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Three Putnamian Theses

At one time or another Hilary Putnam has promoted each of the following theses:

(1) Limiting reiiabiiism: A scientific method is better insofar as it is guaranteed
to arrive eventually at the truth in more possible circumstances.

(2) Truth as ideaiized justification: Truth is idealized rational acceptability.

(3) Moderate reiativism: Truth is dependent, in part, upon the concepts, belief
system, etc. of agent x.

Thesis (1) appears in two papers published in 1963.1 Theses (2) and (3) appear in later works

under the joint rubric of internal realism.2 Putnam has not explained how the semantic

theses that constitute internal realism fit together with his earlier, reiiabilist conception of scientific

inquiry. Nor have his followers. Barrels of philosophical ink have been spilled on (3) in complete

isolation from (1). Computer scientists, on the other hand, have furthered the study of (1) over

the past three decades with no consideration of (2) or (3). So there remains an interesting and

1 [Putnam 63] and [Putnam 63a].

2E.g., [Putnam 90].



obvious question. Can the conception of method characteristic of Putnam's earlier work be

squared in a precise and fruitful way with his later semantic views? In this paper, we undertake to

answer this question.

In Section I, we discuss Putnam's early methodological work in the context of thesis (1). In

Section II, we adapt the techniques discussed in Section I to the analysis of the notion of idealized

rational acceptability involved in thesis (2). Finally, we show in Section III how to extend the limiting

reliabilist standards discussed in Section I to settings in which evidence and truth can both

depend upon the scientists conceptual scheme and beliefs.

I. Limiting Reliability

Putnam's concern with the limiting reliability of scientific method is evident in his critique of

Carnap's inductive logic3, a critique informed by Kemeny's reflections on the role of simplicity in

inductive inference.4

I shall argue that one can show that no definition of degree of confirmation can be
adequate or can attain what any reasonably good inductive judge might attain
without using such a concept. To do this it will be necessary (a) to state precisely
the condition of adequacy that will be in question; (b) to show that no inductive
method based on a measure function' can satisfy it; and (c) to show that some
methods (which can be precisely stated) can satisfy i t .5

We will fill in points (a) (b) and (c) in order to illustrate the role played by limiting reliability.

I. A. Reliable Extrapolation in the Limit

Consider the game of guessing the next item in a sequence of zeros and ones6. When shown

the sequence (0, 0, 0) one might guess that the next entry will be 0. Of course, the data might

3[Putnam 63].

4[Kemeny 53].

5[Putnam 63], p. 270.

instead of treating data as binary sequences, we could think of observations as being drawn from
a recursively enumerable set E of mutually exclusive and exhaustive, possible observations. But
binary data streams suffice for Putnam's argument, so we will assume that E is {0,1).



continue (0, 0, 0 ,1 ,1 ,1) , suggesting 0 as the next entry. In general, a rule that outputs a guess

about what will happen next from the finite data sequence observed so far will be referred to as an

extrapolator or predictor.

evidence - M H H ^ H ^ -^-prediction

extrapolator

In this situation, the extrapolator gets to see more and more of the infinite data stream z through

time. At each stage n, en is received, and by time n all of initial segment e|n is available for

inspection.

••• £ n

e|n

We may know something in advance about what the data stream we are observing will be like. We

might be told that all the sequences consist of a repeated pattern, or that they all converge to

some value. Let K represent the space of all data streams that may arise for ail we know or care.

The predictor, and his situation can now be depicted as follows. Some E e K is the actual data

stream that n will face in the future, n reads larger and larger initial segments of z and produces an

increasing sequence of guesses about what will happen next. "Hume's shower curtain" prevents

K from seeing the future, which would, of course, make prediction a bit too easy.
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There are infinitely many possible methods for producing predictions. It remains to say what

would count as a good method. It would be unreasonable to expect even the brightest

extrapolator to be right always. It would also seem unreasonable to expect it to be right after

some fixed time that can be specified a priori. Whatever that time is, there might be two possible

extensions of the data that diverge only after that time. But we might hope at least that for each

infinite data stream, there is some time (which may differ from one data stream to another) after

which the extrapolator eventually "gets the gist" of the sequence and locks onto it, producing

only correct predictions thereafter. We can think of this as a criterion of success for extrapolation

methods in general. Let K be an extrapolator and let K be a specified set of data streams that we

care about. Then

K reliably extrapolates K in the limit «=>
for each possible data stream e in K

there is a time n such that
for each later time m,

7c's prediction is correct (i.e. 7c(e|m) = em+i)-

This criterion of success reflects limiting reliability, since what is required of the extrapolator is

convergence to the state of producing correct predictions, and this convergence is guaranteed

over all of K, the space of data streams we care about. Whether or not reliable extrapolation is

possible will depend heavily on the structure of K. If K contains only the everywhere 0 data

stream, then we succeed over K by always guessing 0, without even looking at the data. If K

includes all logically possible data streams, it is not hard to show that reliable extrapolation in the



limit is impossible, no matter how clever our method might be. Then there are intermediate cases,

as when K = flee, the set of all data sequences that can be generated by a computer. That is just

the example involved in Putnam's condition of adequacy for extrapolation methods:

(a) extrapolator n is adequate <=> n reliably extrapolates Rec in the limit

Putnam didn't assume that this notion of adequacy would stand on its own. He was careful to

explain that if no possible method is "adequate", then it is this condition of "adequacy" rather than

Carnap's methods that must go. The condition is supposed to derive its force from the fact that it

is both desirable and achievable.

I. B. Putnam's Diagonal Argument

Now we turn to the second step of Putnam's argument

(b) no inductive method based on a 'measure function1 is adequate;

Before we can review Putnam's proof of (b), we must clarify what is meant by an inductive method

based on a 'measure function'. Carnap's c-functions, or logical probability measures, are (in our

set-up) conditional probability measures with special symmetry properties on the infinite product

space E0*, where E is an effectively enumerable set of atomic (mutually exclusive and exhaustive)

possible observations. Such measures may be turned into extrapolation methods as follows. Let

x be a particular observation and let e*x be the result of concatenating x to finite sequence e. Let

c(e*x, e) be the probability that the next observation is x , given that e has been observed so far.

Assume a fixed, effective enumeration xo, xi xn,... of E. Then we can define predictor rcc SO

that KC outputs the unique prediction assigned probability greater than 0.5 by c if there is one,

and some "stair character '#' otherwise.

/the first prediction x e E s.t. c(e*x, e) > 0.5, if there is one

U otherwise

Observe that if c(e*x, e) is recursive in e and in x (as Carnap's methods are), then nc is also

recursive.



It turns out that when c is one of C a map's methods, the extrapolation method Kc has a special

property, which is the only property of TCC that is relevant to Putnam's proof. Say that ft is gullible

just in case no matter what has been seen so far, if we feed observation x to n often enough, K will

eventually start to predict that x will occur next, K is recursively gullible just in case there is

some effective procedure that enables us to calculate in advance how many x's must be fed to K

to get a to predict x next, for each finite evidence sequence e and for each x. To be precise, let

xn denote the sequence (x, x,..., x), in which x is repeated n times. Then we have:

K Is recursively gullible <=>
there exists a computable function f such that

for each finite data segment e
7i predicts x after reading f(e, x) successive x's added to e
(i.e. 7t(e*xf(e'x>) = x)

By an inductive method based on a 'measure function1, we take Putnam to mean any

extrapolation method icc, where c is one of Camap's c-functions. All such methods are

recursively gullible. Thus (b) is implied by

(b1) If K is recursively gullible then n does not extrapolate Rec in the limit

Putnam proves (b1) by means of a diagonal argument. Since K is recursively gullible, we let f(e, x)

be a computable function that tells us how many x's we would have to add to e to get ft to predict x

as the next observation. At each stage, we check what ft predicted at the end of the previous

stage (say x). Then we choose some datum y * x and use f to calculate how many y's must be

added to the data e presented so far to get K to predict y. We add this many y's to e, so that K

makes a mistake after reading the tast of the y's so added at this stage.

f(stage1f x) f(stage2, y) f(stage3, x) f(stage4, y)

K predicts

•••
stage1

wrong

stage2 \ stages

wrong

stage4;

y
wrong

PC
wrong

ly
wrong

In the limit, K is wrong infinitely often. But e is effective since it is defined recursively in terms of

the recursive function f. Thus e e Rec, so K does not extrapolate Rec.



Putnam mentions as a corollary that (b) remains true if recursive guilibiity is replaced with the more

perspicuous condition that K be recursive.

(b" ) If K is recursive then n does not extrapolate Rec in the limit.

This also implies (b) because c(e*x, e) is recursive in e and x, and hence when c is one of Carnap's

methods, He is recursive.

(bN) follows from the fact that if n is recursive and is also able to extrapolate Rec, then n is

recursively gullible. 7 For if we suppose that some recursive n extrapolates Rec, then it follows by

(b1) that K does not extrapolate Rec, which is a contradiction. To see that a recursive extrapolator

of Rec is recursively gullible, suppose that recursive n extrapolates K. Define f(e, x) to be the least

number of consecutive x's that, when added to e, leads n to predict x. f is clearly computable if n

is, so the only worry is whether n will eventually predict x at all. If K doesni eventually predict x,

then it is wrong all but finitely often on the data stream in which e is followed by all x's, which is also

in Rec. But that contradicts the assumption that K extrapolates Rec.

I. C. Hypothetico-Deductivism

Now we come to the last claim of Putnam's argument:

(c) Some 7c extrapolates Rec in the limit.

The method that witnesses this fact is extremely simple. The idea is to enumerate predictive

hypotheses, to find the first hypothesis in the enumeration consistent with the current data, and

to predict whatever this hypothesis says will happen next. This basic architecture for choosing a

hypothesis in light of data is known in the philosophy of science as the hypothetico-deductive

method or the method of conjectures and refutations, in computational learning theory as

the enumeration technique, in computer science as generate-and-test search, and in

artificial intelligence as the British Museum algorithm. Putnam's interest in such proposals

was inspired by an early article by Kemeny [1953] on methods that order hypotheses for test

according to simplicity.

7The following argument is from [Gold 65]. A more recent version is given in [Osherson et
86].



To adapt this venerable idea to the prediction of recursive sequences, we think of computer

programs as hypotheses, so that the output of program p on input n is p's prediction about what

will be observed at time n in the data stream. For concreteness, let computer programs be written

in LISP. A LISP program (hypothesis) is correct for data stream e just in case it makes a correct

prediction for each position in the data stream.

Now we must confront an issue that looks like a mere detail, but that turns out to be the crux of

Putnam's argument. Anybody who has written a program in LISP knows that LISP permits the

programmer to write programs with "infinite loops". Such a program is incorrect for every data

stream, since it fails to predict anything when it goes into an infinite loop. If such programs occur

in an effective hypothetico-deductivists hypothesis enumeration, he can never be sure whether

his current attempt to derive a prediction is caught in a complex infinite loop or whether it will

terminate at the next moment with a correct prediction. If he uses some criterion for cutting off

lengthy tests and concluding that he has detected an infinite loop, he might throw out ail the

correct programs too early because their predictions take longer to derive than his criterion

permits! If he hunkers down and insists on completing each derivation, he will freeze for eternity

when he tests a program with an infinite loop. Either way his goose is cooked.

So the effective hypothetico-deductivist must eliminate all hypotheses with infinite loops from his

hypothesis enumeration if he is to be a successful predictor. A program that never goes into an

infinite loop is said to be total. An enumeration TI of LISP programs is total if each program

occurring in the enumeration is. On the other hand, the enumeration must be complete as well,

in the sense that it includes a correct program for each recursive data stream. Otherwise, the

hypothetico-deductivist will clearly fail if the unrepresented data stream is in fact the one we

receive. But it is perhaps the most basic fact of recursion theory that:

Fact I.C.1: An enumeration TI of programs is either non-recursive or incomplete or non-total?

In fact, this is not a special problem for the hypothetico-deductivist. It can be shown9 that if K c

Rec is reliably extrapolable in the limit by some recursive rc, then there is some recursive

8[Rogers 87].

9The idea is due to [Barzdin and Freivaldsi972] and is applied in [Blum and Blum 75]. Let n be a
recursive prediction method. Define program pe as follows: If k < length(e), return ei<. Otherwise,
feed e to K and thereafter feed the successive predictions of K back to K. Halt this process and
output the kth prediction as soon as it is reached. If K extrapolates e, then after some time n, rc's



hypothesis enumeration that is total and complete for K. So in this sense every recursive

extrapolator must somehow cope with Fact t.C.1.

Putnam's response to this inescapable limitation on computable extrapolation is to assume as

"given" some non-computable oracle producing a complete and total hypothesis enumeration r\.

When a computable process is provided with a non-computable oracle, it is said to be recursive

in the oracle. Accordingly, let T| be a hypothesis enumeration. Now we construct an extrapolation

method n^ that uses the given enumeration r\ as follows.

find the first hypothesis p in r\ that eventually returns correct predictions for all of e;
predict whatever p says the next datum will be.

It is easy to see that

(c2) If i\ is total then n^ is recursive in an oracle for TI.

That's because the program for K can call for successive programs from the oracle r\ and then

simulate each program received from the oracle for its agreement with e, the evidence received so

far, producing its next prediction from the first such program found to agree with e. Since TI is

total, all consistency tests terminate. It is also easy to see that

(c3) If TI is total and complete then 7^ extrapolates Rec in the limit.

Let e be in Rec. Since TI is complete and t e Rec, some p occurring in x\ is correct for e. Let p1 be

the first one (since there may be many correct programs). Then each preceding program p" is

incorrect in at least one of its predictions. Eventually, the data exposes each of these errors, and

p1 is the first program consistent with the data. It is never rejected, and its predictions are all

correct. So once p1 is at the head of the list, K^ never makes another mistaken prediction.

predictions are all correct. Thus p£|n computes e. On the other hand, for each finite data
sequence e, n extrapolates the sequence computed by pe. Let e0 , ei en , ... be a
computable enumeration of all possible finite data sequences. Then the enumeration of
programs peo, p e v - . Pe2» ••• js computable, total, and complete over the set K of data streams
extrapolated by K.



(c3) implies (c) and completes Putnam's argument. Putnam extends his argument by announcing

one more fact, namely:

(d) Any recursive extrapolator that extrapolates K a Rec can be improved to
extrapolate one more data stream in Rec.

It's easy to see how. If K is recursive, then, as we saw in the proof of (b"), n is recursively gullible.

By Putnam's diagonal argument we can use the gullibility function to produce a recursive data

stream e missed by TC. Let p be correct for e. Now we can "patch" n by having it predict according

p until p is refuted, and thereafter switch to its own predictions. The resulting, recursive predictor

7tp clearly succeeds wherever n does, but also succeeds on e. Since np is recursive, we can

diagonalize again, patch again, and so forth to form an infinite sequence ?c, TCP1, Jtp2>... of ever

better extrapolators of recursive data streams.

I. D. Hypothetico-Obscurantism

Putnam concludes his argument as follows:

This completes the case for the statement made at the beginning of the paper:
namely, that a good inductive judge can do things, provided he does not use
'degree of confirmation', that he could not in principle accomplish if he did use
'degree of confirmation1. 10

That is, if your extrapolator is 7rc, where c is one of Carnap's c-functions, it will be recursively

gullible, and no recursively gullible extrapolator extrapolates each data stream in Rec. But the

hypothetico-deductive method K^ can extrapolate ail of Rec, so presumably we should use K^

instead.

This sounds good— until we recall that the same objection applies to all computable predictors.

By parity of reasoning, Putnam must also recommend that we use no computable methods

because we could do more if we used the non-computable method rc^. The rub, of course, is that

computability is the operative explication of what can be done using an explicit method. If

Church's thesis is correct, then we cannot use TÛ  in the sense in which a method is ordinarily

taken to be used or followed, so we cannot do more using rc^ than we could using some

10[Putnam 63], p. 282, our emphasis.
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computable method n. It would seem that Putnam agrees, since he asserts in the same article that

an inductive method that is "never computable"11 is "of no use to anybody".12 So the apparent

dominance argument against Carnaps methods fails. Carnap's methods are better insofar as they

can be used. The uncomputable methods are better insofar as they would do more if they could

be used.

So why should c-functions be branded as inadequate because, as computable methods, they

cannot do as much as some useless, non-computable method? Putnam's answer is that JC^,

though not recursive, is recursive in an oracle iorr\. And science should be viewed as having

such an oracle "available" through some unanalyzed process of hypothesis proposal.

....1 suggest that we should take the view that science is a method or possibly a
collection of methods for selecting a hypothesis, assuming languages to be given
and hypotheses to be proposed. Such a view seems better to accord with the
importance of the hypothetico-deductive method in science, which all investigators
come to stress more and more in recent years.13

But now a different difficulty arises. If Putnam's favorite method is provided access to a powerful

oracle, then why are Carnap's methods denied the same privilege? The real question is whether

there is a method 7tc based on a conditional probability measure c that can effectively extrapolate

all of Rec when provided with an oracle for TI. But of course there is! Just define (^(x, e) = 1 if x •

n^e) and c^x, e) = 0 otherwise. These constraints induce a joint measure on the infinite product

space co03 by the usual measure extension lemmas, and (^(x, e) is clearly computable in TJ.

Putnam seems to have recognized this weakness in his original argument, for in his Radio Free

Europe address he proposed the possibility of constructing a measure c for each hypothesis

stream r\ so that ^ ( e ) « 7tc(e), for each finite data sequence e . 1 4 Then one may think of the c-

function so constructed as implicitly "using" TI. NOW the objection to Carnap becomes more

subtle. Carnap, together with contemporary Bayesians, insists that once a c-function is chosen,

11 No rational valued c-function is "nowhere computable" in the sense that no program can find
any value of it, since for every particular pair « x , e>, c(x, e)>, there is a program that waits for <x,
e> and that produces c(x, e) on this particular input. Indeed, this can be done for any finite
number of inputs. The puzzling expression "never computable" must therefore mean
"uncomputable" if Putnam's claim is not to be vacuously true.

12lbid., p. 276.

13[Putnam 63], p. 292, our emphasis.

14[Putnam 63a], p. 302.

11



ail changes in degrees of belief should be regulated by c as more data is read. But if c is a fixed,

computable method then some hypotheses will be missing from its tacit TJ. Putnam's point is that it

would be crazy, upon being shown that some total program p is missing from TJ, not to add p to r\

to form TV and to switch from c to c^. But a Camapian committed to c from birth is not free to do so.

In modern Bayesian jargon, such a move would be diachronically incoherent.

But again, the same argument applies to all computable predictors.15 When it is pointed out that

one's method K fails to "consider" total program p, one ought (by parity with Putnam's argument

against Carnap's methods) to switch to some method rc' that does everything n does, but that also

"considers" program p.

This sounds good, but we must again be careful. We already know that for any fixed, effective

method n we choose, we could have chosen a more reliable one, so every effective method is

"inadequate- in the sense that using it prevents us from being as reliable as we might have been.

But from this point of view, Putnam's objection against following a fixed, computable method is

weak. It's like saying of a man who asks a genie for a huge amount of money that he was crazy not

to ask for twice that amount. If every chosen amount could have been larger, then he cannot be

crazy for choosing a particular amount. So by analogy, unless the process of modifying our

current method to account for newly "suggested" hypotheses leads to limiting performance

better than that of any possible recursive extrapolator, we should not conclude that using a fixed,

recursive method K is crazy, even in the face of a second-guesser who points out how we could

have chosen better as soon as we choose n.

But whether a methodological patcher relying on a hypothesis oracle TI can do more than any

fixed, recursive method will depend heaviliy on the nature of r\. Where could r\ come from?

Putnam's own examples arise from diagonalization. Consider some hypothetico-deductive

method rc^, where TI is effective. We can effectively recover some total p missing from r\. Instead

of adding p to the front of TI, we insert p into TI after the first program consistent with the data at the

previous stage, to form iy. Now suppose we keep doing this over and over. The added programs

won't interfere with convergence, since they are always inserted behind our current conjecture,

so it is a lot better to proceed this way than to stick with T|. But everything done here is effective,

so all of this Camus-esque stnving to escape the bourgeois rut of following a fixed extrapolation

algorithm for life amounts to nothing more than following a fixed, recursive extrapolation algorithm

15C.f. footnote 9 and (b11) above.
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for life, an algorithm whose own incompleteness can be effectively exposed by Putnam's

diagonal argument!

Let us then turn to Putnam's suggestion that r\ be given, rather than formed effectively by

diagonatization. This raises the possibility that n^ can do more than any effective method, as

when TI is complete and total for some K <z Rec for which no effective r\ is total and complete. Let

us refer to such an TI as effectively transcendent. But now a new problem arises: how are we

to know that the enumeration r\ produced by a given source of hypotheses is, in fact, effectively

transcendent? If we cast our lot with some n^ such that TI is not effectively transcendent, then

some fixed, recursive method n can do better than us!

It is hardly clear a priori that "creative intuition", "informal rationality", "common sense", or any

other alleged source of hypotheses is effectively transcendent. Nor will it do for Putnam to appeal

to scientific inquiry to determine the effective transcendence of a given hypothesis source, for it

can be shown that in a very weak sense of reliable success to be introduced shortly, no method,

whether computable or not, can figure out whether a given hypothesis source (e.g. Uncle Fred)

will in fact produce an effectively transcendent hypothesis stream r\ by studying its past

performance.16 Thus, the proposal to inductively investigate the status of a given hypothesis

source is a cure far worse than the disease, because at least some non-computable method can

extrapolate Rec. Moreover, it can be shown that no effective method can figure out whether the

oracle is even total, let alone transcendent.17

16Effective transcendency is not verifiable in the limit over o10, in the sense of Section I.E.
below. Let a aspire to this task, with no preconceived ideas about what Uncle Fred will suggest
(after all, we are relying on Uncle Fred for our new ideas). Then we may diagonalize as follows.
Suppose a succeeds. Let TI be a fixed, effectively transcendent hypothesis stream. We present
TI until a says 1, which must happen eventually, since a succeeds and r\ is effectively
transcendent. Now we continue in an effective manner until a says 0, which must happen
eventually, and so forth, for each finite sequence of total programs can be extended in an
effectively transcendent way or in an effective way. Each time we switch back to TI we make sure
then next item in TI is presented. In the limit, all of T| is presented (perhaps with some more total
programs) and hence the hypothesis stream presented is effectively transcendent, since TI is.
But a changes its mind infinitely often, and hence fails, contrary to assumption. Thus no a
succeeds, whether computable or not. This is much worse than the original problem of
extrapolating Rec, which is impossible only for effective methods.

17Totality is not verifiable in the limit by an effective agent in the sense of Section I.E. below.
Suppose recursive a succeeds. We fool a infinitely often by feeding it programs that simulate a
and go into loops until a concludes that they will loop forever, at which point the loops all
terminate. Specifically, suppose the finite sequence e of total programs has been presented to a
so far. Let TI be a fixed, effective, total hypothesis stream. We write a program that on input y
simulates a on e*X*r| and that goes into a loop, waiting for a to conjecture some value < 0.5 about
the hypothesis of totality. As soon as such a value is produced by a, our program terminates the
loop and outputs some arbitrary value, say 0. Note that X is a free parameter. By the Kleene

13



You need hypotheses?
Switch this stupid thing off.
I have informal rationality!

Scientist Philosopher

We can add uncertainty about the hypothesis source to the definition of inductive success so that

its significance for successful prediction explicit. Our knowledge about the hypothesis source

consists of some set S of infinite hypothesis streams, any one of which the source might

generate, for all we know or care. Then reliable extrapolation using the source as an oracle can be

defined as follows, where n now takes a finite, initial segment of r\ as well as a finite, initial segment

of t as input.

K reliably extrapolates K In the limit with a hypothesis oracle / n S «
for each possible data stream e in K

for each possible hypothesis stream TJ in S
there is a time n such that

for each later time m,
7t's prediction is correct (i.e. rc(e|m, i\\m)

Without going into a detailed analysis of this intriguing success criterion, it suffices to observe that

just as extrapolabiiity simpliciter depends essentially upon the space of possible data streams K,

extrapolabiiity with a hypothesis oracle depends crucially on the space of possible hypothesis

streams S. So we have the intuitive conclusion that we had better know a lot more than we do

recursion theorem, X can be specified as the program p we have just defined, so it can feed itself
to a in the simulation! Now if p stays in its loop forever, this is because a returns values greater
than 0.5 forever, so a fails on e*p*r| which is not total, due to p, and we are done. If p exits its
loop, this is because as confidence in totality sagged at some point n in reading TI during p's
simulation. Then we realty feed data e*p*Ti to a until a really says 0, as p already determined in its
simulation. Then we repeat the whole construction for a new internal simulation program p\ and
so forth, forever. Thus as confidence in totality sags infinitely often on a total hypothesis stream,
so a fails.

14



about our alleged oracles (e.g. "creative intuition", Informal rationality", "common sense") before

we complain about how "inadequate" all the computable extrapolators are.18

There is yet another possible interpretation of Putnam's dissatisfaction with effective

extrapolators. We have already seen that no recursive extrapolator succeeds over all of Rec, and

that each such method can be improved, so there is no best. So no particular, recursive

extrapoiator is universal, in the sense that it succeeds over all of Rec. On the other hand, for

each effective extrapolator *, there is some choice of an effective r\ so that the hypothetico-

deductive extrapolator n^ succeeds on the same space K e Rec of data streams that K succeeds

over. We may think of hypothetico-deductivism as a recipe or architecture for building

extrapolators in a particular way, using an effective hypothesis stream and a test procedure. Since

for every effectively extrapolable K, some effective hypothetico-deductive method n^

extrapolates it, we may say that hypothetico-deductivism is a universal architecture for effective

extrapolation. Universal architectures have the following, desirable property. While no method

built in the specified way is guaranteed to succeed over all data streams in Rec, at least the

architecture doesni stand in the way by preventing us from being as reliable as we could have

been. \n particular, a scientist wedded to a universal architecture is shielded from Putnam's

charges of inadequacy, since completeness implies that there is nothing he could have done by

violating the strictures of the architecture that he could not have done by honoring them. This is

something of a let-down from Reichenbach's grand ambition of a universal method for science,

but it provides the basis for a well-motivated "negative methodology" in which methodological

principles ought at least not stand in the way of progress.19

Perhaps Putnam inherited from Reichenbach the notion that methodology proper should consist

only of universal principles. From this it would follow that methodology should consist only of

maxims or architectures, rather than of particular, concrete algorithms for extrapolation since the

18Sirrtiar considerations can be raised against the various arguments based on Goedel's theorem
[e.g. Lucas 61] which are intended to show that minds are not computers. These arguments
assume that the "genius" who (effectively) constructs the Goedel sentence and who "sees" (by
following the proof) that the sentence constructed is true knows that the system for which he
constructs the sentence is sound. But this presupposes a reliable soundness oracle for
arithmetic systems, and we do not know that the geniuses in question are reliable oracles for
soundness. Nor could we reliably find out by watching what these geniuses do whether they are
reliable soundness oracles if in fact we are computable, by diagonal arguments similar to those
rehearsed in the preceding footnotes.

19Osherson, Stob and Weinstein refer to maxims or architectures as strategies, and refer to case
in which maxims stand in the way of reliability as cases of restrictiveness. For a raft of
restrictiveness results for recursive methods, c.f. [Osherson et. ai. 86], chapter 4.

15



former can be universal and the latter cannot. On this reading, the "informal rationality" and

"common sense" required to apply methodological maxims is a matter of making a maxim into a

concrete plan for action, whether explicitly, or implicitly, in light of one's cognitive dispositions to

produce conjectures on the basis of data in light of the maxim. This interpretation fits well with

Putnam's hypothetico-deductivism, for as we have seen, hypothetico-deductivism is a universal

architecture for extrapolation that yields a concrete method only when the hypothesis stream r\ is

specified. But it still doesn't account entirely for Putnam's antagonism toward explicit, recursive

methods. To say that a universal maxim is good when every explicit instance of it is "ridiculous"20

makes about as much sense as the 1992 presidential polls, which placed a Democrat in the lead,

but each particular Democrat behind.21

In short, Putnam's negative philosophical morals about "mindlessly" following computable

extrapolation methods are not very persuasive. But ultimately, that isni so important. The lasting

contribution of his argument was to illustrate how rich the study of effective discovery methods

can be when approached from a logically sophisticated, recursion theoretic perspective. Putnam

exposed intrinsic, formal structure in the problem of effective extrapolation that his predecessors

never dreamed of, and that most philosophers of science and statisticians still know nothing

about. He set the stage for an approach to inductive methodology in which dogmas and

preaching give way to format facts about what is possible, regardless of what we insist we "must

have". His analysis was tied squarely to the objective of getting correct answers eventually, a

refreshingly straightforward alternative to evasive epistemologies based on coherence or some

primitive notion of "theory justification", whatever that might be; epistemologies that make the

point of following a reliable method obscure.

The special strength of Putnam's analysis, which is almost entirely missing from the

methodological work of his contemporaries, is its exploitation of the strong analogy between the

fundamental concepts of computation and induction. Our inductive abilities are fundamentally

limited because the data stream can only be scanned locally. If it could be seen all at once,

extrapolation would be trivial. But a computing machine's computational abilities are limited by its

inability to write upon or scan an infinite memory store at once. This fact is manifested in our

2 0 There is no logic of discovery— in that sense, there is no logic of testing, either; all the formal
algorithms proposed for testing, by Carnap, by Popper, by Chomsky, etc., are, to speak impolitely,
ridiculous: if you doni believe this, program a computer to employ one of these algorithms and
see how well it does at testing theories! [Putnam 74], p. 268.

2 1 In Section II we will see that Putnam's internal realist semantics provides a model for this
absurdity, so perhaps he would endorse it.
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discussion of the hypothetico-deductivist's uncertainty regarding whether or not a given

computation will halt. From a computer's point of view, the formal question of consistency

becomes an internalized empirical question, and the machine's potentially infinite, ever

extendable memory can be viewed as a second, internalized data presentation, only some finite

segment of which can be scanned at a given time. This strong analogy between the leading

metaphors of induction and computation poses the prospect for a logical study of induction

entirely parallel to modern mathematical logic, both in style and in content. As in mathematical

logic, the fundamental objects of inductive logic become problems and relations of relative

difficulty between them.

Finally, Putnam's recursion-theoretic methodological results make no recourse to measures and

probability, the traditional mainstays of inductive logic. Putnam's attitude is that extrapolation over

some range K of possible data streams is a fixed problem, and that methods like Carnap's, that

update probability measures over possible observations, are just one proposed solution among

many. Whether or not such methods are good solutions to the prediction problem should drop

out of a careful, comparative analysis. Nor does Putnam exempt probabilistic methods from failure

over sets of data streams the method is "almost sure" wont arise, as in Bayesian, "almost sure-

convergence theorems. Such theorems show only that each countably additive probability

measure is willing to "bet its life" that it will get to the truth in the limit. In Putnam's analysis, the

method is required to really succeed over all of K in virtue of its computational structure: he does

not take the method's own word for its future success. Thirty years later, these proposals are still

both radical and exciting.

I.E. Hypothesis Discovery and Hypothesis Assessment

The preceding discussion was about extrapolation methods, since Putnam's article puts matters

this way, but his limiting reliabilist analysis applies just as well to other types of methodological

problems. Sometimes a scientist desires to produce some correct hypothesis in light of the

available data. Methods for doing this are called logics of discovery by philosophers,

estimators by statisticians, and learning machines by cognitive and computer scientists. We

will refer to methods that produce hypotheses on the basis of evidence as hypothesis

generators.22

22The restriction to rational values eliminates problems about effectiveness later on.
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evidence ^ i p a B ^ J ^ -^-hypothesis

hypothesis generator

Hypothetico-deductive method is most simply conceived of as a hypothesis generator

constructed out of a hypothesis enumeration r\ and a special criterion of hypothesis test, namely,

consistency with the data:

Y*(e) = the first hypothesis in T\ consistent with e in K.

Recall the criterion of reliable extrapolation in the limit. The idea was that the method should

eventually "get it right" after some time, no matter which data stream in K is actual. We can also

hope that our methods for discovery will eventually "get it right". In hypothesis generation,

"getting it right" means producing a correct hypothesis. Recall, for example, that a LISP program

is correct for infinite data stream e just in case it correctly predicts each observation in e.

Generalizing that example, let hypotheses be objects in some countable set H, and let

correctness be some relation R between infinite data streams in K and hypotheses in H.23 Now

we can be precise about the notion of "consistency* assumed in our definition of hypothetico-

deductive method: e is consistent with h in K with respect to R just in case there is some e in

K that extends e and that makes h correct with respect to R.

An inductive setting is a triple (K, R, H), where K is a set of infinite data streams over some

recursive observation space E. H is a decidable set of objects called hypotheses, and R is an

arbitrary relation between K and H. For example Putnam's critique of Carnap's methodology

essentially assumes that K = Rec, H = LISP, and R = Computes, where Computes(z, p) <=> for

each n, p outputs en on input n. Putnam's setting (Rec, LISP, Computes) will be referred to as the

computer modeling setting.

23Correctness is a very general notion. Correctness might be empirical adequacy (i.e.
consistency with the total data to occur in e) if hypotheses and observations are both drawn from
some logical language. As in Putnam's discussion, we might also require that a correct
hypothesis predict what will happen in e. Or correctness might tolerate some number of mistaken
predictions, or even an arbitrary, finite number. Simplicity and other properties of hypotheses may
also be involved.
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Now we can define what it means for a hypothesis generator to "get it right eventually" in an

arbitrary inductive setting (K, R, H).

Y makes reliable discoveries in the limit given K (with respect to R) *=>
for each infinite data stream e in K

there is a time n such that
for each later time m
y produces a hypothesis correct for e
(i.e.R(e,Y(e|m)))

This definition entitles Y to vacillate forever among correct hypotheses on some data stream in K.

When Y does not so vacillate, we say that y makes stable discoveries in the limit.24 Plato, among

others, took stability to be a key feature of knowledge, distinguishing it from mere true belief,25

so stable discovery is an idea of some epistemoiogical interest.

In the computer modeling setting (Rec, LISP, Computes), the extrapolability of K Q Rec in the limit

implies reliable discovery in the limit is possible given K, and this claim holds both for effective and

for ideal agents.26 The converse is also true for uncomputable methods but is false for

computable ones.27. Both directions are false for effective and for ineffective methods when we

move from computer modeling to arbitrary inductive settings.

The results for reliable discovery in the computer modeling setting mirror Putnam's results for

extrapolation. No recursive y makes reliable discoveries in the limit over all of Rec (this result due

to E. M. Gold28 strengthens Putnam's result), but the hypothetico-deductive method Y#

succeeds when provided with a total and complete enumeration TI of LISP programs. There is no

best, recursive, limiting discoverer of correct LISP programs. For each recursive generator, it is

trivial to make an improved recursive generator that succeeds on one more data stream29. One

difference between extrapolation and discovery in the computer modeling setting is that there is

24Add the condition that 7(e|m) = y(e|n) to the expression in parentheses.

25[Plato 49].

26af. [Blum 75].

27 lbid.

28[Gold 65].

29[Osherson, et al. 86].
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no guarantee of a recursive, total and complete hypothesis enumeration for K when effective

discovery is possible over K in the limit.30

A method that assigns degrees of warrant or support in light of the data is called a confirmation

theory or inductive logic. A method that outputs 1 or 0, for "pass" or "fail", respectively, is

called a hypothesis test We shall refer to all these methods collectively as hypothesis

assessors.

evidence ,
^degree of support

hypothesis ~ M j B | H H L ̂  or test resutt

hypothesis assessor

Some confirmation theorists view the assignment of a degree of warrant or inductive support to a

hypothesis as an end in itself31 But assessment is more often viewed as a means for reliably

determining whether or not a given hypothesis is correct. A natural analogue of the preceding

success criteria suggests itself, where we view H as the set of hypotheses we might possibly be

asked to assess:

a verifies H in the iimit given K (with respect to R) <=>
for each hypothesis h in H

for each possible data stream e in K
R(e, h) »
there is a time n such that

for each later time m > n, a(ht e|m) > 0.5.

Verification in the limit requires that a eventually place only values greater than 0.5 on h if and only

if h is correct. When h is incorrect, a is free to vacillate forever between values above and below

0.5. When a eventually produces only values less than 0.5 if and only if h is incorrect, we say

that a refutes H in the limit given K. When a both verifies and refutes H in the limit given K,

we say that a decides H in the limit given K.

3aThis result was presented by Mark Fulk in a Symposium at Carnegie Mellon University in 1989.

31 E.g. [Horwich 91] and [Lycan 88].
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We have discussed hypothetico-deductivism as an architecture for building a prediction method

7^ from a given hypothesis enumeration i\. Hypothetico-deductivism can be viewed more directly

as a proposal for building a hypothesis generation method Yq f r o m *n as follows. Say that h is

consistent with e, K « f o r some e e K e c e . Now define the hypothetico-deductive method Yq

determined by i\ as follows:

Yq(e) = the first hypothesis h in r\ that is consistent32 with e, K.

Consider the hypothesis h that at most finitely many 1's will occur in the data stream. This

hypothesis is consistent with all finite data sequences, so hypothetico-deductivism is bound to

fail. If, for example, h occurs prior to the first correct hypothesis h' in T|, no evidence will refute h,

and the hypothetico-deductive method will conjecture h forever, even if in fact the number of Vs

in the resulting data stream is infinite. On the other hand, the trivial method that returns test result

1 if the last entry of e is 0 and 1 otherwise is an effective method that verifies h in the limit. So

perhaps science would benefit by replacing the hypothetico-deductivist's narrow consistency

test with a more reliable, limiting verification procedure a. Then, in our exemple, the hypothetico-

deductivist would recommend producing the first hypothesis in r\ whose limiting verifier returns an

assessment greater than 0.5. But this won't work if a vacillates between values above and below

0.5 forever on the first hypothesis, for then the hypothetico-deductivist will incorrectly conjecture

the first hypothesis infinitely often.

A better proposal is this. Let TI enumerate H, and let a be an assessment method. Let e be a

finite data sequence of observations drawn from E. The bumping pointer method33 Y f̂(e)

works as follows. First, construct an infinitely repetitive version TI1 of r\ as follows: T|' = TI0 , TIO, m ,

T|0. "H1. "H2, - . TIO Tin, .-• This can be done recursively in TI. Initialize a pointer to position 0 in

TI1. The pointer will move as initial segments of e are considered. If the pointer is at position i on

initial segment e(n of e, then on segment e|n+1, we leave the pointer where it is if aOlj, e|n+1) = 1,

and move it to position i+1 otherwise. Ytf(e) returns TIK, where k is the last pointer position upon

reading all of e.

3 2 ln our setting, say that h is consistent with e, K « f o r some e e K e c £.

33This method and the following argument were introduced in [Osherson and Weinstein 91] in
the first-order hypothesis setting.

21



is infinitely
repetitive

h
4 • • •

conjecture hypothesis
pointed to when ail
of e is read

Say that H covers K according to R just in case each data stream in K bears R to some

hypothesis in H. Then we have:

Fact l.E.1

(a) if rng(Ti) covers K according to R and a verifies rngft) in the limit given K (w.r.t. R)

then yff stably identifies R- correct hypotheses in the limit.34

(b) y% is recursive in a, TI.

(b) is immediate. To see (a), let E G K . Since rngft) covers K, we may choose h e rngCn) so that

R(e, h). Then for some n, we have that V m > n, a(h, e|m) =1. Moreover, h occurs in T\% (the

infinitely repetitive version of r\ constructed by yl?) infinitely often, and hence at some position m1

> n in TI1. Thus, the pointer cannot move beyond position m\ Now suppose hf occurs at some

position m" prior to m l in TI1 and —iR(e, h1). Then a returns 0 infinitely often for h1 on e. Thus, the

pointer cannot remain at position m" forever. So the pointer must remain forever at some correct

hypothesis, and ylf converges to this hypothesis. I

Recall Putnam's recommendation that we view science as a set of universally applicable maxims

that require ingenuity to apply. We may think of the bumping pointer proposal ytf and of

hypothetico-deductive proposal yn as general maxims or architectures that yield different,

34rng(£) denotes the range of e, or the set of all items that occur in e.
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concrete hypothesis generators for different specifications of r\ and of a. Recall that an

architecture or maxim is universal or complete just in case it yields a successful method whenever

there is one. What we have just seen is that the hypothetico-deductive architecture is not

complete since some method can find the truth even when all hypotheses are all unfalsifiable, but

no hypothetico-deductive method can succeed in such cases even in principle. This refutes

Popper's bold conjecture35 that the method of bold conjectures and refutations is our best and

only means for finding the truth. But it remains to consider whether or not bumping pointer

architecture is in fact universal. What is required is nothing less than a formal proof of

completeness for a discovery architecture. In the next section we will see that in spite of the long-

standing dogma that there is no logic of discovery, Putnam developed just such proof techniques

to handle a purely logical problem posed by Mostowski.

I. F. Transcendental Deductions of Convergent Rellabllism

A transcendental deduction is a demonstration that some condition is necessary for

knowledge of a certain kind. A transcendental deduction is complete if it yields both a

necessary and a sufficient condition. If we think of stable, reliably inferred, correct hypotheses as

knowledge (a view with a philosophical pedigree extending from Plato to the present day) then a

complete transcendental deduction would be a necessary and sufficient condition for reliable

inference in an arbitrary inductive setting (K, R, H). Among computational learning theorists, such

results are known as charactenzation theorems. In 1965, Putnam and E. Mark Gold

published in the same journal the same characterizations for reliable verification, refutation, and

decision in the limit.36 Complete architectures for assessment and discovery drop out as a by-

product.

The Gold-Putnam result characterizes verifiability in the limit by computable methods in terms of

the computational complexity of the correctness relation relative to background knowledge

K. The relevant scale of computational complexity is known as the Kleene or arithmetical

hierarchy. The basic idea is to define correctness in terms of quantifiers over a decidable

35[Popper 68].

36 [Putnam 65], [Gold 65]. In personal correspondence, Putnam insists that his paper on
Mostowski's problem was conceived quite separately from the paper on Carnap's methods. He
does use inductive inquiry as a metaphor to motivate his construction, however. Gold clearly took
the characterization result to have methodological significance, as did Putnam's student Peter
Kugel [Kugel 77].
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relation, and to measure complexity in terms of the number of blocks of adjacent quantifiers of the

same kind in the resulting expression. For example, suppose that some correctness relation R

can be defined relative to K and H as follows:

Ve € K, Vh e H, R(e, h) « 5w3xVyVz P(e, h, x, y, w, z)

where P(E, h, x, y, w, z) is required to be recursive in the sense that it can be mechanically

decided by a LISP program armed with an oracle for the data stream e. Then we count the number

of distinct blocks of quantifiers of the same type in the definition. Here we have the blocks 33,

W, so the count is two. Then we say that R is in the complexity class 3 H * K$ just in case the first

block of quantifiers in its definition consists of 3's and there are n blocks in all. R is in the dual

complexity class n (H» Kin just in case there are n blocks of quantifiers in its definition starting with

a block of V's, in which case R e Z{H, K]S. Finally, R is in complexity class A(H, K]8 just in case R is

in both q H , K]i? and n[H, K]S. A standard fact of mathematical logic is that these classes form a

hierarchy. Links in the foiiowing diagram indicate proper inclusion, with smaller classes to the left

and larger ones to the right.

• I I

increasing complexity

What Putnam and Gold showed was the following:

Theorem I.F.I (Gold, Putnam):

(a) H Is effectively verifiable in the limit given K (w.r.t. R ) « R e £[H, K]°.

(b) H Is effectively refutable in the limit given K (w.r.t. R ) « R e n[H, K&

(c) H is effectively decidable in the limit given K (w.r.t. R ) « R G A[H, K]2.

It suffices to consider only the first case, the other two following readily. (=*) Suppose recursive a

verifies H in the limit over K. Then by definition,

Ve € K Vh € H, R(e, h) c=> 5n Vm > n a(h, e|m) > 0.5.
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where the relation "a(hf e|m) > 0.5" is recursive since a is. So R € 5 H , K]2.

(<=) Let R e ^ H . Kfe. Then for some recursive relation S we have

Ve e K Vh € H, R(e, h) <=> 5x Vy S(e, h, x, y),

where x, y are vectors of variables. Assume some fixed, effective enumeration x<i, X2, ... xn , . . .

of the possible values for x and another effective enumeration y i , y 2 , . . . yn. ••• of the possible

values of y. We now define an effective mechanism for managing a pointer on the enumeration

x i , X 2 , . . , x n , . . . as follows: on data e of length n t the mechanism maintaining the pointer seeks

the first position k < n such that for each j < n, the decision procedure for S(e, h, Xk, yj) does not

return 0. If there is no such k, then the pointer moves all the way to position n.

doorstop
at length(e)

We define the method a(e) to say 0 whenever the pointer moves and to say 1 otherwise. Now we

verify that a works. Let h e H, z e K. Suppose R(e, h). Then 3k Vj S(e, h, XR, yj). Let k' be the

least such k. Then the pointer can never be bumped past k\ so a stabilizes correctly to 1.

Suppose -«R(e, h). ThenVk3j s.t. -.S(e, h, Xk, yj). Let Xk be arbitrary. Choose yj so that -tSfc h,

Xk, yj). e is eventually long enough so that S(e, h, Xk, yj) halts with output 0. So the pointer is

eventually bumped past k. Since this is true for arbitrary k, and a produces a 0 whenever the

pointer is bumped, a produces infinitely many 0's, as required. I
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The method constructed in the proof of this theorem can be thought of as an application of the

bumping pointer architecture to hypothesis assessment. Thus, a corollary of the theorem is that

bumping pointer assessment architecture is universal for verification in the limit.

The theorem can be extended to mechanical falsifiability and verifiabitity in the old, logical

empiricist sense. Say that H Is effectively verifiable with certainty given K (w.r.t. R) just in

case there is an effective a such that for each hypothesis h in H and data stream e in K, a

eventually halts with 1 if and only if h is correct in e. Effective refutabillty or "falsifiability

with certainty is defined similarly, except that a must halt with 0 just in case h is incorrect in e.

And effective decidability with certainty requires both verifiability and refutability with

certainty. Then by the very definitions of the complexity classes, these cases are characterized,

respectively, by ^ H , K]^ n[H, K]1f and ^(H, K]1f yielding the following correspondence between

success criteria and complexity classes:

effectively effectively
verifiable with verifiable
certainty in the limit

effectively
refutable with
certainty

effectively
refutable
in the limit

effectively
decidable
with certainty

effectively
decidable
in the limit

• I I

We can also characterize stable discovery in a related fashion. The idea is that some effective

discovery method works whenever any effective discovery method works, so the architecture for

building discovery methods out of effective hypothesis enumerations and effective hypothesis

assessors is complete in the sense of limiting reliability.
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But there is an interesting twist. Contrary to the hypothetico-deductivists' intuitions, effective,

reliable discovery of hypotheses in H is possible in the limit even when no ideal assessment

method can even verify hypotheses in H in the limit. The following setting provides a simple

illustration of this fac t 3 7

Ro(e, i) <=> eo = i or i occurs infinitely often in e.

K0 « a)**.

Thus, the successful discovery method cannot succeed by using a reliable assessment

procedure, since there may be no such procedure when some method can succeed! The trick is

that the method is free to "pretend" that correctness is more stringent than it really is, where

the more stringent correctness relation R* c R is obtained from the original relation R by making

some hypotheses incorrect where they were previously deemed by R to be correct. Then the

discovery method can employ a reliable assessor a attuned to this "imaginary- notion of

correctness, and whatever a judges correct will be correct, but not conversely.

This seems paradoxical! How could pretending that fewer hypotheses are correct for various data

streams make it easier to find correct hypotheses? The answer is that making a correctness

37The tnvially effective discovery procedure "tfe) = the last entry in eM makes reliable discoveries
in the limit in this setting. On the other hand, let a be an arbitrary assessor, assumed for reductio
to succeed in the limit in $0 - To show that a does not verify co in the limit, assign a hypothesis 0 to
investigate. Feed 111.... until a reports some value < 0.5. Then fill in with 0's until a reports a
value > 0.5, and so forth. Each such time must arise else a fails on the data we continue to feed,
waiting for a to change its mind. If we make sure that a 0 is added each time a changes its mind,
the result is a data stream for which 0 is correct, but a's confidence drops below 0.5 infinitely
often. K

Let y(e) = e i . y is trivially effective, and makes reliable discoveries in the limit. We show that co is
not verifiable in the limit given co^ (w.r.t. R o ) ~ even by an effective agent— by means of a simple
Gold-Putnam diagonal argument, let a be an arbitrary assessor, assumed for reductio to verify co in
the limit given co<° (w.r.t. Ro). Pick hypothesis 2. Start out with 0, so that if 2 ends up being correct
(according to Ro), it is not for the trivial reason that the data stream we feed has 0 in position 0.
Now feed 2 until a's confidence rises above 0.5. This must eventually happen, else a's
confidence always remains below 0.5 on a data stream with infinitely many 2's. When it happens,
feed ail 0's until a's confidence falls to or below 0.5, which again must happen else a is eventually
always more than 50% sure of 2 on a data stream that has only finitely many 2's and that does not
have 2 in position 0. Continuing in the fashion, we produce a data stream with infinitely many 2's
on which a's conficence vacillates above and below 0.5 infinitely often, so a does not verify 2 in
the limit given coco (w.r.t. Ro). Contradiction.
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relation more stringent can also make it far less complex, just as planing wood from a rough surface

can make it smooth. We can choose Rfo c Ro so that Rfo(e, i) « e begins with i, for example,

thereby reducing the complexity of Ro from a hefty n[co,Ko]2 to a trivially manageable A[co,Ko]?.

Thus, contrary to the usual hypothetico-deductive view, reliable discovery in the limit can in be

much easier in principle than reliable assessment in the limit.

It is possible to make R too stringent. The simplest, and most stringent notion of correctness

makes no hypotheses correct under any circumstances. But of course, such a relation is also a

useless guide for what to conjecture. Thus we must insist that in reducing complexity, we retain

some correct hypothesis for each data stream in K. Moreover, we will need to enumerate the

relevant hypotheses, so we insist that the remaining, correct hypotheses be in some recursively

enumerable set.

Theorem I.F.2:

Let (K, R, H) be an arbitrary inductive setting.

Correct hypotheses are effectively stably discoverable in the limit given K (w.r.t. R) »

there is some R'cR.H's.t .

(1) Hf is recursively enumerable and

(2) H1 covers K according to R' and

(3) R'6 I [H\K]°2

Corollary: The theorem still holds if we add the condition: (4) FT is single valued.

recursively enumerable

increas
stringency

complete coverage
of K by H (w.r.t. Rf)

7
H' can have
have incorrect,
-pseudo-
hypotheses"

(=*) Let recursive y stably discover correct hypotheses in the limit given K according to R. Then

we have:
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(i) Ve € K 3n Vm 2 n 7(e|m) = tfejn) & R(e, Y(e|m)).

Choose H' as follows:

H' = the set of all hypotheses conjectured by y.

Next, define Rf over H1 and K as follows:

(ii) VE e K, Vh e H\ R'(e, h) « 3n Vm > n 7(e|m) = h.

R* is a subset of R by (i) and by (ii). (1) follows from the definition of Hf and the fact that y is

recursive. (2) follows from (i) and (ii). (3) follows from the form of (ii).

(<=) Suppose conditions ( 1 - 3 ) are met for some R ' Q R , H \ Then let recursive a verify H' in the

limit given K with respect to the new relation R\ by Theorem I.F.1 and (3). Let i\ be an effective

enumeration of K by (1). By (2) and by Fact I.E.1, the method Yff is effective and stably discovers

correct hypotheses in the limit given K w.r.t. R\ And if this hypothesis is correct according to R' it

is correct according to R since R ' c R . I

This is a proof that the bumping pointer architecture is a universal maxim for discovery, but not ii

we insist in addition that a be a reliable test, for when R is not I [ H \ K & there can be no reliable

test (in the sense of verifiability in the limit) even though the bumping pointer method for some

less complex Rf Q R succeeds at discovery. It is remarkable that Putnam's purely logical work

should have such powerful and immediate consequences for his philosophical thesis that

scientific method should be viewed as a complete set of maxims.

The theorem also places Putnam's critique of Carnap's methodology in perspective, for the

theorem shows that there is exactly one way in which effective discovery can be computationally

harder than effective hypothesis assessment: it may be that no H' satisfying (3) is recursively

enumerable. The computer modeling setting has just this special feature, so that total programs

are reliably discoverable but not assessable. In other settings, discovery can be much simpler

than assessment, as in the case of the setting $ o discussed earlier.
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The general point, however, is that Putnam's style of analysis provides a framework in which

completeness and other logical concerns arise for inductive methods in just the manner that they

arise for proof systems and for algorithms for other tasks, irrespective of whether we consider

discovery, assessment, or prediction. The results reviewed are only a small sample of what can

be done. We can consider different notions of computabiBty (e.g. finite-state automata rather than

LISP programs), different notions of success (e.g. stabilizing to within a finite set of correct

hypotheses) and different side constraints (e.g. Bayesian coherence). For each mixture of

conditions, we can seek a complete architecture, as well as a classification of concrete inductive

settings into intrinsically solvable and unsolvable cases.

Putnam's early work sketches a mathematical edifice for methodology, complete with rooms,

unexplored halls, and a partially stocked tool chest. Our question now is whether this edifice

harmonizes or clashes with Putnam's more recent views about truth, when truth is viewed as an

aim of reliable in inquiry.

II. Convergent Reliabilism and Truth as Ideal Rational Acceptability

We now turn to the second of the theses introduced at the beginning of this paper, which asserts

that truth is a kind of idealized, epistemic justification. Putnam describes this conception of truth

in his book, Reason, Truth and History.

Truth1, in an internalist view, is some sort of (idealized) rational acceptability— some
sort of ideal coherence of our beliefs with each other and with our experiences as
those experiences are themselves represented in our belief system— and not
correspondence with mind-independent or discourse-independent 'states of
affairs1.38

The operative standards of coherence and rational acceptability are psychologically based:

Our conceptions of coherence and acceptability are, on the view I shall develop,
deeply interwoven with our psychology. They depend upon our biology and our
culture; they are by no means 'value free1.39

38[putnam 90], p. 50.

39!bid., p. 55.
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But truth is not just coherence or rational acceptability, because truth is stable in time and not a

matter of degree, whereas the rational acceptability of a statement changes as the evidence or

circumstances change and is also widely regarded to be a matter of degree.40 To account for

stability, Putnam appeals to idealization:

What this shows, in my opinion, is ... that truth is an idealization of rational
acceptability. We speak as if there were such things as epistemically ideal
conditions, and we call a statement 'true' if it would be justified under such
conditions. 'Eptstemicaily ideal conditions', of course, are like Irictionless planes':
we cannot really attain epistemically ideal conditions, or even be absolutely certain
that we have come sufficiently close to them. But frictionless planes cannot really
be attained either, and yet talk of frictionless planes has 'cash value' because we
can approximate them to a very high degree of approximation.41

The frictionless plane metaphor is rather vague. Fortunately, we get a bit more:

The simile of frictionless planes aside, the two key ideas of the idealization theory of
truth are (1) that truth is independent of justification here and now, but not
independent of all justification. To claim a statement is true is to claim it could be
justified. (2) truth is expected to be stable or 'convergent'; if both a statement and
its negation could be justified', even if conditions were as ideal as one could hope
to make them, there is no sense to thinking of the statement as having a truth-
value.42

Finally, Putnam provides us at the very end of his book with an explicit reference to truth as an

ideal limit

The very fact that we speak of our different conceptions as different conceptions of
rationality posits a Grenzoeghff, a limit-concept of the ideal truth.43

It isni hard to see how sucn views fit with Putnam's limiting reliabilist past. For we may conceive of

rational acceptability as some hypothesis assessment function a, that somehow results from

our cognitive wiring, our culture, and the accidents of our collective past together. Hypothesis h

is then said to be true for a community whose standard of rational acceptability is a just in case a

converges in some sense to a high assessment for h as evidence increases and "epistemic

conditions" improve. We may think of e as the data stream that arises for a community committed

4 0 lbid.

4 1 Ibid.

4 2!bid.,

4 3 , b j d >

P-

P-

56.

216.
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to an ideal regimen of ever improving epistemic conditions concerning some hypothesis h.4 4

Background knowledge K(Cjeai can be what the community knows ahead of time about how the

data would come in if this regimen of improving epistemic conditions were to continue indefinitely.

Putnam claims to provide an "informal elucidation" rather than a formal theory of truth, but vague

proposals license the reader to consider precise interpretations, and our discussion of Putnam's

early work on induction suggests one. Let h be a hypothesis, and let £ be a data stream that

might possibly arise under the assumption that we are committed to the continual improvement of

our "epistemic conditions", so e e Kjdeai- Then define:

Trueia{z, h) « 5n Vm > n a(h, e|m) > 0.5.
Fa/sefa(e, h) <=* 5n Vm > n a(hf e|m, h) < 0.5

This proposal defines truth in terms of what a hypothesis assessment method a does in the limit, a

suggestion reminiscent of C.S. Peirce's definition of reality.

And what do we mean by the real? * * * The real, then, is that which, sooner or later,
information and reasoning would finally result in, and which is therefore
independent of the vagaries of me and you.45

Peirce's motivation, like Putnam's, is to appeal to limits to wash out intuitive disanalogies between

truth and rational acceptability. Therefore, we will refer to the general strategy of defining truth in

terms of the limiting behavior of some methodological standard as the Pelrce reverse. In

particular, Truth ia is stable and independent of particular assessments by a, where a can be

viewed as an arbitrary, socially or psychologically grounded standard of "rational acceptability", as

Putnam intends.

Truth1a is trivially verifiable in the limit by a community whose standard of rational acceptability is a

because a is the community's standard of rational acceptability. The same triviality does not

extend to discovery or to prediction, however. Recall that in Theorem I.F.2 a necessary condition

for effective discovery is the existence of an effectively enumerable collection of hypotheses

covering K w.r.t. R. This condition may fail even when each hypothesis is verifiable in the limit, as

in the computer modelling setting. Moreover, since extrapolation does not depend upon the

4 4This commitment to a fixed regimen of improving epistemic conditions will be relaxed
considerably in Section III below

45[Peirce 58], p. 69.
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notion of hypothesis correctness, internal realism does not make extrapolation any easier. Thus,

Putnam's analysis of extrapolation stands unaffected by the move to truthi. Finally, verifiability,

refutabiiity, and decidability with certainty are not trivialized by this proposal.

Putnam requires (in the above quotations) that a hypothesis and its negation cannot both be true.

Clearly, truthi does not satisfy this condition over arbitrary choices of a, for if a assigns 1 to both h

and - i h no matter what the data says, both h and -th will be truei. One solution would be to

impose "rationality" restrictions on a that guarantee that the requirement in question will be

satisfied. A natural such constraint would be that a(h, e) be a conditional probability. In that case,

a(ht e) > 0.5 implies a(—«h, e) < 0.5, so Putnam's requirement that h and —ih not both be true is

satisfied by truth 1 a .

There are other, equally intuitive conditions that Putnam could have imposed. For example, it

would seem odd if both h and h* were true but h & h* were not true. But this is possible under the

definition of truthi even when a is a probability measure, since the probability of a conjunction

can be much lower than the probabilities of the conjuncts, as in the familiar lottery paradox.

Insofar as Putnam's gambit is to wash out the standard, intuitive disanaiogies between

confirmation and truth by appeals to idealization and limits, to this extent he is unsuccessful.46

As we have already seen, Putnam has been critical of probabilistic methods anyway. Perhaps

some different choice of rational acceptability standard a would guarantee that truthi a is well

behaved. But it turns out that no a satisfying a plausible constraint (being able to count) can

provide such a guarantee. The argument for this fact is of special interest, since it adapts

Putnam's methodological diagonal argument to the investigation of internal realist semantics.

Let hn be the sentence "as we progressively idealize our epistemic conditions in stages,

observable outcome x occurs in at least n distinct stages of idealization". In our community, the

sentence "there are at least n x's" is intimately connected with the practice of counting, in the

sense that if we suppose the x's to be easily visible without a lot of effort, we can count and tally

the number of x's seen up to the present, returning 0 until the tally reaches n, and returning 1

thereafter. That is what we do when we are asked if there are at least ten beans in a jar. We don't

say "yes" until we pull out ten beans. Assume further that when considering - . h n , the method

says 1 until n x's are counted and 0 thereafter. Any method that assesses hypotheses of form hn,

46Teddy Seidenfeld and Wilfried Sieg provided helpful comments concerning these issues.
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- i h n by means of counting occurrences of x in this manner will be referred to as a counting

method.

We needni say what counting /s, since social practices are the primitive in the internal realist's

elucidation of truth. It suffices that counting somehow return a natural number n (the count of x's)

for each finite data segment e presented to the counter. Indeed, we must be careful in our logical

analysis of internal realism not to second-guess the practice of counting by asking whether its

count of x's is correct relative to some independently specified number of x's in the data, since by

the Peirce reverse, the truth about the number of x's in the data is fixed by the practice of

counting and not the other way around. But our refusal to second-guess the accuracy of

counting in this manner does not prevent us from listing some evident properties the practice of

counting that make no reference whatsoever to what is "really" in the data:

(A) No matter what data e has been shown to the counter, we can feed a stream of
data that keeps the count of x s fixed where it is forever.

(B) No matter what data e has been shown to the counter, we can feed a finite
chunk of data that makes the count of x's increase.

(C) The count of x's never goes down.

Not all obvious explications of our society's standards of rational acceptabiliy are counting

methods. For exempte, if the data stream is thought to be generated by independent tosses of a

fair die, then p(hn) = 1 for each n, and hence for each finite sequence e, p(hn , e) = 1. Then ao(hn.

e) = p(hn, e) is not a counting method because a counting method cannot, by definition, output 1

for more than a finite number h1 t .... hn of hypotheses on finite evidence segment e. Now

conditional probability measures are thought by many methodologists to provide a good

approximation of our practices of rational acceptability, so it would be hard for us to make an

absolute case here that our community's actual standard of rational acceptability is a counting

method. But we can do something easier; we can make our case conditional on the charitable

assumption that internal realism is more or less correct and that the English speaking community is

not radically confused about the meaning of "at least n x's will appear". To do so, we put the

following question to the English speaking community:

(Q) Suppose that we never count more than two x's in the data for eternity. Is it true
or false that at least a billion x's eventually appear in the data?

We suspect that almost everybody would say "false", and that most would agree that a method like

ao that says 1 no matter what is observed could lead in the limit to a different truthi assignment on
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hypotheses of form hn than counting methods would lead to. In light of this and similar inquiries

with similar results, we infer roughly, that either (1) the community of English speakers doesnt

understand the simple English statement "at least n x's will appear, or (2) it is internal realism

rather than the community's understanding that is defective, or (3) internal realism is correct, the

English speaking community understands Mat least n x's will appear, and the standard of rational

acceptability that grounds usage for such hypotheses in our community is a counting method.

Respect both for Putnam and for the English speaking community dictates that we conclude:

(3) Our society's standard of rational acceptability is a counting method.

Let ho be the sentence "as we progressively idealize our epistemic conditions in stages,

observable outcome x occurs in infinitely many distinct stages of idealization". Say that truth1a

can be oincomptete just in case for some data stream e, each hn is true1a, but h© is not true1a.

And if there is some e in which h^ is t rue i a and some -«hn is t rueia then we say that truth1a can

be inconsistent. Now we may construct a Putnam-style diagonal agrument to show that:

Theorem 11.1:

If a is a counting method, then Truthia can be either inconsistent or co-incomplete.

Let a be a counting method. Suppose for reductio that Truthia can be neither ©-incomplete nor

co-inconsistent. We present data as follows. By axiom (B), show a successive chunks of data that

continue to make the count rise repeadedly, until a starts to return some value greater than 0.5 for

h®. Such a time must come, else by axiom (C), we have that for all n, hn is t rue i a but h© is not, so

truth1a can be co-incomplete, contrary to assumption. As soon as a outputs a value greater than

0.5 for h^ we start presenting data in a way that will prevent the count from ever rising higher (by

axiom (A)), until a's confidence in h^ drops below 0.5. This must happen, else there is an n such

that - i h n is t rue i a but h^ is also t rueia , so truth1a can be inconsistent, which is a contradiction.

By repeating this procedure over and over (we don't have to count how many times we have done

it) we end up (by axiom (C)) with a situation in which each hn is trueia but h^ is not, so truth1a can

be co-incomplete. Contradiction. I

By analogy, Goedel's first incompleteness theorem shows that a system of arithmetic is either co-

inconsistent or incomplete. Although the "co" has switched sides (curiously enough), the import

is the same: a methodological substitute for truth (e.g. mechanical proof, limiting rational

acceptability) does not measure up to our intuition that truth should be complete and consistent.
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Putnam might very well embrace the result. He has expressed a guarded admiration for

intuitionism, and intuitionistic truth can be gappy when no construction is available either for p or

for —«p. Nor has he claimed that internal realism's appeal to limits is supposed to "plug11 these gaps.

Thus, he may well have expected something much stronger than what we have shown, namely,

that truth is actually incomplete. But whether or not the result was expected, it is interesting that it

can be proved using the same sort of diagonal construction Putnam employed in his critique of

Carnap's methodology. By interposing practice between the data stream and the method,

Putnam's limiting reliabilist methodology is transformed into internal realist semantic theory. By

playing the same game with different sets of sentences and output constraints on practices, one

could no doubt prove more subtle and impressive things about internal realist truth.

Despite this potential for agreement, it is still worthwhile to consider some possible objections that

an internal realist might raise, both to dispel them and to illustrate further how diagonal arguments

bear on the internal realist's conception of truth. We have already addressed the objection that

our argument assumes a "god's eye view" of the data to second-guess as performance. In our

argument, truth is entirely fixed by the practice of counting, and the social practice of counting is a

primitive characterized entirely by three axioms that make no reference to what "really" occurs in

the data. No external "semantics" of any sort is imposed on the hypotheses in question aside

from internal realist truth.

An internal realist might also object, in light of passages like the following, that our diagonal

argument bases internal realist truth on a fixed method a:

I agree with Dummett in rejecting the correspondence theory of truth. But I do not
agree with Dummett's view that the justification conditions for sentences are fixed
once and for all by a recursive definition. * * * In my view, as in Quine's, the
justification conditions for sentences change as our total body of knowledge
changes, and cannot be taken as fixed once and for all. Not only may we find out
that statements we now regard as justified are false, but we may even find out that
procedures we now regard as justificatory are not, and that different justification
procedures are better.4'

But this is no objection to our argument, for if truth is defined as an ideal limit of rational

acceptability, then truth is relative to the standard a of rational acceptability operative at the time,

47[Putnam 89], p. 85. The context of this passage is an attack on Dummetfs proposal that rational
acceptability be defined in terms of a simple, Tarski-style recursion on formula complexity,
according to intuitionist semantics. We treat the passage, out of context, merely as a potential
source of objections among those familiar with Putnam's expressed views.
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so truth changes as the standard a changes, but is fixed for eternity relative to a fixed standard, as

Putnam requires. The diagonal argument shows that none of these successively adopted

standards of rational acceptability grounds a notion of truth guaranteed to be both co-complete

and consistent, so long as it is a counting method. And we have already argued that our current a

is a counting method.

Nor is it relevant to object that we assume a to be some recursive function of the data. We require

only that a be a counting method satisfying the weak axioms (A), (B) and (C), which entails neither

that a is recursive, nor even that a is definable.

A more promising response to our diagonal argument would be to adopt a less stringent

convergence criterion for truth while retaining the basic spirit of the Peirce reverse, as follows:

True2a(e, h) « Vs > 0, 3n Vm > n 1 - a(h, e|m) < s.

Falsest, h) » Vs > 0, 3n Vm > n a(h, e|m) < s.

A hypothesis is true2 if and only if the society's standard a of rational acceptability produces

assessment values that move ever closer to 1, possibly not ever arriving there. Unlike truthi,

truth2 does not require that the assessment value drop below some fixed threshold (0.5) infinitely

often when h is not true. This laxity makes it possible to construct a community standard a of

rational acceptability that guarantees that truth2a is both co-complete and consistent.48 A

method p that ensures falsity2p to be both co-complete and consistent can also be constructed.49

But the internal realist is not home free, for he cannot find an adequate 5 that jointly guarantees

that truth2§ and falsity2$ will be co-complete and consistent.

Fact 11.2: If a is a counting method then

either truth2a or falsity2a can be either co-incomplete or inconsistent.

We are indebted to Jeff Paris for suggesting the following construction: define a(h«, e) - 1-
(i/#x(e)), where #x(e) is the current count of x's in e, and for each n, let a(hn> e) - 1 if #x(e) > n
and = 0 otherwise. Now if the count goes up forever in e, then h^ is true2« and each hn is true2a;
and if exactly n x's are counted in e, then for each k > n, hk is false2« and for each k' < n, k' is
true2a.

49Define a ^ , e) = i/#x(e). If the count of x's goes up forever in e, a goes to 0 and if only finitely
many x's are ever counted, a stops short of 0 forever.
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To see why this should be so, we may extend our transcendental deductions to cover the notion

of reliable success in the limit implicit in the definitions of truth2 and falsity2:

a weakly verifies H in the limit given K (with respect to R) <=>
for each hypothesis h in H

for each possible data stream e in K
R(e, h ) «
for each real number r > 0

there is a time n such that
for each later time m > n, 1 - a(h, e|m) < r.

Of course, truth2 trivializes weak verifiability in the limit just the way truthi trivializes verifiability in

the limit. Weak refutation in the limit is defined dually, and weak decision in the limit requires that a

single method both weakly verify and weakly refute H in the limit given K. Following the strategy of

Theorem I.F.1 above, we arrive at a characterization of weak hypothesis assessment in terms of

arithmetic complexity.

Theorem 11.3:

(a) H is effectively weakly verifiable in the limit given K (w.r.t. R ) « R e n[H, K&

(b) H is effectively weakly refutable in the limit given K (w.r.t. R ) « R e

(c) H is effectively weakly decidable in the limit given K (w.r.t. R) « R e A(H, K&

I

Combining this result with Theorem I.F.1, we have the following complexity classification of our

various notions of reliable hypothesis assessment:

effectively
verifiable with
certainty

effectively
verifiable
in the limit

effectively,
weakly refutable
in the limit

m

3

effectively
decidable

effectively
refutable with
certainty

effectively
decidable

effectively
refutable
in the limit

effectively
: weakly

effectively
weakly verifiable
in the limit

with certainty in the limit decidable in the limit
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Consider clause (c) of the Theorem 11.3, which states that weak decidability in the limit is

characterized by A[Ht KJ2 rather than by A[H, K & as might be expected by analogy with the other

cases, (c) follows from the trivial fact that a weak, limiting decision procedure just is a limiting

decision procedure, and decidability in the limit is characterized by A[H, K & This is what

underlies Fact 11.2. From a realist's point of view, the diagonal argument for Fact 11.1 shows that h<o

(under the "obvious" realist interpretation) is decidable in the limit over arbitrary data streams in

E*0 .50 In light of (c), if both truth2a and falsity2a were guaranteed to be ©-complete and

consistent, then a would weakly decide h^ in the limit (according to the "obvious" realist

interpretation of the hypotheses hWf hn). But as we have just remarked, this is equivalent to

demanding that a decide h^ in the limit, and this is impossible, since no method (effective or

otherwise) can even verify hw in the limit (by the proof of Theorem 11.1).

Parts (a) and (b) of the Theorem 11.3 explain, further, why truth2a and falsity2p can both be

guaranteed separately to be co-complete and consistent so long as they are based on distinct

methods a and p. Correctness for h^, together with each hn, - rhn , is a n[H, K]° relation, and

hence is both a Z[H, K]§ relation (so falsity2p works out) and a n[H, K]° relation (so true2a works

out). But for both truth2$ and falsity2s to work properly when based on a single method 8,

correctness would have to be a A [ H , K]° relation, which it is not. Thus, a fellow possessed of both

a weak, limiting verifier and a weak limiting refuter of ho is in a curious position. The first method

will converge to 1 on h^ if some x occurs infinitely often in e and the second machine will converge

to 0 on hco if no x occurs infinitely often in e, but there is no way to assemble these two methods

into a single method that has both properties.51

We finish this section with a proof of Theorem II.3. (a), (b) follows by duality. The proof is of

independent interest, since it extends Putnam's program of transcendental deductions to a

weaker criterion of success, and it also exhibits a universal architecture for this notion of success.

5 0 For brevity and mathematical clarity, we revert to the realist mode of expression, but the
discussion can be reworked into a more "internally realistic" version parallel to the proof of
Theorem 11.1.

5 1 By similar reasoning, it can be seen that weak, limiting verification does not guarantee the
existence of a reliable discovery procedure, either. This is why Reichenbach's straight rule
estimates only rational-bounded intervals around limiting relative frequencies, rather than limiting
relative frequencies themselves. The exact value of a limiting relative frequency hypothesis is
weakly verifiable in the limit, but that fact doesn't help one to discover them.

39



(=*) Suppose that a effectively, weakly verifies H in the limit given K (with respect to R). Then by

definition

Ve e K Vh e Ht R(e, h) <=* Vreai r > 0 3n Vm > n 1 - a(hf e|m) < r.

We can replace the quantifier over reals with a quantifier over rationats since for every real greater

than 0 there is a smaller rational greater than 0. And we can effectively encode rationais with

natural numbers, so that the quantifier over reals greater than 0 can be replaced with a quantifier

over natural numbers. Since i-a(h, e|m) < r is recursive if a is recursive and r is a rational

effectively encoded as a natural number, we have that R e n[H, K]£.

(«=) Suppose that R € n[H, K& Then for some recursive relation S we have

Ve € K Vh e H, R(e, h) c* Vx 3y Vz S(e, h, x, y, z),

where x, y, z are vectors of variables. Let k be the length of x. Then for each a € cok, Qa(e, h ) »

3y Vz S(e, h, a, y, z) is a I(H, K]2 relation. An examination of the proof of Theorem I.F.1 reveals

that we can construct a (rational valued) assessor aa(h, e) recursive in a, h, and e so that for each

a € cok, aa verifies H in the limit given K w.r.t. Qa. Now we use ota to construct an effective, weak

limiting verifier a of H given K (w.r.t. R) as follows. First, we effectively construct an infinite

sequence 0of rationais that converges to unity (e.g. 1-1/2, 1-1/4, ..., 1-1/2n, ...) and we

effectively enumerate (ok as (a<f, a2,..., an, ...). so that each a; is a k-vector of natural numbers.

Now let h e H and finite data segment e of length j be given. We calculate b = (aai(h» eK 0^2^'

e) ccaj(h, e)), and set w = the greatest x < j such that bi , b2,..., bx are all greater than 0.5.

Then output 0W. Observe that each of these operations is effective.
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conjecture the 3rd
marking from the bottom

if

II

current evidence e
of length j

Limiting Verifier
forQx

we count to 3 prior to
seeing the first value
below 0.5.

value less
than .5
so stop
simulation

Now we show that a works. Let h e H, e e K. Suppose R(e, h). Then for each a», 3y Vz S(e, h, a;,

y, z), so Qaj(e. h). Then for each i, aajeventually produces only values strictly greater than 0.5.

Let k be given. Then there is a time n such that for all m > n, cta^h, e|m) > 0.5, cxa2(
h. elm) > °-5»

..., and aak(h, e|m) > 0.5. Thus, for all m > n, a(h, e) > 6k. Since k is arbitrary, we have that for all r >

0 3n Vm > n 1 - ot(h, e|m) < r, as required. Now suppose that - IR (E , h). Then for some a;, we have

that -»Qaj(e, h). Then for infinitely many m, ^ ( h , e|m) < 0.5. But for each such m, a(h, e|m) < 9j.

Thus a weakly verifies H in the limit given K (w.r.t. R), as required. I

III. Reliability and Relativism

We now turn to the third of Putnam's theses, moderate relativism. Putnam puts the matter in

terms of reference.

"What does the world consist of is a question that it only makes sense to ask within
a theory or description.52

... a sign that is actually employed in a particular way by a particular community of
users can correspond to particular objects within the conceptual scheme of those
users. Objects do not exist independently of conceptual schemes.53

52[Putnam 90], p. 49.

53[Putnam 90], p. 50.
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The passage reflects Kant's distinction between the wortd-in-itself and the world of experience.

The wortd-in-itself does not come pre-partitioned into distinct individuals and relations so

reference and truth make no sense in relation to it. But relative to the conceptual and perceptual

apparatus of the perceiver, truth and reference are possible.

Unknowable
metaphysical
ooze

The scientist's conceptual and
perceptual structure.

The matter
of experience

The world-in-itself

The world
of experience

The form of experience

This sort of thing admits of degrees. Coherentists exclude the role of the world-in-itself

altogether insisting that any coherent set of beliefs is true because we believe it.54 Naive

realists insist that the conceptual scheme is irrelevant, so that experience is a direct

apprehension of things in themselves. Moderate relativism covers the interesting ground

between these extremal positions. Putnam pursues this moderate course, in which truth and

evidence depend both upon the worid-in-itself and upon our conceptual contribution:

Intemalism does not deny that there are experiential inputs to knowledge;
knowledge is not a story with no constraints except internal coherence; but it does
deny that there are any inputs which are not themselves shaped by our concepts....
55

In traditional philosophy, the worid-in-itself has been taken as the objective, external, or mind-

independent component of truth, while the conceptual scheme has been identified with the

subjective, internal, or mental component of truth. In methodology, we don't care about the

purely metaphysical distinction between objectivity and subjectivity. We care about methods and

strategies, where the crucial issue is control. For our purposes, the world-in-itself is the

54!saac Levi's position is exactly this [Levi 83].

55[Putnam 90], p. 54.
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component of truth that cannot be manipulated at will by us. The conceptual scheme is the

component that can. In Putnam's terms, we adopt a functionalist perspective on the

metaphysics of relativism, since that is all that matters for the purposes of reliabilist methodology.

So for example, Kant, who admitted a strong, subjective component in truth, was nonetheless a

functional realist, since he took the conceptual scheme to be fixed for ail humanity (though it

might be different for other creatures).

III. A. Worlds-in-Themselves

in general, a functionalist world-in-itself is some dependence of truth and evidence upon

voluntary acts by the scientist. These acts may include belief change, conceptual change,

experimental set-ups, changing what is meant by correctness, changing the color of your tie (in

the case of social constructivist theories of truth), and finally, the act of making a particular

conjecture. More precisely, let E once again be a set of possible observations. Let S be the set

of finite strings over some suitably large alphabet. A correctness assignmentlor H will be some

map f: S -» {1, 0, *}, where * indicates "ill formed", 1 indicates correctness, and 0 indicates

incorrectness. Correctness might be truth, something stronger, or something weaker.56 Let C

be the space of all correctness assignments.

A hypothesis generator produces some hypothesis h and may perform some other semantically

relevant acts summarized by a e A. Thus the pair <h, a> e H X A summarizes ail of the scientist's

semanticaliy relevant acts at a given time. A wortd-in-itself is then a map that takes an infinite

sequence of complete semantic acts <hi, ai>, <h2, a2>, ... together with some specified moment

56We might have added other kinds of semantic status, including well-formed but no truth value,
and so forth. Nothing of interest depends on these choices in what follows.
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n of inquiry, and returns to the scientist the datum x for stage n and the current truth assignment f

for stage n. That is, a worid-in-itseif is most generally a map y: ((H X A)°> X co) - » ( E X C).

infinite act
sequence

n m current
stage of inquiry

* ^ A ,

v',r' s

"• % % * % ' ' . ^

World-in-itself

jcurrent truth
assignment

^current datum

It is often assumed by relativist philosophers of science that only the scientist's current

conceptual scheme (act) is relevant to the current truth assignment to hypotheses. Such worids-

in-themselves will be called semanticatly immediate. Some Marxists and feminists claim that

one's entire ideological history is relevant to truth in the present. Worlds of this sort are

semantlcally local but not immediate. The limiting conception of truth promoted by Peirce

illustrates that the situation can be much more general, for in that case, the truth depends upon

what is conjectured by the scientist forever Such dependencies (reminiscent of the medieval

problem of God's foreknowledge and future contingents) are semantlcally global. There are

still other possibilities. Truth can depend only on the current time, quite independently of the acts

of the scientist. Then we say that the wortd-in-itself is semanticatly spontaneous. This would

be the case if the laws of nature slowly evolve through time independently of anything we do, as

some cosmologists have entertained, or if hypotheses involve indexicals such as "now" or 'this".

If the truth assignment is constant, we say that the worid-in-itself is semantlcally fixed. This is

the position of an extremely naive realist.

All of these distinctions make sense for evidence as well, but we know of no published version of

relativism that cannot be modeled with evidentially spontaneous or local worlds. For example,

Kuhn's proposal is evidentially and semantically local. Quine's holism is semantically immediate

(only the current "web" of belief matters) and evidentially spontaneous (if "evidence" is taken to

be "surface irritation"). Naive convergent realism assumes that the world-in-itself is evidentially

spontaneous and semantically fixed. This is the sort of setting assumed in Putnam's critique of

Carnap, as reviewed in Part I of this paper. A wide range of philosophical positions can be

parametrized in terms of various constraints on evidentially local worlds-in-themselves.

Finally, some worids-in-themselves are functions whose values do not depend upon what the

scientist conjectures, but only upon acts independent of conjecturing. If we model a logical
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positivist setting by interpreting a to be a conventional choice of analytic truths or meaning

postulates, then truth depends only on this choice, and the conjecture of an empirical (non-

analytic) h would have no bearing on meaning or truth. Such worids-in-themsetves will be called

conjecture-independent By making truth depend upon all of one's beliefs, Quine insists that

the world-in-itself is conjecture-dependent, if we take the conjecture to be added to the current

set of beliefs. An economic prognosticator who brings down the market by predicting doom

provides a more vivid example of conjecture dependency.

III. B. Transcendental Background Knowledge

In relativistic settings, background knowledge is a set K of possible worlds-in-themselves. It may

be objected that such transcendental knowledge is hopeless to obtain. But whatever our own

views on the possibility of such knowledge may be, literary theorists, metaphysicians and

philosophers of language regularly propound transcendental theses as a matter of course. The

naive realist considers only semantically fixed and evidentially spontaneous worlds-in-themselves

so that, the worid-in-itself collapses to a single data stream and a single notion of truth.

Coherentists, at the other extreme, are sure that all that matters to truth or to data is which

coherent set we decide to believe. The positivists knew that truth depends only upon the free

act of adopting some special set of conventional, analytic truths. Quine knows the negation of

this claim.57 Kuhn knows that the scientist's training, colleagues, and stock of solved examples

are what determine truth and evidence. He even speaks of scientists with different backgrounds

as inhabiting different "worlds11.58 Hanson knew that evidence depends upon perceptual and

conceptual "gestalts".59 Social constructivists know that truth is a matter of community assent,

so the worid-in-itself is the causal disposition of the community to assent in response to how one

interacts with the community. Many Marxists know that truth is a matter of one's political role.

We can also consider the transcendental knowledge implied by Putnam's internal realism. His

moderate relativism is characterized by at least the following principles:

57[Quine 51].

58[Kuhn 70] pp. 111-112.

59[Hanson 58], chap i.
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(P1) Reference depends upon the community's current conceptual scheme?0

(P2) \ndividuation depends upon the community's current theory?^

(P3) Experience depends upon the community's belief system?2

(PA) Truth is an ideal limit ot rational acceptability under increasingly idealized
epistemic conditions?3

(P5) Whether or not a given sequence of epistemic conditions is increasingly
idealized depends on our knowledge?*

For simplicity, we will identify conceptual schemes, knowledge, theories and belief systems,

and we will also identify experience with evidence. We expect that truth, individuation, and

reference are closely enough related to be assimilated to truth in our discussion. Epistemic

conditions are something else again. We think of them as alterations to our local environment that

affect our powers of observation (e.g. building larger and larger radio telescopes, peering more

closely, etc.).65

Then Putnam's proposal seems to be this. Semantically relevant acts are triples <Bt a, c>, where

B e His the current belief system, a is the current standard of rational acceptability, and c is the

current attempt to improve our epistemic conditions. The evidence at stage n depends

immediately (as opposed to historically) upon the current belief system B and the current

experimental set-up c, but is presumably not directly dependent upon the current a (though a

may be a factor underlying our choice of B).66 Accordingly, let ev(B, c) be the datum received

from v in response to B and c.

60[Putnam90],p. 50.

6 1 Ibid., p. 49.

/d, p. 50.

id., pp. 55-56.

64[Putnam 89], p. xvii.

65"Consider the sentence There is a chair in my office right now.1 Under sufficiently good
epistemic conditions any normal person could verify this, where sufficiently good epistemic
conditions might, for example, consist in ones having good vision, being in my office now with the
light on, not having taken a hallucinogenic agent, etc." [Putnam 89], p. xvii.

66Notice that the statement "evidence depends upon a" is metaphysically ambiguous. On the
one hand, it could mean that we have no control over how our choice of a affects the evidence, in
which case the dependency would belong to the worid-in-itself. On the other hand, it could mean
that we happen to use a in our process for generating B, and that it is the dependency between B
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Truth at stage n depends immediately upon a (as in our discussion of truth 1 a and truths) and

immediately upon K (insofar as the data stream that would be produced under increasingly

idealized choices of c will depend immediately upon K). Truth does not depend upon the actual c

chosen by the scientist, however. It depends only on what the current a would do if c were,

counterfactually, to be progressively idealized for eternity. Let P be the set of all programs or

procedures for enumerating an infinite sequence % of epistemic conditions, and let p € P. Let

p[n] be the epistemic condition output by p on input n. Let Improve(p) be the hypothesis "p

enumerates an infinite sequence of improving epistemic conditions". Assume that Improve(p) e

H. Let fy(B, a) be the truth assignment for hypotheses in y relative to <B, a , c> (recall that truth

does not depend upon the actual choice of c). Then a rough reconstruction (along the tines of

truthi)6 7 of Putnam's transcendental knowledge is:

)
Vp e P, if fV(B, a)Onnprove(p)) = 1.

then 3 n v m > n such that a(h, <ev(B, p[0]) ev(B, p[m])>) > 0.5

fy( a)(h) = 0 «
Vp € P, if fV(B, a)Omprove(p)) - 1,

then 3n Vm > n such that a(ht <ev(B, p[0]) e v (B , p[m])>) < 0.5

We take Putnam at his word that truth is stable, rational acceptability under increasingly idealized

epistemic conditions, not stable rational acceptability under conditions we believe to be ideal or

that we would be justified in asserting to be ideal. Putnam makes a great point of distinguishing

internal realism from redundancy theories of truth and from Dummett's identification of truth with

actual verification. But then, the truth about claims concerning epistemic conditions should also

be internal realist truth, not actual warranted assertibility or willingness to believe.68 Thus, we run

and the current evidence that is out of our control. Then the dependency in question results from
our own choices (i.e. we could choose B without using a), and is not properly considered to
reflect the structure of the world-in-itseif. The matter can be subtle. Have we chosen a if it has no
role in shaping B? Is B really our belief system if a had no role in shaping it? Answers to such
questions can incline us to cast dependencies either to the side of the world or to the side of the
scientist.

67lt is a simple matter to rework the account along the lines of truth2.

^Putnam seems to fudge this point in [Putnam 89], p. xvii. Picking up from the quote in footnote
65, we have:

How do I know these are Detter conditions for this sort of judgment than conditions
under which one does not have very good vision, or in which one is looking into the
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the claim Improve(p) back through internal realist truth in the antecedents of (a) and (b). Since

internal realist truth is relative to B, we still save (P5). But true to internal realism, idealization is

more, on our account, than what we believe or are currently justified in believing about

idealization.

Putnam insists that he does not intend internal realism to be a definition of truth. As a matter of

fact, this reservation is warranted, since different truth assignments are consistent with (a) and (b)

under a fixed choice of \|f, B and a . 6 9 The problem is that the recursive call to fv(B f a ) i n the

antecedents of (a) and (b) may or may not "bottom out", depending on the structure of y and of a.

Since examples can be found in which the alternative truth assignments are entirely symmetrical

(up to permutation of O's and Vs), it is hard to see what further restrictions of an internal realist sort

could be added to (a) and (b) to pick out one of them in a non-arbitrary manner.

Relativistic dependencies can be much more mundane than in these philosophical examples. In

the case of the economic prognosticator who crashes the market, the truth-dependency is

entirely causal, but the logic of the situation is the same: truth depends on what the

prognosticator predicts. The power of suggestion of a psychoanalyst on the personality under

study provides another such example. In a quantum system, the truth can depend essentially

upon the scientist's free choice of an experimental act. Thus, believers in quantum mechanics

think they know quite a bit about the structures of possible worlds-in-themselves.

room through a telescope from a great distance, or conditions in which one has
takenLSD? Partly by knowing how talk of this sort operates (what the 'language
game1 is, in Wittensteing's sense), and partly by having a lot of empirical information.
There is no single genera! rule or universal method for knowing what conditions are
better or worse for justifying an arbitrary empirical judgment.

Here, Putnam shifts from the internal realist truth about increasing idealization to what we know
about increasing idealization. Those are two very different things.

6 9To see that multiple truth assignments are consistent with (a) and (b) for a fixed choice of y, a,
and B, suppose that P = {po, Pi}, where po[n] = 2n and pi[n] = 2n+1. Let B be a fixed belief
system. Let e^B , x) = 1 if x is odd, and 0 otherwise. Thus, <ev(B, Po[O]),.... e\j/(B, Po[ml). •••> i s a

sequence of O's and <ev(B, pi[0]), .... e ^ B , pi[m]), ...> is a sequence of Vs. Let a(lmprove(pi),
e) = 1 if e contains only Vs, and let a(lmprove(pi), e) = 0 otherwise. Dually, let a(lmprove(po). e) «
1 if e contains only O's and let a(lmprove(po), e) = 0 otherwise. Define S(p\ p) <=> 3n Vm > n such
that a(lmprove(p l), <eyi/(B, p[0]), ..., e ^ B , p[m])>) > 0.5. Then we have S(pi , Pi ) , S(p2» P2).
- iS (p i , P2), and —iS(P2, Pi). Thus, (a) is satisfied when Improve(po) is true (relative to B, a) and
Improve(pi) is not, and when improve(pi) is true (relative to B, a) and Improve(po) is not.
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Momentum Meter Wave system

Quantum
System

Position Meter Particle system

Indeed, it can be argued that Bohr conceived of quantum mechanics as a relativistic system in just

this manner.70 Relativity theory can be viewed as a relativistic system in which the free decision to

ignite rocket fuel is the act relevant to the truth about simultaneity. And to make the matter as

concrete as possible, whenever the hypothesis under investigation is contingent, the scientist's

acts can help determine whether or not it is true (e.g. the scientist can murder the last non-black

raven). So ordinary experimental investigation of contingent hypotheses can also pose a

relativistic problem in the functional sense. In each of these cases, we take our

"transcendental knowledge" K about functional wortds-in-themselves (truth dependencies) to be

quite strong.

III.C. Convergent Relativism

The philosophy of science is still reeling from the relativistic and holistic blows levelled by Quine

and by Kuhn. According to to the usual story, scientific objectivity, and hence scientific rationality

has been undercut. Since the evidence depends upon the background and pet theories of the

perceiver, different scientists following the same method can end up with different, justified

conclusions.

Philosophy journals are stuffed with articles that accept the implication from non-trivial relativism to

methodological nihilism, but which deny the antecedent. The story is that relativism happens to

be benign in real historical cases so rationality is saved by accident.71 On the other side are the

anarchists eager to exploit the barest hint of relativity to reject all prospects for general

methodological norms and principles. But neither party challenges the inference from relativity to

"anything goes".7* Our strategy is just the opposite: to concede the possibility of strong

70 [Faye91], p. 194.

71 E.g. [Toretti 90], p. 81.

72!saac Levi is a notable exception to this rule. His views are quite different from ours, however.
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versions of relativism and incommensurability while undermining the usual inference from relativity

to methodological nihilism.

The first question is why the inference from relativism to "anything goes" is so popular. The logical

positivists, like the phenomenalists and empiricists before them, started out as reliabilists. The

point of formulating analytic reduction relations was to skirt the global underdetermination73 of

physical theory by data, for underdetermination precludes the reliability even of a god who can

see all the data that will ever arrive in the future. But once the reductionist program was pursued in

earnest, it became clear that the highly ambitious aim of "logically" reducing all knowledge to

sense data was not going to pan out. The reductionist program had too much momentum to be

halted by the mere rejection of its fundamental motivation, however. Instead, the language of

sense data was exchanged for the fallible language of macroscopic physical objects in order to

make reductioneasier, and reliability was replaced with a new rationale for reductionism:

intersubjective agreement.

The condition thus imposed upon the observational vocabulary of science is of a
pragmatic character; it demands that each term included in that vocabulary be of
such a kind that under suitable conditions, different observers can, by means of
direct observation, arrive at a high degree of certainty whether the term applies to a
given situation. *## That human beings are capable of developing observational
vocabularies that satisfy the given requirement is a fortunate circumstance: without
it, science as an intersubjective enterprise would be impossible.74

Notice the striking absence of concern that science be a reliable enterprise in the last sentence

of this passage. Kuhn and Quine undercut this particular rationale for reductionism. The difficulty

wasni relativism per se. The positivists were relativists, but the relativism was contrived to be

conjecture-independent since meaning was pinned to conventionally selected, analytic

meaning postulates independent of the scientist's election to believe this or that contingent,

empirical hypothesis. Analytic truths were taken to "frame" the language of science, and

inductive methods were conceived as operating within this framework, leaving it undisturbed by

their changing conjectures. Quine's holism made truth depend upon all beliefs, and Kuhn's

evidential relativism made data depend upon paradigms partly constituted by shared beliefs and

assumptions. Thus both proposals imply conjecture dependency.75

73A hypothesis is globally underdetermined just in case the infinite data stream £ can be the
same whether or not the hypothesis is true.

74[Hempei 65], p. 127, n. 10, our emphasis.

75Rorty seems to agree with this interpretation:
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In a conjecture-dependent wortd-in-itself, a shared method of hypothesis assessment and shared

"conventions" do not guarantee shared conclusions, even in the long run. For suppose we were

to follow something like hypothetico-deductive method or its improvement, the bumping pointer

method (introduced in Section I above). If our hypothesis enumerations differ ever so slightly, or if

our data streams differ in the slightest respect (e.g. from different optical perspectives on the

same thing) we may end up with different conclusions in the short run. But in light of conjecture-

dependent data, these slight differences of conjecture can lead to slight differences of data,

which will lead to greater differences in conjecture, and so forth, until truth, evidence, and hence

"justified conclusions" become very different for the two former colleagues. If precisely the same

discovery methods were used, and precisely the same data were collected through time, even

conjecture dependency would not undermine the late-positivistic aim of intersubjective science,

but these exacting conditions are too fragile to carry much philosophical significance.

So relativism is a special problem for confirmation theorists who ground scientific rationality on

inter-subjective agreement. Is it a problem also for the limiting reliabilist? It may seem that the

proposal to unite relativism and convergent reliabilism is a non-starter, for if truth changes through

time, convergence to the truth makes no sense. But we can still attempt to isolate the

circumstances under which a scientist can converge to his own truth, even though others may

converge to their truths which differ from his. It cannot be objected that science is concerned

with real truth rather than truth-for-me, since, under the hypothesis of relativism, there is no truth

but truth-for-me. The real losers in relativistic science are not those who disagree with one

another. The losers are those who are fooled for eternity according to their own, internal versions

of falsehood. The proposal that scientific methods converge reliably to the relative truth when

truth is not unique will be referred to as convergent relativism. Thus, we can unify Putnam's

early, limiting reliabilism with his recent, moderate relativism.

To say that we have to assign referents to terms and truth-values to sentences in the
light of our best notions of what there is in the world is a platitude. To say that truth and
mIfrLetnhCe a i e " r t l a t i v e t0 a concePtual scheme" sounds as if it were saying something
more than this, but it is not. as long as "our conceptual scheme" is taken as simply a
reference to what we believe now - the collection of views which make up our present-
day culture. This is all that any argument offered by Quine, Sellars, Kuhn. or
Feyerabend would license one to mean by "conceptual scheme". [Rorty 79], p. 276.
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There are perhaps two main reasons why convergent relativism has not captured the imagination

of philosophers. First, the goal seems too difficult. It is one thing, so the story goes, to find the

truth in a fixed, spoon-fed framework of concepts, but it is quite another to search among different

conceptual frameworks to find one that is suitable. This observation is doubly flawed, however. It

is by no means always trivial to find the truth in a fixed system, as the many negative results

presented in the first section of this paper attest. And finding the truth in the system of one's

choice can make the problem of finding the truth easier for the scientist may sidestep inductive

difficulties by altering auxiliary assumptions, concepts, and so forth. This sort of stratagem is

familiar from the old discussions of conventionalism.

In light of these comments, getting to the relative truth may now appear too easy. If truth depends

upon you, then what is the point of inquiry? Just make your present beliefs true by an act of will,

and be done with it! But this triviality holds only in the most extremal forms of coherentism, and

does not follow for moderate relativism. If truth depends not only upon the investigator but also

upon some independent reality over which the investigator has no control, then the scientist may

not know just how tmth actually depends upon what he does. This is the case in each of the

intuitive examples of relativism discussed above. Under such circumstances, finding the truth

about a given hypothesis may be difficult or even impossible.
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III.D. Reliable Relativistic Discovery in the Limit

A relativistic hypothesis generator y is just like its non-relativistic counterpart, except that it

produces both a hypothesis h and some act a e A on the basis of the data provided, rather than

just a hypothesis h.76 Assuming that the world-in-itself y is evidentially local, the interaction

between the world-in-itself y and method y then determines an infinite play sequence play{yt y) ,

where y produces its act and conjecture on the empty data sequence, y responds with a truth

assignment and the next datum, and so forth, forever. For each position n, play(y, y ) n denotes

some tuple <an, hn> xn, fn> where an e A is the method Ys act, hn e H is ys conjecture, xn e E is

the current datum returned by y and fn is the current truth assignment returned by y . Then we

define sequences A(Y, y), H(y, y), E(y, y), C(y, y) so that for each nt A(y, y ) n = an, H(y, y ) n « hn,

E(y, y ) n » *n and C(y, y ) n = fn. So the model reflects the "hermeneutic circle" of relativism, in

which the conceptual scheme depends upon the evidence and the evidence depends upon the

conceptual scheme. But here the circle is bent into a spiral through time, so we have mutual

dependency without circularity.77

Relativistic discovery admits of various different senses of success. Let y be a relativistic

hypothesis generator and let K be a set of evidentially local worlds-in-themselves. One sense of

success requires only that after some time, the conjecture of y is correct with respect to the acts

ofy.

y makes reliable discoveries In the limit given K »
for each world-in-itself y inK

there is a time n such that
for each later time m

the conjecture produced by y in y at time m is
correct at time m with respect to all the acts and
conjectures ever performed or to be performed
by y in response to y.
(i-e.C(y.y)m(H(y.v)m) = i).

This definition is general enough to apply at once to local and to global worlds-in-themselves. It is

also quite liberal. Reliable relativistic discovery permits y to vacillate forever both in its conjectured

hypothesis and in its other semantically relevant acts. Thus it is permitted for y to initiate "scientific

76Le. y:E* ->(AX H).

77lf the world-in-itself is not evidentially local, then the circle is of a more interesting sort that must
be handled with more powerful machinery than we will develop here.
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revolutions1* infinitely often, so long as after some time the hypothesis produced is correct relative

to the conceptual scheme operative when the hypothesis is conjectured. Strange? Yes! But the

possibility for such success is implicit in the standard relativistic philosophies, whether or not it is

advertised. And when these relativisms are taken seriously (as we take them here), it is hard to say

what would be wrong with this sort of success from a limiting reliabiiist point of view.

Those who are subject to semantic vertigo at the prospect of an eternity of bounces between

worlds or conjectures are free to impose extra, syntactic stability conditions on conjectures and on

other semantically relevant acts in various combinations. Stable discovery requires that

eventually both the acts and the conjectures stabilize to some specific choice of <h, a>.

III.E. Anything Goes

P.K. Feyerabend's "anarchist" response to meaning variance and relativism in science has been

summarized in the slogan anything goes. As we have seen, it is a limiting reliabiiist commonplace

that different methods are better in different inductive settings, so if "anything goes" means only

that we should not force a fixed method on everybody, we doni need relativismxo prove it. And if

"anything goes" means that there is no universal architecture for relativistic discovery, it is

mistaken both for relativistic and for naive realist science, as we shall see in the next section.

Perhaps "anything goes" means that it is wrong to force a particular conceptual scheme on the

scientist, or to require him to stabilize to a particular such scheme. We may think of each shift in

correctness and evidence due to the agency of the scientist as a scientific or conceptual

revolution. Stable discovery fits with the intuition that each scientific revolution is a clean break

with the past, so that convergent success can succeed only within a fixed conceptual scheme.

Thus, after some time science should fix upon a particular scheme and diligently seek the truth

within it. Unstable discovery embodies a more anarchistic attitude, in that it countenances an

infinite number of conceptual revolutions. This kind of anarchism is in fact vindicated from the

point of view of convergent relativism, because there are relativistic discovery problems that

cannot be solved in the stable sense, but that can be solved in the unstable (anything goes)

sense. For a trivial example, suppose that K = {y} where y is semanticaily spontaneous so that at

even stages of inquiry the only correct hypothesis is h and at odd stages of inquiry the only

correct hypothesis is h\ no matter what the scientist does. It is impossible to stabilize to a true

hypothesis in \|/, even in the limit, but the trivial method that conjectures h\ h, h\ h,... for eternity,

irrespective of the evidence, succeeds in the unstable sense.
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The preceding example made stabilization to a correct hypothesis impossible for purely semantic

reasons. A more interesting example would be one in which stabilization is semantically possible,

but reliable stabilization to a particular scheme-conjecture pair is not possible for property

epistemic reasons, because stabilization would prevent the scientist from seeing important data.

To construct such a case, suppose the scientist's only semantically relevant act is to adopt one of

two conceptual schemes, 1 or 0. Let y i be a worid-itself in which h is true exactly when the

current scheme is 1 and in which the current datum is 0 no matter what the scientist does. Let e

be a fixed data stream in which only 0's or Vs occur. In world v| , h is correct exactly when the

current scheme is 1, and the data is produced as follows: a pointer is initialized to eo. and each

time conceptual scheme 1 is visited, the next entry in E is presented as data. Whenever

conceptual scheme 0 is visited, however, datum 0 is returned.

Increment pointer and
return datum pointed to
when conceptual scheme 1
is visited.

Else return datum 0.

In world M4 we have the same situation, but the role of schemes 1 and 0 is reversed. Thus, data is

drawn by the same pointer mechanism from e in scheme 0, datum 0 is always returned in scheme

1, and h is correct in scheme 0 but not in scheme!. Finally suppose that in each of the worlds

under consideration, —ih is correct whenever h is not correct, and no other hypotheses are correct

under any circumstances. Suppose we know in advance that the actual world-in-itself is either y i ,

¥2 or V3, where it is certain that infinitely many 1's occur in E. Thus, Ko = { y i , V2. vl: infinitely many

Vs occur in e}.

Intuitively, the dilemma posed by the problem is that if the scientist is actually in y i and stabilizes

the truth value of h after some time, say to 1, then he must eventually settle into performing act 1

forever. But then if the scientist had really been in v^, he might never have seen a 1 in the data

prior to deciding to settle down into act 1, so he would never have discovered that in fact the truth

value of h is 0 under act 1. This dilemma can be turned into a rigorous, relativistic version of

Putnam's diagonal argument:

Fact 11.1: Effective, relativistic discovery is possible in the limit over Ko, but stable, relativistic

discovery is not possible over KQ even by an ideal method.
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Proof: The effective scientist ywho succeeds in the unstable sense follows this strategy: He

flip-flops between schemes 1 and 0 forever, producing hypothesis h in scheme 1 and hypothesis

-»h in scheme 0 so long as only O's are seen in the data. As soon as a 1 is seen, the scientist

remarks which scheme a it occurred under and stabilizes to that scheme and the corresponding

hypothesis (h if a = 1, and -ih if a = 0).

In v i , y alternates forever between schemes 0 and 1 and hypotheses h, —»h, but ys conjecture is

always correct. In H4 eventually datum 1 appears under scheme 1 since y visits scheme 1 at odd

stages until a 1 is seen. Then y stabilizes correctly to <1, h>, which is correct tor v l - By a similar

argument, y eventually sees a 1 under scheme 0 in V3, and thus stabilizes to act 1 and truth value

0, which is correct for V3.

Now the diagonal argument. Suppose for reductio that y stably succeeds over Ko- Then either

(a) y converges to <1, h> in yi or (b) Y converges to <0, —ih> in \yi. Consider case (a). Let n be

the time at which Y converges to <1, h> in y i . Let k be the number of times scheme 1 is visited by

Y in \|f 1 up to stage n. Define E SO that e has O's up to k and 1 thereafter. Thus V3 € K<>.

Moreover, the data seen by y in vl is exactly the same up to stage n as the data seen in yi by y.

Since Y converges to scheme 1 at stage n, and since V3 produces the same data under scheme 1

that vi does (namely, all O's), y converges to <1, h> in V3, which is incorrect. The cases for -rh are

similar. 1^

III.F. Relativistic Transcendental Deductions

Kant proposed both a moderate, metaphysical relativism and the notion of transcendental

deductions. Since he thought that the human conceptual scheme is fixed, his transcendental

deductions were not relativistic: they were directed at the character of this fixed scheme. But

convergent relativism raises the prospect for rigorous, properly relativistic, transcendental

deductions. And just as in the realist case, such results can be used to establish completeness

for relativistic discovery architectures. The existence of such architectures tor reliable, relativistic

discovery overturns the quick inference from relativism to methodological nihilism.

For a simple example, when truth depends upon the current act of the scientist but evidence

does not, we have an easy reduction to the situation in Section I. When evidence is

spontaneous, each worid-in-itself is characterized by a unique data stream ev (the one generated

in successive times by y, regardless of what y does). Since y is semantically immediate, we may
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let fy(<h, a>) denote the correctness assignment produced by y at any time in light of semantic act

<h, a>. Now the characterization condition may be stated as

Theorem III.F.1: Suppose the worlds-in-themselves in K are
(a) evidentially spontaneous and
(b) semanticaily immediate

Then correct hypotheses are effectively stably discoverable in the limit given K <=>

there is some Rf c (E° X H), S c (H X A) s.t.

(0) V\|f e Kt <h, a> G H X A, R'(ev, h) =* fv(<h, a>)(h) = 1 and

(1) S is recursively enumerable and

(2) S covers K according to Rf and

(3) R'e3H\K]2

Condition (0) replaces the realist condition R' Q R in Theorem I.F.2. It is a relativistic way of saying

that the act <h, a> is "correct11 if R1 says it is. Conditions (1), (2) and (3) mimic the conditions with

the same numbers in Theorem I.F.2, where we take the pair <h, a> to be "correct" or "incorrect" for

a world-in-itself y rather than for a particular data stream e. The complete architecture for

discovery will be a minor variant of the bumping pointer architecture that takes these minor

alterations into account. I

We have also characterized a special class of problems in which data also depends upon the

current act of the scientist [Kelly and Glymour 92]. When the scientist's history is relevant to the

data presented (i.e. the world-in-itself can "remember11) the situation becomes more complex.

Such historical dependencies can make success harder to achieve, because some desired datum

may be forever unobservable for a scientist who has elected to perform some sequence a of acts

in his past.78 These new difficulties are hardly unique to philosophical relativism, however, since

they are familiar features of experimental science in general. In classical mechanics, it is usually

assumed that we can perform essential experimental acts independently and get the same

information, but in relativity theory79 and in quantum mechanics80, this assumption is challenged.

More concretely, experimental compatibility assumptions clearly fail in historical studies like

78[Kelly 92a], chapter 11.

7 9The idea is that irregular features of the global topology of space-time can become forever
causally disconnected from observers on some world lines [Malament 77].

8 0 !n some developments of quantum logic, experimental compatibility \s a central concept.
[Cohen 89], p. 25.
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archaeology, in which a pillaged or mis-managed site can shut the book on an ancient culture for

eternity. Global relativism poses further technical challenges to the transcendental logician,

issues we leave for future study.

III.G. Relativistic Theory-Building

So far, we have viewed the scientist as producing a particular theory and other semantically

relevant acts that may affect the correctness of this theory. Perhaps a more realistic situation

portrays the scientist as building up a theory in response to data, sometimes removing

hypotheses and sometimes adding them, with the intention of choosing new hypotheses so that

the old ones remain true. In such a situation it is natural to suppose that a scientist is committed to

the logical consequences of his conjectures, so we need to introduce a relativistic version of

semantic entailment. Intuitively, h entails h1 relative to method y and time n just in case the

correctness of h relative to y at n implies the correctness of h1 relative to y at n.

K, h hf, n h ' « Vy e K, C(y, v)n(h) = 1 => C(y. V)n(h') = 1 •

The logical structure of relative entailment can vary radically from one time to the next.

Nonetheless, we might hope that for each h, there is a time after which h is entailed (with respect

to the sense of entailment operative at the time) if and only if h is correct (with respect to the sense

of correctness operative at the time). Thus:

y non-uniformty discovers the complete truth given K »
K Vh e H 3n Vm > n C(y, V)m(h) = 1 « K, H(y, v ) m 1=̂ , m h.

Non-uniform theory construction is closer to the diachronic image of inquiry operative in many

philosophy of science discussions.81 In realist settings, truth and well-formedness are naively

fixed, and truth stays put while science tries its best to home in on it in light of increasing data.82 In

the picture, T is the set of all true hypotheses, wf is the set of all well-formed strings, and S is the

set of hypotheses entailed by ys current conjecture:

8 1 For example, consider the diachronic model in [Lakatos 70].

8 2For a non-relativistic development of the logic of non-uniform or "incremental" theory
construction, c.f. [Kelly and Glymour 89].
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naive realist convergence

This picture is very little changed in the case of positivism. We must add to the picture the set C of

all conventionally selected meaning postulates that tie down the language. Assuming with the

positivists that inquiry is conjecture-independent (inductive methods doni fiddle with analytic

truth) then the picture is the same, except that it is now guaranteed that the meaning postulates

are well-formed and true.

positivistic convergence

If the meaning postulates C are changed, however, then there is a sattative break with the past.

Positivists didn't entertain the possibility of convergent success through changing conventions,

and this is what left them vulnerable to the possibility of conjecture dependency raised by Kuhn

and Quine, as we have seen.

Proponents of conjecture dependency often assume that when truth depends on the scientist's

conjectures, it meets them half-way to make science easier. Kuhn and Hanson speak of theory-

ladenness, as though the theories we entertain color truth and the data so that truth and

evidence always meet us half way. Radical coherentists go further, and assume that truth

unshakably chases us around, so long as certain unspecified standards of coherence are

observed.

Coherentism (positive conjecture dependency)

"wf

But once conjecture dependency is out of the bag, we see we see that it is just as conceivable for

truth to run away from us, in the sense that our conjectured theories are false because we

conjecture them. Thus, a hypothesis could remain true as the scientist homes in on it, only to melt
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spitefully into falsehood (or even worse, into nonsense) the minute he comes to believe it, only to

become true again after it is rejected. We refer such wortds-in-themselves as Sisyphusian.33

Sisyphusian relativism (negative conjecture dependency)

iwf

Sisyphusian relativism is not entirely a product of our malicious imaginations. If social

constructivists are correct and truth is nothing more than the relevant community's assent to one's

beliefs, then Sisyphusian relativism is a distinct possibility, for an offended community could out of

spite reject, and therefore falsify, every one of the offender's announced beliefs.

Coherentism, the philosopher's ultimate refuge from skepticism, is not immune from these

difficulties. Putnam has correctly remarked that coherentism is a dangerous position for a

relativist, for it is vacuous if coherence is nothing at alt and if coherence is the same for everybody

then it is naively objectivistic.84 But if coherentism steers a moderate relativist course between

these two extremes, so that coherence, itself, depends to some extent on the acts and history of

the scientist, then Sisyphusian skepticism looms once again, for it may happen that what we

believe is incoherent because we believe it.85

Sisyphusian relativism is much worse than the original inductive skepticism that relativism (in its

Kantian and positivistic incarnations) was summoned to defeat. Inductive skepticism tells us that

belief might happen to be wrong for ail we know. Relativistic skepticism tells us that belief might

be self-defeating for all we know: a sorrier situation. All that stands in the way of such possibilities

are the philosophers' claims to transcendental knowledge about how truth and evidence can

possibly depend upon our acts. All that has happened is that ordinary scientific uncertainty has

been replaced with a far more virulent transcendental uncertainty, and the material dogmas of

science have been replaced with the metaphysical dogmas of the philosophers.

83Sisyphusian relativism is covered by Proposition lll.D.1 in the case of semantic immediacy, for in
that case it will be impossible to satisfy condition (2).

84[Putnam 90], p. 123.

85This may be seen in a precise way if we define relative satisfiability along the lines of our
definition of relativistic entailment. E.g., say that h is satisfiable relative to y at time n just in case h
is correct relative to y at n in some possible world-in-itself.
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But Pandora's box is hard to shut once it has been opened. Perhaps it is vain to hope for a

convincing, a priori argument against undesirable relativistic possibilities. But this doesni leave

us entirely helpless. At least we can reason backwards, by means of transcendental deductions,

to determine what we would have to know about the worid-in-itself for reliable, relativistic theory-

building to be possible. If we are doomed to transcendental dogmatism, we can at least choose

our dogmas to be as weak as they can be conditional on preserving some desired sense of

reliability in scientific inquiry. In this manner, limiting reliabiiist transcendental deductions can be

used to constrain metaphysical theorizing. For example, since Theorem III.F.1 characterizes

convergent success over conjecture-dependent worlds, it must exclude the possibility of

Sisyphusian worlds. Inspection of the theorem will reveal that condition (0) is violated for every

choice of R* when y is Sisyphusian.

III.H. Relativism, Logic, and Historicism

Our aim in this section of the paper has been to extend Putnam's early, limiting reliabilism to

settings in which theory laden data and incommensurability run rampant. We have seen that there

are transcendental deductions for convergent relativism that are quite parallel to those we

obtained in the naive realist settings in the first section of this paper. Despite this, it is interesting

to observe that this basic strategy has has already been anticipated— and refuted-- some years

ago by the cognoscenti of relativistic nihilism.

The notion that it would be ail right to relativize sameness of meaning, objectivity,
and truth to a conceptual scheme, as long as there were some criteria for knowing
when and why it was rational to adopt a new conceptual scheme, was briefly
tempting. For now the philosopher, the guardian of rationality, became the man
who told you when you could start meaning something different, rather than the
man who told you what you meant.

Recall that a relativistic hypothesis generator is exactly a method that tells you what to conjecture

and when to mean something different. Rorty claims that any such proposal must somehow

presuppose meaning invariance:

But this attempt to retain the philosopher's traditional role was doomed All the
Quinean reasons why he could not do the one were also reasons why he could not
do the other.. • • • ...[As] soon as it was admitted that "empirical considerations"...
incited but did not require "conceptual change"... the division of labor between the
philosopher and the historian no longer made sense. Once one said that it was
rational to to abandon the Aristotelian conceptual scheme as a result of this or that
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discovery, then "change of meaning" or "shift in conceptual scheme" meant
nothing more than "shift in especially central beliefs". The historian can make the
shift from old scheme to the new intelligible.... There is nothing the philosopher
can add to what the historian has already done to show that this intelligible and
plausible course is a "rational*1 one. Without what Feyerabend called "meaning
invariance," there is no special method (meaning-analysis) which the philosopher
can apply.86

But as a matter of fact, nothing in our presentation presupposes invariance in meaning or truth of

the scientist's conjectures; much less that such conjectures are translatable across conceptual

revolutions. Stabilizing to ones own version of the truth does not require that past theories make

sense or can be translated into one's current point of view. It does require knowledge of what

past scientists accepted as evidence and what kinds of theories they conjectured when that

evidence was accepted: but these are just the sorts of things that Rorty claims the historian can

teach us.

Rorty focuses on the question whether a particular shift in conceptual scheme is plausible or

intelligible. But when we shift our attention to the reliability of general strategies for generating

theories and changing meaning through time, the prospect arises for a genuinely logical analysis

along the lines indicated above. Such analyses are something that a philosopher (or computer

scientist or historian or anyone who pleases) can do that amassing loads of historical case studies

and explaining them informally would not do. We aren't saying that one of these sources of

insight into the workings of science is better than the other. Rorty is.

Perhaps the reiativistic nihilist will respond with his ultimate weapon, namely, that even his

relativism is relative. Since our logical investigation of reiativistic induction assumes fixed,

transcendental knowledge K, it assumes an Archimedean point which the nihilist is happy to pull

out from under himself. We have two responses.

First, this meta relativism is a bold, transcendental thesis that is hardly entailed by the sorts of

historical anecdotes that historicists like Kuhn have proposed as evidence for their of semantically

and evidentially local versions of relativism. All that is indicated by such cases is (a) some

dependence of truth and evidence upon one's history and (b) a putative lack of translatability

between paradigms. The scientific historian aspires, in fact, to tell us when revolutions occurred,

which theories are incommensuraDle. and why certain shifts of meaning occurred. As long as the

86[Rorty 79], pp. 272-273.
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relativist can tell us about how the relativistic dependencies work, our apparatus for convergent

relativism will apply.

Second, we may view the pulling out of the rug as the first step up a "hierarchy" of relativisms

analogous to Tarski's hierarchy in the conventional theory of truth. As we move up this hierarchy,

the world-in-itself may depend upon acts, that dependency may depend upon acts, etc., to any

ordinal level. We expect that our convergent relativist gambit will apply, with a corresponding

increase in subtlety and complexity, to fixed background knowledge concerning dependencies at

any such level. If the nihilist insists that his ultimate relativism diagonalizes across each of these

levels, then we no longer have a response, but neither do we know what is being asserted.

Ultimate relativism, the relativism beyond all relativisms, belongs to the battling realm of the

greatest ordinal, the set of all sets, the liar paradox, and the neoplatonic One. If it takes this much

to shut down Putnam's limiting reliabilist methodology, then it stands in excellent company.
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