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Abstract

This paper is aimed at improving the solution efficiency of MINLP problems in which the

bottleneck lies in the combinatorial search for the 0-1 variables. An LP/NLP based Branch and

Bound algorithm is proposed in which the explicit solution of an MILP master problem is

avoided at each major iteration. Instead, the master problem is defined dynamically during the

tree search to reduce the number of nodes that need to be examined. A branch and bound search is

conducted to predict lower bounds by solving LP subproblems until feasible integer solutions are

found. At these nodes nonlinear programming subproblems are solved providing upper bounds

and new linear approximations which are used to tighten the linear representation of the open

nodes in the search tree. To reduce the size of the LP subproblems, new types of linear

approximations are proposed which exploit linear substructures in the MINLP problem. The

extension to nonconvex problems is also discussed. Numerical results on several test problems

are reported which show that the expense of solving the MILP master problem in the outer-

approximation algorithm can be greatly reduced. Typically fewer than 50% of the total number

of nodes need to be enumerated, while in most cases the number of NLP subproblems to be solved

remains the same.



Introduction

Design problems can be formulated as mathematical programming models which

involve continuous variables for representing the operating conditions and may have binary

variables to represent the set of alternative topologies. The development of these models requires

postulating a superstructure that embeds a given set of alternative designs. The more general type

of mathematical model of this superstructure is a mixed integer nonlinear programming

(MINLP) model.

Over the last decade, mixed-integer programming techniques have been applied

extensively in process synthesis. Reviews on the application of this type of design models can be

found in Grossmann (1989, 1990). Their main advantage is that they provide a systematic

approach for synthesis problems. In this way, as has been pointed out for instance by Sagli et al

(1990), suboptimal solutions or topology traps, that may be obtained by decomposing the design

problems, are avoided. One of the major reasons for the increased importance of mixed integer

optimization is the development of more efficient algorithmic techniques and of more reliable

and robust software packages for nonlinear and mixed integer linear programming which are

required in the solution of these problems.

Although a number of different methods are currently available for the solving MINLP

models (Beale, 1977; Gupta and Ravindran, 1985; Geoffrion, 1972; Duran and Grossmann, 1986a,

1986b; Viswanathan and Grossmann, 1990; Nabar and Schrage, 1990), a major limitation in

their application to actual designs is the potentially large size of the models. Furthermore, since

the space of possible configurations may grow exponentially, the computational requirements

can be expensive. For this reason, improvements in the performance of the MINLP solution

methods are clearly necessary.

This paper is aimed at the efficient solution of MINLP problems in which the main

computational effort lies in the optimization of 0-1 variables, while the NLP subproblems for

fixed 0-1 variables are significantly less expensive to solve. Examples include retrofit of heat

exchanger networks (Yee and Grossmann, 1991) and synthesis of heat integrated columns



(Floudas and Paules, 1988). In both of these applications the optimization of the 0-1 variables at

the level of the master problem is at least one order of magnitude more expensive than the

solution of the NLP subproblems. The proposed algorithm involves a tree search in the space of

the binary variables using linear approximations to bound the original problem. NLP

subproblems are solved at nodes with integer solutions for the binary variables. The key feature

in the algorithm is the dynamic generation of the linear approximations which are derived at

integer solutions in the tree. This dynamic generation avoids the sequential solution of NLP and

MILP master problems such as in the Generalized Benders Decomposition (GBD) and Outer

Approximation (OA) algorithms. The objective of the proposed method is to reduce the

computational work required to solve the MILP master problem which is the major bottleneck

in the type of MINLP problems that are considered. Additionally, linear approximations that

exploit linear substructures in the MINLP are proposed to reduce the size of the LP subproblems

that must be solved in the branch and bound enumeration. Numerical results are presented to

ilustrate the computational savings that can be achieved with the proposed algorithm.

Background

Consider a design problem for selecting the optimal design parameters for the equipment

and the optimal topology of the system that is modelled as an MINLP problem of the following

form:

Z = minXty c
 Ty + flx)

st By+gM<0

x e X = ( x | x eRn
tx

L<x<xu\ (MINLP)

y G Y = {y |y e {0, l}m.Ay<a}

The continuous variables x represent the operating conditions, flows and design parameters of

the equipment. The set of binary variables, y, defines the topology of the system, representing

the existence or non-existence of the different processing units. These variables normally appear

in linear form in the model. If this is not the case, the model can be transformed by introducing

additional continuous variables. For simplicity in this presentation, no equalities are



considered in explicit form. The equalities Ay + h(x) =0 can be included by relaxing them into

inequalities according to the sign of the Lagrange multipliers (see Kocis and Grossmann, 1987).

The nonlinearities of the model appear in the terms ffcc) and g(x), and it is assumed in this paper

that these functions are convex. These conditions will be relaxed later in the paper.

The algorithms for solving MINLP problems can be classified in three main categories:

-Branch and Bound

-Generalized Benders Decomposition

-Outer Approximation

The Branch and Bound algorithm for MINLP problems ( Gupta and Ravindran, 1985;

Nabar and Schrage, 1990) is based on the same idea as the LP based Branch and Bound algorithm

for MILP. The first step is to solve the problem that results from relaxing the discrete conditions

in the binary variables. If this relaxed problem yields an integral solution the procedure stops

and this is the optimal solution. Otherwise, the relaxed problem provides a lower bound to the

optimal solution and a tree enumeration is performed where each node of the tree is a

subproblem that results from relaxing a subset of the integrality conditions. When an integer

solution is found, it provides an upper bound to the solution. All the nodes that exceed this bound

are pruned and the search is conducted until all the nodes in the whole tree are fathomed. The

main disadvantage of using this solution approach for MINLP problems is that the resulting

nodes in the tree are NLP subproblems that cannot be easily updated. Additionally, the size of

these subproblems can be significant since they are formulated both in the continuous and part

of the binary space.

The Generalized Benders Decomposition (GBD) (Geoffrion, 1972) algorithm divides the

variables into sets of complicating and npncomplicating variables. For MINLP models, the 0-1

variables are usually considiered as the complicating variables.-A sequence of NLP subproblems

and MILP master problems in the space of the complicating variables is solved. The subproblems

correspond to NLP's that are generated by fixing the binary variables in the original MINLP to a

given value y*. An upper bound to the optimal solution of the MINLP is provided by the solution



of these subproblems- The master problem is generated by projecting the original problem in the

reduced space of the complicating variables. This is accomplished by deriving at each

subproblem a Lagrangian function parameterized in the discrete variables y. The formulation of

the master problem is given by,

z=min a
st a>c T y + flxk) + ( AJTIBy + g ^ | k = l Kfe* (1)

( W'HBy+gfc*)l < O k = l K ^

ae R*,y € Y

where z is the predicted lower bound, (xk, Xk) are the optimal primal and dual variables of the NLP

subproblem, and the index Kfcas refers to the subproblems that were feasible and the index K ^ ^

refers to subproblems that were infeasible. The solution of this MILP master problem predicts a

new set of binary variables for a subsequent NLP subproblem. When the original problem is

convex, the master problem provides a valid lower bound to the optimal solution which

increases monotonically at each major iteration. The procedure converges when the best upper

bound and the lower bound are equal, and the optimal solution is given by this bound.

Similarly, the Outer Approximation algorithm (Duran and Grossmann, 1986a, b) also

consists of a sequence of NLP subproblems and MILP master problems. The difference with GBD

lies in the way that the master problem is defined. In this case, outer approximations

(linearizations) of the nonlinearities are dreived at the optimal solution of the NLP

subproblems. The master problem is given by:

z = min a

st a £ c T y + flxk) + Vf(xk)T(x- x k )

By +gfrk) + Vgfr^tx- xk) < 0 k = 1 K (2)

ae R1, y e Y, x e X

where in this case xk is the solution (feasible or infeasible) of the NLP subproblem for fixed yk.

For the convex case an overestimation of the feasible region is obtained, so that the OA master

problem also provides a valid lower bound. The resulting master problem is an MILP problem in

the full space of all variables. In the same way as GBD, the convergence criterion is based on the

bounds that the subproblems and the master problems provide to the optimal solution.



A close relation between GBD and OA can in fact be established for the case when the

nonlinear functions fix) and g(x) are convex. Specifically, as shown in the Appendix, the

Lagrangian cuts in GBD (see (1)) correspond to surrogate constraints to each of the linearizations

of the OA master problem in (2). Although the GBD master is smaller in size, the OA algorithm

provides stronger lower bounds, and hence generally requires fewer major iterations to

converge. A limitation is that the convexity conditions of the original problem are more

stringent for the OA algorithm.

An extension of OA for dealing with nonconvex MINLP problems is the OA/AP algorithm

proposed by (Viswanathan and Grossmann, 1990). Here, the master problem includes an exact

penalty function that allows violation of the linearizations of nonconvex constraints. The

master problem formulation is:

z = min a +Zco0
kpok +Z <& Pk

st c T y + flxk)+ Vflx^tx- x k ) - a£ pok

By + g(x*) + Vgfcck)T(x- xk) < pk k = l K (3)

ae RJ,y e Y,x eX,pok,&>O k = 1 K

where co0
k, cok are large weight factors for the slack variables po

k, pk. These variables allow to

consider part of the feasible region which otherwise may have been cut off by the linearizations.

Although the approach is not rigorous for finding a global optimum, it has proved to be reliable

in many problems.

Another extension to deal with nonconvexities is the approach proposed by Floudas et al

(1989). This method uses Generalized Benders Decomposition by partitioning the complicating

and noncomplicating variables so that the subproblems and master problems are convex.

Although the computational performance has been good on a set of test problems, this method

has no guarantee for finding the global optimum, and may not converge to a local minimum (see

Sahinidis and Grossmann, 1991). It should be noted, however, that recently Floudas and

Visweswaran (1990) have developed a new version of this method which can rigorously find the

global optimum for various classes of MINLP problems.



Motivation for new algorithm

The GBD and OA algorithms have the limitation that the size of the master problem

increases as the iterations proceed. This a major drawback when the original MINLP model has

a large number of integer variables, since in this approach it is necessary to solve a complete

MILP master problem at each iteration. The typical performance of this type of algorithm is

shown in Figure 1. The time used to solve the master problem increases as iterations proceed

while the time for the NLP subproblems remains of the same order of magnitude. When using

simplified process models, the solution times of the NLP's can be substantially smaller than for

the MILP master problem since each NLP subproblem corresponds to the optimization for a

given topology of the system.

To improve the performance of GBD algorithm Nielsen and Zenios (1990) have proposed

to solve the master problems as feasibility problems. In this way it is possible to reduce the

expense necessary for solving the master problems.

The algorithm proposed in this paper consists of a tree search over the space of the binary

variables. Here the nodes to be solved correspond to LP problems that result from relaxing some

of the integrality conditions and replacing the nonlinear terms by linear approximations. These

LPfs are dynamically updated with respect to the representation of the nonlinear terms, by

solving NLP subproblems at those nodes of the tree with integer solutions. As will be shown, the

algorithm offers the flexibility of adding different types of linear approximations with which it

is still possible to obtain a tight representation of the feasible region, but without greatly

increasing the size of the LP subproblems.

The proposed method can be viewed as an integration of the branch and bound search for

the master problem with the solution of NLP subproblems. In the tree search, the nodes remain

as LP subproblems that can be easily updated and there is no need to restart the search once the

new constraints are added. This is particularly relevant in design problems that involve a large

number of alternative topologies (e.g. retrofit design), and where the NLP subproblems are not

very expensive to solve. Additionally, by solving the NLP subproblems at succesive integer nodes.
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stronger upper bounds are generated to reduce the branch and bound enumeration. The proposed

algorithm is first illustrated with a small convex example in the next section.

Convex Example

Consider the problem proposed by Kocis and Grossmann (1988) of deriving the best

configuration for the processes given in Figure 2. The MINLP model formulation, which can be

shown to correspond to a convex problem, is given by,

min Z=-[11C-7B1- B2 - 1.2 B3 - 1.8 (A2 + A3) -3.5yl -y2 - 1.5y3]

st C = 0.9B

B2 = log(l+A2)

B3=1.21og(l+A3)

B = B1+B2 + B3

C<yl (4)

B2<10y2

B3<10y3

y2 + y3 < 1

yl, y2, y3 e {0, 1}. C,B,B1,B2,B3,A2,A3 > 0

The variables yl, y2 and y3 denote the existence/non-existence of process 1, 2 and 3, respectively.

When the problem is solved using the OA algorithm, three iterations are required to obtain the

optimal solution when an initial value for the binary variables of (0,1,0) is used. The value of the

objective function for the NLP subproblems and master problems is reported in Table 1. The

branch and bound search conducted for solving the first MILP master problem is given in Figure

3a. Five nodes are examined and the optimal solution is y=( 1,1,0)

With the configuration predicted by the optimal solution of the master problem

(y=(l,l,0)), an NLP subproblem is solved yielding an objective value of Z=-1.72. A new outer

approximation is generated and the resulting master problem is solved that includes the

constraints from both iterations. This implies that the branch and bound search for the master

problem is started all over again. The second and third iteration require three and five nodes

respectively to be examined, giving a total of 13 nodes at the master level (see Fig 3). Note that the



size of the LP subproblems increases in terms of the number of rows at each iteration. Also, 3

NLP subproblems had to be solved to obtain the optimal solution, Z=-1.923.

In the proposed algorithm, instead of having to solve an MILP master problem

independently of the NLP subproblems, the solution of these subproblems is embedded in the

search tree. An initial representation of the feasible region is created by using an outer

approximation at the solution of an initial NLP. In this example the same initial configuration

(y=(O,l,O)) is considered . A search is then conducted by evaluating nodes 1 and 2 in Figure 4a.

Node 2 yields the integer solution y (1,0,1) with a lower bound of z=-3 (Figure 4a). At this

configuration, a second NLP subproblem is solved which yields an upper bound (Z=-1.923).

The upper bound for pruning the tree is provided by the NLP subproblems, so the feasible

nodes that are below this bound are kept open. Once the second NLP subproblem is solved, new

linearizations are added to these open nodes tightening the linear representation of the feasible

region. Node 2 has not been branched so it is updated by adding the new approximating

constraints (see node 3 in Fig 4b). This node can be pruned since its solution (lower bound z =

-1.923 ) is equal to the current best upper bound. After backtracking, node 1 has already been

branched so it is not updated, instead a new node is created (node 4). A new integer solution is

found later (y=( 1,1,0)) and the corresponding NLP subproblem is solved giving a higher upper

bound, Z=-1.72. Hence, Z=-1.923 Is kept as the best upper bound.

Again, new outer approximations are added to the open nodes 6 and 7 whose LP's exceed

the current upper bound (see Fig 4c). Therefore, the search at this point can be stopped to confirm

that Z=-1.923 is the optimal MINLP solution. Note that with the proposed method the search is

completed after examining 7 nodes at the branch and bound level, and having solved 3 NLP

subproblems. Hence, with respect to the original algorithm only one half of the number of nodes

had to be examined. Furthermore, as shown in Table 2, the computational work for solving the

LP problems in terms of number of rows was also smaller.
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Detailed description of the algorithm

For simplicity we will assume that the NLP subproblems are feasible (see remarks

section). The algorithm for the MINLP convex case is as follows:

0. Set lower bound z\ = - oo , upper bound D1 = oo, set of list of open nodes P= 0. Select initial value

y1 for the binary variables, this set is given or some heuristics can be used to obtain it.

1. a) The initial NLP subproblem for the binary variables at y1 is solved:

Z =minx c
T y1 + fix)

st Byi+gMsD (NLP!)

x e X

b) The above provides an upper bound ZP to the optimal solution of the MINLP problem.

2. An outer approximation of the original MINLP problem is obtained using the optimal solution

of the NLP subproblem (x1). The nonlinear functions are linearized at this point, yielding the

following MILP problem.

z = min a

st a> cTy + fix1) + Vf^Rx - x1) (MILP)

By + gtx1) + Vg(x1)T(x-x1)<0

ae R ! ,yG Y,x e X

3. The integrality conditions over the binary variables y are relaxed and the resulting LP is

solved (Po1). This solution provides a lower bound zx to the optimal solution. Store the problem in

P(P=PU Po1). If the solution to this problem is integer, go to step 7.

4. Take the last problem in P (PjJ). Pick a binary variable that has a fractional value, yJf and

create two new problems (Pi+i1 and Pi+i2) by adding the constraints yj> 1 and yj < 0 to subproblem

Pt respectively. Delete the parent problem and include the new subproblems in P, P= (P\P|*) u

Pi+i^P^2). • . .

5. If at the end of the list there are two problems with the same parent problem do step (a);

otherwise do step (b)
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a) Solve P|+i2. If the objective z2ZZP delete P1+1
2 from P, P= P\ P1+1

2; otherwise if the solution is

integer, go to step 7. Solve P^i1 , if z1 >Z" delete P ^ 1 otherwise if the solution is integer go to

step 7. Ifz2>z ! invert P1+i2 and P,^1 in the list of nodes P.

b) Solve Pi+iJ. If the objective zi > Z" delete P1+iJ from P, P= P\ P1+1J . Otherwise if the solution is

integer, go to step 7.

6. If the set of open nodes P= 0 go to to step 9. Otherwise go to step 4.

7. Solve an NLP subproblem fixing the binary variables of the MINLP at the level of the LP

problem solution. If ZNLP < ZP set Z11 = Z^p .

8. The solution of the NLP is used to generated additional constraints. This can be done by

deriving outer approximations of the nonlinear constraints. Benders cuts or any other type of

valid constraints as will be discussed later in this paper. These constraints are added to all the

problems in P. Return to step 5.

9. The current upper bound Z" is the optimal solution to the original MINLP problem.

If no initial value y1 for the binary variables is available, one can generate the initial

linearizations by solving a relaxed NLP problem where the integrality conditions of the original

MINLP model are dropped. Since in general a non-integer value will be obtained the initial upper

bound is set to Z^= ©©.

When the NLP subproblem is infeasible, the corresponding value found for the continuous

variables can be used for generating the outer approximation constraints. Else, a feasibility NLP

subproblem can be solved where penalties that allow violating the constraints are added to the

objective function (see Appendix).

It is important to start with a good initial NLP subproblem to provide a tight upper bound

for pruning nodes in the tree. Standard branching techniques are being used. A depth first

strategy is used in which both branches are examined, and the one with the best objective

function is selected to generate as fast as possible new NLP subproblems. The idea is to quickly
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tighten the feasible region so that the size of the tree does not become excessively large.

Backtracking is done by the same path, since it can be expected that the information from the

NLP subproblem is relevant to the closest nodes in the tree. Different branching strategies can be

used and additional criteria can be employed to select the integer variable to branch on. These

aspects have not yet been addressed in this paper.

The algorithm is finite since the possible number of different configurations is finite,

and each time that an NLP subproblem is solved, the constraints that are added cut off that

particular configuration, and therefore the algorithm cannot cycle.

Alternative approximation constraints

The information from the solution of the NLP subproblems can be added to the open

nodes in the tree in several ways. For instance, outer approximations of the nonlinear terms as

in (2), or Benders cuts projected in the space of the binary variables as in (1) can be considered.

The advantage of outer approximations is that they give a tighter representation of the feasible

region. However, the limitation is that the number of rows of the LP subproblems to be solved at

the nodes can become very large. To circumvent this problem, one option is to use Benders cuts,

but the drawback is that they in general do not provide strong cuts. For this reason, a new type of

approximation constraints is proposed that take advantage of linear substructures which are

frequently present in the MINLP. The basic idea is to avoid generating explicit linearizations of

nonlinear functions while retaining the linear constraints in order to strengthen the cuts.

From the original problem (MINLP) consider the partition of the continuous variables in

two subsets u and v such that the constraints are divided into linear and nonlinear constraints,

and the continuous variables into linear and nonlinear variables,

Z =min cT y + aT w + r(v)

st Cy + Dw + t(v)<0 (5)

Ey + Fw + Gv < b

y G Y, w e W, V G V
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\Dw + t(v)l
In this representation fW=aTw + r(vK B T = f C |EJT, g(x)= LF\V + GV J,andX=WxV.

Problem (5) is reformulated by the addition of two continuous variables (a, p) to represent

the linear and nonlinear parts of the objective function; that is,

Z= m i n a

st Cy + Dw + t(v)<0

ifv)<P (6)

Ey + Fw + Gv < b

cTy + aT w + p - a = O

y e Y , w 6 W , v e V, ae R1, P € R1

The outer approximation of (6) at the point (wk, v*) generated by the k-NLP subproblem is

Vt(vk)T(v-vk)<0 (7a)

+ Vrfv^v-v^ < p (7b)

Ey+F\v + Gv <b (7c)

p-ct=O (7d)

If the Kuhn Tucker conditions of the k-NLP subproblem in (5) are considered with respect to the

nonlinear variables v, one has that

Vitv*) •Vtfv1') Xk + GTM.k=O (8)

Then, multiplying by (v - v*),

Vr(vk)T(v-vk) + (|Ik)T G(v-vk)= - (^FVt^Hv-v* 1 ) (9)

Using the outer approximation constraints in (7a) yields,

Vitv^ifv-v*) + (H.k)T Gfv-vk) * U k F l c y + Dw + tfvk)l (10)

Finally, by substituting ( 10) in (7b), the outer approximations of the feasible region are reduced

to a partial surrogate with the linear inequalities in an explicit-form as follows:

p>r(vk)+ U k ) T [Cy + Dw + t(vk)l - (M-k )T G (v - v^ ' (11)

Ey + Fw+Gv <b
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Note that by using the above linear approximations only the first inequality must be

updated, so that effectively one only has to add one new linear approximation constraint when

updating the LP subproblems in the tree search.

Different special cases of the linear approximations in (11) are the following:

a) When t(v) =0, the constraints in (11) can be shown to reduce to,

P>itvk)-(^kFG(v-vk) (12)

Ey + F\v + Gv < b

b) When r(v) =0, the formulation in (6) does not require the variable p and the constraints in (11)

reduce to,

(A,k)T[Cy + Dw + t(vk)] - ^ F G I v - v k ) ^ (13)

Ey + Fw + Gv <b

cTy + a T w - a = 0

c) When t(v) =0 and r(v) =0, problem (6) reduces to an MILP and therefore the constraints in (11)

become,

<b (14)

cTy + a T w - a = 0

Also, when all the continuous variables appear in nonlinear terms (i.e. there are no w

variables) and there are no linear equations, the constraints in (11) reduce to,

<x= cTy + p

P >r(vk)+ ( ^ F l C y + Uv*}] (15)

which is equivalent to a Benders cut projected in the y space. In the case that the binary variables

y and the linear variables w are treated as complicating variables, and the term G=0, the

constraints in (11) reduce to ,

a= cTy +aTw + (5

P > rfv*̂ ) -h ( ^ F l C y + Dw + Uv*)] (16)

Ey + Fw + Gv <b
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which is also equivalent to a Benders cut projected in the (y,w) space.

The representation in (11) is a partial surrogate of the approximations to the nonlinear

part of the objective and nonlinear constraints in the full space of the original problem. The

main advantage of this type of surrogate is that the linear part of the objective and the linear

constraints are not included in the cut, but instead they are considered in explicit form in the

MILP formulation. In this way, the cuts in (11) are stronger than the GBD constraints in (15).

This follows trivially from the proof in the Appendix. The partial surrogate in (11) can be also

interpreted as a surrogate constraint of the linearizations (7a) and (7b) in the outer

approximation algorithm. Here the weight factors for the surrogate are the Lagrange multipliers

of the nonlinear constraints in the NLP subproblem.

The use of partial surrogates should be specially useful in cases where the solution of the

nonlinear variables v in the successive NLP subproblems is basically the same. In this situation

the linear outer approximations involving nonlinear functions would be essentially redundant

constraints for the master problem. Through the partial surrogate this problem is avoided.

A major consideration in the algorithm is the number of NLP subproblems which need to

be solved during the tree search. The original outer approximation algorithm normally requires

a relatively small number of subproblems to obtain a good characterization of the feasible

region. With the proposed approach the potential number of NLP subproblems that must be

solved is likely to be larger. One possible criterion for deciding if an NLP subproblem needs to be

solved is the difference between the solution of the LP at the integer node and the upper bound.

This aspect, however, has not been thoroughly investigated.

Partial surrogate example

To provide some insight into the nature of the partial surrogate consider the following

MINLP problem that involves two continuous variables and one binary variable.

Z=minlOxl2 -x2 + 5(y-l)

st. x2 -5 log (xl + 1) - 3y < 0
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-x2+xl 2 -y<l (17)

x2+xl + 20y <24

2x2 + 3xl<10

xl fx2 €R+
tye {0, 1}

The continuous feasible regions for y=l and y =0 are ilustrated in Fig. 5 and Fig. 6 respectively.

An initial NLP problem is solved for y=l and an optimal solution of Z=-3.5026, xl=0.179 and

x2=3.821 is obtained. Using this solution the Benders, Outer Approximation and Partial

Surrogate representations are as follows:

(a) Benders a > -8.4466 + 4.944y (18)

(b) Outer Approximation a > 3.58 xl - x2 -5.3204 + 5 (y-1)

-4.2409 xl + x2 - 3y < 0.0642

0.358 x l -x2-y <-0.968

xl +x2 + 20y <24

3xl + 2x2<10

(19)

(c) Partial Surrogate a > 1.1696 xl - 0.128 x2 -5.6429 + 5 (y-1)

x l+x2 + 20y <24 (20)

3xl + 2x2<10

Note that the variable p in (11) has been eliminated for deriving the inequalities in (20).

By minimizing a in each of the above representations the Outer Approximation problem gives

the stronger lower bound (a= -5.9528) with y=Of xl=0.86t x2= 3.71; the approximation to the

continuous feasible region for y=0 is shown in Fig. 7. Benders gives a lower bound of a = -8.4466

with y=0. The patial surrogate provides a stronger lower bound than Benders (a =-6.2829) with

y=0, xl=0, x2=5; the approximation to the continuous feasible region is shown in Fig. 8.
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to nonconvcx problems

When the original MINLP problem is nonconvex the initial outer approximation and

subsequent constraints no longer overestimate the feasible region, and the solution of the nodes

cannot be used as a valid lower bound (see Kocis and Grossmann, 1988). This then means that

some feasible solutions of the MINLP problem could be infeasible at the branch and bound level

because of the undesirable effect of the linearizations in nonconvex terms.

A possible extension of the proposed algorithm to deal with this type of problems, is an

adaptation of the OA/AP algorithm (Viswawathan and Grossmann, 1990). An exact penalty term

is added to allow violations of the outer approximations of nonconvex terms, given the following

linear representation:

z=min a + caoTp0+ a)!T p

st a> cTy + ftxp) + VffcPRx - x°) - p°

By + g(x°) +Vg(xp)T(x-x°)<p (21)

y € Y, xe X, p°, p > 0, a e R1

where the positive variables p° and p are slack variables. These variables are set to zero if the

linearization corresponds to a convex constraint. Additional slacks are used as more

constraints are generated in the tree search. The weights o)o, <a\t of the penalty term in the

objective function are selected to be proportional to the value of the Kuhn-Tucker multipliers at

the optimal solution of the NLP subproblems (typically by a factor of 1000).

Since in the nonconvex case the solution of the nodes is no longer a valid lower bound to

the optimal solution of the MINLP, different criteria must be used to prune the tree. The

heuristics that are used in this work include:

-If the solution of an NLP subproblem at an integer node is greater than the best current upper

bound, close this node in the tree. This criteria is in accordance with the convergence criteria

used in the OA/ER/AP algorithm.

-Bounding over the optimal solution of the nodes. The first criterion is not enough for pruning

the tree in a significant form, since the penalty term also allows for solutions that are infeasible
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in the original problem to become feasible at the branch and bound level. In this way the number

of potential NLP subproblems to be solved can be very high. A non-rigorous bounding can be

applied if the best upper bound is compared with the objective function of the node without

including the contribution of the penalty term. This criterion reduces to the normal pruning in

the case of convex problems.

Both criteria are not rigorous, and the likelihood of finding the global solution or a good

solution increases if all the nonconvexities are placed in the constraints and if the objective

function is convex. This is because the second criterion for pruning nodes does not consider the

influence of the penalty terms on the linearizations of the objective function.

The advantage of the proposed approach over the OA/AP algorithm is that since a larger

number of NLP subproblems is analyzed and the termination criteria are similar, it is more

likely to find a better solution. However, this implies that a greater expense is required for

solving the MINLP problem.

Nonconvex example

A similar example to one presented for the convex case is considered (see Fig. 9). In this

case three equipment can be used in parallel to produce w from x, and the objective function is a

concave function. The formulation is given by:

minZ=4x + xl°8 3 + x2a83 + x3083 + 3y+ 5y2 + 2y3 - lOw

st xl+x2+x3 = x

wl+w2 + w3 = w

wl=41og(xl+l)

w2= 1.5 log (1.2x2+ 1)

*> = 10 5 ^ 3 (22)

xl<20yl

x2< 15y2 •

x3 < 15 y3

w>5

x< 10
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Xxl,x2,x3,w,wl,w2,w3 £0 yl,y2,y3 {0,1}

The binary variables yl , y2 and y3 denote the existence or not of the units. The solution for the

different possible integer combinations is given in Table 3

The global optimum is given by y=( 1,0,1) with a value of -32.71. This problem was solved

using DICOPT ++ (Viswanathan and Grossmann, 1990) and DICOPT (Kocis and Grossmann,

1989) with an initial guess of y=( 1,0,0). DICOPT obtained the solution y(0,0,l) and DICOPT++

obtained y=( 1,1,1) with and objective function of z=-31.64 which is slightly higher than the

global optimum.

In this proposed approach, the same initial guess of y=( 1,0,0) is used. The nodes that were

analyzed before getting an integer solution, the integer solution and the objective function value

with penalty and without penalty term are reported in Table 4.

A total of 13 nodes were necessary at the branch and bound level, and 4 NLP subproblems

had to be solved. The global optimum of -32.71 is found at the third NLP subproblem. For that

integer solution y=(0,l,0) the objective function with the penalty is above the upper bound, but

when the objective function is considered without the penalty term it is still below the upper

bound and that particular configuration is analyzed. With the OA algorithm in DICOPT a total

of 7 nodes and 2 NLP subproblems are required to obtain a solution. When using the OA/AP

algorithm in DICOPT++ 14 nodes and 4 NLP are analyzed. It is interesting to note that when an

initial value of y=(l,0, 0) was used instead of the relaxed NLP for the OA/AP algorithm, a

solution of -32.71 is obtained after 14 nodes were examined.

Computational Results

Several convex MINLP problems have been solved using the proposed LP/NLP based

branch and bound algorithm. At this point the proposed method has not been automated and

therefore the emphasis in the comparisons will be in the number of nodes and size of LP's, rather

than on the CPU time. The size and characteristics of the test problems are given in Table 5.

These problems have been reported in the literature, and an explanation of them is given in
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Viswanathan and Grossmann (1990). These problems were solved using both the original OA

algorithm by Duran and Grossmann (1986b) and the algorithm proposed in this paper.

The first set of computational results in which the linearizations as in (2) were used for

both methods are given in Table 6. Note that the proposed method achieves reductions between

46% and 84% of the nodes that need to be enumerated in the branch and bound. Problems batch5

and batch8 were solved using special order sets for the binary variables. In these cases the

branching strategy that was used is the standard one for SOS1 (Beale and Forrest, 1976). Only one

of the LP problems generated by the branching is examined when the branch is expanding; the

other LP is solved at the moment of backtracking. Also, note that the number of NLP

subproblems is similar in both methods. As is to be expected, this number can be larger in the

proposed method, like in the case of problems ex3 and ex4. This is not a major limitation,

however, since for instance in problem ex4 80% of the total time in the OA algorithm is required

to solve the MILP master problems.

The algorithm has also been tested on two test problems using the partial surrogate in (11)

for storing the information of subsequent NLP subproblems. In this case the first approximation

used is the same as in the OA algorithm (see (2)). The results are given in Table7. These results are

relevant since in both cases the total number of NLP subproblems to be solved remains the same.

For problem french a slightly larger number of nodes is examined due to the weaker bounds, but

then the size of the problems to be solved at the nodes is smaller in the latter as seen in Table 8. It

is worth noting that in problem ex4 the number of nodes is reduced from 103 down to 45 as seen

in Table 7. This is due to the fact that the order of branching in tree was different and the optimal

solution was found early. It is significant to note the difference in the size of the LP problems

that are solved at subsequent nodes of the tree, since almost all the constraints are nonlinear in

problem ex4. For instance, as seen in Table 9, the OA algorithm included 81 rows in the MILP of

the last iteration. For the proposed algorithm with the full set of linearizations the size goes up

to 131 rows since 5 NLP subproblems are solved instead of 3. However, when the partial surrogate

constraints in (11) are used only 35 constraints had to be included in the final nodes.
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The above results are clearly encouraging for solving MINLP problems in which the

bottleneck lies in the optimization of 0-1 variables. Futhermore, the proposed method can be

complemented with the symbolic integration logic scheme by Raman and Grossmann (1991) to

further reduce the number of nodes to be enumerated in the branch and bound tree. Efforts are

currently under way to automate the proposed method, which however is not entirely trivial to

implement.

Conclusions

This paper has presented a branch and bound method for MINLP problems that is based

on the solution of LP and NLP subproblems. As has been shown, this method avoids the

sequential solution of NLP subproblems and MILP master problems that is required in the

standard implementation of the GBD and OA algorithms. As was shown with several test

problems, substantial reductions (up to 84 %) can be achieved in the number of nodes that need to

be examined for the MILP master problem. Futhermore, through the use of partial surrogate

constraints the size of the LP subproblems in the tree search can be kept small. The proposed

method should prove to be most useful in cases where the MINLP problem involves large number

of 0-1 variables and the NLP subproblems are relatively inexpensive to slove.
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Appendix. On the relation between QA and GBD cuts.

This appendix will show that the cuts in the master problem of GBD are surrogate

constraints of the linearizations of the master problem in OA. Convexity of the functions f(x)

and g(x) is assumed. Consider the MINLP model:

Z smirix.y c Ty + flx) + M u

st By+g|M<u.

u >0 (MINLP)

x e X = { x | x € R , x L < x < x u >

y eY={y |y e {0, l}m), ueR 1

Here the new variable u is included to allow violation of the constraints in the case of infeasible

NLP subproblems. A large weight factor M is added to the objective function. The Outer

Approximation master problem is given by :

z = min (XQ^

st CCOA^cTy + fIxk)+ Vflxty (x- x k ) + Muk

By +$>£) + Vgfr**) (x- x k ) < uk k = 1,.... K (Al)

u>0

ae R*,y e Y,x e X

where xk is the value of the continuous variables in the optimal solution of the k NLP

subproblem. From the Kuhn-Tucker conditions with respect to x of the k-NLP subproblem we

have that,

VHxty + Vgtxty Xk = 0 (A2)

Multiplying by (x-xk) yields,

VfIxk)T(x-xk) + (Xk)TVg(xk)T(x-xk)= 0 (A3)

A surrogate of the constraints in the OA master problem is obtained by multiplying the

linearization of the constraints in (Al) by the Langrange multipliers (which are non-negative)

and adding them to the linearized objective:

VfIxk)T ( x - x ^ +

(Jlk)T[By +g(xk) + V g W ' M x - x k ) -uk] k =1 K (A4)

Using (A3)
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Muk+Uk)T[By +g(x )̂ -uk] k =1 K (A5)

When the NLP subproblem is feasible, uk is zero. For infeasible subproblems, uk is strictly

positive and then any linear combination of the constraints using positive weights is a valid cut.

So the constraints can be divided in two subsets

aGm£cry + f&) + (\k)T[By +g(xk)] k = 1 Kfcas (A6)

(Xk)T[By + g(xk)]<0 k =1 K^

which are the constraints of the Generalized Benders Decomposition master problem.

Futhennore, we have that OLQA > OGBD at any given iteration.
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Table 1. Progress of major Iterations In convex example.

Iteration

1

2

3

y

(0.1.0)

(1. 1. 0)

(1.0. 1)

NLP subproblem

1.0

-1.72

-1.92

MILP master problem

-3.388

-3.0

-1.92

NLP

1

2

3

Table 2.

#rowsLP

7

9

11

Number of rows in convex example.

Number <

Original

5

3

5

rfLP's

Proposed

2

3

2

y

(0.0.0)

(0,1.0)

(1.1.0)

(0.1.1)

Table 3. Integer solutions

NLP subproblem

infeasible

infeasible

-14.66

-15.91

for nonconvex

y

(1,0.0)

(0,0.1)

(1.0.1)

(1.1,1)

example.

NLP subproblem

-15.73

-16.58

-32.71

-31.64
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nodes

(1.2)

(2.3)

(3.4..5.6.7.8J

(8.9)

Table 4. Computational results of nonconvex example.

LP subproblems

y obj with penalty without

(0,0.1) -57.55 -57.55

(1.0.1) -14.4 -20.53

(0.1.0) 11.16 -33.659

NLP

penalty upper bound

-15.73

-16.58

-32.71

-32.71

problem

hw74

hw3

french

ex3

batch5

batch8

ex4

binary

3

3

4

8

24

40

25

Table

continuous

7

2

7

25

22

32

5

5. Test problems.

constraints (non linear)

8

7

13

31

73

141

31

(2)

(2)

(5)

(5)

(2)

(2)

(25)

Starting point

(0.1.0)

(1.1.1)

(0.1,1.0)

(1.0.1.1,0.0.1.1)

y..4=i

yi.3=i

yi=l;i=l,5.6.8.11.15.

16.1718,20.21.24.25
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Table

problem

hw74

hw3

french

ex3

batch5

batch8

ex4

6. Computational results

OA

nodes

13

13

47

39

90

523

201

NLP

3

3

5

3

4

10

3

of OA and proposed algorithm.

nodes

7

7

18

21

32

84

103

proposed

NLP

3

3

5

6

4

10

5

Table 7. Comparison with partial surrogate

problem

french

ex4

With partial

nodes

23

45

surrogate

NLP

5

5

Without

nodes

18

103

NLP

5

5
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french

LP rows

13

14

15

16

17

18

23

28

33

Table 8. Size of LP

OA

3

—

—

5

13

13

13

subproblems in problems french

Number of LP's

proposed

2

—

—

—

—

5

6

4

1

partial surrogate

2

4

6

6

5

—

—

—

—

Table 9. Size of LP subproblems in problem ex4.

ex4

LP rows

31

32

33

34

35

56

81

106

131

OA

21

—

—

—

91

89

«

~

Number of LP's

proposed

9

—

—

--

—

13

42

21

18

partial surrogate

9

11

2

10

13

—

—

—

—
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Batch Design
Problem: Batch 5

CPU seconds in a Vax 6320

Figure 1. Computational cost of NLP and MILP problems.

A2
2j

B2

- > ^ Process

Bl

Figure 2. Superstructure for convex example.
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z=-3

z=-4.
y3=l

z=-3.388

z=-4.

z=-3

z=-4.31
y3=l

y2=0\ » z=0.2778

(a) First iteration

y(1,0.1)

ySo^^N

z=-2.61

z=-1.923

(b) Second iteration

z=-4.31
y3=l

z=0.2778

z=-2.61
z=-1.722

(c) Third iteration

l.o)

LP: 7 rows

LP: 9 rows

LP: 11 rows

Figure 3. Branch and bound trees of MILP master in convex example.
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z=-3

.33 NLP bound 1.0

(a) One linearization

new NLP
Z=-1.923
LP: 7 rows

z=-1.92
y3=

>* y=d. l. o)
new NLP
Z=-1.72
LP: 9 rows

z=-4.278
NLP bound-1.923

(b) Two linearizations

z=-1.72

y3= NLP bound -1.923

z=0.0 : 11 rows

(c) Three linearizations

Figure 4. Branch and bound tree in proposed method
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Optimal
solution

(0.179.3.821)

^Objective function

x l

Figure 5. Continuous feasible region for y=l.

x2 * {

^Objective function

Figure 6. Continuous feasible region for y=0.
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x2
^Objective function

V \ \ \ N X N N N N \ N N \ \ . \ . N \ \ , \ . \ . X X N . N N N \

x l

Figure 7. Continuous feasible region for OA with y=0

x2 A
^Objective function

V V V V V V V S A N > T \ N N N N V N N . N N N N N N

x l

Figure 8. Continuous feasible region for partial surrogate with y=0.
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x l w l .

x2

Figure 9. Superstructure for nonconvex example

Figure 10. Branch and bound tree of nonconvex example.


