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Introduction 
Since their introduction, classical controls tools have been popular for analysis and 

design of single-input, single-output (SISO) systems. These methods may be viewed as 
specialized versions of more general tools that are applicable to multi-input, multi-output 
(MEMO) systems. Although modern "state-space" control methods (relying on dynamic 
models of internal structure) are generally promoted as the predominant tools for 
multivariable system analysis, the classical control extensions offer several advantages, 
including requiring only an input-output map and providing direct insight into stability, 
performance, and robustness of MIMO systems. The understanding generated by these 
graphically-based methods for the analysis and design of MIMO systems is a prime 
motivator of this research. 

An early graphical method for investigating the stability of linear, time-invariant 
(LIT) SISO systems was developed by Nyquist (1932) and is based on a polar plot of the 
loop transmission transfer function. The MIMO analog of the Nyquist diagram is the 
multivariable Nyquist diagram which is used in conjunction with the corresponding 
multivariable Nyquist criterion (Rosenbrock, 1974; Lehtomaki, et ai, 1981; Friedland, 
1986). This criterion is complicated in the MIMO case because it is expressed in terms of 
the determinant of the return difference transfer function matrix ([I + G(s)] where G(s) is 
the plant transfer function matrix, rather than just 1 + g(s) for the SISO case where g(s) is 
the plant transfer function). Despite the complication, significant research has supported 
the MIMO Nyquist extension for assessment of multivariable system stability and 
robustness (MacFarlane and Postlethwaite, 1977). 

The Bode plots (Bode, 1940) recast the information of the Nyquist diagram, with 
frequency extracted as an explicit parameter. The MIMO analog or extension of the 
classical Bode magnitude plot is the singular value Bode-type plot that shows maximum 
and minimum singular values of transfer function matrices as a function of frequency 
(Doyle and Stein, 1981). This generalized magnitude vs. frequency plot is useful for 
analysis, providing performance insight in terms of command following, disturbance 
rejection, and sensor noise sensitivity, as well as for design, in terms of frequency shaping 
(Doyle and Stein, 1981; Safanov, et a/., 1981; Athans, 1982; Maciejowski, 1989). 

Although promoted as an SISO tool, Evans root locus method (Evans, 1954) is 
also extendable to MIMO systems, since it depicts the trajectories of closed-loop 
eigenvalues (of either SISO or MIMO systems) in a complex plane, However, the 
generalization to the multivariable root loci has not made as significant an impact as the 
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MIMO versions of the classical frequency-domain tools. In similarity to the multivariable 
Nyquist diagram and Bode plot, the MIMO root locus plot does not, in general, follow the 
straight-forward sketching rules applicable to SISO systems. However, it does provide 
insight into stability and performance of the closed-loop system. Part of the complication 
of the MIMO root locus relates to the fact that "multivariable root loci live on a Riemann 
surface... as compared with the single-input, single-output case where the root loci lie on 
a simple complex plane (a trivial, i.e., one sheeted, Riemann surface)" (Postlethwaite and 
MacFarlane, 1979). As a result, multivariable root loci tend to have strange looking 
patterns when drawn in a single complex plane. The possibility of loci being multi-valued 
functions of gain can make the MIMO root locus plot somewhat confusing. 

To aid the controls engineer in extracting more information from the multivariable 
Evans root locus plot, we propose a set of "gain plots" that provide a direct and unique 
window into the stability, performance, and robustness of LTI MIMO systems. A 
conceptual framework motivating the gain plots and a discussion of their applicability to 
SISO systems has been presented previously (Kurfess and Nagurka, 1991a). 

Multivariable Eigenvalue Description 

Review of Basic MIMO Concepts 

A LTI MIMO system can be represented in the standard state-space form as 

x(t) = Ax(t)+Bu(t) (1) 

y(t)«Cx(t)+Du(t) ( 2 ) 

where state vector x is length n, control input vector u is length m, and output vector y is 
length, m. Matrices A, B, C and D are the system matrix, the control influence matrix, the 
output matrix, and the feed-forward matrix, respectively, with appropriate dimensions. 
The input-output dynamics are governed by a square transfer function matrix, G(s), 

G f s H C t s I - A ^ B + D (3) 

The system is embedded in the closed-loop configuration, shown in Figure 1, 
where the controller is a static compensator, kl, implying that each input channel is scaled 
by the same constant gain k. (Note that the plant transfer function matrix and any dynamic 
compensation may be combined in the transfer function matrix G(s).) The control law is 
given by 
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u(t)»kle(t) (4) 

where v5-
" e(t)«r(t)-y(t) (5) 

is the error and r(t) is the reference (command) signal vector of length m that y(t) must 
track. The closed-loop transfer function matrix is 

GcLlsJ^tl + kGCsB^kGts) (6) 

In the M I M O root locus plot, the migration of the eigenvalues of GCL(S) in the 
complex plane is graphed as scalar k varies in die range 0 £ k < ». The eigenvalues of the 
closed-loop system, s « Xj (i=l,2,...,n), are the roots of 4>CL(S), the closed-loop 
characteristic polynomial, 

<>CL(S) * 4>oU(s)det[I + kG(s)] (7) 

where $OL(S) is the open-loop characteristic polynomial, 

*OL(s) = det[sI-A] (8) 

The roots, or solutions of equation (8), are the open-loop poles. By equating the 
determinant in equation (7) to zero, the M I M O generalization of the S ISO characteristic 
equation {1 + kg(s) = 0) is obtained. The presence of the determinant is the major 
challenge in generalizing the S ISO root locus sketching rules to M I M O systems and 
complicates the root locus plot For example, the root locus branches "move" between 
several copies (Riemann sheets) in the s-plane that are connected at singularity points 
known as branch points (Yagle, 1981; Athans, 1982). 

Although it is not generally possible to sketch M I M O root loci by inspection, the 
closed-loop system eigenvalues may be computed numerically from equations (1) - (5) as 

Xi«eig[A-B(I + kD)"lkC] , i = l , 2 , . . , n (9) 

In the examples, the loci of the eigenvalues are calculated from equation (9) as k is 
monotonically increased from zero. 

High Gain Behavior 

As the gain increases from zero to infinity, the closed-loop eigenvalues trace out 
"root loci" in the complex plane. At zero gain, the poles of the closed-loop system are the 
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open-loop eigenvalues. At infinite gain some of the eigenvalues approach finite 
transmission zeros, defined to be those values of s that satisfy the generalized eigenvalue 
problem 

where [ x(0) u ] T is the right generalized eigenvector corresponding to the generalized 
eigenvalue, i.e., transmission zero, with x(0) representing the initial state and u being a 
vector representing input direction in the multi-input case. In the absence of pole/zero 
cancellation, the finite transmission zeros are the roots of the determinant of G(s). 
Algorithms have been developed for efficient and accurate computation of transmission 
zeros (Davison and Wang, 1974; Laub and Moore, 1978; Westreich, 1991). 

The high gain behavior of the root loci can be viewed another way (Friedland, 
1986). The eigenvalues can be considered as always migrating from the open-loop poles 
to their matching transmission zeros. However, those eigenvalues that do not have 
matching zeros in the finite part of the s-plane are considered to have matching zeros at 
infinity. In the global SISO perspective, whenever there exists an excess of poles over 
zeros, the eigenvalues migrate towards infinity in a Butterworth configuration. If the 
excess of poles over zeros is greater than two for an SISO system the closed-loop 
eigenvalues must become unstable as k - » o © . A single Butterworth configuration at high 
gain is generally not seen in the MIMO case; rather, multiple Butterworth configurations are 
generated. It can be shown that for a square system with m inputs, m outputs, and m or 
more eigenvalues migrating towards infinity, m high gain Butterworth patterns occur 
(Kwakernaak, 1976; Shaked, 1978, Thompson, et. aly 1982). These patterns do not 
necessarily demonstrate some of the properties of the well known SISO Butterworth 
configurations, such as the angle criterion or a center of gravity on the real axis. The 
MIMO Butterworth patterns do, however, reveal the typical Butterworth magnitude 
characteristic that has been demonstrated for SISO systems (Kurfess and Nagurka, 1991b). 
These features pre shown later via example. 

MIMO Gain Plots 
Just as the Bode plots embellish the information of the Nyquist diagram by 

• exposing frequency explicitly in a set of magnitude vs. frequency and angle (phase) vs. 
frequency plots, it follows that a pair of gain plots (Kurfess and Nagurka, 1991a) can 
enhance the standard root locus plot. As the gain-domain analog of the frequency-domain 
Bode plots, the gain plots explicitly graph the eigenvalue magnitude vs. gain in a magnitude 

s I - A 
C (10) 
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gain plot, and the eigenvalue angle vs. gain in an angle gain plot In similarity to the Bode 
plots, die mMj&afc gain plot employs a log-log scale whereas the angle gain plot uses a 
semi-log *c*H£P& logarithms being base 10). Although gain is selected as the 
variable erf i npKt in the gain plots, it should be noted that any scalar parameter may be 
used in the geometric analysis. 

Gain plots can be drawn for both SISO and MIMO systems. In MIMO systems it 
is assumed that die compensation dynamics are governed by a single scalar gain amplifying 
all plant inputs. For such systems, simultaneous inspection of the magnitude and angle 
gain plots enables one to uniquely identify locus branches as a function of gain. As such, 
gain plots are a natural complement to multivariable root locus plots, where 
uncharacteristically confusing eigenvalue trajectories can result from being drawn in a 
single complex plane. 

MIMO Examples 
This section presents two multivariable examples. The first example is designed to 

introduce the concept of the gain plots, and to demonstrate the insight they offer by 
"unwrapping" the multivariable root locus and exposing unambiguous behavior. The 
second example highlights the power of the gain plots in revealing typical multivariable 
properties, such as high gain Butterworth patterns for both magnitude and angle. 

Example 1: Aircraft Vertical Plane Dynamics 

The state space model (from Hung and MacFarlane (1982) and studied in detail by 
Maciejowski (1989)), 

x = 

0 0 1.132 0 -1 
0 -0.054 -0.171 0 0.071 
0 0 0 1 0 
0 0.049 0 -0.856 -1.013 
0 •0.291 0 1.053 -0.686 

0 
-0.120 

0 
4.419 
1.575 

0 
1 
0 
0 
0 

0 
0 
0 

-1.665 
-0.073 J 

u (11) 

y = 
1 0 0 0 0 
o i o o o 

L0 0 1 0 0 
(12) 

represents a linearized model of the vertical plane dynamics of an aircraft The system, 
with three inputs, three outputs and five state variables, has no finite transmission zeros 
and has open-loop eigenvalues of Xi = {0, -O.7801±1.0296j, -0.0176±0.1826j}. The 
eigenvalue at the origin indicates that the open-loop system is marginally stable. The 

5 



trajectories of the closed-loop system eigenvalues may be graphically displayed in the 
MIMO root locus shown in Figure 2. However, it is not clear if there exist gains for which 
all of the eigenvalues reside in the left-half plane, implying that the system can be stabilized 
for certain gains. The MIMO root locus plot suggests that as the gain is raised the system 
becomes unstable, but fails to indicate the gain at which instability occurs. Closer 
inspection of the eigenvalues indicates that the closed-loop system is never stable for 
positive gains. 

The gain plots for this system, shown in Figure 3a,b, reveal this information about 
the closed-loop system instability. For example, they show that as the gain increases the 
eigenvalue at the origin initially migrates along the positive real axis (i.e., Zs * 0#), 
indicating instability, until it reaches a maximum value of s-0.010 at a gain k«0.018. As 
the gain increases, this real eigenvalue reverses direction, crosses the imaginary axis at a 
gain k*0.043, and continues to move along the negative real axis (i.e., Zs = 180"). 
However, at k«0.043 one pair of complex conjugate eigenvalues has already moved into 
the right half plane (crossing the imaginary axis at a slightly lower gain). The angle gain 
plot of Figure 3b shows this behavior clearly. In summary, the gain plots provide an 
unambiguous means by which stability may be determined. 

The gain plots highlight several other important features. For example, they show 
the gains corresponding to the complex conjugate eigenvalue pairs breaking into the real 
axis and then proceeding to ±°°. Complex conjugate eigenvalues are shown as symmetric 
lines about either the 180* or 0* line with equal magnitudes. Purely real eigenvalues 
possess equal angles (180* or 0*) but distinct magnitudes. This behavior is demonstrated 
in Figure 3a,b, from which the gains at the breakpoints may be determined by inspection. 

The rates at which the eigenvalues increase towards a magnitude of infinity is seen 
in the magnitude gain plot of Figure 3a and in expanded form in Figure 4. The single 
eigenvalue that begins at the origin proceeds towards infinity along the negative real axis at 
a rate proportional to k (the high gain magnitude gain plot slope is unity). This slope is 
characteristic of a first order Butterworth pattern. The two complex conjugate eigenvalue 
pairs proceed toward infinity at a rate proportional to k 1 / 2 (shown as a high gain magnitude 
gain plot slope of 1/2), indicative of a second order Butterworth pattern (Kurfess and 
Nagurka, 1991b). 

From Figure 4, the two complex conjugate eigenvalue pairs at high gains have 
slope values of 1/2. As k-*», this group of four parallel lines separates into two co-linear 
sets. An interesting fact is that the two identical lines are comprised of an eigenvalue 
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magnitude from each of the original complex conjugate pairs. It is as if the complex 
conjugate e|g||ftalues have swapped partners. This phenomenon is not apparent from the 
MIMO luuffipK however, it must occur due to the location of the centers of gravity for 
the two seSflSl order Butterworth patterns. In fact, each set of co-linear trajectories 
represents a Butterworth configuration. 

Example 2: Higher Order System with Feedforward Term 

This example, from (Kouvaritakis and Edmunds, 1979), demonstrates the power of 
the gain plot geometry in exposing multivariable system behavior. It represents a three 
input, three output, seventh order system with three transmission zeros. The system is 
given by the state space representation of equations (1) and (2) where 

16 

-32 -80 16 0 0 0 0 " 
16 -64 • -16 0 0 0 0 
0 0 -48 0 0 0 0 
0 0 0 -32 -80 0 0 
0 0 0 16 -64 0 0 

1653 0 0 3424 0 -32 -80 
76 0 0 928 0 16 -64 _ 

" 1 0 0 " 
-1 2 -2 
1 1 2 

B = 0 1 0 
0 0 1 
0 0 0 

. 0 0 0_ 

8 -16 0 0 0 0 0 " 
-8 -8 16 -15 -37 8 0 
0 8 16 -68 36 0 8 

(13) 

(14) 

(15) 

-8-210 
-4-1 5 
-8-210 

(16) 

The system it somewhat unusual due to the presence of the feedforward term (i.e., the D 
matrix is non-zero). The root locus plot for this system is shown in Figure 5, and the 
multivariable gain plots for the system are depicted in Figures 6a,b. 

From the root locus and gain plots, it is clear that there are three sets of complex 
conjugate open-loop eigenvalues at s = -3 ± 2j, and a single real open-loop eigenvalue at s 
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« - 3 . There is also a set of complex conjugate multivariate transmission zeros s * -2.84 
± 1.31j and a real zero at s • -124. As the control configuration of Figure 1 is employed, 
the real eigenvalue moves first in the negative direction and then in the positive direction 
along the real axis. Inspection of the gain plots shows that the real eigenvalue reaches a 
maximum value of approximately -2.5 at a gain of approximately 0.1. The eigenvalue then 
branches to a different Riemann sheet and traverses along the real axis towards the real 
transmission zero. By inspection of the gain plots, pole/zero cancellation for the real zero 
occurs at k » 104. 

A set of complex conjugate eigenvalues moves towards the transmission zeros as 
the gain is increased. The remaining two sets of eigenvalue pairs travel towards infinity in 
two separate second order Butterworth configurations. By inspection of the gain plots, 
pole/zero cancellation for the complex conjugate zeros occurs at a gain k * 10°. 

To further highlight the enriched perspective offered by the gain plots, a MIMO root 
locus plot for higher gain values is shown in Figure 7. (Because of the logarithmic scales 
used in the gain plots, expanded high gain plots are not necessary.) From Figure 7 the 
Butterworth patterns may not be clearly visible, yet from Figures 6a,b two distinct patterns 
arise. From the magnitude gain plot, the two separate configurations may be separated into 
two second order patterns having slopes of 1/2 (Kurfess and Nagurka, 1991b). 

Further insight into the different patterns is available from the information of the 
gain plots. Although there are two sets of complex conjugate eigenvalues, the Butterworth 
patterns are formed from one eigenvalue of each complex set. This is demonstrated in both 
the magnitude and angle gain plots. The angles of the complex conjugate eigenvalues are 
approximately ±115# and ±65\ Thus, each member complex pair is approximately 180* in 
angular distance from its matching Butterworth partner in the other complex pair. From 
simple geometric relationships, the centers of gravity (sometimes referred to as pivots) 
from the two second order Butterworth patterns may be computed to be approximately 
19.2±11.9j (Wang, etal.91991). 

Conclusions 
In typical MIMO root locus plots trajectories may be camouflaged as some branches 

may overlap. Gain plots are promoted as a means to "untangle" MIMO eigenvalue 
trajectories. The major enhancement is the visualization of eigenvalue trajectories as an 
c iplicit function of gain (where the compensation has been assumed to be the same static 
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gain applied to all control channels). The representation provides a unique description of 
the eigenvalues and their trajectories as a parameter, such as gain, is varied. 

Research efforts, currently underway, may shed additional light on gain plots for 
multivariable systems. In addition, work by MacFarlane and Postlethwaite (1977,1979) 
and Hung and MacFarlane (1982) on relating characteristic frequency plots to gain domain 
geometry promises closer connections between gain plot methods and singular value 
frequency methods. 

In conclusion, gain plots enrich the multivariable root locus plot in much the same 
way that singular value frequency plots are an alternate and extended presentation of the 
multivariable Nyquist diagram. Their use in conjunction with the multivariable root locus 
provides a new geometric perspective on multivariable systems that can result in clearer 
understandings of such systems in both the research and teaching realms of control 
engineering. 
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Figure Captions 
Figure 1. TMIMO Closed-Loop Negative Feedback Configuration. 

Figure 2. Root Locus Plot of Example 1. 

Figure 3. (a) Magnitude and (b) Angle Gain Plots of Example 1. 

Figure 4. Expanded Magnitude Gain Plot of Example 1. 

Figure 5. Root Locus Plot of Example 2. 

Figure 6. (a) Magnitude and (b) Angle Gain Plots of Example 2. 

Figure 7. Expanded Range Root Locus Plot of Example 2. 
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lire 1. MIMO Closed-Loop Negative Feedback Configuration. 
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