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ABOUT THIS BOOK

This book is about a computer program, TETRAD. The program is designed to assist in the
search for causal explanations of statistical data There are often many millions of possible
alternative causal explanations for non-experimental data; human researchers can only
consider and evaluate a handful of these alternatives, and hope that the best explanation
they find is the best explanation there is. That hope is often vain. The TETRAD program
uses artificial intefigence techniques to help the investigator to perform a systematic search
for alternative causal models, using whatever relevant knowledge may be available.

A version of the TETRAD program, together with several data sets discussed in the book,
are included on the floppy disc accompanying this volume. The version of the TETRAD
program on the floppy will run on IBM personal computers and on [IBM compatible
machines. We recommend 512K of RAM , but simple models can be run on machines with
less memory. The TETRAD program is intended to be used in conjunction with programs
for statistical estimation and testing, such as the LISREL and EQS programs.

The program on the floppy is limited to models with no more than nine variables. A version
of the IBM program suitable for larger models (up to 23 variables) is available from
Academic Press. Still larger models can be treated using a version of the TETRAD program
for the DEC Microvax Il Workstation, also available from Academic Press.

Directions for running the program can be found in Chapter 12. Effective use of the
program requires study of Chapter 5 and of some of the examples in Chapter 8.

Because the book was written as the program developed, output described in the book's
examples may differ in minor ways from output obtained with the version of the program
on the floppy disc.
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PREFACE

The sciences that attempt to discover the causal structure behind statistical data include the
study of the causes of disease and of the circumstances that spread particular diseases.
They include aspects of genetics, archeology, chemistry, psychiatry, psychology, and all of
the social sciences. There may not exist a scientific subject entirely free of statistical

models and causal inferences drawn from them.

Nowhere is this influence more pronounced than in the social and behavioral sciences, from
econometrics to sociology to political science to educational research, and nowhere are
scientific conclusions of greater importance. A just society must make its collective
decisions more or less rationally, and decisions cannot be rational unless they are informed
Few things are more evil or more dangerous than a society in the grip of fundamental and
irrational dogmas, and few defenses seem more powerful than free and vital social
sciences. We rely on social scientists to inform us about the effects of economic policies,
about the effects of our educational system, about how we feel about ourselves and
others, about the causes of behavior patterns we abhor, whether delinquency or racial
discrimination, about the effects of our international policies, about the consequences of
our attempts at social engineering, whether in birth control or in school integration. In a
thousand policy decisions, large and small, made each day, the weight of social scientific
opinion helps decide the balance.

Our courts, our military, our educators, our legislators may rely on the social sciences in
one way or another, but reliance is not the same as trust, and the social sciences are not
trusted Unlike the natural sciences, the social sciences have little or nothing of a well-
established foundation that can be applied and expanded to encompass more and more of
social phenomena There is no Isaac Newton in sociology, political science, or economics,
nor should we expect one soon, or perhaps ever. The social sciences are therefore
committed to the attempt to understand the causes of social phenomena without the aid of
well established general theories, as if to do engineering without physics. It is no ones
fault that we lack general theories that can reliably guide us to an understanding of social
phenomena It is not for want of trying that we lack them. In the absence of such
theories, social scientists in many disciplines do work that has an air of arbitrariness; they
produce statistical models and draw causal conclusions without much hint of serious
argument for their assumptions. It is only natural to attempt to fill the vacuum of theory
with the stuff of methodology, but the result is usually unsatisfactory. Social scientists are
buffeted by methodological dogmas, many of them held dearly for reasons long forgotten




or never known. Much of the methodology is unhelpful; it gets in the way of scientific

progress, and makes a poor substitute for genuine scientific sensibilities.

Wanting a powerful and accurate theoretical framework, and with difficult problems and
debilitating methodological principles, mistakes are bound to be made, whether in advocating
conclusions that are false or in missing conclusions that are true and important It is no
wonder that the social sciences are not trusted, and not surprising that critics within and
without have proposed that the enterprise be abandoned

This book is written with four convictions. The first is that next to the limitations on
experimentation, the foremost problems of quantitative social science are computational
They are problems that result not from the failure of social scientists to adhere to every
statistical nicety, but from the fundamental inability of humans—any humans—to carry out
large calculations rapidly and accurately. The computations have to do with the systematic
search for the best alternative explanations of statistical data The human limitation is one
of a sequence of logical dominoes: Unaided we humans simply cannot consider and
evaluate many alternative theories of non-experimental or quasi-experimental data In the
absence of well confirmed general theories, we have no other way of justifying our causal
explanations than by making a case that there are no better explanations to be had, and we
cannot make that case unless we have the power to search through a good sample of the
possibilities. Unaided, no one has that power.

The second conviction we share is that the fundamental problem of computational
limitations can be remedied Unlike many critics, we do not believe that the practice of
guantitative social science should be abandoned We think it should be aided, and that it can
be. The increasing availability of powerful, inexpensive digital computers puts enormous
computing power within the grasp of nearly every researcher. The principal aim of this
book is to describe a computer program designhed to aid social and behavioral scientists,
and those in other sciences as well, in searching through a vast array of possibilities to
find the best explanations for their data The program is not a toy, but it is only an
example. The program is adapted to a particular kind of statistical model, and even for
that kind of model the program could be, and will be, developed much further than it has
been. We believe that the program is only a tiny fragment of what can be done to
overcome human limitations in discovering theory. We are proud enough of it, and a little
exhausted from its construction, but it is only a harbinger.

Our third conviction is that to gain the advantages of computational aids social scientists
must throw away some ill-founded convictions about proper scientific method Above all,

they must dismiss the prejudice that any theory discovered by a machine that looks at the




data is ipso facto inferior to any theory discovered by a human who doesn't

Our fourth conviction is that academic boundaries must be trespassed The work described
in this book is part applied statistics, part artificial intelligence, and part philosophy of
science. These are distinctions in professions, not in subject matters, and we make no
apology for mixing them so thoroughly. The mixture makes the reading a little tougher, the
references much wider, and some parts of the argument a little more difficult for anyone
enmeshed in a particular discipline, but the boundaries of the disciplines are not the
boundaries of the issues. In intellectual life, good fences don't make good neighbors.
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1. THE PROBLEMS OF SCIENCE WITHOUT
EXPERIMENTS

1.1. THE LIMITS OF EXPERIMENTATION

Modern science and experimental methods grew up together, and we cannot very well
imagine empirical science without experimentation. Even so, much of what we want to
know about our world cannot be answered by experiments, and much of what we know
(or think we know) is not directly based on experimental studies. The limitations of
experimentation are both practical and ethical. For practical reasons we cannot do real
experiments with the economies of nations or with the arrangements of galaxies. For
ethical reasons we cannot do allJ sorts of experiments on the causes of disease (on
smoking and cancer, for example), or on causes of social conditions; neither the world nor
conscience will let experimenters randomly assign infants to experimental and control
groups for the purpose of studying the effects of poverty on delinquency.

Faced with urgent needs for all sorts of knowledge, and with stringent limitations on the
scope of experimentation, we resort to statistics. In the 19th century there was a rapid
development in the study of statistical data to answer causal questions. Statistical
comparisons were made in epidemiology, to determine the effects of blood letting or of
new surgical procedures, for example, and to attempt to estimate the effects of
occupation on mortality. Later, non-experimental statistical data were used to study heredity,
the causes of differences in individual human abilities, and causes of economic change. By
the early years of the 20th century non-experimental statistics had made inroads into
medicine, biology, psychology and economics.

Today, statistical methods are applied to almost every public issue of any factual kind The
meetings of the American Statistical Association address almost every conceivable matter
of public policy, from the safety of nuclear reactors to the reliability of the census. The
attempt to extract causal information from statistical data with only indirect help from
experimentation goes on in nearly every academic subject and in many non-academic
endeavors as well. Sociologists, political scientists, economists, demographers, educators,
psychologists, biologists, market researchers, policy makers, occasionally even chemists and
physicists, use such methods.

Non-experimental statistical studies are only one way to get information that helps to




decide questions of health or public policy. We could instead resort to fundamentalist
revelation, or Marxist theory, or look entirely to political expediency. If we try to make
science reach a little beyond our power to experiment it is because we think such
methods extend the scope of rationality, and because we wish to make social and individual

decisions as rationally as we caa Even so, their reasonableness is not beyond dispute.

Controversy about the use of statistical methods to extract causal information from non-
experimental data is as old as the methods themselves. The controversy continues today,
and it has many sources. Part of it may be no more than the continued resistance to
guantitative methods of many of the practitioners of the "softer" sciences. Part of it is
baldly political. The same methods that are used to study the spread of disease or the
causes of economic change have also been used to argue for some very unpopular
conclusions.  Part of the opposition to causal inference in non-experimental research is
based on misconceptions about science. Critics unfamiliar with the history of science, or
with practice in the natural sciences, sometimes make naive demands on applied statistics
that are not met by even the most advanced of our sciences. But the most interesting and
most important opposition derives from a justifiable sense that a good deal of applied
statistics looks more like pseudo-science than like science. In many statistical studies in the
social sciences, equations may be written down and references cited, but little or no
justification is given for the assumptions that are made, and the hypotheses put forward
are not tested, and no predictions of any consequence are derived Indeed, as we will see
in later chapters, some of the quantitative work that appears in even the most prestigious
of social science journals is disappointing, and in some cases even appalling. We will
discuss a major social experiment on criminology, supported by millions of dollars of tax
funds, conducted without any recognition of the difference between testing a theory and
estimating a parameter. Any critical reader of the quantitative social sciences can find an
abundance of studies that are equally deficient The important question is not whether much

of this work is poorly done, but why it is, and whether it need be.

12. THE LIMITS OF HUMAN JUDGEMENT

It is important to recognize the difference between practice and principle. If much of the
guantitative work that aims to extract causal conclusions from non-experimental data is not
very good, then that might be either because of reasons of principle that cannot be
overcome, or because of individual lapses that can be overcome. The news is not very
encouraging: some of the obstacles to good statistical modeling may be very difficult to
overcome, no matter how fine our intentions may be. There are two distinct sources of
discouragement, one from psychology, the other from elementary considerations of




combinatorial mathematics.

12.1. The Psychological Problem

About thirty years ago, Paul Meehl [75] compared human performance obtained, on the
one hand, by psychologists using clinical interviews and, on the other hand, by simple linear
regression of the predicted attribute on any statistically relevant features of the population.
He found that on the average the predictions obtained by linear regression were never
worse, and were usually better, than those made by clinicians. Meehl's conclusion is one of
the best replicated results in psychology. If the issue is selecting police officers who will
perform their tasks satisfactorily, or graduate students who will do well in their studies, or
felons who will not commit new crimes when paroled, a simple statistical algorithm will
generally do better than a panel of Ph.Ds. These sorts of results are not confined to
clinical psychologists A growing literature on "behavioral decision theory" has found that
people, even those trained in probability and statistics, perform well below the ideal in a
variety of circumstances in which judgements of probability are called for [54]. One of
the most resilient errors is the tendency to ignore base-rates, or prior probabilities for
various alternatives, and instead to judge the probability of an alternative entirely by how
likely that alternative renders the evidence.

The intellectual skills that are required to find, recognize and establish a good scientific
theory have many of the features of problems for which it has been shown that human
decision making is less than optimal. There are a few studies which bear a little more
directly on the capacity of humans to interpret scientific data  Studies of physicians'
diagnostic behavior, for example, have shown that few alternative diagnoses are entertained,
and that evidence that is irrelevant to a preferred diagnosis is often erroneously taken to
confirm it Historical studies suggest much the same thing. Thus in recent years
philosophers of science have been stung by the historical criticisms of writers such as
Thomas Kuhn, who argue that the history of science does not fit very well with
philosophical theories of scientific reasoning. The conflict is perfectly understandable if one
realizes that philosophical methodologists have been concerned to characterize ideal,
normative modes of reasoning, and if one supposes that the scientific community in any
time and subject area typically falls well short of any such ideals. '

One major use of applied statistics is in economic forecasting. Forecasts are made in many
ways: by the judgement of a human expert, by a variety of statistical time-series methods,
some of which require a good deal of judgement on the part of the user and some of
which do not, and by econometric methods that attempt to consider not only time-series.
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but also causal factors affecting the variable to be predicted The literature on the .
comparison of methods is large and complex, and especially controversial sinco forecasting
procedures may involve large financial stakes. It seems fair to say, however, that there is
considerable evidence that simpler procedures do as well or better than more complex
procedures, and that statistical procedures requiring considerable judgement on the part of
the user do little if any better than more fully automated procedures. There is little
evidence that explicit consideration of causal variables significantly improves forecasting
(see Makridakis, et al. [71] and Kmenta and Ramsey, [57] for some recent comparisons
and for references to the literature). What this suggests is that the causal theories

produced for economic forecasting are not so good as we might wish.

Considerations such as these have led David Faust [24], a psychologist, to the conclusion
that science itself is by and large too difficult for human cognitive capacities, and even
Meehl takes this thought seriously. But there is a much more powerful combinatorial
argument that leads to similar misgivings.

1.2.2. The Combinatorial Problem

The aim of science, whether physics or sociology, is to increase our understanding by
providing explanations of the phenomena that concern us. The most common form of
explanation in the sciences is to account for why things happen as they do by appealing to
the causal relations among events, and by articulating generalizations about causal
relationships. Causal claims alone are often insufficiently precise to give us the power to
test them or to make important predictions from them. To gain that power, we usually
embed causal claims, when we can, in a system of quantitative relationships. In considering
non-experimental data, the quantitative relationships are often in the form of a statistical
model of some kind

When we consider statistical models' in the social and behavioral sciences, we find
everything from very small models in educational research with as few as six or seven
measured variables, to econometric models containing several hundred vaiables. We can
think of the causal part of any such theory as given by a directed graph, with the vertices
of the graph representing the variables, and each directed edge in the graph representing a
causal influence of one variable upon another. Such graphs look like arrow diagrams. For
example:

lThe practice throughout statistics and much of the sciences is to term any specific theory a "model" and reserve the term
"theory" for only the most general and sweeping of hypotheses. We will use "theory" and "model" interchangeably.
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Figure 1-1:

Each distinct way of arranging a set of variables into a directed graph represents a distinct
model of the causal relationships among the variables, and thus an alternative causal theory
of the data The point is that even with a small collection of variables, the number of
distinct possible causal arrangements, and thus the number of distinct, alternative causal
models of the data, is astronomical. If we consider all of the a priori possibilities, then for
each pair of variables A and B, there are four possible kinds of connectionn A can have an
effect on B but not B on A, or B can have an effect on A but not A on B, or A and B
can each have an effect on the other, or, finally, A and B can each have no direct effect
upon the other. The number of distinct possible causal arrangements of n variables is
therefore 4 raised to the power of the number of pairs of variables. Thus with only six
variables, there are 4'® different possible directed graphs or causal models. When we have
it in our power to experiment, we are able to arrange circumstances so that we know
most of these possibilities are excluded, and we can focus on whether a particular causal
dependency does or does not occur. But without experimental control, the problem of
determining the correct causal structure is far more difficult '

A social scientist or psychologist or epidemiologist or biologist attempting to develop a
good statistical theory has a lot of difficult tasks. He or she must choose what to
measure and how to measure it, and worry about sampling technique and sample size. The
researcher must consider whether the variables are multinormally distributed, or have some
other distribution. He or she must wor'ry about whether measures of a variable in one
individual or place or time are correlated with measures of that same variable in another
individual or place or time. The researcher must consider whether the relations among the
variables are linear, or non-linear, or even discontinuous. These are demanding tasks, but
there are a variety of data analytic techniques to help one along and to test hypotheses
concerning these questions. Suppose the investigator has passed these hurdles and has
arrived, however tentatively, at the usual statistical modeling assumptions: the relationships
are linear, or close enough to linear, the distribution is multinormal, or nearly so, there is
no autocorrelation, or at least not much. Assume that the investigator has covariance data
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for six variables. The troubles that now must be faced make the data analysis problems
seem almost to pale in comparison There are 4'® alternative possible theories of the
causal dependencies among the six variables, and only one of those theories can be true.
How is the researcher to find the one needle in the enormous haystack of possibilities?
Perhaps the goal need not be to find the one unique correct theory, but only to reduce
the possibilites to a handful, or to find a close approximation to the correct model. How is
even that to be done? The usual thing to say is that the investigator must apply his or her
"substantive knowledge” of the domain, but this is mostly whistling in the dark. To get the
number of possiblities down to manageable size will take a lot more substantive knowledge
than we usually have about social or behavioral phenomena Suppose, for example, that one
is quite certain that the causal relations do not form cycles. That is, there is no sequence
of directed edges in the true graph of the causal relations that leads from one variable
back to that same variable. Then the number of alternative causal models consistent with
that restriction is still more than three million. Suppose, what is in fact rather unusual in
many social science studies, that the variables are ordered by timeof occurrence, and the
researcher therefore knows that variables occuring later cannot be causes of variables
occurring earlier. There are still 5! or 120 alternative models.

Now repeat the same sequence of calculations when there are twelve variables in the data
set With no restrictions imposed, there are 4° alternative causal models, only one of
which can be true. If the researcher knows that there are no cyclic paths in the true
model, the number of alternatives is still beyond the astronomical:
521,939,651,343,829,405,020,504,063 (see Harary, [41]). If the researcher is lucky
enough to be able to totally order the variables and knows that later variables cannot cause
earlier variables, the number of alternatives is reduced to 11! or a mere 39,916,800.

These counts are conservative. They do not not include the possibility, which every
researcher considers, that some part of the correlations is due to unmeasured variables
that have effects on two or more measured variables. Including such possibilities
enormously increases the numbers. What can the investigator possibly do in the face of
such an enormous number of possible causal models, no more than one of which can be
correct? In practice, even the best researchers usually take a wild guess, or indulge their
prejudices rather than their knowledge. One, or at most two or three, causal models is
suggested, appropriate equations are written down, parameters are estimated and the model
is subjected to some statistical test If the test is passed, the researcher is happy and
journal editors are happy and the thing is published. No one likes to mention the millions,
billions or zillions of alternatives that have not been considered, or the dark and troubling
fact that among those alternatives there may be many which would pass the same statistical
test quite as well or even better, and which would also square with well-established
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substantive knowledge about the domain.

The practice of model building in the social and behavioral sciences looks very much like
irrational judgement under uncertainty. The very phenomena that Kahneman and Tversky and
many others describe in experimental subjects seem to be exemplified in the practice of
social science. According to Bayes' theorem, the posterior probability of any particular
model should take into account both the likelihood of the evidence on the model and the
prior probability of the model. Much of current practice is to hit upon a model somehow,
and to advocate the model if it passes statistical tests, even when the tests are not
powerful against all alternatives. In effect those who follow this practice are ignoring the
prior probabilities, and judging a model to be good enough to accept if it yields a
sufficiently high likelihood Other workers may do much better than this, and attempt to
carry out a serious search for alternative explanations of the data But in view of tie vast
numbers of possible models, we should wonder how anyone could carry out an adequate
search.

1.2.3. Some Examples

These arguments are not just idle combinatorics. The issue affects almost every pece of

applied statistics addressing non-experimental data Consider just a few recent exanpJes:

1. The Census

The national census is certainly not free of error. Some people are sure to be missed,
and those likeliest to be missed are often the least advantaged in our socicy; those
without fixed abodes, those who live in isolated areas, those who live whets: census
workers would as soon not go. Since census statistics are used to apportion aH sorts of
things, from votes to benefits, who is missed where is of considerable pracScal and
political importance. The statistical task is to estimate the actual undercount “* various
places, given the actual count and given estimates of undercounts based on matching

studies.

For the 1980 census, the Census Bureau produced 29 matching studies (Post-Etaneration
. Program, or PEP studies*, based on a variety of alternative assumptions. Using oneaf these
PEP studies, Ericksen and Kadane , T23J, investigated a number of alternative lina* models
in which the actuaC undercount depends on geographic soda/, procedural or daseyaphic
variables, and the FEP estimates are a function of the true mtercourt The distribtions are
assumed to be normal They estimate the undercount fay regression, and argue nta* the




14

undercount is robust over the alternative models they consider.

Ericksen and Kadane’s work was criticized by Freedman and Navidi, [27], on several
grounds. One of the criticisms lodged is that Ericksen and Kadane do not justify their
assumptions. The point of the criticism is that allegedly, for all anyone knows, alternative
PEP series have the correct assumptions, and alternative models are correct and would lead
to different estimates of the undercount, or to no estimates at all (if the undercount is
represented by an unidentifiable parameter). Kadane [53] replias that (among other things)
there is a justification for the PEP series selected, that the conclusions he and Ericksen
obtain are reasonably robust, and that the undercount estimate on any reasonable set of
assumptions would be better than the Census Bureau's de facto estimate, which is that the
undercount is zero. It is clear that a major issue in this dispute concerns whether an
adequate search can be made for plausible alternative linear models, and whether estimates
of the undercount are reasonably robust over that collection of alternatives.

2. Criminology

McManus, [74], (reported in Leamer, [59]) investigated the deterrent effect of capital
punishment by regression on several subsets of variables. He obtained importantly different
results according to the independent variables selected. It is, however, unclear why the
sensible thing to do is not obvious: include all of the variables. Even so, many of the
independent variables considered are undoubtediy correlated, and alternative assumptions
about their dependencies can be expected to again give different estimates of the
deterrent effect

In one of the largest social experiments ever carried out, described by Rossi, et al, [82],
newly released felons in Georgia and Texas received unemployment payments for a period
of six months after their release. Legal requirements prevented those receiving payments
from ~cr.~z The rearrest rate was the same for the Texas group and “zr controls who
received no payments—, and nearly the same for the Georgia group and controls. The
expe- menters concluded that payments did decrease recidivism substantially, but that
unemployment increased recidivism, - : the twc :ffects exactly, or almost exactly,
canceled one another. They elaboratea their conciusions in a path model In effect, the

experimental design failed to ccr:-ci for a relevant variable, unemployment, an? thus laft

open many alternative explanations of the results. Zeisel [110], who served on an -

advisory committee for the experiment, vehemently objected to the conclusions drawn by
Rossi, et al. In his opinion the experiment established the obvious: payments have no
significant effect on recidivism. Zeisel proposed a simple alternative path model to account
for the data

L
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3. Head Start

Data on socio—economic status variables and achievement and ability scores for Head Start
participants and comparable non-participants has been much studied and discussed, and has
had an effect on government policy. A principal difficulty with many analyses in the
literature, beginning with the Westinghouse evaluation of the summer Head Start program, is
that researchers have failed to carry out any systematic search for alternative models. Jay
Magidson, [69], in a study of the summer Head Start data, put the issue this way:

The problem we face is that there is an infinite number of ways to formulate
a causal model, and 1t is not a straightforward matter to determine how to go
about doing it, particularly when the causes are unknown and/or unobserved. It is
important for researchers to formulate not one but many models so that they
can determine whether their conclusions may differ if they accept a different
set of assumptions. It is also important to follow some general guidelines in
building (formulating) models when the researcher has limited information about
the causal process..

1.3. THE ARTIFICIAL INTELLIGENCE SOLUTION

The problem we have described seems to us both urgent and difficult In its way, the
problem is far more difficult than that of getting people to do proper data analysis, to
perform tests for linearity, for example, or for autocorrelation, or to select the most
powerful test statisticc There are procedures for diagnosing erroneous statistical
assumptions, and work has been done towards automating such procedures, especially in
the context of regression analysis. Even so, the chief difficulty will usually remain: the
number of alternative theories is astronomical, and it is beyond anyone's capacity to analyze
and to test any more than an insignificant fraction of the possibilities.

An ideal Bayesian solution would be to impose a prior probability distribution on all of the
alternative statistical models that are consistent with prior knowledge (or with prior
knowledge and some simplifying assumptions), compute the likelihood of values of an
appropriate statistic as functions of the model parameters, obtain the evidence, and with
the likelihood and the prior probability distribution, compute the posterior distribution? One
trouble with this solution is that the sort of evidence we have may be insufficient to bring
about reconciliation of agents with different priors. Leamer, [59], finds, for example, that
representing the views of Keynesians and monetarists by different prior probability
distributions, and conditioning on time series evidence doesn't do much to change initial

This strategy was suggested to us by'our colleague, Jay Kadsane.
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prejudices. Another trouble is computational. We don't possess a general procedure for
quickly computing posterior probability distributions from arbitrary prior distributions and
arbitrary evidence. Perhaps some day such a procedure will be feasible, but what do we
do in the meanwhile?

Two procedures are in common use to help with this problem, and while they have their
virtues, neither is adequate. One procedure is exploratory factor analysis, which is
sometimes very useful in suggesting that groups of measured variables cluster together and
may therefore have a common cause. But exploratory factor analysis does not consider the
variety of possible causal relationships. As Blalock [8] points out, factor analytic
procedures do not consider the possibility that measured variables may have direct causal
effects on one another, nor do they allow that measured variables may have direct effects
on unmeasured variables, nor do they consider the different possible causal relationships
among the unmeasured variables. Factor analysis procedures rule out a variety of realistic
possibilities a priori.

Another procedure commonly used to help search for alternative models is the formation
of nested sequences of models. The idea is really quite old, and goes back at least to
Harold Jeffreys' Scientific Inference. [49]. There are many different technical forms of
the idea, but the basic notion is that one starts with a simple theory having only a few
free parameters, or, equivalently, with a theory that postulates only a few causal
relationships among the variables it considers. One then introduces a new free parameter
into the model, or new causal connection among the variables. Sometimes the parameter
freed is chosen by a formal procedure. Some statistical test is used to compare the new
model with the model that precedes it, and the process is continued until eventually the
statistical test is failed A procedure like this is carried out automatically by the LISREL
program, which is widely used for certain kinds of statistical modelling. While the general
strategy is admirable, and the TETRADprogram described in this book has an analogous
architecture, in practice there are severe difficulties. The trouble with the procedure is that
there are generally far too many possible nested sequences to be explored in this way.
The results obtained depend on the order in which the parameters are freed, and the
formal procedures for choosing which parameters to free are too fragile, and tend to
overlook the best options. Some of these difficulties were noted by those who introduced
some of the technical procedures (see Sorbom, [97] and Byron , [13]).

This book proposes a new solution, or more accurately a partial solution to the problem of
searching for alternative models. That solution has two parts. One part is to consider
formal aspects of scientific explanation in comparing alternative models. The idea is simply
that we should prefer those models that offer the best explanation of our data, and that
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important aspects of explanation can be represented by formal, mathematical relationships
between a model and the data it is to account for. "Explanation" is not a methodological
notion that plays a major role in statistics, and the theory of scientific explanation upon
which we rely is not contained within any of the familiar schools of statistics. In thus
broadening the methodological viewpoint we do not intend to neglect statisticalinference
where it is applicable and useful but we do intend to make use of an understanding of
scientific explanation that is familiar to philosophers and historians of science, and that is
common in the natural sciences.

The second part of our partial solution is to use artificial intelligence techniques to help
search for models that will provide the best explanation of our data The very idea owes a
great deal to Herbert Simon, [92], who also contributed to the understanding of
connections between causal relationships and multivariate analysis. Simon takes one of the
hallmarks of artificial intelligence to be heuristic search. A heuristic search is a computer
procedure that applies plausible steps to hunt through an enormous space of alternatives to
locate the best (or a collection of th_e best) alternatives for some purpose. What makes the
search heuristic is that the procedure does not guarantee that the outcome will be the
best alternative or will be a collection that includes the best alternative, but the procedure
will typically do so, or come rather close. The search procedures may in various respects
be less than rigorous, and may not always deliver the optimal solution. But they will
typically yield outcomes that are good enough, and that are better than can be obtained
without heuristic search. Simon calls the strategy "satisficing." It amounts to settling for
what is feasible and good enough, rather than insisting on what is optimal but infeasible. A
philosopher, Wilfrid Sellars, puts the same point in a simple imperative, upon which we will
have several occasions to rely: do not let the best be the enemy of the good

Simon's idea is that scientific discovery is a kind of heuristic search through alternative
hypotheses or theories. If that is so, then there is a formal structure to scientific
discovery, and if we can get a grip on that computational structure, then computer
programs can make scientific discoveries. And indeed they already have. In chemistry, in
logic and in geometry, artificial intelligence programs have made discoveries of various
kinds, and Simon [93] and his associates have written a series of programs that simulate
many of the discoveries in the history of science.

The aim of artificial intelligence programs need not be to do things in quite the way that
humans do them, especially if humans do the thing rather poorly, and the computer can be
made to do it better. Humans do not do large sums very accurately; we do not want our
pocket calculators to simulate our own inadequacies. Humans also seem not to be able to
search through the space of alternative statistical models very adequately. Our claim is that
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a computer program, using heuristic search techniques, can help do it better. This book is a
defence of that claim. Our argument is based on an actual program, TETRAD, a copy of
which is included with this book. The program is intended to assist in the search for
adequate statistical models of a very general kind, including factor analytic models, path
analytic models , structural equation models, and many other varieties of linear statistical
theory. They do not include statistical theories that cannot be put in additive form. With all
modesty, we believe that a TETRAD user can learn more in an afternoon about the
existence and properties of alternative linear models for covariance data than could an
unaided researcher in months or even years of reflection and calculation. The TETRAD
program is offered as a useful working tool, but it is also offered as an example. We
think the same very general ideas about heuristic search can be applied to develop artificial
intelligence aids for other kinds of statistical models, and they ought to be.

The notion of applying artificial intelligence techniques to problems of statistical model
specification is not really novel. Several programs have been developed or proposed that
apply artificial intelligence techniques to statistical modelling. Systems have been developed
to test automatically the adequacy of common modeling assumptions, such as linearity and
normality, and to suggest transformations of variables or other changes where these
assumptions fail. (See Gale and Pregibon [30] for a review). A great deal is known about
statistical  diagnostics, and the aim of these programs is to make that information, or
appropriate conclusions, automatically available to the inexpert One example is the REX
program developed at Bell Labs by Gale and Pregibon. The program is designed to assist in
regression modelling, and will actively transform variables (to their logarithms for example)
to satisfy regression assumptions.

In principle, computer aided search for causal relations has important applications beyond
aiding reasearchers in finding better explanations. Fully automatic programs of this kind can
function as inference modules in robotic systems. More immediately, fully automatic search
for causal relations holds the promise of unlocking large data bases. In medicine, social
science, astrophysics, in fact almost every domain, we have managed to collect more data
than we have time and power to analyze. Potentially valuable causal knowledge is effectively
locked up by the sizes of the data bases. Computer discovery procedures that are fully
automated and reasonably reliable seem the only hopé for making real use of the
information we continue to acquire and store.

The problem of automatic computer search for causal relations has barely been scratched.
Perhaps the best known piece of work in this line is Blum 's [11] RX program. The RX
program uses prior knowledge about a particular domain, rheumatoid diseases, together
with a statistical package and a large data base. The variables in the data base are indexed
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by time, so that a variable with a later index cannot be a cause of a correlated variable
with an earlier time index. The program looks for correlations that may be due to causal
relations. When a correlation is found, the relationship is tested and compared with the
program's current knowledge to determine whether the correlation may be due to common
causes acting on the variables. If not a causal conclusion is added to the knowledge base
and the program continues. The statistical analyses are restricted to multiple regression
models, and therefore a great many alternative causal explanations of correlations are never
considered

Unlike Blum's program, the program we describe in this book, TETRAD, is not fully
automatic and does not procede without the active engagement of the user's judgement?
But neither is the TETRAD program confined to searching for multiple regression models.
Instead, the program is intended to help the user search through the vast space of
alternative linear causal models that might explain a body of covariance data But the very
idea of the TETRAD program is really nothing more than a continuation of the tradition of
work on automated discovery carried out by Simon and Buchanan, [66] , Blum and others.

Conventional statistics constantly reminds us that there are two sorts of errors a theorist
can make: he or she can reject the correct theory, or fail to reject a false theory.
Perhaps the likeliest reason for advocating an incorrect theory is simply that the correct
model has not been thought of or investigated. Both sorts of errors might be reduced by
helping investigators to search more adequately for promising explanations of their data
The TETRAD program is designed to do exactly that

Most of the ideas in the TETRAD program have a long history in many different disciplines:
philosophy of science, psychometrics, statistics, and elsewhere. Some of that history is
described in a later chapter. Other chapters of this book describe some of the
philosophical issues that surround artificial intelligence, causal modeling, and the explanatory
strategy of the TETRAD program. They also describe how TETRAD works, and illustrate the
use of the program on a variety of real and simulated cases.

3

We think the ability to infer causal relations without user interaction is a consderable advantage of Blum's program,
particularly in searching large data bases, whether in medicine or in social science. We have developed pilot programs, which
we will not describe in this book, that more fully automate the TETRAD procedures.
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2. THE CASE AGAINST CAUSAL MODELING

2.1. THE CRITICAL REACTION

Causal modeling of non—experimental data has been controversial since its beginnings, and it
is no less controversial today. The controversies are very philosophical, and they involve
fundamental differences about what makes for science. The social and behavioral sciences
are inevitably compared with the natural sciences, and disputes about methodology in social
and behavioral science are often essentially disputes about what it is that has made the
natural sciences so successful in understanding, predicting, and controlling the physical
world.

Paul Meehl, [76], is fond of pointing out the discrepancies between the methodological
procedures of chemists and physicists and biologists, on the one hand, and the
methodological practices of the "soft sciences” on the other hand. Most natural scientists
would be altogether puzzled by what goes on in quantitative sociology, or social
psychology, or econometrics, and they would be unlikely to recognize some of it as
science. Some of it isn't science save in name, however much it may try to be.

The essential question we shall pursue is whether, in the many criticisms of causal
modelling practices, there are good reasons to think that the entire endeavor is suspect, or
whether the valid criticisms are only evidence that particular social and behavioral scientists
don't adequately understand what science requires. That the enterprise is often badly
conducted is no sufficient argument that it is inherently unscientific, or that it could not in
principle be done well.

Our discussion will also consider just which of the criticisms of causal modelling are well
taken, and which derive from misperceptions and misunderstandings. Our view is that there
are many well founded criticisms of particular studies, and of various common practices in
causal modelling, but none of the criticisms gives reason to think that the very idea is
mistaken. We will also argue that the critics are often nearly as confused as those they
criticize, and that many of the principled criticisms of causal modelling derive from
mythology about the natural sciences. Our view is that there is nothing philosophically or
methodologically wrong with applying statistical models to non-experimental data, or with
the attempt to uncover causal structure. But doing it well, so that the result contributes to
the progress of knowledge, is very hard, and there are many ways to go astray.
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We will consider in turn the following criticisms of causal modelling:

» Causal modelling involves a mistaken, or incoherent conception of causal
relations.

e Theories with latent variables should be rejected on methodological or
semantic grounds.

e Only experimental data can contribute to our knowledge of causal
relationships.

« Those who advocate causal models do not and presumably cannot make a
case for the assumptions of their models.

e Linear causal models should be rejected because they are always literally false.

2.2. MAKING SENSE OF CAUSALITY

Some social scientists, prefer to avoid causal language. They assume it is enough to give a
set of structural equations, estimate the coefficients of the model, and perhaps subject the
system of equations to a statistical test or tests. Some statisticians regard causal inferences
drawn from non-experimental data with the assistance of statistical models as an abuse of
their subject’ These harsh judgements seem to spring from a vague sense that causal talk
is unscientific or "metaphysical®, or at best a gratuitous and unclear addition to the much
clearer system of equations of a structural model.

In fact the very logical structure of most social science models requires mathematical
structure beyond that of a system of equations. Econometricians distinguish exogenous
from endogenous variables, others distinguish independent from dependent variables. These
distinctions are not given by the equations themselves. It makes no difference to the
algebra which variables are written on the left hand side and which on the right hand side
of the equality siga When social scientists introduce such distinctions they are providing, in
addition to the equations, a partial ordering of the variables. That partial ordering has a
natural causal interpretation.

The application of most social $cience models depends on drawing causal conclusions from
them. That is because we are usually interested in applying such models in situations where
we have the possibility of changing some features of the social or economic system, and
our concern is to know what other changes will result if we do so. This sort of

For some more optimistic recent discussions of statistics and causal inference, see Holland 1451, and Glymour (361.
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application is routine with econometric models of national economies. Parameters
representing policy variables are run with hypothetical rather than actual values in an
attempt to predict the effects of changes in policy. Again, with models of the Head Start
data, we are concerned with whether or not Head Start participation causes improvement in
school and test performance. In studies of the American occupational structure, we may be
interested in whether the educational system causes social mobility. In criminological studies
we are often concerned with whether specific penalties (e.g. the death penalty) deter
certain crimes. To deter is to cause not to happen. Correlations and regression coefficients
don't give us that information. Only causal conclusions will do so.

There are some contexts in which social science models are of practical importance even
without causal conclusions. In estimating the undercount in the Census, for example, we are
not principally interested in drawing a causal conclusion. But more often, we want causal
knowledge, however much our language may disguise that fact Causal relations are either
asserted or presupposed in almost every circumstance in which the application of social
theory leads to a counterfactual assertion, that is to an assertion roughly of the form "If A
had happened, B would have happened”. Causal conclusions are usually implicit when future
conditionals are asserted, for example in sentences such as "If the death penaity is
enforced for murder, fewer homicides will occur” If social science could never lsad to
these sorts of conclusions (or their denials) we would not have much practical use or hope
for its

The idea that causal discourse is somehow unscientific is rather wild. The determination of
causal relations and causal structure remains a principal part of the enterprises of physics,
chemistry, biology, engineering, and medicine. Causal talk is used without a qualm in many
scientific papers in these subjects, and in every laboratory. Why is it improper then in
social science? It is sometimes claimed that causal talk is “meaningless,” but that is itself
sloppy expression that cannot be taken seriously. We use causal talkk all the time in
everyday life, with pretty fair mutual understanding. We have excellent formal semantical
theories of causal discourse (see Lewis, [62] and Cross, [20]). In innumerable cases we
know how to determine causal relationships. What more could be required for
intelligibility?

For a careful discussion of the confusions sbout causality in the recent methodological literature in economics, see
D. Hausman (42)
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2.2.1. Interpreting Causal Claims

Many philosophers have attempted to explicate the notion of causality in terms of the
notion of probability (see Suppes, Skyrms and Good, [103, 96, 37]). A probabilistic
characterization of causality has been introduced into econometrics by Give Granger, [39],
and developed by others (see Sims [94]). We do not assume that causal relations can be
reduced to probabilistic relations of any kind, but neither do we contradict such
assumptions. Instead, we assume that the theorist imposes certain connections between
causality and probability. The most important of these connections is that, ceteris par/bus,
correlations are to be explained by causal relationships of one or another kind

We assume that a causal claim implies a functional dependence, although not every
functional dependence is a causal dependence. If A is a cause of B, then B is a function of
A and (quite possibly) other variables. If B changes, then A must have changed if the other
variables of which B is a function did not change. So we say that if A is a cause of B,
then ceteris paribus, a change in B must be accompanied by a change in A. Or, put another
way, if A causes B, then ceteris paribus if a change in A had not occurred, a change in B
would not have occurred.®

Mathematically, the representation of causal relationships in combination with linear structural
equations systems is very simple. The causal relations are represented by a labeled
directed graph, and the directed graph uniquely determines the structural equations of the
statistical model. But mathematical representation is the easiest part; the hard part concerns
what inferences are to be drawn from causal claims. One of the inferences to be drawn
from the claim that A causes B is that, ceteris paribus if B has changed then A must have
changed. In the context of causal modeling the claim is ambiguous. There is a strong
version, namely:

For any member of the population, ceteris paribus if the value of B for that

individual has changed then the value of A for that same individual has changed.

There is also a weaker interpretation of the claim that variable A has an effect on variable
B:

For any two members of the population, ceteris paribus if they differ in their

uIt might be claimed that we have it backwards, and that A causes B means that other things equal a change in A is

accompanied by a change in B. But if A causes B does imply that B is a function of A and other variables, then (unless the
function is one-one) a change in the value of A can occur without any change in the value of B, as in B « A". If the relations
are linear then the relation is of course symetrical, and if A causes B then, ceteris paribus, if A changes B will change.
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values of B then they differ in their values of A

The two versions are not the same, and one can be true when the other is false. The first
sense presupposes that if feature A is a cause, then it makes sense to talk of changing A
for particular individuals. Sometimes that doesn't make sense: for example, it doesn't seem
to make sense to talk of substantially changing the genetic structure of one and the same
individual. Some writers, such as Holland [45], contend that only when one is prepared to
assert the strong claim is one really talking of causality. Terminology aside, it is important
to recognize that the weaker claim might be correct even though the stronger one fails.

A related consideration is that causal claims may be true only historically. Lieberson
[64] points out, correctly, that many causal processes are not reversible. So if values of
B came to obtain historically because of what appears to be a linear dependence of B on
A and changes in the value of A, a reversal in the value of A might not bring about a
concommitant reversal in the values of B. When that occurs the dependence of A on B is
not in fact linear.

These points are really cautions rather than objections to the notion of causality or to the
search for causal explanations of non-experimental data They remind us that in
understanding causal claims we must pay attention to what is being talked about Lieberson
enters another caution of a similar kind: If one knows that A causes B, say, one canrot
conclude and should not in general conclude that a change in a third variable, say C, that
has not hitherto varied in the population or sample, will not cause a change in A or in B or
in both

All of these cautions are valuable, but there is no reason to suppose that they must
necessarily bring trouble for causal modelling. Anyone considering genetic causes of
phenotypic traits, for example, will be unlikely to confuse the weak and strong ceteris
paribus conditionals. We can consider what differences in genotype between individuals
may produce differences in phenotypic traits, but we are not likely to confuse ourselves
into thinking we can change the genotype of a particular individual. No one is likely to think
that the claim that Head Start participation improves school performance implies that a
sixteen year old who did not participate in Head Start will have his school performance
improved by reversing that condition and entering Head Start at age sixteen. Few of us are
likely to think that because nutritional levels did not vary in a sample of students obtained
in a study of school performance, that major changes in nutrition would have no effect on
school performance. The cautions are sound, and important, but there is nothing in them to
make us abandon the enterprise of causal modelling.
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2.2.2. Baumrind and the Concept of Causality

In the course of a criticism of a paper by O'Donnell and Clayton [79], arguing that
marijuana use is a stepping stone to heroin use, Diana Baumrind mounts a vigorous attack
on causal modelling She has interesting substantive objections to their argument and she
proposes an alternative causal model of the data, which we will not consider here. The
chief burden of her essay, however, is that causal modelling of non-experimental data can
never justify drawing causal conclusions. It is hard to find in her essay a coherent
argument for that thesis, but she does raise some interesting issues about the concept of
causality.

Baumrind criticizes in particular the idea that causal relations consist in certain sorts of
probabilistic relétions, an idea which she (mistakenly) thinks is essential to causal modeling.
The proposal, roughly, is that As cause Bs, where A and B are kinds of events, if the
occurrence of an A event increases the probability of a subsequent B event, and there are
no kinds of events C1,..,Cn, such that, conditional on prior events of kinds C1,..,.Cn, events
of kinds A and B are statistically independent Her criticisms of probabilistic accounts: of
causal relations are these:

1. It is a "parochial model of -causality shared by neither laypersons nor
philosophers of science." (p. 1289)

2. Shultz [88] has performed experiments that appear to show that people of
all ages prefer a "generative" model of causal relations to covariatioa

3. The correct account of causation is generative: "The generative approach to
causation refers to the notion that the cause produces the effect..Within the
generative model the event called the cause acts to change or to produce the
event called the effect (p. 1291).

4. A parable: "The number of never-married persons in certain British villages is
highly inversely correlated with the number of field mice in the surrounding
meadows. Marital status of humans was considered an established cause of
field mice by the village elders until the mechanisms of transmission were
finally surmised: Never-married persons bring with them a disproportionate
number of cats relative to the rest of the village populace and cats consume
field mice. With the generative mechanisms understood, village elders could
concentrate their attention on increasing the population of cats rather than the
proportion of never-married persons. Note that although the correlation
between marital status and incidence of field mice is not a joint effect caused
by incidence of cats and is therefore a true association..the explanation that
marital status is a cause of incidence of field mice is at best trivial, whereas
the generative explanation that cats consume mice is valuable." (p.1297)
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We cannot speak for lay persons, but we can speak for philosophers of science.
Baumrind's claim is false. Several (rather more precise) versions of the probabilistic account
of causality sketched above are advocated by some of the most prominent contemporary
philosophers of science (For example Suppes [103], Salmon [84] and Skyrms [96]). We
can speak about lay persons. What Schultz's experiments show is hard to say. No one
should be surprised if in some circumstances lay people systematically violate probabilistic
criteria for causal attributions. There is considerable evidence that lay, and even expert
judgements about probability and causality violate most every normative standard (see
Kahneman, [54], and Faust, [24]).

Baumrind's characterization of the "generative" model of ‘causality is not very helpful
because it is not very clear. There are a few contemporary philosophers who analyze
causal relations in terms of an unanalyzed oomph, but the closest thing to a clear and
influential philosophical account that bears any connection to Baumrind's is the
counterfactual analysis of causation developed by Mackie, [68] and by Lewis , [63]. On
these accounts, A causes B if and only if A occurs and B occurs, and if A had not
occurred then B would not have occurred. (In Lewis' theory a model theoretic semantics is
developed for the counterfactuals that arise in this analysis of causation.) These accounts
perfectly well allow increases in never-married persons to cause declines in the population
of field mice.

What Baumrind really seems to mean by "generative" causation is that causal attributions
should come with a specified mechanism by which the causal relation occurs. The
intervening steps should all be spelled out, and verified if possible. That is a perfectly
sensible request, but it is part of methodology, not part of the meaning of "cause.” It is a
request that can only be satisfied, in any subject by the examination of correlations,
experimental or otherwise, and the application of prior knowledge. Baumrind's parable is
bootless. In the story, variations in never-married persons do cause variations in field
mice, even if the causation is indirect and nothing in the story prevents the use of
covariance analysis on uncontrolled samples to discover that the intervening variable is the
density of cats. '

Lots of models derived from non-experimental data come with plausible speculations about
the process by which the causal relation comes about Thus the apparently astonishing
conclusion (see Crain, [19]) that annual automobile safety inspections actually tend slightly
to increase highway accidents rather than to decrease them is elaborated with possible
mechanisms. For example, inspections may tend to give automobile drivers an erroneous
view of the safety and reliability of their machines. There are obvious psychological
mechanisms for the apparent effects of responses to some questionaire items on




28

responses to other items. Blau and Duncan occasionally suggest mechanisms for the causal
relations they argue for in The American Occupational Structure.

The importance of establishing the details of a causal process depends on the context In
many cases we are perfectly happy to know that plausible mechanisms can be conceived,
and don't much care what the actual mechanism may be. In other cases, we may doubt a
causal claim exactly because no plausible mechanism can be thought of. In still other
cases, we may not have much doubt about the genuineness of the causal connection, but
may be especially concerned to discover its mechanism of action. In these respects,
sociological and psychological and epidemiological mechanisms are no different from
chemical mechanisms.

2.3. CAUSES, INDICATORS AND THE INTERPRETATION OF
LATENT VARIABLES

2.3.1. General Objections

Many linear models, including those for which TETRAD analyses are most useful, contain
variables that have not been measured. Mathematically, models with such latent variables
often specify that some of the measured variables are linear functions of one or more of
the latent variables. Further, the latent variables are often given a causal interpretation——their
variation causes variation in the measured variables——and this causal interpretation is
represented in the directed graph of the model. Finally, latent variables are routinely given a
title that carries some meaning with it "socio—economic status”, "industrial development”,
"authoritarian—conservative personality trait”

Realism and Anti-Realism

A long tradition in philosophy of science holds that what cannot be measured or seen
directly is not worthy of bel/ief. Philosophers (and they have included many distinguished
scientists, such as Pierre Duhem) of this persuasion usually hold that theories that postulate
unobserved objects and properties and relationships are useful and valuable instruments for
prediction and control, for generating new experiments and for guiding the development of
still further theories, but they deny that these virtues give grounds for belief. They
distinguish belief from acceptance. We may have good practical reasons for accepting
theories as good empirical predictors and as useful tools, they hold, but no reason to go
further and actually believe our theories. The best contemporary defence of this anti-
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realist conception is in Bas Van Fraassen's, The Scientific Image, [106].

Realist philosophers of science think otherwise. They think we can have as much, perhaps
more, reason to believe in our theories as we do to believe in everyday claims made
outside of science. They distinguish credence from certainty. Belief has to do with
credence, and we can alot more or less of it to a proposition without taking that
proposition to be certain.

Realists and anti-realists in philosophy of science agree that theories that go beyond
observation are useful and inevitable, and they largely agree as well on what virtues make
one theory preferable to another. What they disagree about, for the most part, is whether
those virtues give us reason to believe our best theories.

In the social and behavioral sciences, and in applied statistics generally, there is a much
more radical train of thought which holds that in constructing theories we should not talk
about features that postulate unmeasured features or properties or entities. This view is
very different from the philosophical anti-realism we have just discussed, for it amounts to
claiming that not introducing unobserved features is an overriding virtue of any theory: any
theory that introduces unobserved features is inferior to any theory that does not

These critics think that it is somehow unscientific to introduce theoretical causes that are
not directly measured For example Holland, [45] rejects the introduction of any causal
factors that cannot be manipulated; and many econometricians and statisticians object to
latent variables on the grounds that they do not give any novel predictions. The most
famous modern rejection of latent variables is B.F.  Skinner's [95], on the grounds that
anything that can be predicted with latent variables can be predicted without them

These critics have it exactly backwards. The natural sciences are successful exactly because
of their search for latent factors affecting the phenomena to be explained or predicted.
Newtonian dynamics and celestial mechanics, the theory of electricity and magnetism, optics,
chemistry, genetics and the whole of modern physics would not have come to pass if
natural scientists behaved as the critics of latent variables prefer. Gravitational force,
electical fluids and particles, electromagnetic fields, atoms and molecules, genes and
gravitational fields, none of them could be directly measured or manipulated when they
initially became part of modern science. Few of these notions were introduced initially
because they predicted anything; they were introduced because they explained things.
Newtonian theory explained Kepler's laws, and did so beautifully; Daltonian atomism
explained (then controversial) regularities of chemical substances, such as the law of
definite proportions; general relativity explained the anomalous advance of the perihelion of
Mercury; Bohr's quantum theory explained spectral series of hydrogen. Of course these
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theories did eventually lead to important predictions, but they did so exactly because
people investigated the latent factors postulated by the theories, and sought laws about
them and their properties, and sought to test those generalizations.

Now critics may grant that the introduction of latent variables has been essential in the
natural sciences, but maintain that they are inappropriate in the social and behavioral
sciences. It is hard to think of any convincing reason for this view, however, and we
should demand very convincing reasons for any methodological strictures that contradict
the methodology of our most succesful sciences. Critics may doubt that statistical theories
of nonexperimental data can exp/ain in the same way that theories in the natural sciences
do., or that the explanations can lead to novel predictions. In Part Il of this book we will
show that linear causal models can explain in the same fashion that, say, Daltonian atomism
explained the law of definite proportions, or that Maxwell explained electromagnetic
phenomena, or that Copernican theory explained regularities of planetary motion. We wiill
also show that theories with latent variables can lead to novel predictions that would be
unlikely to be found without them

2.3.2. Interpreting Latent Variables

In the social sciences, latent variables are routinely given some gloss. They are labeled
"socio—economic status,” or "cognitive ability.” In describing the TETRAD program, and in
applying it to actual cases, we will follow the common practice, but with serious qualms. It
is important to understand some difficulties with the practice, and to beware of certain
confusions that may result from it

Consider socio—economic status. In sociological economic status index will typically be the
result of changes in all of the factors that enter into that index. The structural equations of
a linear model typically apply to the values of the variables for /individuals in the
population (or sample), not to averages of values of the variables. (Many of these and
other difficulties with the conventional use of socio—economic status as a latent variable
have been sensibly discussed by Blalock , [9])

For example, a familiar model for data from the summer Head Start program postulates an
unmeasured socio—economic status as a common cause of father's education, mother's
education, father's occupation and family income. Taken literally, the theory seems to make
no sense, since the measured quantities must, if anything, constitute socio—economic status.
The arrows go in the wrong direction. Suppose one abandons the interpretation of the
latent variable in the Head Start model. Suppose one no longer regards that variable as an
amalgam of education, income and other variables. That does not mean that one should, or
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must, abandon the graph of causal relations postulated by the initial model. It means
only that considerable caution, and more agnosticism, should be used in interpreting what
that latent variable is. There is nothing amiss, logically or scientifically, in having latent
variables that one is not quite sure how to interpret Surely that is better than having latent
variables with an interpretation that cannot be sustained There is nothing wrong with
supposing that something, for which we have no convenient name, but which is not socio-
economic status, acts as a common cause of parental education, occupation and income.

The most important error that inappropriate interpretations of latent variables may occasion
is the failure to consider alternative models. Often variables are clustered together, and
specified to be the effects of a common latent variable, because there is some common
content to their description. In a study of school children, for example, Maruyama and
McGarvey [72] group together a number of variables because they have to do with
popularity, and group other variables because they have to do with achievement, and others
because they have to do with socio-economic status. Within the causal model, these
groupings carry a causal significance. They say that these features have a common cause.
That may be correct but it is not necessarily correct That schoolwork popularity and
playground popularity are both forms of popularity does not imply that they have a
common cause, "popularity”, or that they have any common cause at all. There is no a
priori warrant, therefore, for failing to search for other groupings of variables.

2.4. THE IMPORTANCE OF EXPERIMENT

Diana Baumrind, [3] says that "The objective of the traditional social psychology experiment
is to enable the experimenter to infer unambiguously the existence and direction of causal
relations by ruling out alternative causal explanations ( [3], p.1290)." The objective may
not often be literally achieved, but she is surely right that one of the advantages, perhaps
the principal advantage, of experimental procedures is that they help to reduce the number
of alternative causal models that might account for a body of phenomena From a Bayesian
perspective, experimental data may give narrower posterior distributions than non-
experimental data (compare Leamer [59]).

The advantages of experimental control can be seen from simplecombinatoric
considerations, provided we suppose that the outcome of each experiment is unambiguous.
If we have four variables of concern to us, then there are 4° = 9,216 distinct possible
causal graphs. If, however, we can control each variable experimentally, then we can
consider them two at a time, makihg sure that other variables do not change, and test
whether wiggling variable X makes variable Y wiggle, and whether wiggling Y makes X
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wiggle. Twelve experiments, two for each pair of variables, will therefore determine the
pairwise causal dependencies. Two experiments, which determine the dependency of X on
Y and of Y on X, will reduce the number of alternative causal graphs for the four variables
to 4° = 1,536, reducing the initial indeterminacy by more than four fifths. Of course it
will take a lot more experiments than that to determine the form of the dependency of X
and Y over a range of values, and far more measurements still to determine all possible
non additive relations among variables.

But experiments aren’t always unambigous, which is the point to which we next turn.

2.4.1. Zeisel on Experimentation and the TARP Experiment

In criticisms of causal modelling, judgements about issues of princip/e are often entangled
with criticisms of particularly bad practices. In this subsection and the next, we consider
two particular studies that illustrate what some critics find objectionable about causal
modelling.

The Transitional Aid Research Project (TARP) was one of the largest social experiments
ever conducted. The experiment, and the treatment of the data, are described in Rossi, et
al, Money, Work and Crime, [82]. The experiment was intended to test the effects of
financial support for newly released felons on recidivism rates. Payments to newly released
felons in Texas and Georgia were made through the state unemployment commissions for a
period of six months. Control groups in both states received no such payments. The
outcome was nil. payments made no difference to recidivism. Rossi, et al. concluded that
unemployment, which was a condition of receiving the payments in the experiment,
increased recidivism, while the payments themselves decreased recidivism, and the two
effects simply happened to cancel one another out Hans Zeisel was originally on the
advisory panel for the experiment, but resigned in protest over the treatment of the data
He objected, among other things, that there was a better account of the outcome, namely
the obvious one that payments have no effect on recidivism.

Rossi et al. responded with various ad hominum arguments, [83], with the claim that they
fully acknowledged and even emphasized the null effects of the payments as administered,
and by citing a previous, smaller scale experiment which they claimed supported their
interpretation. (That effort, the LIFE experiment, conducted in Maryland, is also discussed in
their book). They further argue that their model is to be preferred to Zeisel's hypothesis
because they thought of it first

.the counterbalancing model and related specification were postulated before
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the structural equations were estimated and were constructed both on the basis
of the result of the prior LIFE experiment in which a payment plan did have a
recidivism reducing effect and by drawing on social science theory concerning
the possible competition between legitimate and illegitimate income producing
activities. There is a vast difference between posing a theory before examining
the data and posing one after examining them. On that basis alone, Zeisel's post
hoc models cannot stand on equal footing with our a priori model. Furthermore,
our modeling was tested through replication, being first constructed on the data
derived from the Texas experiment and then tested on the data from the
Georgia experiment

On the substantive argument, Zeisel wins hands down. The LIFE experiment, performed
under conditions that permitted those receiving payments also to seek legal employment
showed an 8% differential recidivism rate for crimes of theft, and no difference for other
categories of crime. The difference was statistically significant but only barely ( [82], p.
37-43). The TARP experiment showed no significant difference. The only evidence the
two experiments together provide for the effect of payments on recidivism is the weak
evidence of the LIFE experiment, and that evidence is weakened further, not strengthened,
by the TARP outcome. The temporal argument just cited is fallacious, as we have argued
in a preceding chapter. It certainly makes an important difference if one theory uses the
data to 'adjust a lot of parameters, and another theory accounts for the data without such
fiddling, but in fact it is the hypothesis of Rossi, et al. that seems to require the most
fiddling. But in this case, even the premises of the argument given by Rossi, et al., are
false. The counterbalancing model was not obtained before examining the data It is clear
that the model was developed after the null effect of the payments was known, and was
developed in order to save the experimenter's hypothesis in the face of apparently refuting
evidence. The puzzling claim that the model was postulated before the structural equations
were estimated (how could one estimate equations before obtaining them?) results from the
authors' remarkable conception of scientific testing. Since they confuse estimation with

testing, they believe there is some special virtue in having the equations before estimating.

The claim that the counterbalancing model was tested in any way is charitably described as
Pickwickian. The conception of testing used by Rossi, et al. is certainly peculiar. They
begin their section on "Testing the TARP Counterbalancing Model" ( [82] pp.108-112) as
follows:

So far the counterbalancing modelLis a reasonable but not yet demonstrated
hypothesis that can seemingly account for both the TARP and LIFE results.
However, the model need not remain on the level of an unproven hypothesis
since it is possible to use the TARP data to estimate coefficients for each of
the links...
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The authors then proceed to "test’, "demonstrate” and "prove” their model simply by
estimating its coefficients! No statistical test of the model is reported save for t tests of
the coefficients. Any mathematically consistent, identifiable model whatsoever can pass the
"test’ of parameter identification, and the t tests of coefficients are only tests of the
significance of the parameters given the assumptions of the whole "counterbalancing
model.”

The claim that the model is tested because the same model was used on both the Texas
and the Georgia data is smoke in logical eyes. Any identifiable model can be estimated on
two different samples. We are not told whether the small differences in coefficient
estimates are significant, but sameness of the coefficient estimates in the two populations
would show nothing more than that the measured correlations are the same. That might
indicate that the data are reproducible, and give some confirmation of the appropriateness
of linear modeling assumptions, but it has no other bearing whatsoever on the truth of the
counterbalancing model.

Zeisel's methodological conclusion is more sweeping and less tenable than is his criticism
of the arguments given by Rossi, et al. He claims that there is a difference in kind
between correlational and experimental data, and that experiments are always unequivocal.

To interpret correlational data a theory is needed, and unless the theory is
correct the interpretation will not be correct It is the beauty of the controlled
experiment that all the theorizing goes into its design. The result of the
experiment, though more limited in its scope than correlational speculation,
speaks for itself and needs no further theoretical support

Would that it were true. It is not It is not even close to the fruth Take any experimental
subject you please, and its history and contemporary prattice will show the reverse.
Chemistry: Robert Boyle's “pigeon” experiment, in which water boiled in a closed flask left
a solid residue, was taken by Boyle to show that water could be turned into earth. Others
disagreed. Dumas' measurements of the vapor density of phosphorus and sulfur in the
1830s were taken by Dumas, and others, to refute the atomic theory. The experiment was
interpreted consistently with atomism by Gaudin shortly after, but the interpretation
remained controversial for thirty years. More recently, the interpretation of experiments that
were purported to demonstrate the existence of a new physical state of water
("polywater”) was controversial. Physics: In the late nineteenth century, the foundations of
electrodynamics turned on the interpretation to be given to a large number of optical and
electrical effects, effects that could be produced at any time in almost any laboratory or
observatory. Not least among them was the outcome of the Michelson-Morley experiment,
whose interpretation was doubly controversial many physicists disputed what the
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experiment demonstrated and some (e.g., Miller) disputed that the experiment had revealed
any real (null) effect at all. The significance of experimental comparisons of the solar
spectrum with terrestrial spectra was disputed from 1914 into the 1920s, at least
Recently the interpretation of experiments that purported to detect gravitational waves has
been disputed, and so has the interpretation of measurements of the shape of the sun.
These are not isolated cases. They are typical cases.

Should one think that subjects, such as biology and psychology and sometimes even
sociology, in which experimental and control groups are formed and given different
treatments, somehow provide more certainty about the interpretation of their experimental
outcomes? It seems unlikely that biologists, psychologists and experimental social scientists
somehow provide a certainty that physicists and chemists cannot

Control group experiments cannot be isolated from controversy for several reasons. Two
prominent considerations are sample dissimilarity and unintended treatment effects. That
samples are drawn from a population at random does not guarantee that they are
representative. That subjects are assigned to various treatment classes at random does not
guarantee that the class memberships are matched on all relevant non-treatment variables.
Controversies can arise not simply because of statistical considerations about sample size,
but also because of sampling methods, properties of the actual samples selected, etc.
When a "treatment" is given to an experimental group, whatever is done is a complex
event with many facets. Separating out which facets are responsible for any differences
found between experimental and control groups on outcome variables is not always trivial
or obvious. The behavior of the experimenter's themselves may be the most important
facet as Rosenthal's [81] experiments suggest The knowledge of the subjects
themselves about their role in the experiment may be significant It is exactly these
concerns that are responsible for the double-blind design often used in medical research,
in which neither experimenter nor subject knows which subjects are receiving the
experimental treatment and which are controls. Even so, many medical experiments are
anything but decisive.

The TARP study itself conflicts with Zeisel's opinion of the value of experiments. The
explanation proposed by Rossi and his associates is ad hoc, and their arguments for it are
egregious, but that does not show that their explanation is false. An ad hoc hypothesis can
nonetheless be true, and bad arguments can be given for true hypotheses as easily as for
false ones. Rossi, et al. in effect suppose that a lot of leisure and absence of work
discipline increases the propensity of felons to commit new crimes, and that some cash in
the pocket decreases that propensity, and the contrary effects are about equal. These are
not absurd hypotheses, and they cannot be dismissed out of hand.
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Zeisel and Baumrind seem to share the view that without experimerital controls there is no
science, and causal conclusions are never warranted Their opinion is shared by others who
do not bother to argue for it (e.g., Ehrenberg [22]). This is not a sustainable position. Most
of astronomy developed without experimental evidence: Copernican theory was
established without experimental evidence, as were Kepler's laws. Newtonian celestial
mechanics had for experimental support only the law of the pendulum. The principal early
argument for general relativity was its explanation of the anomalous advance of Mercury's
perihelion, a phenomenon established by statistical analysis of non-experimental data using a
lot of assumptions. The first clearly experimental evidence for the theory, Pound and
Rebka's , was not obtained until 1960. Darwin had the experience of animal breeders, and
his own uncontrolled experiments with pigeons, but his major evidence was the observation
of variation and speciation in nature. Contemporary .cosmologists observe. They cannot
wiggle the entire universe, or build another cosrhos for a control group. Good
experiments are to be treasured, but science does not cease without them.

2.5. JUSTIFYING ASSUMPTIONS

2.5.1. Ling on Causal Modeling

Robert Ling 's, [67], review of David Kenny 's [56] Correlation and Causation is less a
review than a call to arms against statistical and causal modeling. Despite its brevity, Ling's
review seems to have caught the sentiments of the critics, and it is cited with approval
both by Baumrind and by Freedmaa . The real substance of Ling's criticism turns on the
existence of alternative models of data, and on the failure to search for such alternatives,
a failure sometimes justified simply by appeal to "assumptions."

The logical fallacy underlying path analysis and other forms of inference from
correlation can be illustrated by the following... A researcher believes that malaria
may be caused directly by exposure to swampy air..Having specified the causal
assumption by a path diagram, he finds a significant correlation between the
incidence of malaria (Y) and the swampiness index of numerous locations
sampled in the study. Ergo, the researcher concludes that "mal air" is the direct
cause of malaria

The foregoing example is not atypical of the manner in which theories are
established by those employing the techniques described in this book. Not
infrequently, the causal assumption (theory) is suggested by correlational data,
which are then used (tautaulogically) as if the data were sufficient evidence to
confirm the causal theory. In the path analysis methodology, the researcher can
never disconfirm a false causal assumption, regardless of the sample size or
evidence, so long as the variables alleged to be causally related are correlated
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There is a lot of hyperbole in these paragraphs. Of course the assumptions of path models
and other linear causal models can often be tested, and often are. But testing is not nearly
enough. Often the tests applied to causal models are of low power given the sample size,
and that means that for all anyone knows there may exist many, many alternative models
that would also pass whatever test has been applied A set of assumptions in a causal
model cannot be justified merely by statistical testing, without a search for alternative
explanations of the data, or without direct arguments from other sources. it remains true,
however, that some of the most objectionable procedures in the social science literature
are exactly as Ling describes them. The TARP experiment is a vivid example.

The examples could easily be muitiplied. They can be found in economics quite as well as
in politiical science and criminology. Ling's accusations are a fair complaint in many cases.
That doesn't make them good logical objections to the technique of causal modelling, or
establish that path analysis is "at best a form of statistical fantasy.” Failures of practice do
not establish a failure of principle. Contrary to Ling, nothing in statistical causal modeling
prevents researchers from disconfirming, or even rejecting, direct causal relations between
correlated variables. From early days (see Simon, [S1]) theorists knew that the hypothesis
of direct causal relations could be disconfirmed by discovering other appropriate variables
showing the association to be "spurious”, ie, the result of a common cause rather than a
direct connection. Hypotheses about causal relations, direct or not, can be disconfirmed by
the discovery of alternative models that give better accounts of the data, and do better by
statistical tests. They can be disconfirmed by examining new samples from the population,
or special sub—populations in which some variables do not vary, or by deriving from them
predictions (or retrodictions) which prove to be false. Ling should have blamed some of the
singers, not the song.

26. LINEAR THEORIES ARE LITERALLY FALSE

Anyone who thinks there is any point or justification for statistical modelling and for causal
inference from non-experimental data should be prepared to give an example of good
modelling and good inference. There are many dimensions of goodness, and a good study
is not necessarily, or even usually, one that is uncontroversial or unobjectionable. it is one
that enhances our predictive ability, or makes a persuasive case, or undermines our
previous assumptions, and does so by reasonable scientific standards. By those criteria, it is
'easy to find good examples of causal inference from non-experimental data In return,
serious criticism of causal modelling methodology (rather than practice) should turn on the
best cases, not the worst
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Blau and Duncan's [10] study of the American occupational structure was recently cited
by the National Academy of Sciences [73] as an exemplary piece of social science. Since
it makes heavy use of causal modelling techniques, it is the sort of example that critics
should consider. David Freedman [28] has done just that Freedman levels a greét many
criticisms, which we will consider one by one. His principal objections, however, are that
Blau and Duncan do not justify the assumptions used in their model, and that the model is
literally false. So let us first consider the value of literal truth.

2.6.1. The Aims of Linear Models

Nothing is more important in considering the value and limitation of a form of theorizing
than keeping its aims clearly in mind A procedure should not be dismissed for failing to
do what it does not aim to do, or for not aiming and succeeding at what is impossible to
do. In the case of linear causal modelling, the most important point is that little theories of
this kind are approximations. They do not contain the exact truth or the whole truth.

Linear models are used throughout the sciences because they are conceptually simple,
computationally tractable, and often empirically sufficiently adequate. They are almost never
true in every detail. Of course a model that is not true in every detail can still be
approximately true, and close enough to the truth to be relied upon in reasoning about
action and about policy. What we want from social science is not truth in every detail, but
theories that are close enough to the truth to be reliable guides in understanding and
decision making. There need not be a unigue theory that answers our need in any case. If
two theories are both literally true, then they must be consistent with one another, but if
two theories are each only approximately true, and thus literally false, they need not be
consistent with one another. Any of several alternative theories may therefore sometimes
meet our need for an approximately true theory on which to base action and policy. So
long as each of them would lead to the same practical decision, it makes little difference
which one we choose. But when the alternatives give different results relevant to decision
making and action, it makes every difference which we choose.

This is not any kind of special pleading for weaker standards in the social sciences than in
the natural sciences. In the natural sciences, nearly every exact, quantitative law ever
proposed is known to be literally false. Kepler's laws are false. Ohm's law is false, Boyle's
law is false, Maxwell's equations are false, and nearly every physicist believes that general
relativity is false (because it is not a quantum theory), and on and oa These theories are
still used in physics and in chemistry and in engineering, even though they are known to be
false. They are used because although false, they are approximately correct Approximation
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is the soul of science.

2.6.2. Blau and Duncan’s Model

Blau and Duncan's conclusions are often summarized with a simplified path model relating
father's education, father's occupational status, son's education, status of son's first job,
and son’'s occupational status in 1962:

Father's Respondent's
education | education
\'4 U

S

Y Occupation in 1962

A

X //,__’»[d First job
Father's

occupation

Figure 2-1: Blau and Duncan's Model

The model is elaborated in several ways in the course of Blau and Duncan's book.

Freedman observes, correctly, that Blau and Duncan do not explicitly give a system of
structural equations and distribution assumptions. He charitably, and so far as we can see
correctly, ascribes to them the set of structural equations obtained from the directed graph
above by applying the rules we describe in Chapter 4. Freedman supposes the equations
are meant to apply to individuals in the population, the error terms for different individuals
are uncorrelated and normally distributed, and the error terms for distinct variables are also
uncorrelated. Save possibly for the normality assumption, this seems a fair account of what
Blau and Duncan intended. We will consider in sequence Freedman's objections, and some
pertinent responses.

Objection 1
There is no justification for the equations.

-the modelers have to make some showing that the structure of the
equations reflects the structure of the phenomena.The only relevant
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considerations are presented on pp. 166-168. In effect, Blau and Duncan argue
that V, and X, are determined prior in time to U. likewise, except "for an

appreciable minority,” U, is determined prior to W_ and W, is determined prior
to Y. This is the whole of the argument.

Freedman suggests that the argument is supposed to lead to the structural equations by a
recursive calculation of values of later variables from earlier variables, and he concludes:

Of course, this parallelism does not establish.[the equations].as the right
model, since many other systems of equations have the same recursive
structure. For example, the effects could be quadratic rather than linear, or
multiplicative rather than additive. To sum up, the equations proposed by Blau
and Duncan do not have any adequate theoretical foundation.

Response:

Blau and Duncan have a pretty clear idea as to how both the structural equations and the
stochastic assumptions are to be justified, and how justifiable they are:

As in the case with the assumption of linearity, we may for most assumptions
adopt the pragmatic attitude that some departure from their literal truth may be
tolerated if the assumptions facilitate an analytical objective. Yet it is often
difficult to know if one has exceeded a legitimate level of tolerance and,
especially, to comprehend what the consequences of sizeable viotations of
assumptions may be.

We have sought a way out of this dilemma that will put some burden upon
the reader. Instead of using only one or two techniques, with attendant greater
or lesser severity of assumptions, we have varied the techniques and
consequently the assumptions. With some techniques we clearly go well beyond
the point where the requisite assumptions can be at all rigorously justified. This
venture, however, will-—to the extent possible——be counterpoised by alternative
treatments of the same data, avoiding at least some of the questionable
assumptions. (pp. 116-117)

The response is, first, that the model is offered as an approximation Indeed, the model
Freedman focuses on is offered as a very first approximation, which is elaborated in the
course of the book. Blau and Duncan never suggest that it is literally true. Second. they
test their assumptions, linearity for example, against other, weaker assumptions that lead to
nearly the same results. They explicitly address both the suggestion that the effects could
be in some power of the variables and the suggestion that they could be multiplicative.
The power function hypothesis is checked by performing a muiltiple classification analysis
which assumes that the effects are additive but not necessarily linear (pp.132-139; for a
detailed treatment of these and related techniques see [89]). It is further checked by
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supposing that the effects are only piece-wise linear in categories of independent variables
and showing that the slopes in the several pieces are very nearly the same, save for thinly
populated extreme values of the variables. We find these arguments convincing. A weaker
argument is given regarding multiplicative effects. Blau and Duncan argue that a logarithmic
transformation of variables from similar data gave correlations very close to those they
obtain without such a transformation (pp. 139- 140).

The strategy of using one set of assumptions, preferably weaker assumptions, to test other
assumptions in a theory is ubiquitous in the sciences, and there is nothing wrong with it in
principle, although like any strategy it can be practiced well or badly. It is the strategy
Cannizaro used to argue for his system of atomic weights, and the strategy Jean Perrin
used to determine Avogadro's number. Without it, much of the history of science would
perish. The strategy, and some of its historical and contemporary applications, has been
described in detail by Glymour , [34, 35].

Linearity is well short of entailing the particular theory Blau and Duncan propose with this
model. They have a further argument of which they perhaps do not make enough. No one,
apparently not even Preedman, disputes that the variables they choose as exogenous and
intervening have a direct or indirect effect on occupational status. The issue is what the
causal relations are. The principal justification for the model is that it explains the
correlation data for these variables very well, and no alternative linear model seems
available which gives a comparably good explanation of the correlations.. Even before
the parameters are estimated, and independently of any normality assumptions, the model
implies constraints on the covariance matrix that are very closely approximated in the data
After estimation, the model accounts for almost—but not quite—all of the empirical
correlations.

Any alternative linear model must do as well. It must also satisfy the temporal constraints
on the variables which Freedman alludes to. The real point of time order is not that it
establishes Blau and Duncan's model, but that it constitutes a powerful constraint on any
alternative.  Freedman admits in a footnote that he could not find an alternative eight
parameter model that fits the data as well as Blau and Duncan's initial model. Neither could
we. Nor could we find a model with fewer parameters—such models tend to imply
additional correlation constraints that are not very closely approximated by the data A
model with additional parameters can be made to fit the data, but such models either
sacrifice simplicity while gaining nothing in their capacity to reproduce the correlations, or
they sacrifice simplicity while losing the nice explanation of the constraints satisfied
approximately by the sample correlations. Blau and Duncan's model is certainly not true, but
it bears the marks of an elegant linear approximation to the truth, and that is even more
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than they claim for it
Objection 2.

The assumption that there is no autocorrelation in V or in X is violated by the sampling
technique, since the data were collected from households, and the different respondents (all

male) from the same household will surely have correlated values for these variables.

Response:

We cannot find any data in Blau and Duncan's book on what proportion of respondents
were members of the same household, or how they were distributed The objection is
sound, but its importance depends on that information.

Objection 3:

There is no justification for assuming that the disturbance terms associated with the
dependent variables are uncorrelated. There are; for example, famous dynasties in banking,
politics and film, and the corresponding error terms for education, first job, and
occupational status in 1962 will surely be correlated for members of such dynasties.

Objection 4:

Part of the error terms represent omitted variables, and these variables may act on several
of the variables included in the model:

Still more generally, the model omits families, neighborhoods, geographical
regions. It does not consider the quality of education, or when education was
obtained, or when respondents entered the Ilabor force..There is nothing of
history in the model, and nothing of the economy.

Response to 3 and 4:

Of course one can find cases in which there is good reason to think there are common
sources of variance for the dependent variables. Once again, the model is not assumed to
apply universally and literally. Blau and Duncan explicitly consider in later models the effects
of age, race, ethnic group, geographic region, farm versus non-farm background, marital
status, father in law's occupational status, parental family size, birth order, family climate,
and family type (divorced, not divorced, etc.), and more. Historical factors are discussed
throughout the book, and historical considerations enter explicitly in the justification of the
scales. It is true that these factors do not enter explicitly in the model Freedman attends
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to, but why then complain of it when it is offered as a very first approximation, and the
factors of concern are investigated as modifications and qualifications of the simple model?

Objection 5:

Significantly correlated errors will result in major changes in the estimated values of the
parameters of the model.

Response:

Absolutely. Changes in specification will affect parameter estimates. There seems to be no
evidence, however, that any of the variables Blau and Duncan consider produce a substantial
correlation of the disturbance terms.

Objection 6:
Blau and Duncan make no predictions from their model.
Response:

No predictions are made. Perhaps some could be. Principally, that improvements in the
educational level of a subpopulation in one generation will have little effect on the
occupational status of their descendents if structural social factors prevent the members of
the first generation from using their education to improve their occupational status, and if
the educational improvements are not sustained in the second generation. It is, we suppose,
one consideration pertinent to affirmative action and quota programs, although we have no
idea what role, if any, Blau and Duncan's work has had on such practices.

Objection 7:
Their model ignores their own data analysis:

A fair summary is that the data clearly but narrowly violate the assumptions
of the model the regression curves are nonlinear (pp. 137, 144); the residuals
are heteroscedastic (pp. 139, 144); the slopes vary across subgroups (p. 148).
The path coefficients..therefore have no real existence. What are Blau and
Duncan talking about?

Response:

Freedman's point is that Blau and Duncan’'s data analysis shows that their assumptions, in
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particular their assumption of linearity, is literally false. It also shows that it is a very good
approximation to the truth, and that is all Blau and Duncan claim for it We should add that
it appears to be at least as good an approximation to the data as are most of the simple
classical chemical and physical laws. Physical chemistry would not be better off without
the ideal gas law, or without the law of Dulong and Petit , but we very much doubt that
the data available in the 19th century gave a substantially better fit for these laws than Blau
and Duncan's data do for the linearity assumption-

Objection 8:

The model fails a bootstrap statistical experiment [21] of a correlation constraint it implies.
Response:

Of course the model fails a significance test Any false model that is very close to the
truth and implies overidentifying constraints will fail a significance test if the test is
powerful enough and the sample size is large enough. In this case the sample size, 20,700
is very large indeed The important thing is that any alternative explanatory linear model
would almost certainly fare worse.

Objection 9:

Blau and Duncan claim that "the entire influence of father's education on son's occupational
status is mediated by father's occupation and son's education”, ie., V has no direct effect
on W or on Y. But the regression coefficient of V in a regression of Y on V, X, U and W
is -.014 and the regression coefficient of V in a regression of W on V, X and U is .026,
and both are statistically significant

The conclusion drawn by Blau and Duncan is unwarranted...But a fair statement
of their results is only as follows: Roughly, the data conform to the equations...,
as depicted in the path diagram, although the differences are highly
significant..Blau and Duncan seem to have been misled by their methodology into
confusing assumptions with conclusions.

Response:

The objection that Blau and Duncan draw an unwarranted conclusion is pedantic. The
regression coefficients are indeed statistically significant They are also dinky, and in any
ordinary sense they are not significant at all. Blau and Duncan's statement is a fair summary
of the facts they find
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Objection 10:
The causal interpretation of path coefficients is nonsensical.

Suppose U, V and X are all functions of a more primitive variable r, which is
uniformly distributed over [0,1]. More specifically, let V be r, let X be r? and
U be r® but standardized to have mean 0 and variance 1~

Do we really want to say that the direct effect of r on r® is -.611, while

the direct effect of r> on r® is 1.578? How can we vary r while keeping r?

fixed?

The idea must be that structural equations are different from this artificial
example. We need to have the difference spelled out

Response:

It is essential to the usual representation of linear causal models that every variable have a
unique exogenous source of variance. Freedman's "artificial example" violates this condition,
and it is essential to his argument that it do so. That aside, suppose his conditions did
actually obtain for some set of variables and some system. Then the causal claims would
simply be false. That doesn't make the causal claims associated with real path models either
false or nonsensical.

Real science has always proceeded by approximation and idealization. Many of Freedman's
objections fail to appreciate that Blau and Duncan were doing, in a_different setting, exactly
what Newton and Dalton and Gay-Lussac and Hertz and Eddington did in theirs:
approximating and idealizing, looking for simple, elegant, plausible, and probably not literally
correct theories that explain the phenomena By the standards the natural sciences impose
on themselves, the American Occupational Structure is not bad work at all, not even
statistically. One example: The Lick expedition of 1922 produced the best data on the
gravitational deflection of light that were available until recent times. We guess that the
gravitational effect accounted for less than 40% of the measured displacements of star
images. The residuals of the least squares fit to the data were essentially unaltered if the
relativistic deflection, which varies inversely with the square of the distance from the limb
of the sun, was replaced by a simple inverse distance decay. Statistics does science many
services, but it does no service at all if it keeps social science in thrall to a false and
fantastic image of how science works.
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2.7. CONCLUSION

The critical attack on the very idea of drawing causal conclusions from non-experimental
data is miles short of convincing Criticisms of actual practice are something else. The
principal faults that beset linear modeling in practice, and that are seized on by critics,
seem to be these:

1. Insufficient data analysis is done to justify the linear approximation and the
stochastic assumptions.

2. Alternative models are not considered, and structural equations are not
justified.

3. Inadequate consideration is given to variables that are not included in the
model, but may be sources of covariance among variables included in the
model.

4. No testable predictions are made.

TETRAD cannot help those who have not helped themselves about linearity and about
stochastic matters. It can help substantially on the other counts. Later chapters demonstrate
that the program can help to find good alternative models where they exist, and can help
detect the existence of important neglected variables, although TETRAD will not tell the
user what those variables are. We will show at least one way in which, using the program,
testable, non-—statistical predictions can be made from causal models of correlational data
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3. OBJECTIONS TO DISCOVERY BY COMPUTER

3.1. INTRODUCTION

The TETRAD program can be thought of as a device for peering into a vast space
populated by causal models rather than by stars and planets. Some people would prefer
not to JooJc There is a line of thought that objects to any computer program that claims to
aid in the discovery of scientific theories. This chapter examines the arguments for that line
of thought’

Some objections apply to aJmost any form of computer discovery, or computer aided
search for theories. The objections we will consider include the following

« People have various kinds of special knowledge that computers do not have,
and that knowledge makes people better at discovery than computers can
possibly be.

» Discovery is a form of inference and inference should procede in accordance
with the requirements of Bayesian statistics and Bayesian epistemology, but
computer programs that aid in scientific discovery often do not work on
strict Bayesian principles.

e Offering computer programs that are intended to aid in the process of
discovery is playing with fire. The programs are bound to be used stupidly
and therefore should not be made available.

In addition, there are special objections to discovery procedures that are applied to
statistical data Such procedures must inevitably look at the data and use background
knowledge together with structural criteria and the data to guide the search for the best
explanations. Such procedures are routinely denounced as "ransacking" and "data mining/' but
arguments against the procedures are rarely given, and never given fully and explicitly. We
identify four lines of argument, which we will discuss in detail in the third section of this
chapter In brief, they are:

Versions of these arguments have been given to us orally or in private correspondence by several people, and since our
response is entirely critical and depends on reconstructing terse remarks, we avoid attributions save to published statements.
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e There is a clear difference between “exploratory” procedures and
"confirmatory” procedures. Exploratory procedures that examine the data to
search for theories may provide theories worthy of investigation, but they do
not provide any confirmation of those theories.

e It is circular or "tautaulogous” to use the data to search for the best
explanation of the data, and then claim that the theory thus found is
confirmed by that same data

e Using the data to discover a theory contradicts the usual frequency
interpretation of test statistics that are based on the same data.

e In the worst case, using the data to generate a theory will almost certainly
lead to an erroneous theory.

The examination of this second set of arguments is considerably more technical.

3.2. THE GENERAL OBJECTIONS

3.2.1. People Know more than Computers Do

Objection:

Computers literally don't know what they are talking about A computer procedure for
searching for good theories must use structural criteria of some sort in its search, but we
humans know a lot more than structure. We know what the variables mean, how they
were obtained, whether some took their values prior to the time that others took theirs,
and more. This knowledge is relevant to choosing a good statistical model, and a computer
does not have it

Comment:

There are two aspects to the objection. Because we humans know things about particular
causal relations, or about the impossibility of particular causal relations, it may be thought
that we can locate correct alternatives faster and more accurately than any computer can.
But further, any computer program that uses structural criteria in its search, whether the
criteria are statistical fit, or explanatory power, or whatever, will be likely to produce many
absurd results, including causal hypotheses that we know cannot be correct
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Response:

The use of structural criteria without the kind of knowledge we humans have of causal
possibilities and impossibilites can indeed be expected to lead to many absurd conclusions.
The sensible thing to do is to combine human knowledge about a domain with the
computer's structural criteria There are two ways in which human knowledge can be
combined with the computer's capacity to carry out systematic search. One way is to let
the computer report the results of its search using structural criteria that are sufficiently
inclusive to permit many alternative solutions to a problem. Then human users can employ
their knowledge to narrow down the alternatives. The other way is to make it easy for
humans to convey their knowledge about the domain to the computer, and then have the
computer use this knowledge and structural considerations to guide its search. One of the
major ideas behind contemporary expert systems is that knowledge specific to some
subject matter can be programmed into the computer, so that the machine can use that
knowledge in guiding its search.

The fact that without substantive knowledge structural criteria alone may sometimes lead to
absurd hypotheses ought not to lead us to reject the use of those criteria when their
results are consistent with what we think we know. Structural criteria encompass all of the
usual virtues of theories, including simplicity, correct predictions, explanatory power, and so
forth; in the absence of complete prior knowledge, we have no better means than these
for forming preferences among our theories.

3.2.2. The Bayesian Objection

Objection:

Artificial intelligence programs for discovering statistical models are really carrying out
decision procedures, but they do not act like rational Bayesian agents. Even if a program
did carry out Bayesian calculations, whatever prior probability distribution and utilities the
program uses may not be shared by human researchers.

Response:.

An artificial intelligence program might be designed to simulate a rational Bayesian agent
Programs of this sort have been developed for medical diagnosis (see Gorry, et al, [38]).
But an artificial intelligence program might also be designed to help humans behave more
like ideally rational agents. A program might well do the second sort of thing without
carrying out any explicitly Bayesian calculations.
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An ideal Bayesian rational agent is logically omniscient The agent considers every possible
hypothesis, asigns it a prior probability, assigns or determines a likelihood for the evidence
on each hypothesis, and forms posterior probabilities by conditionalizing on the evidence.
For many reasons, humans are not ideal Bayesian agents. As LJ. Savage, [85], noted, we
humans are always falling short of coherence, and our struggle is always to get a little
closer to it In recent years, Bayesian statisticians have begun to consider explicit strategies
for recovering from incoherence [65]).

One of the most important ways that we fall short of the ideal is in failing to consider
alternative hypotheses. In applying Bayesian procedures to empirical data, we may form a
collection (finite or infinite) of alternative hypotheses to account for the data, in such a
way that each hypothesis determines a likelihood for the data With proper priors, the sum
or integral of our priors over all alternatives in the collection is equal to one. There is
usually a further catch all hypothesis, namely that none of the hypotheses we have
explicitly considered is correct On reflection, we would rarely think that the catch all
alternative has zero prior probability, but we do not know how to use it to assign a
likelihood to the evidence. That is exactly because we generally do not know what the
unexamined alternatives are, or what their mathematical properties may be. In the first
chapter of this book we argued that this failure is one of the major limitations in sciences
in which non-experimental or quasi experimental data are to be explained

From a Bayesian perspective, the TETRAD program is a device for investigating a part of
the catch all hypothesis, and for locating within it specific alternatives that give the
evidence a reasonable likelihood, and that have the virtues of simplicity and explanatory
power. These virtues can be thought of as utilities (see Kadane, [53], and Hempel, [44]),
or as a constraint on prior probabilities (see Jeffreys, [49], and Zellner, [111]). Of
course, a researcher might not share these utilities, or these priors, but we argue in a later
chapter that they are fundamental desiderata in all sciences.

3.2.3. The "Fire" Objection

Objection:

Even if computer procedures for generating models are, if intelligently used, valuable aids
to discovery, they should nonetheless not be made available exactly because they will not
be used intelligently. Automated procedures may make it easier to fit arbitrary bodies of
data, and to find models that appear to give good explanations for the data, even when the
general modeling assumptions (linearity, for example, or absence of autocorrelation, or
normality, etc.) are seriously in error. If so, they make it easier for people to obtain illusory
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conclusions, and they make science worse.
Response.

The trouble with the argument is that it is generic, and it makes for terrible science policy.
A perfectly analogous argument can be given against every technical innovation,
computerized or not that aids the enterprise of knowledge. There is nothing special in this
regard about programs that aid in discovery. Regression packages make it easier for
people to produce utterly inappropriate models when they neglect autocorrelation,
multicollinearity, nonlinearity, etc. Estimation packages make it possible for people to assign
numbers to ill-justified causal linkages, or even to confuse estimation with testing
Statistical tests make it easier for people to unjustifably think they have established the
truth of a model when it passes some statistical test of low power. Theoretical work, say
Fisher's and Wishart's work on the distribution of correlations, or work on factor models,
can have similar effects. Even programs for automated statistical diagnostics can make it
easier to do stupid things. If one had a package that automatically checked for linearity and
made appropriate transformations, and checked for autocorrelation, distribution assumptions,
etc., it would make it all the easier for people to whip up good statistical analyses with
stupidly chosen variable sets.

The same is true of technical innovations outside of statistics. Every physical instrument,
from the telescope to the linear accelerator, has a variety of stringent conditions for its
reliable use. If the user is unsophisticated, and the conditions for correct use are not met,
a lot of garbage can and usually does result Introductory physics students who repeat
classical experiments with standard apparatus, Millikan's oil drop experiment for example,
rarely get the accepted results. The history of science is riddled with hypotheses advanced
because of inappropriate uses of new technologies. Should we therefore regret the

introduction of the telescope, the microscope, the micrometer, the camera?

Every good technical innovation expands our capacities and presents new possibilities for
discovery, new domains in which inquiry can be carried out It also presents for the same
reason the possibility of new errors, and new stupidities. There is absolutely nothing
special in this regard about automated discovery procedures. The objection therefore rests
on a more general policy, namely that the possible errors of the least competent members
of a community are sufficient reason to suppress the introduction of new technical
-developments. Fairly, and therefore generally applied, that is a policy for ending science,
not fdr furthering it
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3.3. NO PEEKING

3.3.1. Preliminary Remarks

Many social scientists and applied statisticians believe (or at least say) that one should
never, or almost never, search through a body of data to discover theories. Instead, one
should somehow come up with a causal model based on "theoretical considerations.” Such
people believe that computer programs that examine data and apply structural crtieria and
background knowledge to that data in conducting a heuristic search are objectionable no
matter how well they perform in practice.

It is hard to make any reasonable case for this rather radical perspective. "Theoretical
considerations,” if they are to have any weight in guiding theory selection, must be well
founded and therefore must be justified by some data or other. The position seems to be
that only theories generated by not looking at any data, or only theories generated by not
looking at any relevant data, can be true or can claim our serious attention. Their is no
rational reason to believe this sort of mysticism, however strongly it may be felt Above
all, the position denies what we know and what we can demonstrate: we know that people
can consider only a tiny fraction of the causal models that are consistent with prior
knowledge; we know that in the practice of statistical modelling, assumptions based on
"theoretical considerations” are rarely well justified and that alternative explanations are
rarely considered systematically; and we can (and will, in succeeding chapters) demonstrate
that with computer aids, better theories can be found. Finally, we know that if close
examination of data in order to search for explanations of it were prohibited, most of the
natural sciences would not have developed. We would have to make do without the efforts
of Copernicus, Kepler, Darwin, Cannizarro, and many, many others.

There is a more interesting and more precise kind of objection, not to computer search
for theories, but to certain ways of conducting that search. This line of thought insists that
while relevant data may indeed be examined in the process of searching for a theory to
explain it, the data used to discover a theory must be distinct from the data used to
confirm or test or argue for the theory.

The TETRAD program, like any discovery program, looks at data and searches for a good
explanation of it The causal models found by using TETRAD on a body of data can always
be tested by comparing them with another sample, other than the one used in the search
procedure. In the cases described in later chapters we sometimes do just that So the
program can always be used in such a way that the data used in discovery are distinct
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from the data used in testing. But we also believe that there is absolutely nothing wrong
with using one and the same body of data to discover a theory and to confirm it or test
it. The arguments to the contrary are not inane or mystical, but they are erroneous or
fallacious. We will consider four such arguments.

3.3.2. Exploratory and Confirmatory Procedures

Objection:

Computer searches are exploratory strategies and therefore cannot provide any
confirmation of the hypotheses generated

Response:

It has become routine in the social sciences to distinguish between "exploratory” data
analysis procedures and "confirmatory" data analysis procedures, or between exploratory
and confirmatory uses of data analysis procedures. The TETRAD program is perhaps most
naturally classified as an exploratory procedure. We wish to point out however, that the
distinction carries with it a great deal of dubious intellectual baggage.

"Exploratory" is very often used to suggest that a procedure, or an application of a
procedure, is useful for suggesting hypotheses to be tested, but that it does not of itself
give any reason to believe any of the hypotheses suggested Similarly, "confirmatory" is
often used to suggest that a procedure does not suggest hypotheses, but that when
somehow provided with a hypothesis, the procedure may provide a reason to believe it
Procedures that amount to parameter estimation and statistical hypothesis tests based on
those estimates are called confirmatory, while other procedures usually are not Except as a
misleading terminology for distinguishing statistical hypothesis tests from other procedures
for drawing conclusions from data and background information, this distinction is illusory.
If an "exploratory” procedure routinely turns up hypotheses that do well by statistical tests
and make accurate predictions, and if the procedure rarely turns up hypotheses that do
poorly by such criteria, then the fact that a particular hypothesis is turned up by the
procedure provides some substantial reason to believe the hypothesis, or at least to give it
more credence than those hypotheses that are rejected by the exploratory procedure.

The notion that "confirmatory” procedures such as statistical hypotheses tests provide some
substantial reason to believe hypotheses independently of exploratory procedures is
mistaken, at least in the case of linear models. On small sample sizes tests such as chi
square have low power against the class of all alternatives. Unless all but a handful of
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alternative hypotheses have been ruled out, the fact that a model passes a statistical test
provides almost no reason to give it credence, for there may well b3 billions of alternative
models of the same data that were they to be subjected to statistical testing, would do as
well as or better than the particular model under consideration (see Chapter 1). We cannot
rationally pretend that the alternatives don't exist or that they are inéonceivable, or
unconceived If we have no knowledge as to whether or not better theories may be hiding
among the unexamined multitudes, how can it be reasonable to give credence to the theory
we happened to think of and to examine statistically? But when the sample size is large,
and the test has high power, the linear model is usually rejected, exactly because it is at
best an approximation. Thus Blau and Duncan's model of the American Occupational
Structure, which accounts for almost all of the correlations among its variables, is applied
to a sample size in excess of 20,000, and fails various statistical tests (see Fox, [26],
Freedman, [27]). This means that the p values of chi square statistics for linear models
can only be used comparatively, but to do that we must discover the alternatives for
comparisoa

In fact, of course, we haven't either the human time or the computer time to do statistical
analyses on more than a small nhumber of alternative models. That fact makes it all the more
important that statistical tests, if they are to be used, be used in conjunction with
exploratory procedures that can search heuristically through enormously large numbers of
possible models to discover those that will provide the best explanation of the data

3.3.3. Equivocating over the Model

Objection:

A procedure that searches for a good theory, using the data that the theory *s supposed
to explain, and then argues that the theory deserves credence because it explains that same
data, is tautologous.?

Comment.

We believe that the principal intuition behind the objection is that in order for a model to
be confirmed it must be tested, and in order for a model to be tested something must be
done that could have disconfirmed the model. Suppose a model is first conjectured and
then the data is obtained to test it Then even if the data actually confirms the model, if
the data had turned out differently it would have disconfirmed the model, and so

8See, for example, Robert Ling's review of Kenny's Correlation and Causality. 167)
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something has been done that cou/d have provided disconfirmation. In contrast, if a model
is generated from a data set, and then "tested” on that same data set, nothing has been
done that could have disconfirmed the model.

Response:

If the argument were sound, everyday counting procedures would be invalid Imagine that
the task is to determine the number of people in a room. We do that by counting, a
procedure that involves generating hypotheses algorithmically as the data changes. We don't
think of the procedure as "tautologous”, and we are right not to do so, even though
- different data would cause us to generate different hypotheses. It looks as though
something is wrong with the argument

The objection depends on an elementary logical mistake: equivocation. Let's suppose that
an ideal search procedure would use data but would never yield a model in conflict with
that data. Now clearly distinguish two different claims:

U] No possible data, when given to an ideal search procedure, will
result in @ model that is disconfirmed by that same data

(n No possible data can disconfirm the mode! produced by an ideal
search procedure that uses some particular body of data

| is true, but ¥ is false The objection confuses the true claim, |, with the false claim, Il, and
the argument turms on that confusion. The mistake is to confuse the true claim that the
generation procedure cannot possibly yield a model that is disconfirmed by the data used
to find that model, and the false claim that nothing has been done that could have
disconfirmed the model actually generated. If variables are measured and a model, call it M,
is generated from the data obtained, something has been done that could have disconfirmed
M. the measurements could have turned out differently and if they had turned out
differently they would have disconfirmed M. The situation is in all relevant respects exactly
like the situation in which the model tested is generated without examining the data It is
true that nothing has been done that could result in the generation of a model that is
disconfirmed by the data (at least not if the generation procedure is an ideal one). But that
is not the issue; the issue is whether anything has been done that could have disconfirmed
the model actually generated, in this case M, and something of that kind has been done. If
the data had turned out differently, M would not have been generated, exactly because M
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would have been disconfirmed. The objection turns on failing to keep track of what is
being talked about

Consider counting again. if there are twelve people in a room, the counting procedure will
generate the hypothesis that there twelve people in the room, and will stop with that
hypothesis. The data will confirm the conclusion. If there had been only ten people in the
room, the hypothesis that there are twelve would not have been generated by the counting
procedure, exactly because it would have been in conflict with the facts.

3.3.4. Difficulties with Frequency Interpretations

Objection:

If the model is found using the data, and the model is estimated and tested using that same
data, then the standard errors of coefficient estimates and the p values of statistical tests
may lose their usual meaning.®

Comment.

Suppose a coefficient in a linear model is estimated by a maximum likelihood estimator.
Given the sample size and the assumption that the model correctly describes an infinite
population, the estimator has certain mathematical properties, such as its variance. Similarly,
given a model, data, and a sample size, the chi square statistic for that model, data and
sample size has certain mathematical properties, such as its p value. The clearest and least
controversial meaning of these statistics is that they are simply mathematical relations
between the stochastic model and the data set

Frequentists give these mathematical relations a further interpretation, and it is this
interpretation that is applied in the objection. Suppose we have a stochastic model, M, a
data set of size n randomly selected from some population, and a probability value, p, for
a chi square statistic calculated from the model and the data The interpretation is that the
p value of the statistic is to be understood as the long run frequency (or limiting relative
frequency) with which a value that extreme would be obtained in a sequence of random
samples of the same size, n, drawn from a population that is truly described by the model
M. An analogous long run frequency or limiting frequency interpretation is given to the
standard errors of coefficient estimates.

9Benﬂ.r, 161 and Bentler and Lee, [60]), make this objection to the practice of standardizing models on the same data that
is used to estimate coefficients or perform chi square tests of the modeis.
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The point of the objection is just that if the procedure we use involves somehow
estimating the model from the data, then the p values of tests and the variances of
estimators cannot be given this frequency interpretation. For if we imagine a sequence of
samples drawn from the population in which each sample is used to discover a model and
calculate a chi square value and estimate coefficients, then the model found will typically
vary from sample to sample in the sequence. At each step in the sequence we won't be
estimating the same coefficients as occur in M, and we won't be determining the value of
the chi square statistic for one and the same model M.

The objection can be put pictorially. The frequency interpretation of the p value of a test
statistic for M for a given data set is the frequency with which we would get a more
extreme value for the statistic in a sequence like this:

Procedure |

POPULATI ON

generate X 'SanIe SanIe SanIe Sarrple seeven

Test M Test M Test M Test Mosees=-

But if the mode! M we generate depends on the sample data we obtain, then the

procedure corresponds to the sequence:

Procedure |l
POPULATI N
Sample Sample Sample Sample ....
| | |
Generate M Generate M Gene!ate M Generate M "Tee--

Test M Test M Test M Test Meo'...".
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The p value of the chi square statistic as conventionally calculated does not in general have
anything to do with the long run frequency of values of chi square statistics in a sequence
of this second kind.

Response:.

The argument is a complicated muddle. First, note that except in Monte Carlo studies and
the like, sequences of the sort described are almost never actually carried out We do not
do large numbers of repeated samplings of Head Start students, for example, and apply
one and the same model to them, or a model generating technique to them. In practice we
look at no more than a handful of data sets for any collection of variables. We may, or
may not, change the model we apply to later data sets based on how our initial models
perform when tested on earlier data sets. We do not chose a model, draw a sample from
a population, standardize the model and estimate it, choose another sample, and so on
infinitely, or even for a long while. In practice we argue over alternative explanations for a
few data sets, and move with our statistical or algorithmic techniques from problem to
problem.

So the attachment of long run frequencies to p values and standard errors is not a
description of scientific practice. Instead it is a way of trying to /nterpret what the
statistics mean. If you think that probabilities are mysterious but long run frequencies are
not, then assigning a long run frequency to a probability claim is a way of making sense of
the probability.

We don't wish to challenge the frequency interpretation of probability. But we claim it
applies just as well to the p values and standard errors of models obtained by looking at
the data as to models obtained by not looking at the data We claim that for a particular -
model, M, obtained by examining data set D, the p value of a statistic calculated from M
and D can be given a frequency interpretation just like that in the first sequence shown
above. Suppose you draw a random sample D and use it to find a model M, and calculate
a value for the chi square statistic. Now the p value can be interpreted as the frequency
with which a value as large or larger would be obtained in a sequnce just like the first one
above, except for the first trial in the sequence:
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Procedure 111

POPULATI ON

7

Sanpl e Sanpl e Sanpl e Sanmpl e Sample cceases

Cenerate N

Test M Test X Test M Test M Test Mroceeoos

So, if you want a frequency interpretation of the p value calculated for a model generated
by looking at the data, there it is, as clearly as it is for models generated without looking
at the data Moreover, so far as the frequency interpretation of probability is concerned.
Procedure | and Procedure Il are indistinguishable.

Those who make the objection under discussion will very likely fuss at this point and say
something like the following

Further Objection:

Every stage in the sequence associated with the frequency interpretation of a statistic
obtained by a procedure must reproduce all of that procedure. If the procedure generates
a model from the data, then every stage in the sequence associated with the statistic must
also generate a model from the data So Procedure Il must be used, not Procedure Il and

Procedure Il does not give a frequency interpretation of the p values or standard errors of
a fixed model, M.

Further Response:

The appropriate response is quite simple: why? A frequency interpretation is wanted, and
one has been given in Procedure Ill. Moreover it is an interpretation in which the
frequency agrees with the mathematical p value. Why insist that the only appropriate
frequency interpretation is the wrong one, namely the second of the three sequences we
have shown? We think the answer to this question is that two quite different concerns are
behind the objection, and they have been confused

One concern is to give a frequency interpretation of the statistics. We have shown that to
be a trivial matter. The second concern is with the reliability of the procedure and that is
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a quite different and much more complicated matter. Under the Neyman-Pearson account
of hypothesis testing, we may choose a significance level such as .05, and decide to reject
a model M if it yields a test statistic with a p value smaller than that significance level. The
significance level tells us, under the frequency interpretation, the frequency with which we
would erroneously reject M in a sequence of tests using samples drawn at random from a
population correctly described by M. The significance level tells us something about the
reliability of the testing procedure. It tells the probability that we will reject M, given that
M is in fact true. The procedure for generating the model has nothing to do with this
decision theoretic account of testing the model, and it can be applied to the testing of
computer generated models just as .the frequentist interpretation can be applied to the
statistics for such models. It applies to the model M in Procedure Il as well as to the
model M in Procedure I.

But we can quite appropriately wonder about more than the reliability of a testing
procedure once a model is generated We can instead ask about the reliability of any
procedure for selecting theories, where the selection process may consist both of
generating models and testing them. Suppose our Procedure Il uses sample data and
background knowledge to generate a model (or a set of alternative models) and then
computes the value of some statistic for. each model and rejects models whose probability
value for the statistic is too small. What is the probability that the true model will not be
generated, or will be generated but then rejected? What is the probability that a false
model will be generated and not rejected? The p values and significance levels don't tell us
the answers to these questions, because they don't tell us anything about the probability
that a procedure generates the true model.

All of this is perfectly true. But it is as true for humans as for computers. Imagine a
statistician who steadfastly refuses to look at the data when he is constructing a model to
explain it He or she generates a model then looks at the data and tests the model. We can
think of the statistician as a biological computer that generates hypotheses and tests them.
What is the probability that the statistician will generate but reject the true hypothesis? That
information is not given by the significance level of the test statistic applied In practice
humans use a complicated and unknown procedure for generating models. They use
information about prior samples to choose the models they will apply to new samples, they
use their prejudices and their imagination, and, often enough, they even look at the data the
model is to explain

The appeal of the objection lies in the almost automatic assumption that there is something
special about hypothesis generation done by people. But human beings go through some
sort of complicated procedure, the details of which we do not know, in selecting a model
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to be tested. Presumably one explicitly rejects some models, fails to think of other models
and therefore implicitly rejects them, and so forth If we perform a chi square test of the
model generated by a human, we have of course not determined much about the probability
that the human failed to consider, or prior to testing considered but explicitly rejected, the
true theory. Whether the theory is generated mysteriously by a person, or less mysteriously
by a computer, the significance levels of test statistics mean the same thing, and they do
not mean the probability that the true theory has been rejected They mean, on the
conventional interpretation, the probability of rejecting the null hypothesis, on the
assumption that it is true.

Leaving aside the specific Neyman—Pearson framework in which probabilities are
frequencies, it makes sense to ask about the probability that a hypothesis generation
procedure will generate the true model for a sample of fixed size drawn from a given
population. If a model generation procedure is algorithmic, then there should be a
mathematical fact of the matter as to the limiting frequency with which true models are
generated in a sequence of the second kind (Procedure Il. We can expect such
probabilities to be hard to calculate but one could approximate them with a long but finite
sequence of Monte Carlo trials. But in the same way, we can investigate the performance
of any human model generator in a long but finite sequence of the second kind. And, we
can likewise investigate the performance of a human aided by a computer search. The
essential practical question is not the absolute probability that an algorithmic procedure
will generate a true model, but the comparison of the algorithmic procedure’'s behavior
with the behavior of unaided humans and with computer aided humans. We have no
experimental evidence to offer on this question, but we do offer in later chapters a great
deal of indirect evidence that people using the TETRAD program do better than people
without it

3.3.5. The Worst Case Objection

The objections we have considered so far rest on common misunderstandings. But there is
an objection to computer aided construction of statistical models that does not depend on
any misunderstanding. We will give it first informally, and then more carefully.

Objection:

An algorithmic procedure for finding models by examining the data and applying heuristic
search will produce some model, even for data that are in fact randomly generated from
independent variables. With enough variables and a small enough sample, correlations will
appear just by chance, even though the variables are independently distributed, and given
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such data an algorithmic procedure will find a causal model that accounts for the
correlations, even though they are in fact due to chance. Algorithmic procedures guarantee
that a model will be found that appears to account for the data, even if there is no true
account to be given beyond the chance effects of the sampling procedure.

Comment:
A little more precisely, the argument seems to have the following form:

1. Computer aided heuristic searches for statistical models must examine the data for
statistical dependencies among the variables, search for the model or models that best
explain those dependencies, subject the models thus obtained to statistical tests based on
the data, and output those models that survive the tests.

2. No procedure for searching for hypotheses is acceptable if there are circumstances in
which it is very probable that that procedure will yield a false conclusion.

3. For any procedure as in 1., a number r of independent random variables and a sample
size n can be found such that it is very probable that a sample of size n will show k
statistically significant correlations (or other statistic) among h of the r variables, for some
number h and for some number k. That is, it is highly probable that at least k correlations
will be sufficiently high that the probability of correlations as large as those occurring by
chance in a sample of size n drawn from a population of values of the h random variables
is less than .05, or whatever significance level is chosen.

4. In the circumstance described in 3., it is very probable that a procedure such as is

described in 1. will output false hypotheses.
5. Therefore, by 4. and 2., a computer aided heuristic search procedure is unacceptable.™
Response:

This argument reveals a real problem about discovery. Before explaining why we think the
argument should nonetheless be rejected, we wish to point out that even if one is
completely convinced by the argument, it provides no reason not to use the TETRAD
program. For TETRAD, part of premise 1 of the argument is false. The argument depends
on the assumption that the models generated by heuristic search will be subjected to a
statistical test using the very same data that were used by the program in its search.
Nothing requires that TETRAD be used this way. The program can as easily be used to

oThIS argument is modeled on a similar argument about estimation given by Ronald Giere (321.
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generate models using one sample, and the models it generates can then be tested
statistically on another sample. We have used this procedure, for example, in our study of
the summer Head Start data, described in a later chapter. Anyone convinced by the

preceding argument can use TETRAD in this way. But no one ought to be convinced

Premise 2. is incorrect for two reasons. First it puts all of the weight in judging a
procedure on the desirability of avoiding false theories. We think that is desirable, to be
sura, but it is at least equally important in ‘judging a procedure to consider the desirability

of finding true theories, (see Levi, [61]), or approximately true theories.

If the only criterion for comparing methods is that of avoiding commitment to a false
theory, then the optimal strategy is clear accept no theories, no matter whether they are
discovered by humans, by humans with computer assistance, or by computers alone. Instead
of any such strategy, we prefer to weigh the desirability of avoiding commitment to a
false theory against the desirability of not overlooking commitment to true theories, or
approximately true theories. Computer programs such as TETRAD help us to avoid
overlooking theories that may turn out to be correct They therefore assist us in avoiding
an important kind of error, and that contribution should not be ignored in assessing the

advantages and disadvantages of computer generated theory.

Second premise 2. assumes that a procedure ought to be judged by the worst imaginable
case. We think procedures should be judged by the expected case. In the majority of cases
researchers are pretty confident that the statistical dependencies they find are due to some
causal structure or other, even while they may be much less confident about any particular
explanation of the data In the vast majority of cases, if the investigator were not strongly
inclined to think that there is some explanation other than chance (or bad measurement
design) for the patterns found in the data, a causal model would not be sought in the first
place. Unless the researcher thinks there is a large probability that the dependencies in the
data are spurious, there is no sufficient reason not to use the data to search for the best
explanation of it Of course, some of the correlations found may be due to chance, and
that is the more likely the smaller the sample size in proportion to the number of variables
considered The investigator should certainly take account of that fact and where

appropriate test a model on new samples.

These theoretical arguments overlook the reality of practice. In practice, many social and
"behavioral scientists behave much like natural scientists. Studies of really important
guestions are repeated, and the dependencies that demand explanation are the robust ones.
In practice, researchers in the social and behavioral sciences, like their colleagues in the
natural sciences, will inevitably look at the patterns in the data in search for the best
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explanation of it Inevitably, alternative explanations of the same data will be offered by a
series of workers, provided the questions at stake are important enough That is the
procedure in every empirical science worthy of the name. Artificial intelligence procedures
only aid people in doing better what they will do anyway, and, in most cases, ought to do.

In practice, TETRAD does not make the user overconfident We find that people who
develop models without the systematic heuristic search provided by the computer typically
place too much confidence in particular models. The computer does not mislead us by
generating a single, false theory, when in fact we should withhold acceptance from all
theories. Instead, the computer often warns us, when we have data that do not warrant any
particular conclusion, that there are a great many different ways to explain the phenomena,
none especially better than the rest, and that we are therefore not warranted in accepting
any particular conclusion.

Even while we regard the last argument given against heuristic search as unsound, it does
provide an important caution. Whether in astronomy or sociology, some statistical
dependencies will occur by chance, and if we account for them by causal processes, then
we will make a mistake. That is part of the burden of science: sometimes we are going to
be wrong."'

3.3.6. Explanation and Prediction

The strong conviction that "exploration” or "search” must be separated from confirmation or
testing has a long history, but the arguments for the separation are seldom clearly formed.
The conviction is almost universal in applied statistics, shared by Bayesians and more
orthodox statisticians alike. Ultimately, the desire to separate the data used in discovery
and in justification, in theory generation and in theory testing, prcbably derives from the
conviction that only correct prediction counts as confirming a hypothesis. Explanation after
the fact is discounted, on the grounds that it is, or may be, ad hoc.

Something of the same prejudice is occasionally found in the natural sciences, but it is
much less prevalent The DENDRAL program [66] examines mass spectrograph data to
find the best explanation for that data, and chemists do not find this practice objectionable.
Physicists routinely reexamine old data in search of new explanations. Recently, for
example, data from one of the classic tests of the general theory of relativity, the Eotvos
experiment, was reexamined to argue that the principle of equivalence, which is fundamental
to the theory, is false. Einstein himself argued for the general theory on the grounds that

“Thc technical worst case argument against procedures that generate theories by examining the data can be defeated by

taking a sufficiently large sample size. Thus in the case of Blau and Duncan’'s study of the American occupational structure,
with 8 sample size in excess of 20,000, theere is virtually no chance that the correlations and other depend ies g half a
dozen variables are due to chance.
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it explained data about irregularities in the motion of Mercury, irregularities that had been
known for sixty years prior to the publication of the general theory in 1915, and that had
been the subject of many alternative explanations. In fact it is clear that Einstein used the
anomalous motion of Mercury and the equivalence principle as guides in his long search for
a satisfactory relativistic theory of gravitation Copernican astronomy was founded almost
entirely on historical observations of the sun, moon and planets. Most of these
observations had been made centuries and even millenia before Copernicus wrote, and had
been used to obtain other theories, notably the Ptolemaic theory and its modifications.
Cannizzarro's powerful argument for the (then controversial) atomic theory in 1860 was not
based on any newly confirmed predictions, but on a systematic review of the evidence that
had been accumulated in the preceding decades, and on the argument that the atomic
theory provided the best explanation for patterns revealed by that data

Whatever the rhetoric, most physical scientists act as if a good explanation can be nearly
as valuable as a good prediction, and they know that most of their science would not have
emerged if their predecessors had been forbidden to examine the data in searching for
theories, or if data once used to test a theory were thereafter forever tainted and useless
for confirmation.

People rightly worry that a theory constructed by someone after seeing the data will be
constructed specifically to account for that data If the theory is deliberately constructed to
account for the data, then the data provides no test of the theory, and hence no reason to
believe the theory. This worry is well founded, but misstated. The notion of "constructing a
theory to account for the data” is complex. In one sense people certainly do construct
theories; they make them up, piece them together, put them forward. In another sense, a
theory is simply an abstract object, like sets or numbers. The abstract objects may be
discovered, but discovering them isn't creating them theries are out there and have
whatever logical relations they have with the data, whether or not anyone happens to think
of them. Either a theory has the right logical relations with the actual evidence, in which
case the evidence confirms it, or the theory has the wrong logical relations with the actual
evidence, in which case the evidence disconfirms it How a particular human being happened
to discover the particular theory ahs nothing to do with the matter. The job of a computer
program for discovering theories is to find the theories with the right logical relations to
the evidence. '

How can this understanding of confirmation and testing be reconciled with the powerful
sense that some theories are unsatisfactory because they are "cooked” to account for the
data? The answer is that the "right’ logical relations to the evidence consist in a lot more
than mrely being consistent with the evidence, or entailing the evidence. Cooked theories
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may entail the evidence but they don't entail the evidence in the right way. Put slightly
differently, if the evidence could have been predicted using one theory, but not using
another, then the first theory typically provides a better explanation of the evidence.

The succeeding chapters describe a conception of explanation that applies to linear causal
models, and that is more robost and demanding than the requirement that the theory fit the
observed statistical dependencies. The TETRAD program helps to search for theories that
provide such strong explanations, and while more evidence is always better than less, we
believe it makes no difference of principle whether the theories thus found are tested
statistically on the same data or on new data
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4. CAUSAL AND STATISTI. * MODELS

4.1. INTRODUCTION

Our principal concern is with procedures for specifying a nv . models to account for
non-experimental or quasi-experimental data We are especl ~ested in procedures
for specifying the causal hypotheses implicit in a model for it U ~ hypotheses that are
often of chief importance in practice, and reliable statistical estir sually depends on

having the correct causal structure.

Most linear models in the social and behavioral sciences have a cau* . oretation, and
often the causal claims within a statistical model are the principal conct ooint of the
investigatioa Sometimes, of course, no causal interpretation is given | *>del, or is
appropriate. More often, the causal claims in a model are signhaled by " phrases.
Psychologists often mark causal relations by specifying that some variables oendent
and others are independent. Econometricians, and increasingly other social si mark

causal relations by specifying that some variables are endogenous and others art .* nous.

Linear causal models include a set of equations relating the variables of the model .oof
stochastic assumptions about the probability distributions of those variables, joii
individually, and a set of causal relationships among the variables. Factor analytic r. ..
are of this sort and so are path analysis models, structural equation models, models
random variable coefficients, and many regression models and econometric models. *
strategy behind the TETRAD program is to abstract the causal structure from a statistic*,
model, ignoring the equations and most of the statistical assumptions. We call this
abstract structure a causal model to distinguish it from the fuller statistical model

containing it The causal model consists of a directed graph.

It is possible to work with a very simple mathematical struct