symbols11, each symbol being physically represented or
encoded by at least one atom -- which is an altogether reasonable
assumption. Then there must be at least z pairwise disjoint
regions containing the codes (for the symbols). Otherwise, the
electron clouds of two different codes might overlap, making the
codes indistinguishable and leading the machine to "mental
confusion". Let c and a respectively denote the speed of light and
Bohr's radius of the hydrogen atom, where a/c = 1/5.655 x 10A(-18)
seconds. It follows that the codes will be contained in a volume V
of at least z (4/3) Pi aA3 cubic meters; that forces the diameter
2r to be larger than 2 a zA(1/3) meters -- the diameter being the
largest possible distance between two codes in this volume. Again
denoting by f the frequency of our machine, and noting that 1/f is
the time available for each computation step, since signals cannot
travel faster than light and a computation step involves the whole
configuration, it follows that f cannot exceed c/(2 a zA(1/3))
steps per second, whence the product of f and zA1/3 must be
smaller than (1/2) x 5.655 x 10A18, which points out a fundamental
incompatibility between high number of codes (thus size of
configurations) and high computational speed.

The operations of KUMs are thus necessarily restricted in
complexity, as they have to lead from distinguished graphs to
distinguished graphs; and within the given physical boundaries only
finitely many different ones are realizable. One alternative to speeding up
computations was mentioned already: parallel operations. Computing
devices that operate in parallel are cellular automata introduced by Ulam
and von Neumann. The latter used these devices to construct
(complicated) self-replicating machines. A particular cellular automaton
was made popular by Conway, the so-called game of life.
A cellular automaton is made up of many identical cells. Typically, each
cell is located on a regular grid in the plane and carries one of two
possible values, say, 0 or 1; after each time unit, its values are updated
according to a simple rule, depending only on the previous value and the
previous values of neighboring cells. Cellular automata of this sort can
simulate universal Turing machines, but they also yield discrete
simulations of very general and complex physical processes. It should be
noted that cellular automata do not satisfy the finiteness axioms for
Turing's computor. The reason is that computation steps may operate on

unbounded regions of the plane. But that does not mean that cellular
automata cannot be simulated by Turing machines: Indeed, they can be!

Another interesting model of parallel computation is provided by
Boolean circuits. The very practical justification for this model is that
the building blocks of most real machines are Boolean circuits. In their
simplest form Boolean circuits are given by formulas of the propositional
calculus. A Boolean formula F of q variables outputs 1 or 0 according to
whether the assignment b1,...,bq satisfies F or not. The most general
formulas contain also other connectives, such as "iff". Furthermore, while
the output value of a subformula other than a variable may serve as the
input for exactly one (larger) subformula, the output of a subcircuit may
serve as the input for many larger subcircuits simultaneously. The only
requirement is that there are no loops. In this way the input information
b1,...,bq is processed in parallel by many subcircuits, each sending their
outputs to other subcircuits, and finally we obtain the output.
In contrast to Turing machines, which can handle inputs of unbounded
length, a Boolean circuit accepts as its input only sequences of q bits.
There are 2Aq such sequences and 2A(2Aq) 0-1-valued functions of q
variables - most of them being irreducible, in the sense that the best
Boolean circuits computing the function are not very different from the
(trivial) listing of the values of the function over each possible
input. On the other hand, there do exist complex Boolean functions that
can be represented by short circuits. It is a very interesting problem
to write down the shortest possible circuits ~ recall Birkhoff's
quotation. Curiously enough, nobody knows the shortest circuits for
addition and multiplication. In fact, very little is known about the
computing power of Boolean circuits.

How can parallelism be captured in a general mathematical way, not
restricted to the simple pattern of cellular automata, but clearly
encompassing them? Robin Gandy provided for the first time in his [1980]
a conceptual analysis and a general description of parallel algorithms.
These algorithms are thought to be carried out by "discrete deterministic
mechanical devices", i.e. machines satisfying the physical assumptions
explicit in the above discussion of relativistic limitations. As to such
"mechanical devices" Gandy suggested that "the reader may like to imagine
some glorious contraption of gleaming brass and polished mahogany, or he
may choose to inspect the parts of Babbagefs 'Analytical Engine1 which are
preserved in the Science Museum at South Kensington". And, to give the
above "i.e. remark" in Gandy's language, "The only physical assumptions
made about mechanical devices ... are that there is a lower bound on the
linear dimensions of every atomic part of the device and that there is an

upper bound (the velocity of light) on the speed of propagation of changes".
He formulated axiomatic principles for these devices and proved that
whatever can be calculated by devices satisfying the principles is also
computable by a Turing machine; this is a marvel of analysis (though not
of exposition). The definitional preliminaries are lengthy; John
Sheperdson (1988) wrote: "Although Gandyfs principles were obtained by a
very natural analysis of Turing's argument they turned out to be rather
complicated, involving many subsidiary definitions in their statement. In
following Gandyfs argument, however, one is led to the conclusion that
that is in the nature of the situation ..."

We want to give an informal description that skirts the lengthy
definitional preliminaries, focusing rather on the intuitive considerations
that underly the mathematical formulations. The configurations on which
a Gandy machine GM operates are taken to be hereditarily finite sets over
some (potentially infinite) set A of urelements as labels, HF(A). The
configurations must satisfy two boundedness conditions: the first, called
Limitation of Hierarchy, expresses that all configurations of a given GM
must be in an initial segment of the cumulative hierarchy HF(A) containing
only sets of rank less than a fixed natural number; the second, called
Unique Reassembly, requires that all configurations can be uniquely
reassembled from parts of bounded size. The third and central condition,
called the Principle of Local Causation, governs the transition from one
configuration Cn to the next one Cn+1: Cn can be reassembled from parts
of bounded size that fit into a fixed finite number of isomorphism types;
Gm operates on these parts in parallel and assembles Cn+1 from locally
computed parts. It is here that the relativistic limitation on the speed of
light comes in and forces the restriction to parts of bounded size on which
the computation is carried out locally.

The succesive states of cellular automata (and the succesive
configurations of Gandy machines) can be computed by suitable Turing
machines; but how complex is this "serialization"? This is a most
interesting question, as the cellular automata are particular kinds of
dynamical systems that are used to simulate physical processes! Indeed,
Fredkin has been advocating the use of (reversible) cellular automata in
physics for some time. In his more recent "Digital Mechanics" he
conjectures "that there will be found a single cellular automaton rule that
models all of microscopic physics; and models it exactly." The interested
reader should delve into the paper by Richard Feynman, "Simulating
physics with computers", published in the International Journal of
Theoretical Physics in 1982. (See the "Quaderno" of Scientific American
quoted in the bibliography, but also [Herken 1988].)

4.3 DYNAMICAL SYSTEMS: irreducible simulation? Ever since the
introduction of mathematical models for the purpose of capturing aspects
of reality, their computational-predictive features have been absolutely
crucial. What is distinctive about the modern developments is this:
Computer simulations have led to an emphasis of the algorithmic aspect
of scientific laws and, conversely, physical systems are being considered
as computational devices that process information much as computers.
Let us compare the forced pendulum (resp., the classical pendulum) with a
Gedanken-45-clique (resp., with a 6-clique), whose red-blue coloring is
assumed to vary with time. Just as a classical exercise in Hamiltonian
mechanics immediately yields conservation of energy for the pendulum,
similarly the combinatorial argument given at the beginning of section 2.0
yields the conservation of a monochromatic 3-clique in the red-blue 6-
clique. By contrast, even the most powerful computer will not be able to
decide whether a given forced pendulum will eventually rotate clockwise,
or whether a variable red-blue 45-clique will always have a
monochromatic 5-clique.

Computational intractability stems, perhaps, from the impossibility
of conceptually handling (symbolizing) a virtually infinite amount of
relevant information, namely the list of digits of the real numbers
measuring the initial conditions of the pendulum, or the list of red and
blue edges in all possible colorings of the 45-clique. Owing to this
virtual impossibility, the forced pendulum, as well as the variable red-
blue 45-clique remain their own best simulators. When no shortcuts are
available, and the computer attains the highest degree of resemblance
with the simulated system, we regard the system (or, equivalently, the
simulation) as being irreducible. Although in some fortunate cases a
mathematical theorem can completely describe the evolution of a cellular
automaton, it follows from the above discussion that, in general, an
automaton is its own best simulator.

The Turing machine model is not well suited to simulations of
irreducible systems, as most physical processes seem to correspond
to parallel computations. Similarly, if the difficulty of a theory is
witnessed by sentences stating their own intractability by
sequential computation, we can't hope Turing machines to
efficiently handle the decision problem of that theory. Even non-
deterministic Turing machines are unsuitable, because they require
too much parallelism - for the search of an exceptional coloring of
the 45-clique we would replace the above Turing machine T by
2A990 Turing machines all working in parallel, each checking a

different coloring. The setting up of paradigms for parallel
computing is expected to afford a more efficient handling, not only
of simulations of physical processes, but also of combinatorial and
decision problems. It seems, ironically, that our mathematical
inquiry into "paper machines" has led us to a point where (effective)
mathematical descriptions of nature and (natural) computations for
mathematical problems coincide.

BIBLIOGRAPHY

J. Barwise (ed.), Handbook of Mathematical Logic, North-Holland,
Amsterdam, 1977.

N.C.A. da Costa, F.A.Doria, A partial answer to Arnol'd's 1974
Hilbert Symposium problems, In: Proceedings of the 3rd Goedel
Colloquium in Brno, August 24-27, 1993, A. Leitsch et al.,
Editors, Springer Lecture Notes in Computer Science, 1994, to
appear.

M. Davis (ed.), The Undecidable; Raven Press, Hewlett (New York),
1965.

M. Davis, Computability and Unsolvability; McGraw-Hill, New York,
1958

S. Feferman, Why a little goes a long way: Logical foundations of
scientifically applicable mathematics; to appear in: Philosophy of
Science (1993).

Edward Fredkin, Digital mechanics; Physica D 45 (1990), 254-270

R. Gandy, Church's Thesis and Principles for Mechanisms; in: The
Kleene Symposium (J. Barwise, H.J. Keisler, and K. Kunen, eds.),
North-Holland, Amsterdam, 1980, 123-148.

M.R.Garey, D.S.Johnson, Computers and Intractability, W.H.Freeman,
San Francisco, 1979.

R. Herken (ed.), The Universal Turing Machine (A half-century
survey), Oxford University Press, 1988.

D. Mundici, Irreversibility, Uncertainty, Relativity and Computer

Limitations, II Nuovo Cimento, Europhysics Journal, 61 B, n.2
(1981) pp. 297-305.

D.Mundici, Interpretation of AF C*-algebras in Lukasiewicz
sentential calculus, Journal of Functional Analysis, 65 (1986) pp.
15-63.

D. Mundici, Natural limitations of decision procedures for arithmetic
with bounded quantifiers, Archiv fuer mathematische Logik und
Grundlagenforschung 23 (1983), 37-54.

D. Mundici (ed.), Le Scienze Quademi (Italian Edition of Scientific
American), Vol. 56 "La Scienza dei Calcolatori", October 1990.

W. Sieg, Mechanical Procedures and Mathematical Experience; to
appear in: Mathematics and Mind (A. George, ed.), Oxford University
Press, 1993.

T. Toffoli, N.Margoulis, Cellular Automata Machines, MIT Press,
Cambridge, Massachusetts, 1988.

V.A. Uspensky, Kolmogorov and Mathematical Logic; Journal of
Symbolic Logic, 37 (2) (1992), 385-412.

J. van Heijenoort (ed.), From Frege to Goedel; Harvard University
Press, Cambridge, 1967

J. von Neumann, The Computer and the Brain; Yale University Press,
1958.

