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Abstract

Recursive linear structural equation models can be represented by directed acyclic graphs.
When represented in this way, they satisfy the Markov Condition. Hence it is possible to
use the graphical d-separation to determine what conditional independence relations are
entailed by a given linear structural equation model. I prove in this paper that it is also
possible to use the graphical d-separation applied to a cyclic graph to determine what
conditional independence relations are entailed to hold by a given non-recursive linear
structural equation model. I also give a causal intepretation to the linear coefficients in a
non-recursive structural equation models, and explore the relationships between cyclic
graphs and undirected graphs, directed acyclic graphs with latent variables, and chain
independence graphs.



1. Introduction

Over the last decade, a number of investigators have contributed to our understanding of a

class of statistical models, directed acyclic graph (or DAG) models, encoding independence

and conditional independence constraints. (For a good introduction, see Pearl 1988.

Henceforth we will simply say "conditional independence constraints" rather than

"independence and conditional independence constraints".) As a consequence of this

research, DAG models have acquired several useful features, including a relatively clear

causal interpretation, easily computed maximum likelihood estimates for multinomial and

other distribution families, efficient decision procedures for determining the statistical

indistinguishability of DAGs, procedures for forming conditional distributions, reliable

procedures for generating a class of DAG models from sample data and background

knowledge, etc. The key to these developments was the formulation of a purely graphical

condition for the conditional independence of variables in DAG models.

DAG models are almost generic; a variety of familiar statistical formalisms, such as linear

structural equation models, various types of regression models, factor analytic models,

path models, and discrete latent variable models can be represented as DAG models. But

DAG models do exclude a kind of model familiar in engineering and economics. Processes

with feedback are sometimes represented by simultaneous equations in which a variable X\

is expressed as a function of X2 and other variables, and X2 is also a function of X\ and

other variables. Such models are naturally associated with directed cyclic graphs, and one

would therefore like to have a theoretical understanding comparable to that now available

for DAG models. The econometric literature has developed an estimation theory for linear

"non-recursive" models, and the engineering literature contains algorithms that can be used

to compute correlations in the linear case for non-recursive systems that are based on cyclic

graphs. The first essential step in generalizing from acyclic to cyclic directed graphical

models requires a purely graphical condition for conditional independence. The principal

result of this paper is such a condition for linear models. The condition may generalize to

the non-linear case, but proofs for the generalization have not yet been obtained.



2. DAG Models

A DAG is an ordered pair <V,E> where V is a set of random variables, and E is a set of

directed edges (ordered pairs of vertices) between random variables. By definition, there

are no directed cycles in a DAG, i.e. there are no directed paths from a vertex to itself. In a

DAG model the directed acyclic graph can be used for two quite distinct purposes. On the

one hand, each DAG G can be paired with any member P of families of probability

distributions over variables represented by vertices in the graph. One fundamental

condtions relates DAGs to distributions. The Markov Condition states that for

admissible <G, />>, X is independent of its non-descendants in G given its parents in G.

For a positive distribution, the Markov Condition entails that the joint density function over

the variables in V can be factored according to the formula:

/(V) = JJ/(V1Pareiits(lO)
VeV

where A is in Parents( V) if and only if there is a directed edge from A to V in G, and we

use '/" to denote joint, marginal, and conditional density functions.

A DAG G can also be used to represent hypothetical causal relations between random

variables. Under such an interpretation, an edge A -> B indicates that there is a direct

influence of variable A on variable B not blocked by holding constant any other variables in

the system.

Pearl, Geiger, and Verma have shown that given a DAG G, there is a graphical condition

among disjoint sets of variables A, B, and C that holds if and only if for all distributions

satisfying the Markov Condition for G, A is independent of B given C. In order to define

d-separability, we need the following definitions. A directed edge from A to B is an

ordered pair <AJB> in which A is the tail of the edge and B is the head; we say the edge

is out of A and into 5, and A is parent of B and B is a child of A. Let an undirected

path U be a sequence of edges <£i,...,En> in G such that for 1 < / < n one of the

endpoints of £/ equals one of the endpoints of £/+i, and £/ * £/+i2 A path U is acyclic if

2In a number of articles and books, including Spirtes, Glymour and Scheines(1993), an undirected path is
defined as a sequence of vertices rather than a sequence of edges. The two definitions are essentially
equivalent for DAG models, because a pair of vertices can be identified with a unique edge in the graph.



no vertex occurring on an edge in the path occurs more than once. Let a directed path D

be a sequence of edges <£i,...,£„> in G such that for 1 < / < n the head of £/ equals the

tail of E/+i, and £/ * £ / +i . If there is an acyclic directed path from A to B or B = A then A

is an ancestor of/?, and B is a descendant of 4 . A vertex V is a collider on undirected

path U if and only if two adjacent edges on U are into V. For a directed acyclic graph G, if

X and Y are vertices in G, X * y, and W is a set of vertices in G not containing X or Y,

then X and K are d-separated given W in G if and only if there exists no acyclic

undirected path U between X and K, such that (i) every collider on U has a descendent in

W and (ii) no other vertex on U is in W. We say that if X * Y, and X and Y are not in W,

then X and Y are d-connected given W if and only if they are not d-separated given W.

If U, V, and W are disjoint sets of vertices in G then we say that U and V are d-

separated given W if and only if every pair <U,V> in the cartesian product of U and V is

d-separated given W. If U, V, and W are disjoint sets of vertices in G then we say that U

and V are d-connected given W if and only if U and V are not d-separated given W.

D-Separation Theorem (See Pearl 1988): In a DAG G containing disjoint sets of

variables X, Y and Z, X is d-separated from Y given Z if and only if in every distribution

that satisfies the Markov Condition for G, X is independent of Y given Z.

Linear structural equation models (which we will refer to as linear causal models or LCTs)

can also be represented as DAG models. The following is an example of a an LCT, where

a and b are real constants, ex ,£y, and £z are "error terms", and X, Yy Z, are random

variables:

X = a

ex* £y, and £z are jointly independent and normally distributed

An LCT consists of a set of linear equations relating random variables to each other and a

unique exogenous "error term", and a joint distribution over the error terms. The set of

equations can be represented by a directed graph, in which all of the non-error terms that

appear in the equation for a given variable V are parents of V in the graph. (See figure 1.)

However, a cyclic graph may contain more than one edge between a pair of vertices. In that case it is no
longer possible to identify a pair of vertices with a unique edge.



Figure 1

If the directed graph that represents the set of equations is acyclic, the model is said to be

recursive.

We say that an LCT containing disjoint sets of variables X, Y, and Z linearly entails

that X is independent of Y given Z if and only if X is independent of Y given Z for all

values of the non-zero linear coefficients and all distributions of the exogenous variables in

which they have positive variances. Similarly an LCT containing X, Yy and Z, where X

* Y and X and Y are not in Z, linearly entails that pxy.Z = 0 if and only PXY.Z = 0 for

all values of the non-zero linear coefficients and all distributions of the exogenous variables

in which they have positive variances. Kiiveri and Speed (1982) pointed out that if the

error terms are jointly independent, then any distribution that is an LCT with an acyclic

directed graph G satisfies the Markov Condition for G; one can therefore use the d-

separation relation applied to the DAG in a recursive LCT to compute the conditional

independencies and zero partial correlations linearly entailed by the LCT.

3. Non-Recursive LCTs and Cyclic Graphs

Non-recursive LCTs are commonly used in the econometrics literature to represent

feedback processes that have reached equilibrium. Corresponding to a set of non-recursive

linear equations is a cyclic graph, as the following example from Whittaker (1990)

illustrates.

X3 = 0 3 1 XXX + 03 4 XX4

X4 = 042**2 + 043**3 + £X4

. £X2> £X3> £X4 are jointly independent and normally distributed



• X
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I

Figure 2

The graph is written with the convention that an edge does not appear if and only if the

corresponding entry in the coefficient matrix is zero.

The use of non-recursive LCTs to represent feedback processes presents several problems

of interpretation. The coefficients in a recursive LCT can be interpreted as regression

coefficients, and a zero coefficient always linearly entails some conditional independence.

In contrast, Haavelmo (1943) pointed out that the coefficients in a non-recursive LCT

cannot be interpreted as regression coefficients. Whittaker (1990) pointed out that in a non-

recursive LCT it is not possible to interpret the absence of an edge between vertices A and

B as independence of A and B conditional on some subset of variables determined by the

graphical structure. Indeed, there are non-recursive LCTs with zero coefficients (i.e. absent

edges) that do not imply any conditional independencies at all. We will consider the

problem of interpreting the linear coefficients both in terms of (i) the causal interpretation

attached to them, and (ii) the implications of the linear coefficients for conditional

independence.

In fact, the causal interpretation of the linear parameters is as clear in the cyclic as in the

acyclic case, and as clear in linear systems as in nonlinear. In order to explain the causal

interpretation of the coefficients we must distinguish between prediction in a population

with a fixed probability distribution, and prediction when the probability distribution has

been changed by an outside intervention, or manipulation of the variables. The difference

between these two kinds of prediction was well described in Haavelmo's (1943) article:

The economist may have two different purposes in mind when he constructs a

model...

First, he may consider himself in the same position as an astronomer; he cannot

interfere with the actual course of events. So he sets up the system ... as a tentative

description of the economy. If he finds that it fits the past, he hopes it will fit the



future. On that basis he wants to make predictions, assuming that no one will

interfere with the game.

Next, he may consider himself as having the power to change certain aspects of

the economy in the future. If then the system ... has worked in the past, he may be

interested in knowing it as an aid in judging the effect of his intended future

planning, because he thinks that certain elements of the old system will remain

invariant.

For example, in the actual population there are many causes of smoking, such as peer

pressure. However, one might intervene to ban all smoking, and if the ban is effective,

then the value of smoking has been manipulated to zero, and peer pressure is no longer a

cause of smoking. We must be careful to distinguish between the unmanipulated

population (in which peer pressure causes smoking) and the unmanipulated population (in

which peer pressure does not cause smoking.) In order to predict the effect of an

intervention, one must modify the equations so that they describe the manipulated

population, not the unmanipulated population. This can be done by setting variables whose

values have been set by outside manipulation to constants. For example, consider the

following non-recursive LCT.

Y = axX + bxZ + ey
Z = cxY + £z

Ex, £y, and Ez are jointiy independent

Figure 3

Suppose the variable Y in figure 3 is manipulated to a given value. In that case, the causes

of Y in the pre-manipulation population (X, Z and By) are no longer causes of Y in the

manipulated population. The manipulation can be represented by writing a new set of

structural equations in which Y is simply equal to a constant

Ex and Ez are independent



(This assumes of course that the only effect on the intervention was to set the value of Y,

and that the intervention did not interfere with the other causal mechanisms described by

the other equations.) The new set of equations can be represented by the graph in figure 4

in which all edges into Y have been broken, but all other edges have been left intact

The coefficient c of Y in the equation for Z now has the following simple causal

interpretation. If all of the other parents of Z are manipulated to fixed values, then a unit

change in the value of Y produces a change of c in the value of Z. One consequence of this

interpretation is that since the coefficient of X in the equation for Z is zero, then when all of

the parents of Z (i.e. Y) are manipulated to have a constant value, a change in the value of

X has no effect on the value of Z. Note that this does not imply thatX is independent of Z

conditional on Y in the unmanipulated population, although X is independent of Z given Y

in the manipulated population. (A more general theory of prediction of the effects of

manipulations is presented in Spirtes, Glymour, and Scheines (1993). Haavelmo (1943)

presents an example of a manipulation in which his calculations seem to proceed from

implicit assumptions similar to the ones described here.)

How can we use the directed graph to determine what conditional independence relations

are linearly entailed by a directed graph, cyclic or acylic? There are suggestions that just as

d-separation allows one to calculate the conditional independence relations and zero partial

correlations linearly entailed by a recursive LCT, so d-separation allows one to calculate the

conditional independence relations and zero partial correlations linearly entailed by a non-

recursive LCT, and this result is conjectured in Spirtes, et al. (1993).Essentially this result

is proved in Glymour, et al. (1987) for the special case of a separating set consisting of a

single variable. Another special case follows from a result presented in Whittaker (1990).

In a DAG G, V is a common cause of A and B if and only if there is a directed path from

V to A that does not contain 5, and a directed path from V to B that does not contain A.

When the set U of all variables in a separating set and the separated variables together

includes all common causes of members of U, the result follows by writing the error

variable for each member of U as a function of variables in U and computing the inverse

covariance matrix, as in Whittaker(1990), p. 302.



The general conjecture is correct:

Cyclic D-Separation Theorem 1: In an LCTL with (cyclic or acyclic) directed graph

G containing disjoint sets of variables X, Y and Z, X is d-separated from Y given Z if and

only L linearly entails that X is independent of Y given Z.

Cyclic D-Separation Theorem 2: In an LCTL with (cyclic or acyclic) directed graph

G containing Xy Y and Z, where X * Y and Z does not contain X or Yy X is d-separated

from Y given Z if and only L linearly entails that pxy.z = 0.

The proofs are given in the Appendix, but the idea is as follows. Haavelmo (1943) noted

that the non-error terms in an LCT can be derived from a variable transformation of the

error terms, and vice-versa. Hence the joint distribution of the non-error terms can be

derived from the joint distribution of the error terms by variable substitution. Let the set of

non-error variables in an LCT L be V. We will denote the set of error terms for variables in

subset S c V a s Err(S). In an LCT, each non-error variable can be expressed as a linear

function of the error variables. Because the system of equations is linear, each error

variable can also be expressed as a linear function of non-error variables. In an LCT with

graph G, for a variable X in V, let Parents(X) be the set of variables that are parents of X

in graph G, and Ancestors(X) be the set of variables that are ancestors of X in graph G.

(Recall that the graph contains only non-error variables.) For each X in V, ex (the error

variable forX) is a linear function of X and the non-error parents of X in the graph, that is

ex = g(A\Parents(X)).

By assumption

/(Err(V))=
€EErr(\)

We can derive the density function for the set of variables V by replacing each £/ in f(£;) by

g(X/,Parents(X/)).

/ ( V ) =
XeV

where /Err(V)->V is the Jacobian of the transformation. Because the transformation is
linear, the Jacobian is constant



When determining whether X and Y are independent given Z we are actually interested in

transforming only some of the error variables. It follows from a result in Lauritzen et al.

(1990) that in the case of distributions that satisfy the Markov Condition for an acyclic

directed graph C,

/(Ancestors(X uYuZ))= J|/(£(K, Parents^)) x c
VeAncestors(XuYuZ)

and this result extends to linear structural equations represented by cyclic graphs also.

If X is not in Z then let W be a member of Samefactor(X,Y,Z) just when W is not a

member of Z and there is some factor in

ReY

that contains both W and X. Let Samefactor*(X,Y,Z) be the transitive closure of

Samefactor(X,Y,Z), i.e. W is in Samefactor*(X,Y,Z) if and only if W is in
Samefactor(X,Y,Z) or there is some M in Samefactor*(X,Y,Z) such that W is in
Samefactor(M,Y,Z). Let W be in Samefactor*(X,Y,Z) if and only if W is in
Samefactor*(X,Y,Z) for some X in X.

The Appendix contains a proof that in an LCT with directed graph G, if Y is d-separated

from X given Z then no member of Y is in Samefactor*(X,Ancestors(X u Y u

Z),Z), and if no member of Y is in Samefactor*(X,Ancestors(X u Y u Z),Z) then it

is possible to partition Ancestors(X u Y u Z ) into two sets A and B that overlap only in

Z, and such that the joint density of Ancestors(X u Y u Z) is equal to h(A)h\B). The

latter fact entails that X is independent of Y given Z.3

3There is a graphical relationship that corresponds to Samefactor(X,Y,Z) which we can call d-adjacency.
In graphical terms, a variable V is d-adjacent to X given Y and Z (and hence in Samefactor(X,Y,Z)) if
and only if in the subgraph of G containing only members of Y, V is not in Z and is either a child of X, a
parent of X, or V and X have a common child. Just as there is an undirected path between X and Y if and
only if Y is in the transitive closure of the variables adjacent to X, so X is d-connected to Y given Z if and
only if Y is in the transitive closure of the variables d-adjacent to X given Ancestors(X u Y u Z ) and
Z. This observation is closely related to the characterization of d-separation in Lauritzen e t aL (1990).



10

It is interesting to note that although the d-separation relation allows one to calculate the

conditional independencies linearly entailed by either acyclic or cyclic LCTs, in some sense

d-separation plays a fundamentally different role in cyclic graphs than it does in acyclic

graphs. In acyclic graphs, d-separation is ususally interpreted as a device for calculating the

consequences of the Markov Condition. However, it does not play this role for cyclic

graphs. Consider, for example the cyclic graph depicted in figure 5.

The LCT with the graph in figure 5 linearly entails two conditional independence relations:

X and Z are independent conditional on Y and W, and Y and W are independent

conditional on X and Z. However, a straightforward extension of the Markov Condition to

cyclic graphs does not entail any conditional independence relations (because every vertex

is a descendant of every other vertex.)

4. Cyclic Graphs and Latent Variables

Consider a directed acyclic graph G representing a causal process, and any associated

probability distribution P, where <GJP> satisfy the Markov condition. Suppose that only a

proper subset O of variables in the graph are measured or recorded. What conditional

independence relation among variables in O is required by the Markov condition applied to

G? What graphical objea represents those marginal conditional independence relations and

also represents information about G? An answer to both these questions is given in Spirtes,

Glymour, and Scheines (1993), based on results given in Verma and Pearl (1990). Verma

and Pearl introduced the notion of the inducing path graph for G which contains only

measured variables in G. In Spirtes, Glymour, and Scheines (1993) it is proved that the

inducing path graph encodes all of the marginal conditional independence relations G

entails (by the Markov condition) and includes some of the causal information represented

inG.
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An undirected path U between X and Y is an inducing path over (or given) O in G if and

only if (i) every member of O on U except for the endpoints is a collider on £/, and (ii) for

every vertex V that is a collider on {/, there is an acyclic directed path from V to X or from

V to Y. In Verma and Pearl(1990) it was proved that there is an inducing path between X

and Y in G over O if and only if X and Y are dependent conditional on every subset of

0\{X,y}. For variables X, Y in O, in the inducing path graph H for G over O, X <-> Y

in H if and only if there is an inducing path between X and Y over O in G that is directed

into X and also directed into Y; there is an edge X -> Y in G if and only if there is no edge

X <-> Y in //, and there is an inducing path between X and Y over O in G that is out of X

and into Y. (It is easy to show that if G is acyclic then there are no inducing paths

connecting X and Y in G over O that are neither directed into X nor into Y.) The two kinds

of edges in an inducing path graph H have a straightforward causal interpretation: A

directed edge X -> Y occurs in H only if there is a directed path from X to Y in G, i.e. X is

a cause of y; a double headed edge X <-> Y occurs in H only if there is an unmeasured T

that is a common cause of X and Y.

In general, it is not possible to construct a unique inducing path graph from a given

distribution. However, the FCI algorithm (Spirtes, Glymour, and Scheines 1993)

constructs a partially oriented inducing path graph (i.e. an inducing path graph in which

some of the orientations of the edges are not determined) from a distribution

It is easy to extend the relationship between conditional dependence and inducing paths to

cyclic graphs:

Theorem 3: If L is an LCT with directed graph G (cyclic or acyclic) containing a subset

of variables O, and X and Y are in O, that X and Y are dependent conditional on all

subsets of 0\{X,y} if and only if there is an inducing path between X and Y given O in

G.

However, there are several important differences between inducing paths in an directed

acyclic graph and in a directed cyclic graph. First, it is possible that in a directed cyclic

graph that there are inducing paths between X and Y that are out of X and out of Y.

Second, it is possible that a directed cyclic graph over a set of variables V contains an

inducing path between X and Y given the entire set of variables V, whereas this cannot

happen in a directed acyclic graph. For example, in figure 2 the path consisting of the
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edges <XiyX^> and <^4^3> is an inducing path between X\ and^4 given V = {X\y

X2,^3,^4} that is out of X\ and out of X4. The existence of inducing paths given the

entire set of variables in directed cyclic graphs but not in directed acyclic graphs is the

reason that the absence of an edge between X and Y in a directed acyclic graph always

entails that X and Y are independent conditional on some subset of variables in the graph,

whereas the absence of an edge between X and Y in a directed cyclic graph does not

always linearly entail some that X and Y are independent conditional on some subset of

variables in the graph.

Sometimes it is not possible to determine from a given probability distribution whether it

was generated by a non-recursive set of equations, or a recursive set of equations. For

example, the graph in figure 3 linearly entails the same (empty) set of conditional

independence relations as any complete directed acyclic graph containing just the variables

X, Y, and Z.

However, there are cases where it is possible to determine from a given probability

distribution whether it was generated by a non-recursive set of equations, or a recursive set

of equations. The cyclic graph in figure 2 does not linearly entail the same set of

conditional independence relations as any directed acyclic graph, nor (contrary to a remark

in Spirtes, Glymour and Scheines, 1993) is there any directed acyclic graph with latent

variables that entails the same set of conditional independence relations over O as the cyclic

graph in figure 2 does.4

5. Cyclic Directed Graphs and Chain Independence Graphs

A chain graph consists of a set of variables connected by directed edges and undirected

edges (Wermuth and Lauritzen 1990). It is supposed that the variables can be partitioned

into blocks which are completely ordered. Variables within a block are not ordered.

Variables from different blocks have the same order as the blocks they are in. Given a

partial ordering of the variables of this type, a chain graph G represents a distribution P if

and only if

4This is easily determined by application of the FCI algorithm to the set of conditional independence
relations entailed by figure 2, which yields a POIPG which entails the wrong set of conditional
independence relations. This can happen only when the distribution is not the marginal of any distribution
represented by a directed acyclic graph.
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(i) there is a directed edge from X to Y in G whenever X is before Y in the partial

ordering, and X is dependent on Y given all variables except X and Y that are not

after Y in the partial ordering;

(ii) there is an undirected edge between X and Y in G whenever X is not before Y

and Y is not before X in the partial ordering, and X is independent of Y given all

variables except X and Y that are not after Y in the partial ordering.

It is sometimes suggested (e.g. Whittaker (1990)) that in a chain independence graph a

directed edge between X and Y represents X causes Y, and an undirected edge between X

and Y represents a feedback process between X and Y. If that is the case, then the proper

representation of the causal structure that we have depicted in figure 2 is the block chain

graph in figure 6.

- • X

Figure 6

The chain graph in figure 6 does not entail the same set of conditional independence

relations as the set of linear equations associated with figure 2. Figure 6 does not entail that

X\ and Xi are independent given X3 and X4, as the cyclic graph in figure 2 and the non-

recursive set of equations associated with figure 2 do. Clearly, either the set of linear

equations associated with figure 2 do not represent any kind of feedback process, or this

chain independence graph does not represent the kind of feedback process represented by

the equations associated with figure 2. Whittaker seems to conclude that the latter is the

case.

However, the use of non-recursive sets of linear equations to represent feedback is

common not only in econometrics and sociology, it is also a well-established and well

tested practice in engineering (where "flowgraph analysis11 of circuits with amplifiers and

various signal systems with feedback is common.) In the absence of any convincing

argument that all feedback processes ought to be represented by block chain graphs, I see

no reason to abandon the use of non-recursive sets of linear equations as a model of

feedback.
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6. Cyclic Directed Graphs and Undirected Graphs

Undirected graphs are also used to represent probability distributions. Whittaker(1990)

gives the following definition (where Xjc is a set of random variables):

The conditional independence graph of X is the undirected graph G = (KJZ) where

K = {l,2,...jt) and (ij) is not in the edge set E if and only if Xi ii Xj\Xk\{ij).

A DAG G satisfies the Wermuth Condition if and only if no pair of non-adjacent vertices

have a common child. (See Whittaker 1990.) No DAG that fails to satisfy the Wermuth

Condition entails the same set of conditional independence relations as any undirected

graph. However, there are directed cyclic graphs which fail to satisfy the Wermuth

Condition and that linearly entail the same set of conditional independence relations as an

undirected graph. For example, the cyclic graph in figure 3 and a complete undirected

graph both entail no conditional independence relations. The following theorem states a

necessary condition for a directed graph to linearly entail the same set of conditional

independence relations as some undirected graph.

Theorem 4: A (cyclic or acyclic) directed graph G over V does not linearly entail the

same set of conditional independence relations as some undirected graph G1 if there is a

pair of vertices X and Y in G such that X and Y have a common child Q and there is no

inducing path between X and Y over V in G.

An undirected graph G' moralizes a directed graph G when G and G* contain the same

vertices, and A and B are adjacent in G1 if and only they are adjacent in G or they have a

common child in G. In the case of directed acyclic graphs, the undirected graph that

moralizes G entails a subset of the conditional independence relations entailed by G. The

same is true of cyclic graphs.

Theorem 5: If GM moralizes a (cyclic or acyclic) directed graph G, GM entails a subset

of the conditional independence relations linearly entailed by G.

An undirected graph is chordal if and only if it contains no undirected cycle of length four

or more that has no edge joining two non-consecutive vertices. If an undirected graph is

not chordal, then it is does not entail the same set of conditional independence relations as
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any DAG. However, there are non-chordal undirected graphs that entail the same set of

conditional independence relations as are linearly entailed by a cyclic graph. For example,

the undirected graph in figure 7 entails the same conditional independence relations as the

directed graph in figure 5.
Y

I conjecture that the undirected graph in figure 8 entails a set of conditional independence

relations that is not equal to the set of conditional independence relations linearly entailed

by any directed graph, cyclic or acyclic (because in any directed graph with the same edges

the Wermuth Condition is violated.)

Figure 8

6. Some Open Questions

The following questions remain open.

1. Is it possible to extend the d-separation theorems to non-linear structural equation

models? The assumption of linearity is used in the proofs only to show that the Jacobean of

the transformation is constant If it could be shown that the Jacobean of a wider class of

transformations of the error terms factors in the correct way, the proof could be extended to

non-linear structural equation models. Is it possible to extend the d-separation theorems to

discrete distributions?
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2. There are polynomial algorithms (Verma and Pearl 1990, Fryedenberg 1990) for

determining when two arbitrary directed acyclic graphs entail the same set of conditional

independence relations. Is there a polynomial algorithm for determining when two arbitrary

directed graphs (cyclic or acyclic) linearly entail the same set of conditional independence

relations? There are polynomial algorithms (Spirtes and Verma 1992) for determining when

two arbitrary directed acyclic graphs entail the same set of conditional independence

relations over a common subset of variable O. Is there a polynomial algorithm for

determining when two arbitrary directed graphs (cyclic or acyclic) linearly entail the same

set of conditional independence relations over a common subset of variables O?

3. There are polynomial algorithms for reliably inferring features of (sparse) directed

acyclic graphs from a probability distribution when there are no latent common causes (see

Spirtes and Glymour 1991, Cooper and Herskovitz 1992, and Wedelin 1993). Are there

polynomial algorithms for reliably inferring features of directed graphs (cyclic or acyclic)

from a probability distribution when there are no latent common causes?

There are algorithms for reliably inferring features of directed acyclic graphs from a

probability distribution even when there may be latent common causes (see Spirtes, 1992

and Spirtes, Glymour and Schemes 1993). Are there reliable algorithms for inferring

features of directed graphs (cyclic or acyclic) from a probability distribution even when

there may be latent common causes?
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Appendix

Let the set of non-error variables in an LCT L be V. We will denote the set of error terms

for variables in subset S c V a s Err(S). In an LCT, each non-error variable can be

expressed as a linear function of the error variables. Because the system of equations is

linear, each error variable can also be expressed as a linear function of non-error variables.

For each X in V, ex (the error variable forX) is a linear function of X and the non-error)

parents of X in the graph, that is ex = g(X,Parents(X)).

By assumption

/(Err(V))=
eeErr(V)

We can derive the density function for the set of variables V by replacing each £/ in f(£/) by

g(X/,Parents(X/)).

Xe\

where /Err(V)->v is the Jacobian of the transformation. Because the transformation is

linear, the Jacobian is a constant.

When determining whether X and Y are independent given Z we are actually interested in a

partial transformation of the error variables. Suppose that R is a subset of V such that each

ancestor in V of a member of R is also in R. Then none of the variables in R is a function

of any error term in Err(V\R). (This follows from Mason's rule. See Heisel975.)

/(R u Err( V \ R)) = JJ-f <*<*• Parents(X)) x ]Jf(e) x /Err( V)->RuErr( v\R)
XeR £6Err(V\R)

Lemma 1: In an LCT with directed graph G, if V is the set of non-error variables, and R

is a subset of V such that every ancestor of a member of R is also in R, then

/(R) = TLf(g(R,P*rmts(R)) x c,
UeR )
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where c is a constant.

Proof. Let S = Err(V\R). Let dS be

and integration over dS be multiple integration over the product of the d£.

/(R u Err( V \ R)) = ]Jf(g(R, Parents(/?)) x Y[f(e) x 7Err( V)->RuS
ReR eeS

J/(R u Err( V \ R))dS = J Y[f(g(R,Pzrents(R)) x
- o o -oo ReR eeS

oo

J7/(^(/?,Parents(/?))xyErr(V)_>RuS x J Hf(e)dS =
ReR -oo seS

x /Err(V)->RuS
ReR

because none of the variables in R is a function of any error term in S. Hence, we can

write the density function for R as

UeR J

If Z is any subset of V, and X is not in Z then let W be a member of Samefactor(X,Y,Z)

just when W is not a member of Z and there is some factor in

ReY

that contains both W and X. Let Samefactor*(X,Y,Z) be the transitive closure of

Samefactor(X,Y,Z), i.e. W is in Samefactor*(X,Y,Z) if and only if W is in

Samefactor(X,Y,Z) or there is some M in Samefactor*(X,Y,Z) such that W is in

Samefactor(A/,Y,Z). Let W be in Samefactor*(X,Y,Z) if and only if W is in

Samefactor*CX\Y,Z) for some X in X.
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We will prove that in an LCT with directed graph G, if Y is d-separated from X given Z

then no member of Y is in Samefactor*(X,Ancestors(X u Y u Z),Z), and if no

member of Y is in Samefactor*(X,Ancestors(X u Y u Z),Z) then it is possible to

partition Ancestors(X u Y u Z ) into two sets A and B that overlap only in Z, and such

that the joint density of Ancestors(X u Y u Z) is equal to h(A)h\B). The latter fact

entails that X is independent of Y given Z.

For a given set of factors T in the product on the right hand side of (1), let Varin(T) be the

set of variables that appear in those factors (i.e. for a single factor /(g(/?,Parents(/?)),

Varin(/(£(/?,Parents(/?))) is just {/?} u Parents(/?). For a given subset S of R, let

Factors(S) be the set of factors in the product on the right hand side of (1) that contain

some variable in S. If U is an acyclic path between variables X and Y that contains M and

N9 we will denote the subpath of U from M to N by

Lemma 2: In an LCT L with directed graph G, if X, Y and Z are disjoint, and X is d-
separated from Y given Z in G, no member of Y is in Samefactor*(X,Ancestors(X u

Y u Z),Z).

Proof. We will prove the contrapositive. Suppose that some member Y of Y is in

Samefactor*(X,Ancestors(X u Y u Z),Z). It follows that there is a sequence of

factors in (1) t'\,...9?m such that f\ contains some X in X, im contains Y, and for each

pair of factors t\ and f'/+i adjacent in the sequence, there is a variable M in (Varin(rf/) c\

Varin(r'/+i))\Z. If there is such a sequence of factors, then there is a sequence of factors

fl,.-,?/! with the same properties that is minimal in the sense that if any subsequence of the

factors in the sequence is removed, then there is a pair of factors adjacent in the new

sequence such that Varin(r/) n Varin(f/+i) = 0. Let/?/ be some variable in Varin(f/) n

Varin(f/+i). Then corresponding to the sequence of factors t\,...Jm is a sequence of

variables X, /?i,..., RmyY, where none of the /?/ are in Z. For each f/, Varin(f/) consists

of a variable together with its parents. Hence for each pair of variables /?/, /?/+i in the

sequence, either /?/ is a parent of /?/+i, /?/+i is a parent of/?/, or /?/ and /?/+i are both

parents of some other variable Q appearing in f/. For each pair of variables in the sequence

satisfying only the latter condition, insert Q into the sequence between /?/ and /?/+i. This

new sequence of variables corresponds to an undirected path U in G. It is acyclic because

otherwise the sequence of factors t\,...9tn is not minimal. No non-collider on the path is in

Z because none of the /?/ are in Z. Because each ancestor of a member of Ancestors(X u

Y u Z) is a member of Ancestors(X u Y u Z ) , the only variables in the equation for an

error term of a variable in Ancestors(X u Y u Z) are members of Ancestors(X u Y u
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Z). Hence all members of Samefactor*(X,Ancestors(X u Y u Z),Z) are in

Ancestors(X u Y u Z ) . Each collider on the path has a descendant in either X, Y, or Z.

If all of the colliders on the path have a descendant in Z, then U is a path that d-connects X

and Y given Z. Suppose then that some collider on U does not have a descendant in Z.

Let M be the collider on U that has no descendant in Z, and is closest to X on (/. Because

M is a member of Ancestors(X u Y u Z ) but has no descendant in Z, there is (i) either a

directed path D from M to X in X that contains no member of Z u Y or (ii) a directed path

from M to Y' in Y that contains no member of Z u X. (If D contains members of both X

and Y, then some subpath contains only members of X or only members of Y.) Suppose

(i) is the case. Either X% is on U or it is not. Suppose first that X1 is on U. Every collider

on U(YX) is a collider on U and hence has a descendant in Z. Every non-collider on

U(YX) with the possible exception of Xf is a non-collider on £/, and hence not in Z. By

hypothesis, X1 is not in Z. Hence U{YX) d-connects X and Y given Z. Suppose then

that X% is not on U. Let W be the last vertex on D that is also on U(M,Y). Let U' be the

concatenation of U(YyW) and D(WX)- See figure 9 (in which for ease of illustration X' =

X.) .

U

D

U

Figure 9

U' is acyclic because the only member of U{YyW) on D(WX) is W. Every vertex on

D(WX) is a non-collider on £/' and not in Z. Every non-collider on U(YyW) is not in Z,

because every non-collider on U(Y9W) with the possible exception of W is a non-collider

on £/, and Ŵ  is not in Z. Hence every non-collider on U% is not in Z, and £/' has at least

one fewer collider that does not have a descendant in Z than U does. This process can be

repeated until a path £/" that has no colliders that do not have a descendant in Z is formed.

U" d-connects some X in X and Y in Y given Z.
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Suppose (ii), i.e. there is a directed path D from M to some member Y of Y that contains

no member of Z u X. Let M be the collider on U that has no descendant in Z, and is

closest to X on U. Either Y is on UiXM) or it is not If Y is on U(XM) then U(X,Y)

d-connects X and Y given Z, and hence it d-connects X and Y given Z. If F is not on

U(XM) then let W be the last vertex on D that is also on U(XyM)* Let IT be the

concatention of U(X9W) and D(WJ'). U* is acyclic because U(X9W) and D(W, T)

intersect only at W. No vertex on D(WX) is a collider on U' or a member of Z. Every

vertex that is not a collider on U(X,W) is not a member of Z and is not a collider on (A

Every collider on U(X,W) with the possible exception of W is a collider on £/' and has a

descendant in Z. W is not a collider on U1 and is not a member of Z. £/' d-connects X and

y given Z, and hence it d-connects X and Y given Z .-.

Lemma 3: In an LCT with graph G, if Y is not in Samefactor*(X,Ancestors(X u Y

u Z),Z) then there is a partition of the factors in the product on the right hand side of (1)

into two sets A and B such that every member of X is in Varin(A) and no member of X

is in Varin(B), and every member of Y is in Varin(B) and no member of Y is in

Varin(A), and Varin(A) n Varin(B) c Z.

Proof. Let A = Factor(Samefactor*(X,Ancestors(X u Y u Z),Z)) and B equal the

set of other factors in

/?eAncestors(XuYuZ)

First we will show that Varin(A) n Varin(B) c Z. Suppose that there is some variable

W not in Z that is in Varin(A) and Varin(B). By definition, if W is in Varin(A), then it

appears in the same factor as some variable V in Samefactor*(X,Ancestors(X u Y u

Z),Z) . By definition, then, W is also in Samefactor*(X,Ancestors(X u Y u Z),Z).

But then each faaor containing W is in Varin(A), and not in Varin(B). Hence W is not in

Varin(B). This is a contradiction.

By hypothesis no member of Y is in Samefactor*(X,Ancestors(X u Y u Z),Z), so no

member of Y is in Varin(A). It follows that every member of Y is in Varin(B).

Every member of X is in Samefactor*(X,Ancestors(X u Y u Z),Z) by definition, so

every member of X is in Varin(A). Because no member of X is in Z, no member of X is

in Varin(B). ..
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Lemma 4: In an LCT L with graph G, if X, Y, and Z are disjoint sets of variables and

there is a partition of the factors in the product on the right hand side of (1) into two sets A

and B such that every member of X is in Varin(A) and no member of X is in Varin(B)

and every member of Y is in Varin(B) and no member of Y is in Varin(A), and

Varin(A) n Varin(B) £ Z, then L linearly entails that X is independent of Y given Z.

Proof. We can rewrite the product on the right hand side of (1) as

/(Ancestors(X u Y u Z)) = J|f x fjf
reA reB

where each t is of the form f(g(V,Parents( V)). We can then rewrite

n-
reA

as a function /z(Varin(A)), and

as a function A'(Varin(B)). Hence /(Ancestors(X u Y u Z)) = /z(Varin(A))
x/i'(Varin(B)), where Varin(A) n Varin(B) c Z. It foUows that Varin(A)\Z is
independent of Varin(B)\Z given Z. Because X is included in Varin(A)\Z and Y is

included in Varin(B)\Z, X is independent of Y given Z. /.

Lemma 5: In an LCT L with directed graph G, if X, Y, and Z are disjoint sets of

variables, and X is d-separated from Y given Z, then L linearly entails that X is

independent of Y given Z.

Proof. This follows from lemmas 1, 2, 3, and 4. .-.

Lemma 6: In an LCT with directed graph G, if X, Y, and Z are disjoint sets of variables,

and X is d-connected to Y given Z in G, then X is d-connected to Y given Z in an acyclic

directed subgraph of G.

Proof. Suppose X is d-connected to Y given Z. Then for some X in X and Y in Y, X is

d-connected go Y given Z by path U in G. Each collider C\ on U has a descendant in Z.

Let Di be a shortest directed path from C/ to a member of Z; we will call £>/ the directed
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acyclic path associated with C\. U is acyclic by definition, and so are each of the DXy so if

there are any directed cycles in G they contain edges from more than one of these paths.

We will show that X is d-connected to Y given Z in an acyclic directed subgraph by

modifying the path U and the associated directed paths from colliders on U to members of

Z in such a way that no subset of the edges on the modified paths form a directed cycle.

First we will form a path £/' that d-connects X and Y given Z, such that for each collider

Cj on If there is a directed path from C/1 to a member of Z that does not contain an edge

into a vertex on IT. Ultimately this will guarantee that no edge in IT is in a directed cycle in

the sugraph that we will form. See figure 10.

I w
u
D

U

Figure 10

Form the path £/' in the following way. If D/ intersects U at a vertex other than C/ then let

Wx be the vertex on Dt and U that is closest to X on Uy and Wy be the vertex on £>/ and U

that is closest to Y on U. Suppose without loss of generality that Wx is after Wy on £>/. Let

U' be the concatenation of U(XyWx\ Di(Wy9Wx), and U(WyyY). U% is acyclic because

there is no point of intersection of £>/ and U between X and Wx, and no point of

intersection of £>/ and U between Wy and Y. Every non-collider on U\WyJ) with the

possible exception of Wy is a non-collider on £/, and hence not in Z. Wy is not a collider

on U' because the edge on D[(Wy,Wx) containing Wy is out of Wy. Wy is not in Z

because it is on D; and not an endpoint of D/. Every non-collider on U\X,Wx) with the

possible exception of Wx is a non-collider on U9 and hence not in Z. If Wx is not a

collider on U\ then W# is not a collider on £/, and hence not in Z. If Wx is in Z, then Wx

is a collider on £/, and hence C/(X,V^x) is into Wx- £>/ is into Wx> and hence V̂ x is a

collider on I/1; in that case let DiQVxJZ) be the associated directed path of Wx. It follows
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that U% d-connects X and Y given Z, but C/ is not a collider on U\ The only vertex on U%

that may be a collider on £/' but not on U is Wx> but there is a directed path from Wx to a

member of Z that does not intersect If except at Wx. Hence the number of colliders on LT

that are not in Z, but whose associated directed paths are into a vertex on If is at least one

less than the number of colliders on U that are not in Z, but whose associated directed path

are into a vertex on U. Repeat this process until there are no colliders on If that are not in

Z but whose associated directed paths are into a vertex on If.

For each C'/ on If let D1/ be the directed acyclic path associated with C1/. There is no

directed cycle in G containing edges from If and some of the £>'/ because no D1/ contains

an edge into a vertex on U\ If there is a directed cycle in G that contains only edges from

some combination of the associated directed paths then modify the associated directed paths

in the following way. Suppose C is a cyclic directed path such that each edge occurs on

some associated directed path and that D\ intersects C. Let W be the vertex on D\ and on

C that is closest to the sink Z of D\. We will show how to remove the edge out of W on C

from every directed path associated with a collider on U\ Consider an arbitrary D'j that

contains the edge out of W on C, and suppose the first vertex on Dy that intersects C is V.

Let the new D) be the concatenation of D)(CpV)y C(VyW), and D\(W,Z). Every cyclic

directed path between any pair of vertices A and B contains an acyclic directed subpath

between A and B. So if Dy is a cyclic path remove the cycles and make D) acyclic. D'j is

an acyclic path that does not contain the edge on C out of W. D%j does not have an edge into

U' because it contains only edges that were already in some associated directed path and

none of the associated directed paths contained any edges into If. Modify each associated

path that contains the edge out of W on C in this way. See figure 11.
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Original D\ Contains Edge
Out of W

Modified D

Modified Df, Contains No
Edge Out of W

Figure 11

After this modification, no associated directed path contains an edge out of Wy and hence

cycle C can no longer be formed out of edges occurring on associated directed paths.

Hence the number of cycles that can be formed from the directed acyclic paths associated

with colliders on IT has been reduced by at least one. Repeat this process until there are no

cycles that can be formed from the directed acyclic paths associated with collider on IT. Let

Gf be the subgraph of G consisting of the union of the vertices occurring on IT, some £>'/,

X, Y, and Z, and containing only edges that occur on U\ or some associated paths D\ .

G1 is an acylic subgraph of G in which X is d-connected to Y given Z. .-.

Lemma 7: In an LCT L with directed graph G, if X, Y, and Z are disjoint sets of

variables, and X is d-connected to Y given Z, then L does not linearly entail that X is

independent of Y given Z.

Proof. By lemma 6, if in an LCT with directed graph G, X is d-connected to Y given Z,

then there is an acyclic subgraph Gf of G in which X is d-connected to Y given Z. In

Spirtes et al. (1993) it was proved that if X is d-connected to Y given Z in an LCT with an
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acyclic directed graph, then there are values of the parameters for which X is not

independent of Y given Z. If the coefficients of edges that are in G but not in G1 are set to

zero, and the coefficients of edges that are in G% are set to values that make X dependent on

Y given Z, then the LCT has been parameterized in such a way that X is dependent on Y

given Z. .-.

Theorem 1: In an LCT L with (cyclic or acyclic) directed graph G containing disjoint sets

of variables X, Y and Z, X is d-separated from Y given Z if and if only L linearly entails

that X is independent of Y given Z.

Proof. This follows from lemmas 5 and 7. .-.

Theorem 2: In an LCT L with (cyclic or acyclic) directed graph G containing Xy Y and Z,

where X * Y and Z does not contain X or Y, X is d-separated from Y given Z if and only

L linearly entails that PXY.Z = 0.

Proof. (This proof for cyclic or acyclic graphs is based on the proof for acyclic graphs in

Verma and Pearl 1990.) Suppose in an LCT L with directed graph G Ji is d-separated from

Y given Z in G. Let L be an LCT with the same directed graph G and that is the same as L

except that the exogenous variables are normally distributed with the same variances as the

corresponding variables in L. By theorem 1, L linearly entails that X is independent of Y

given Z. Hence for all values of the linear coefficients and all joint normal distributions

over the exogenous variables in which the exogenous variables have positive variance,

PXY.Z - 0- Because the value of a partial correlation in an LCT depends only on the values

of the linear coefficients and the variances of the exogenous variables, L linearly entails

Y.Z = 0, and hence L linearly entails that PXY.Z = 0.

Suppose that L does not linearly entail that pxY.Z = 0- Then there is an LCT L with graph

G such that PXY.Z * 0- Let L" be an LCT with the same directed graph G and that is the

same as V except that the exogenous variables are normally distributed with the same

variances as the corresponding variables in L\ In L", pxY.Z * 0, because pxY.Z ^ 0 in

L\ Hence in L", X is not independent of Y given Z. It follows that X is not d-separated

from Y given Z in G. .-.

Theorem 3:If L is an LCT with (cyclic or acyclic) directed graph G containing a subset of

variables O, and X and Y are in O, then X and Y are dependent conditional on all subsets

of O\{X,r} if and only if there is an inducing path between X and Y given O in G.
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Proof. Suppose first that X and Y are dependent conditional on every subset of O. Then

X and Y are d-connected given (Ancestors^ u B ) n 0)\{i4^}. Hence there is a path U

that d-connects A and B given (Ancestors(A u B) n 0)\{4,5}. Every collider on U is an

ancestor of a member of (Ancestors^ uB) n 0)\{A>/?}, and hence an ancestor of A or

B. Every vertex on U is an ancestor of either A or B or an ancestor of a collider on £/, and

hence every vertex on U is an ancestor of A or B. If U d-connects A and B given

(Ancestors(A KJ B) n O ) \ M ^ ) , then every member of (Ancestors(A u B) n

0)\{AJB} that is on U, except for the endpoints, is a collider. Since every vertex on U is in

Ancestors(A u B), every member of O that is on U> except for the endpoints, is a

collider. Hence U is an inducing path between A and B given O.

Next suppose that there is an inducing path U between X and Y given O in G. For each

arbitrary subset Z of O we will construct a path that d-connects X and Y given Z. If every

collider on U is an ancestor of a member of Z, then U d-connects X and Y given Z.

Suppose then that some vertex on U does not have a descendant in Z, and let W be the

closest such vertex to X on U. Because U is an inducing path between X and Y given O,

W is an ancestor of either X or K. Suppose first that it is an ancestor of X. Then there is a

directed path D from W to X, and because W is not an ancestor of a member of Z, Z) does

not contain any member of Z. Let Q be the point of intersection of D and (7 closest to the

sink of D. Let £/' be the concatenation of U(Y,Q) and D(QJC). U% is acyclic because the

only vertex on U(Y,Q) that is also on £> is Q. No vertex on D(QX) is a collider on C/f or a

member of Z. Every non-collider on U(Y,Q) is not in Z because £/ is an inducing path

between X and Y given O, and Z is a subset of O. IT contains one fewer collider that does

not have a descendant in Z than U does.

If W is an ancestor of Y, then a path If that contains one fewer collider that does not have

a descendant in Z than U does can be formed in an analogous manner.

Repeat this process until a path U" is formed that contains no colliders that do not have a

descendant in Z. U" d-connects X and Y given Z. /.

Theorem 4: A (cyclic or acyclic) directed graph G over V does not linearly entail the

same set of conditional independence relations as some undirected graph G1 if there is a

pair of vertices X and Y in G such that X and Y have a common child Q and there is no

inducing path between X and Y over V in G.
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Proof. Suppose that a directed graph G contains a pair of vertices X and Y in G such that

X and Y have a common child Q and there is no inducing path between X and Y given V.

Because X is adjacent to QinG.X is d-connected to Q given every subset of W{X,Q). It

follows that in every undirected graph that entails the same set of conditional independence

relations as G, X is adjacent to Q. Similarly, in every undirected graph that entails the same

set of conditional independence relations as G, Y is adjacent to Q. Because there are edges

from X to Q and from Y to QyX and Y are d-connected given W{X,Y}. Hence there is an

edge between X and Y in every undirected graph G1 that entails the same set of conditional

independence relations as G. But then G' does not entail that X and Y are independent

given any subset of V. However, because there is no inducing path between X and Y

given Vin G, G does entail that X and Y are independent given some subset of V. This is a

contradiction. /.

In an undirected graph G, A and B are separated given Z if every undirected path

between A and B contains a member of Z. If A and B are not separated given Z, they are

connected given Z. If G is a conditional independence graph of a distribution P, then G

entails that A and 5 are independent given Z if and only if A and B are separated given Z.

Theorem 5: If GA/ moralizes a (cyclic or acyclic) directed graph G, GA/ entails a subset

of the conditional independence relations linearly entailed by G.

Proof. For each undirected path U in G, let U% be the corresponding undirected path in

GM- We will show that if X and Y are d-connected given Z in G, then they are connected

given Z in GM- Suppose that X and Y are d-connected given Z by a path £/ in G. If U

does not contain any member of Z then the corresponding path £/' in GM connects X and

y given Z. Suppose then that U does contain members of Z. Because £/ d-connects X and

Y given Z, each such member of Z is a collider on £/. Let Z be an arbitrary member of Z

on £/, and A and B be the vertices adjacent to Z on £/. By hypothesis, there is an edge

between A and B in GM. A and 5 are not in Z because they are not colliders on U. If the

subpath of U% that contains the edges between A and Z, and Z and 5 is replaced by the

edge between A and B, then t/1 now contains one fewer member of Z. Repeat this process

until If contains no member of Z. U' now connects X and Y given Z in GM. -
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