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ABOUT THIS BOOK

This book is about a computer program, TETRAD. The program is designed to assist in the

search for causal explanations of statistical data There are often many millions of possible

alternative causal explanations for non-experimental data; human researchers can only

consider and evaluate a handful of these alternatives, and hope that the best explanation

they find is the best explanation there is. That hope is often vain. The TETRAD program

uses artificial inteffigence techniques to help the investigator to perform a systematic search

for alternative causal models, using whatever relevant knowledge may be available.

A version of the TETRAD program, together with several data sets discussed in the book,

are included on the floppy disc accompanying this volume. The version of the TETRAD

program on the floppy will run on IBM personal computers and on IBM compatible

machines. We recommend 512K of RAM , but simple models can be run on machines with

less memory. The TETRAD program is intended to be used in conjunction with programs

for statistical estimation and testing, such as the LISREL and EQS programs.

The program on the floppy is limited to models with no more than nine variables. A version

of the IBM program suitable for larger models (up to 23 variables) is available from

Academic Press. Still larger models can be treated using a version of the TETRAD program

for the DEC Microvax II Workstation, also available from Academic Press.

Directions for running the program can be found in Chapter 12. Effective use of the

program requires study of Chapter 5 and of some of the examples in Chapter 8.

Because the book was written as the program developed, output described in the book's

examples may differ in minor ways from output obtained with the version of the program

on the floppy disc.
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PREFACE

The sciences that attempt to discover the causal structure behind statistical data include the

study of the causes of disease and of the circumstances that spread particular diseases.

They include aspects of genetics, archeology, chemistry, psychiatry, psychology, and all of

the social sciences. There may not exist a scientific subject entirely free of statistical

models and causal inferences drawn from them.

Nowhere is this influence more pronounced than in the social and behavioral sciences, from

econometrics to sociology to political science to educational research, and nowhere are

scientific conclusions of greater importance. A just society must make its collective

decisions more or less rationally, and decisions cannot be rational unless they are informed

Few things are more evil or more dangerous than a society in the grip of fundamental and

irrational dogmas, and few defenses seem more powerful than free and vital social

sciences. We rely on social scientists to inform us about the effects of economic policies,

about the effects of our educational system, about how we feel about ourselves and

others, about the causes of behavior patterns we abhor, whether delinquency or racial

discrimination, about the effects of our international policies, about the consequences of

our attempts at social engineering, whether in birth control or in school integration. In a

thousand policy decisions, large and small, made each day, the weight of social scientific

opinion helps decide the balance.

Our courts, our military, our educators, our legislators may rely on the social sciences in

one way or another, but reliance is not the same as trust, and the social sciences are not

trusted Unlike the natural sciences, the social sciences have little or nothing of a well-

established foundation that can be applied and expanded to encompass more and more of

social phenomena There is no Isaac Newton in sociology, political science, or economics,

nor should we expect one soon, or perhaps ever. The social sciences are therefore

committed to the attempt to understand the causes of social phenomena without the aid of

well established general theories, as if to do engineering without physics. It is no ones

fault that we lack general theories that can reliably guide us to an understanding of social

phenomena It is not for want of trying that we lack them. In the absence of such

theories, social scientists in many disciplines do work that has an air of arbitrariness; they

produce statistical models and draw causal conclusions without much hint of serious

argument for their assumptions. It is only natural to attempt to fill the vacuum of theory

with the stuff of methodology, but the result is usually unsatisfactory. Social scientists are

buffeted by methodological dogmas, many of them held dearly for reasons long forgotten



or never known. Much of the methodology is unhelpful; it gets in the way of scientific

progress, and makes a poor substitute for genuine scientific sensibilities.

Wanting a powerful and accurate theoretical framework, and with difficult problems and

debilitating methodological principles, mistakes are bound to be made, whether in advocating '

conclusions that are false or in missing conclusions that are true and important It is no

wonder that the social sciences are not trusted, and not surprising that critics within and

without have proposed that the enterprise be abandoned

This book is written with four convictions. The first is that next to the limitations on

experimentation, the foremost problems of quantitative social science are computational

They are problems that result not from the failure of social scientists to adhere to every

statistical nicety, but from the fundamental inability of humans—any humans—to carry out

large calculations rapidly and accurately. The computations have to do with the systematic

search for the best alternative explanations of statistical data The human limitation is one

of a sequence of logical dominoes: Unaided we humans simply cannot consider and

evaluate many alternative theories of non-experimental or quasi-experimental data In the

absence of well confirmed general theories, we have no other way of justifying our causal

explanations than by making a case that there are no better explanations to be had, and we

cannot make that case unless we have the power to search through a good sample of the

possibilities. Unaided, no one has that power.

The second conviction we share is that the fundamental problem of computational

limitations can be remedied Unlike many critics, we do not believe that the practice of

quantitative social science should be abandoned We think it should be aided, and that it can

be. The increasing availability of powerful, inexpensive digital computers puts enormous

computing power within the grasp of nearly every researcher. The principal aim of this

book is to describe a computer program designed to aid social and behavioral scientists,

and those in other sciences as well, in searching through a vast array of possibilities to

find the best explanations for their data The program is not a toy, but it is only an

example. The program is adapted to a particular kind of statistical model, and even for

that kind of model the program could be, and will be, developed much further than it has

been. We believe that the program is only a tiny fragment of what can be done to

overcome human limitations in discovering theory. We are proud enough of it, and a little

exhausted from its construction, but it is only a harbinger.

Our third conviction is that to gain the advantages of computational aids social scientists

must throw away some ill-founded convictions about proper scientific method Above all,

they must dismiss the prejudice that any theory discovered by a machine that looks at the



data is ipso facto inferior to any theory discovered by a human who doesn't

Our fourth conviction is that academic boundaries must be trespassed The work described

in this book is part applied statistics, part artificial intelligence, and part philosophy of

science. These are distinctions in professions, not in subject matters, and we make no

apology for mixing them so thoroughly. The mixture makes the reading a little tougher, the

references much wider, and some parts of the argument a little more difficult for anyone

enmeshed in a particular discipline, but the boundaries of the disciplines are not the

boundaries of the issues. In intellectual life, good fences don't make good neighbors.
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PART I

Artificial Intelligence
and

Non-Experimental Science



1. THE PROBLEMS OF SCIENCE WITHOUT
EXPERIMENTS

1.1. THE LIMITS OF EXPERIMENTATION

Modern science and experimental methods grew up together, and we cannot very well

imagine empirical science without experimentation. Even so, much of what we want to

know about our world cannot be answered by experiments, and much of what we know

(or think we know) is not directly based on experimental studies. The limitations of

experimentation are both practical and ethical. For practical reasons we cannot do real

experiments with the economies of nations or with the arrangements of galaxies. For

ethical reasons we cannot do aJJ sorts of experiments on the causes of disease (on

smoking and cancer, for example), or on causes of social conditions; neither the world nor

conscience will let experimenters randomly assign infants to experimental and control

groups for the purpose of studying the effects of poverty on delinquency.

Faced with urgent needs for all sorts of knowledge, and with stringent limitations on the

scope of experimentation, we resort to statistics. In the 19th century there was a rapid

development in the study of statistical data to answer causal questions. Statistical

comparisons were made in epidemiology, to determine the effects of blood letting or of

new surgical procedures, for example, and to attempt to estimate the effects of

occupation on mortality. Later, non-experimental statistical data were used to study heredity,

the causes of differences in individual human abilities, and causes of economic change. By

the early years of the 20th century non-experimental statistics had made inroads into

medicine, biology, psychology and economics.

Today, statistical methods are applied to almost every public issue of any factual kind The

meetings of the American Statistical Association address almost every conceivable matter

of public policy, from the safety of nuclear reactors to the reliability of the census. The

attempt to extract causal information from statistical data with only indirect help from

experimentation goes on in nearly every academic subject and in many non-academic

endeavors as well. Sociologists, political scientists, economists, demographers, educators,

psychologists, biologists, market researchers, policy makers, occasionally even chemists and

physicists, use such methods.

Non-experimental statistical studies are only one way to get information that helps to
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decide questions of health or public policy. We could instead resort to fundamentalist

revelation, or Marxist theory, or look entirely to political expediency. If we try to make

science reach a little beyond our power to experiment it is because we think such

methods extend the scope of rationality, and because we wish to make social and individual

decisions as rationally as we caa Even so, their reasonableness is not beyond dispute.

Controversy about the use of statistical methods to extract causal information from non-

experimental data is as old as the methods themselves. The controversy continues today,

and it has many sources. Part of it may be no more than the continued resistance to

quantitative methods of many of the practitioners of the "softer" sciences. Part of it is

baldly political. The same methods that are used to study the spread of disease or the

causes of economic change have also been used to argue for some very unpopular

conclusions. Part of the opposition to causal inference in non-experimental research is

based on misconceptions about science. Critics unfamiliar with the history of science, or

with practice in the natural sciences, sometimes make naive demands on applied statistics

that are not met by even the most advanced of our sciences. But the most interesting and

most important opposition derives from a justifiable sense that a good deal of applied

statistics looks more like pseudo-science than like science. In many statistical studies in the

social sciences, equations may be written down and references cited, but little or no

justification is given for the assumptions that are made, and the hypotheses put forward

are not tested, and no predictions of any consequence are derived Indeed, as we will see

in later chapters, some of the quantitative work that appears in even the most prestigious

of social science journals is disappointing, and in some cases even appalling. We will

discuss a major social experiment on criminology, supported by millions of dollars of tax

funds, conducted without any recognition of the difference between testing a theory and

estimating a parameter. Any critical reader of the quantitative social sciences can find an

abundance of studies that are equally deficient The important question is not whether much

of this work is poorly done, but why it is, and whether it need be.

1.2. THE LIMITS OF HUMAN JUDGEMENT

It is important to recognize the difference between practice and principle. If much of the

quantitative work that aims to extract causal conclusions from non-experimental data is not

very good, then that might be either because of reasons of principle that cannot be

overcome, or because of individual lapses that can be overcome. The news is not very

encouraging: some of the obstacles to good statistical modeling may be very difficult to

overcome, no matter how fine our intentions may be. There are two distinct sources of

discouragement, one from psychology, the other from elementary considerations of



combinatorial mathematics.

1.2.1. The Psychological Problem

About thirty years ago, Paul Meehl [75 ] compared human performance obtained, on the

one hand, by psychologists using clinical interviews and, on the other hand, by simple linear

regression of the predicted attribute on any statistically relevant features of the population.

He found that on the average the predictions obtained by linear regression were never

worse, and were usually better, than those made by clinicians. Meehl's conclusion is one of

the best replicated results in psychology. If the issue is selecting police officers who will

perform their tasks satisfactorily, or graduate students who will do well in their studies, or

felons who will not commit new crimes when paroled, a simple statistical algorithm will

generally do better than a panel of Ph.Ds. These sorts of results are not confined to

clinical psychologists A growing literature on "behavioral decision theory" has found that

people, even those trained in probability and statistics, perform well below the ideal in a

variety of circumstances in which judgements of probability are called for [54] . One of

the most resilient errors is the tendency to ignore base-rates, or prior probabilities for

various alternatives, and instead to judge the probability of an alternative entirely by how

likely that alternative renders the evidence.

The intellectual skills that are required to find, recognize and establish a good scientific

theory have many of the features of problems for which it has been shown that human

decision making is less than optimal. There are a few studies which bear a little more

directly on the capacity of humans to interpret scientific data Studies of physicians'

diagnostic behavior, for example, have shown that few alternative diagnoses are entertained,

and that evidence that is irrelevant to a preferred diagnosis is often erroneously taken to

confirm it Historical studies suggest much the same thing. Thus in recent years

philosophers of science have been stung by the historical criticisms of writers such as

Thomas Kuhn, who argue that the history of science does not fit very well with

philosophical theories of scientific reasoning. The conflict is perfectly understandable if one

realizes that philosophical methodologists have been concerned to characterize ideal,

normative modes of reasoning, and if one supposes that the scientific community in any

time and subject area typically falls well short of any such ideals.

One major use of applied statistics is in economic forecasting. Forecasts are made in many

ways: by the judgement of a human expert, by a variety of statistical time-series methods,

some of which require a good deal of judgement on the part of the user and some of

which do not, and by econometric methods that attempt to consider not only time-series.
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but also causal factors affecting the variable to be predicted The literature on the

comparison of methods is large and complex, and especially controversial sinco forecasting

procedures may involve large financial stakes. It seems fair to say, however, that there is

considerable evidence that simpler procedures do as well or better than more complex

procedures, and that statistical procedures requiring considerable judgement on the part of

the user do little if any better than more fully automated procedures. There is little

evidence that explicit consideration of causal variables significantly improves forecasting

(see Makridakis, et al. [ 7 1 ] and Kmenta and Ramsey, [ 5 7 ] for some recent comparisons

and for references to the literature). What this suggests is that the causal theories

produced for economic forecasting are not so good as we might wish.

Considerations such as these have led David Faust [ 2 4 ] , a psychologist, to the conclusion

that science itself is by and large too difficult for human cognitive capacities, and even

Meehl takes this thought seriously. But there is a much more powerful combinatorial

argument that leads to similar misgivings.

1.2.2. The Combinatorial Problem

The aim of science, whether physics or sociology, is to increase our understanding by

providing explanations of the phenomena that concern us. The most common form of

explanation in the sciences is to account for why things happen as they do by appealing to

the causal relations among events, and by articulating generalizations about causal

relationships. Causal claims alone are often insufficiently precise to give us the power to

test them or to make important predictions from them. To gain that power, we usually

embed causal claims, when we can, in a system of quantitative relationships. In considering

non-experimental data, the quantitative relationships are often in the form of a statistical

model of some kind

When we consider statistical models1 in the social and behavioral sciences, we find

everything from very small models in educational research with as few as six or seven

measured variables, to econometric models containing several hundred vaiables. We can

think of the causal part of any such theory as given by a directed graph, with the vertices

of the graph representing the variables, and each directed edge in the graph representing a

causal influence of one variable upon another. Such graphs look like arrow diagrams. For

example:

The practice throughout statistics and much of the sciences is to term any specific theory a "model" and reserve the term
"theory" for only the most general and sweeping of hypotheses. We will use "theory" and "model" interchangeably.
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x4

Figure 1-1:

Each distinct way of arranging a set of variables into a directed graph represents a distinct

model of the causal relationships among the variables, and thus an alternative causal theory

of the data The point is that even with a small collection of variables, the number of

distinct possible causal arrangements, and thus the number of distinct, alternative causal

models of the data, is astronomical. If we consider all of the a priori possibilities, then for

each pair of variables A and B, there are four possible kinds of connection: A can have an

effect on B but not B on A, or B can have an effect on A but not A on B, or A and B

can each have an effect on the other, or, finally, A and B can each have no direct effect

upon the other. The number of distinct possible causal arrangements of n variables is

therefore 4 raised to the power of the number of pairs of variables. Thus with only six

variables, there are 415 different possible directed graphs or causal models. When we have

it in our power to experiment we are able to arrange circumstances so that we know

most of these possibilities are excluded, and we can focus on whether a particular causal

dependency does or does not occur. But without experimental control, the problem of

determining the correct causal structure is far more difficult

A social scientist or psychologist or epidemiologist or biologist attempting to develop a

good statistical theory has a lot of difficult tasks. He or she must choose what to

measure and how to measure it, and worry about sampling technique and sample size. The

researcher must consider whether the variables are multinormally distributed, or have some

other distribution. He or she must worry about whether measures of a variable in one

individual or place or time are correlated with measures of that same variable in another

individual or place or time. The researcher must consider whether the relations among the

variables are linear, or non-linear, or even discontinuous. These are demanding tasks, but

there are a variety of data analytic techniques to help one along and to test hypotheses

concerning these questions. Suppose the investigator has passed these hurdles and has

arrived, however tentatively, at the usual statistical modeling assumptions: the relationships

are linear, or close enough to linear, the distribution is multinormal, or nearly so, there is

no autocorrelation, or at least not much. Assume that the investigator has covariance data
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for six variables. The troubles that now must be faced make the data analysis problems

seem almost to pale in comparison There are 415 alternative possible theories of the

causal dependencies among the six variables, and only one of those theories can be true.

How is the researcher to find the one needle in the enormous haystack of possibilities?

Perhaps the goal need not be to find the one unique correct theory, but only to reduce

the possibilites to a handful or to find a close approximation to the correct model. How is

even that to be done? The usual thing to say is that the investigator must apply his or her

"substantive knowledge" of the domain, but this is mostly whistling in the dark. To get the

number of possiblities down to manageable size will take a lot more substantive knowledge

than we usually have about social or behavioral phenomena Suppose, for example, that one

is quite certain that the causal relations do not form cycles. That is, there is no sequence

of directed edges in the true graph of the causal relations that leads from one variable

back to that same variable. Then the number of alternative causal models consistent with

that restriction is still more than three million. Suppose, what is in fact rather unusual in

many social science studies, that the variables are ordered by timeof occurrence, and the

researcher therefore knows that variables occuring later cannot be causes of variables

occurring earlier. There are still 5! or 120 alternative models.

Now repeat the same sequence of calculations when there are twelve variables in the data

set With no restrictions imposed, there are 466 alternative causal models, only one of

which can be true. If the researcher knows that there are no cyclic paths in the true

model, the number of alternatives is still beyond the astronomical:

521,939,651,343,829,405,020,504,063 (see Harary, [41]). If the researcher is lucky

enough to be able to totally order the variables and knows that later variables cannot cause

earlier variables, the number of alternatives is reduced to 11! or a mere 39,916,800.

These counts are conservative. They do not not include the possibility, which every

researcher considers, that some part of the correlations is due to unmeasured variables

that have effects on two or more measured variables. Including such possibilities

enormously increases the numbers. What can the investigator possibly do in the face of

such an enormous number of possible causal models, no more than one of which can be

correct? In practice, even the best researchers usually take a wild guess, or indulge their

prejudices rather than their knowledge. One, or at most two or three, causal models is

suggested, appropriate equations are written down, parameters are estimated and the model

is subjected to some statistical test If the test is passed, the researcher is happy and

journal editors are happy and the thing is published. No one likes to mention the millions,

billions or zillions of alternatives that have not been considered, or the dark and troubling

fact that among those alternatives there may be many which would pass the same statistical

test quite as well or even better, and which would also square with well-established
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substantive knowledge about the domain.

The practice of model building in the social and behavioral sciences looks very much like

irrational judgement under uncertainty. The very phenomena that Kahneman and Tversky and

many others describe in experimental subjects seem to be exemplified in the practice of

social science. According to Bayes' theorem, the posterior probability of any particular

model should take into account both the likelihood of the evidence on the model and the

prior probability of the model. Much of current practice is to hit upon a model somehow,

and to advocate the model if it passes statistical tests, even when the tests are not

powerful against all alternatives. In effect those who follow this practice are ignoring the

prior probabilities, and judging a model to be good enough to accept if it yields a

sufficiently high likelihood Other workers may do much better than this, and attempt to

carry out a serious search for alternative explanations of the data But in view of tie vast

numbers of possible models, we should wonder how anyone could carry out an adequate

search.

1.2.3. Some Examples

These arguments are not just idle combinatorics. The issue affects almost every pece of

applied statistics addressing non-experimental data Consider just a few recent exanpJes:

1. The Census

The national census is certainly not free of error. Some people are sure to be missed,

and those likeliest to be missed are often the least advantaged in our soctcv: those

without fixed abodes, those who live in isolated areas, those who live whets: census

workers would as soon not go. Since census statistics are used to apportion aH sorts of

things, from votes to benefits, who is missed where is of considerable pracScal and

political importance. The statistical task is to estimate the actual undercount * various

places, given the actual count and given estimates of undercounts based on matching

studies.

For the 1980 census, the Census Bureau produced 29 matching studies (Post-Etaneration

Program, or PEP studies*, based on a variety of alternative assumptions. Using oneaf these

PEP studies, Ericksen and Kadane , T23J, investigated a number of alternative lina* models

in which the actuaC undercount depends on geographic soda/, procedural or daseyaphic

variables, and the FEP estimates are a function of the true mtercourt The distribtions are

assumed to be normal They estimate the undercount fay regression, and argue nta* the
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undercount is robust over the alternative models they consider.

Ericksen and Kadane's work was criticized by Freedman and Navidi, [ 2 7 ] , on several

grounds. One of the criticisms lodged is that Ericksen and Kadane do not justify their

assumptions. The point of the criticism is that allegedly, for all anyone knows, alternative

PEP series have the correct assumptions, and alternative models are correct and would lead

to different estimates of the undercount, or to no estimates at all (if the undercount is

represented by an unidentifiable parameter). Kadane [ 5 3 ] replies that (among other things)

there is a justification for the PEP series selected, that the conclusions he and Ericksen

obtain are reasonably robust, and that the undercount estimate on any reasonable set of

assumptions would be better than the Census Bureau's de facto estimate, which is that the

undercount is zero. It is clear that a major issue in this dispute concerns whether an

adequate search can be made for plausible alternative linear models, and whether estimates

of the undercount are reasonably robust over that collection of alternatives.

2. Criminology

McManus, [ 74 ] , (reported in Learner, [59]) investigated the deterrent effect of capital

punishment by regression on several subsets of variables. He obtained importantly different

results according to the independent variables selected It is, however, unclear why the

sensible thing to do is not obvious: include all of the variables. Even so, many of the

independent variables considered are undoubtedly correlated, and alternative assumptions

about their dependencies can be expected to again give different estimates of the

deterrent effect

In one of the largest social experiments ever carried out, described by Rossi, et al., [ 8 2 ] ,

newly released felons in Georgia and Texas received unemployment payments for a period

of six months after their release. Legal requirements prevented those receiving payments

from Mor^r.z The rearrest rate was the same for the Texas group and zzv controls who

received no payments, and nearly the same for the Georgia group and controls. The

expe- centers concluded that payments did decrease recidivism substantially, but that

unemployment increased recidivism, :: the two effects exactly, or almost exactly,

canceled one another. They elaboratea iheir concisions in a path model. In effect, the

experimental design failed to con:~~i for a relevant variable, unemployment, ar.^ th«.»s f°ft

open many alternative explanations of the results. Zeisel [ 1 1 0 ] , who served on an

advisory committee for the experiment vehemently objected to the conclusions drawn by

Rossi, et al. In his opinion the experiment established the obvious: payments have no

significant effect on recidivism. Zeisel proposed a simple alternative path model to account

for the data
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3. Head Start

Data on socio-economic status variables and achievement and ability scores for Head Start

participants and comparable non-participants has been much studied and discussed and has

had an effect on government policy. A principal difficulty with many analyses in the

literature, beginning with the Westinghouse evaluation of the summer Head Start program, is

that researchers have failed to carry out any systematic search for alternative models. Jay

Magidson, [ 6 9 ] , in a study of the summer Head Start data, put the issue this way:

The probJem we face is that there is an infinite number of ways to formulate
a causal model and ft is not a straightforward matter to determine how to go
about doing it particularly when the causes are unknown and/or unobserved It is
important for researchers to formulate not one but many models so that they
can determine whether their conclusions may differ if they accept a different
set of assumptions. It is also important to follow some general guidelines in
building (formulating) models when the researcher has limited information about
the causal process...

1.3. THE ARTIFICIAL INTELLIGENCE SOLUTION

The problem we have described seems to us both urgent and difficult In its way, the

problem is far more difficult than that of getting people to do proper data analysis, to

perform tests for linearity, for example, or for autocorrelation, or to select the most

powerful test statistic. There are procedures for diagnosing erroneous statistical

assumptions, and work has been done towards automating such procedures, especially in

the context of regression analysis. Even so, the chief difficulty will usually remain: the

number of alternative theories is astronomical, and it is beyond anyone's capacity to analyze

and to test any more than an insignificant fraction of the possibilities.

An ideal Bayesian solution would be to impose a prior probability distribution on all of the

alternative statistical models that are consistent with prior knowledge (or with prior

knowledge and some simplifying assumptions), compute the likelihood of values of an

appropriate statistic as functions of the model parameters, obtain the evidence, and with

the likelihood and the prior probability distribution, compute the posterior distribution2 One

trouble with this solution is that the sort of evidence we have may be insufficient to bring

about reconciliation of agents with different priors. Learner, [ 5 9 ] , finds, for example, that

representing the views of Keynesians and monetarists by different prior probability

distributions, and conditioning on time series evidence doesn't do much to change initial

This strategy was suggested to us by our colleague. Jay Kadane.



16

prejudices. Another trouble is computational. We don't possess a general procedure for

quickly computing posterior probability distributions from arbitrary prior distributions and

arbitrary evidence. Perhaps some day such a procedure will be feasible, but what do we

do in the meanwhile?

Two procedures are in common use to help with this problem, and while they have their

virtues, neither is adequate. One procedure is exploratory factor analysis, which is

sometimes very useful in suggesting that groups of measured variables cluster together and

may therefore have a common cause. But exploratory factor analysis does not consider the

variety of possible causal relationships. As Blalock [ 8 ] points out, factor analytic

procedures do not consider the possibility that measured variables may have direct causal

effects on one another, nor do they allow that measured variables may have direct effects

on unmeasured variables, nor do they consider the different possible causal relationships

among the unmeasured variables. Factor analysis procedures rule out a variety of realistic

possibilities a priori.

Another procedure commonly used to help search for alternative models is the formation

of nested sequences of models. The idea is really quite old, and goes back at least to

Harold Jeffreys' Scientific Inference. [ 49 ] . There are many different technical forms of

the idea, but the basic notion is that one starts with a simple theory having only a few

free parameters, or, equivalently, with a theory that postulates only a few causal

relationships among the variables it considers. One then introduces a new free parameter

into the model, or new causal connection among the variables. Sometimes the parameter

freed is chosen by a formal procedure. Some statistical test is used to compare the new

model with the model that precedes it, and the process is continued until eventually the

statistical test is failed A procedure like this is carried out automatically by the LISREL

program, which is widely used for certain kinds of statistical modelling. While the general

strategy is admirable, and the TETRADprogram described in this book has an analogous

architecture, in practice there are severe difficulties. The trouble with the procedure is that

there are generally far too many possible nested sequences to be explored in this way.

The results obtained depend on the order in which the parameters are freed, and the

formal procedures for choosing which parameters to free are too fragile, and tend to

overlook the best options. Some of these difficulties were noted by those who introduced

some of the technical procedures (see Sorbom, [ 9 7 ] and Byron , [13]).

This book proposes a new solution, or more accurately a partial solution to the problem of

searching for alternative models. That solution has two parts. One part is to consider

formal aspects of scientific explanation in comparing alternative models. The idea is simply

that we should prefer those models that offer the best explanation of our data, and that
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important aspects of explanation can be represented by formal, mathematical relationships

between a model and the data it is to account for. "Explanation" is not a methodological

notion that plays a major role in statistics, and the theory of scientific explanation upon

which we rely is not contained within any of the familiar schools of statistics. In thus

broadening the methodological viewpoint we do not intend to neglect statisticalinference

where it is applicable and useful but we do intend to make use of an understanding of

scientific explanation that is familiar to philosophers and historians of science, and that is

common in the natural sciences.

The second part of our partial solution is to use artificial intelligence techniques to help

search for models that will provide the best explanation of our data The very idea owes a

great deal to Herbert Simon, [ 9 2 ] , who also contributed to the understanding of

connections between causal relationships and multivariate analysis. Simon takes one of the

hallmarks of artificial intelligence to be heuristic search. A heuristic search is a computer

procedure that applies plausible steps to hunt through an enormous space of alternatives to

locate the best (or a collection of the best) alternatives for some purpose. What makes the

search heuristic is that the procedure does not guarantee that the outcome will be the

best alternative or will be a collection that includes the best alternative, but the procedure

will typically do so, or come rather close. The search procedures may in various respects

be less than rigorous, and may not always deliver the optimal solution. But they will

typically yield outcomes that are good enough, and that are better than can be obtained

without heuristic search. Simon calls the strategy "satisficing." It amounts to settling for

what is feasible and good enough, rather than insisting on what is optimal but infeasible. A

philosopher, Wilfrid Sellars, puts the same point in a simple imperative, upon which we will

have several occasions to rely: do not let the best be the enemy of the good

Simons idea is that scientific discovery is a kind of heuristic search through alternative

hypotheses or theories. If that is so, then there is a formal structure to scientific

discovery, and if we can get a grip on that computational structure, then computer

programs can make scientific discoveries. And indeed they already have. In chemistry, in

logic and in geometry, artificial intelligence programs have made discoveries of various

kinds, and Simon [ 9 3 ] and his associates have written a series of programs that simulate

many of the discoveries in the history of science.

The aim of artificial intelligence programs need not be to do things in quite the way that

humans do them, especially if humans do the thing rather poorly, and the computer can be

made to do it better. Humans do not do large sums very accurately; we do not want our

pocket calculators to simulate our own inadequacies. Humans also seem not to be able to

search through the space of alternative statistical models very adequately. Our claim is that
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a computer program, using heuristic search techniques, can help do it better. This book is a

defence of that claim. Our argument is based on an actual program, TETRAD, a copy of

which is included with this book. The program is intended to assist in the search for

adequate statistical models of a very general kind, including factor analytic models, path

analytic models , structural equation models, and many other varieties of linear statistical

theory. They do not include statistical theories that cannot be put in additive form. With all

modesty, we believe that a TETRAD user can learn more in an afternoon about the

existence and properties of alternative linear models for covariance data than could an

unaided researcher in months or even years of reflection and calculatioa The TETRAD

program is offered as a useful working tool, but it is also offered as an example. We

think the same very general ideas about heuristic search can be applied to develop artificial

intelligence aids for other kinds of statistical models, and they ought to be.

The notion of applying artificial intelligence techniques to problems of statistical model

specification is not really novel. Several programs have been developed or proposed that

apply artificial intelligence techniques to statistical modelling. Systems have been developed

to test automatically the adequacy of common modeling assumptions, such as linearity and

normality, and to suggest transformations of variables or other changes where these

assumptions fail. (See Gale and Pregibon [30 ] for a review). A great deal is known about

statistical diagnostics, and the aim of these programs is to make that information, or

appropriate conclusions, automatically available to the inexpert One example is the REX

program developed at Bell Labs by Gale and Pregibon. The program is designed to assist in

regression modelling, and will actively transform variables (to their logarithms for example)

to satisfy regression assumptions.

In principle, computer aided search for causal relations has important applications beyond

aiding reasearchers in finding better explanations. Fully automatic programs of this kind can

function as inference modules in robotic systems. More immediately, fully automatic search

for causal relations holds the promise of unlocking large data bases. In medicine, social

science, astrophysics, in fact almost every domain, we have managed to collect more data

than we have time and power to analyze. Potentially valuable causal knowledge is effectively

locked up by the sizes of the data bases. Computer discovery procedures that are fully

automated and reasonably reliable seem the only hope for making real use of the

information we continue to acquire and store.

The problem of automatic computer search for causal relations has barely been scratched

Perhaps the best known piece of work in this line is Blum 's [ 1 1 ] RX program. The RX

program uses prior knowledge about a particular domain, rheumatoid diseases, together

with a statistical package and a large data base. The variables in the data base are indexed
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by time, so that a variable with a later index cannot be a cause of a correlated variable

with an earlier time index. The program looks for correlations that may be due to causal

relations. When a correlation is found, the relationship is tested and compared with the

program's current knowledge to determine whether the correlation may be due to common

causes acting on the variables. If not a causal conclusion is added to the knowledge base

and the program continues. The statistical analyses are restricted to multiple regression

models, and therefore a great many alternative causal explanations of correlations are never

considered

Unlike Blum's program, the program we describe in this book, TETRAD, is not fully

automatic and does not procede without the active engagement of the user's judgement3

But neither is the TETRAD program confined to searching for multiple regression models.

Instead, the program is intended to help the user search through the vast space of

alternative linear causal models that might explain a body of covariance data But the very

idea of the TETRAD program is really nothing more than a continuation of the tradition of

work on automated discovery carried out by Simon and Buchanan, [ 66 ] , Blum and others.

Conventional statistics constantly reminds us that there are two sorts of errors a theorist

can make: he or she can reject the correct theory, or fail to reject a false theory.

Perhaps the likeliest reason for advocating an incorrect theory is simply that the correct

model has not been thought of or investigated. Both sorts of errors might be reduced by

helping investigators to search more adequately for promising explanations of their data

The TETRAD program is designed to do exactly that

Most of the ideas in the TETRAD program have a long history in many different disciplines:

philosophy of science, psychometrics, statistics, and elsewhere. Some of that history is

described in a later chapter. Other chapters of this book describe some of the

philosophical issues that surround artificial intelligence, causal modeling, and the explanatory

strategy of the TETRAD program. They also describe how TETRAD works, and illustrate the

use of the program on a variety of real and simulated cases.

We think the ability to infer causal relations without user interaction is a consderable advantage of Blum's program,
particularly in searching large data bases, whether in medicine or in social science. We have developed pilot programs, which
we will not describe in this book, that more fully automate the TETRAD procedures.
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2. THE CASE AGAINST CAUSAL MODELING

2.1. THE CRITICAL REACTION

Causal modeling of non-experimental data has been controversial since its beginnings, and it

is no less controversial today. The controversies are very philosophical and they involve

fundamental differences about what makes for science. The social and behavioral sciences

are inevitably compared with the natural sciences, and disputes about methodology in social

and behavioral science are often essentially disputes about what it is that has made the

natural sciences so successful in understanding, predicting, and controlling the physical

world

Paul Meehl, [ 7 6 ] , is fond of pointing out the discrepancies between the methodological

procedures of chemists and physicists and biologists, on the one hand, and the

methodological practices of the "soft sciences" on the other hand Most natural scientists

would be altogether puzzled by what goes on in quantitative sociology, or social

psychology, or econometrics, and they would be unlikely to recognize some of it as

science. Some of it isn't science save in name, however much it may try to be.

The essential question we shall pursue is whether, in the many criticisms of causal

modelling practices, there are good reasons to think that the entire endeavor is suspect or

whether the valid criticisms are only evidence that particular social and behavioral scientists

don't adequately understand what science requires. That the enterprise is often badly

conducted is no sufficient argument that it is inherently unscientific, or that it could not in

principle be done well.

Our discussion will also consider just which of the criticisms of causal modelling are well

taken, and which derive from misperceptions and misunderstandings. Our view is that there

are many well founded criticisms of particular studies, and of various common practices in

causal modelling, but none of the criticisms gives reason to think that the very idea is

mistaken. We will also argue that the critics are often nearly as confused as those they

criticize, and that many of the principled criticisms of causal modelling derive from

mythology about the natural sciences. Our view is that there is nothing philosophically or

methodologically wrong with applying statistical models to non-experimental data, or with

the attempt to uncover causal structure. But doing it well, so that the result contributes to

the progress of knowledge, is very hard, and there are many ways to go astray.
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We will consider in turn the following criticisms of causal modelling:

• Causal modelling involves a mistaken, or incoherent conception of causal
relations.

• Theories with latent variables should be rejected on methodological or
semantic grounds.

• Only experimental data can contribute to our knowledge of causal
relationships.

• Those who advocate causal models do not and presumably cannot make a
case for the assumptions of their models.

• Linear causal models should be rejected because they are always literally false.

2.2. MAKING SENSE OF CAUSALITY

Some social scientists, prefer to avoid causal language. They assume it is enough to give a

set of structural equations, estimate the coefficients of the model, and perhaps subject the

system of equations to a statistical test or tests. Some statisticians regard causal inferences

drawn from non-experimental data with the assistance of statistical models as an abuse of

their subject4 These harsh judgements seem to spring from a vague sense that causal talk

is unscientific or "metaphysical", or at best a gratuitous and unclear addition to the much

clearer system of equations of a structural model.

In fact the very logical structure of most social science models requires mathematical

structure beyond that of a system of equations. Econometricians distinguish exogenous

from endogenous variables, others distinguish independent from dependent variables. These

distinctions are not given by the equations themselves. It makes no difference to the

algebra which variables are written on the left hand side and which on the right hand side

of the equality siga When social scientists introduce such distinctions they are providing, in

addition to the equations, a partial ordering of the variables. That partial ordering has a

natural causal interpretation.

The application of most social science models depends on drawing causal conclusions from

them. That is because we are usually interested in applying such models in situations where

we have the possibility of changing some features of the social or economic system, and

our concern is to know what other changes will result if we do so. This sort of

For some more optimistic recent discussions of statistics and causal inference, see Holland 1451, and Glymour (361.
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application is routine with econometric models of national economies. Parameters

representing policy variables are run with hypothetical rather than actual values h an

attempt to predict the effects of changes in policy. Again, with models of the Head Start

data, we are concerned with whether or not Head Start participation causes improvement in

school and test performance. In studies of the American occupational structure, we may be

interested in whether the educational system causes social mobility. In criminological studies

we are often concerned with whether specific penalties (e.g., the death penalty) deter

certain crimes. To deter is to cause not to happen. Correlations and regression coefficients

don't give us that information. Only causal conclusions will do so.

There are some contexts in which social science models are of practical importance even

without causal conclusions. In estimating the undercount in the Census, for example, we are

not principally interested in drawing a causal conclusioa But more often, we want causal

knowledge, however much our language may disguise that fact Causal relations are either

asserted or presupposed in almost every circumstance in which the application of social

theory leads to a counter factual assertion, that is to an assertion roughly of the form "If A

had happened, B would have happened". Causal conclusions are usually implicit when future

conditionals are asserted, for example in sentences such as "If the death penalty is

enforced for murder, fewer homicides will occur." If social science could never lead to

these sorts of conclusions (or their denials) we would not have much practical use or hope

for it5

The idea that causal discourse is somehow unscientific is rather wild The determination of

causal relations and causal structure remains a principal part of the enterprises of physics,

chemistry, biology, engineering, and medicine. Causal talk is used without a qualm in many

scientific papers in these subjects, and in every laboratory. Why is it improper then in

social science? It is sometimes claimed that causal talk is "meaningless," but that is itself

sloppy expression that cannot be taken seriously. We use causal talk all the time in

everyday life, with pretty fair mutual understanding. We have excellent formal semantical

theories of causal discourse (see Lewis, [62] and Cross, [20]). In innumerable cases we

know how to determine causal relationships. What more could be required for

intelligibility?

5
For a careful discussion of the confusions about causality in the recent methodological literature in economics, see

D. Hausman |42l
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2.2.1. Interpreting Causal Claims

Many philosophers have attempted to explicate the notion of causality in terms of the

notion of probability (see Suppes, Skyrms and Good, [103, 96, 37]). A probabilistic

characterization of causality has been introduced into econometrics by Give Granger, [39 ] ,

and developed by others (see Sims [94]). We do not assume that causal relations can be

reduced to probabilistic relations of any kind, but neither do we contradict such

assumptions. Instead, we assume that the theorist imposes certain connections between

causality and probability. The most important of these connections is that, ceteris par/bus,

correlations are to be explained by causal relationships of one or another kind

We assume that a causal claim implies a functional dependence, although not every

functional dependence is a causal dependence. If A is a cause of B, then B is a function of

A and (quite possibly) other variables. If B changes, then A must have changed if the other

variables of which B is a function did not change. So we say that if A is a cause of B,

then ceteris paribus, a change in B must be accompanied by a change in A. Or, put another

way, if A causes B, then ceteris paribus if a change in A had not occurred, a change in B

would not have occurred.6

Mathematically, the representation of causal relationships in combination with linear structural

equations systems is very simple. The causal relations are represented by a labeled

directed graph, and the directed graph uniquely determines the structural equations of the

statistical model. But mathematical representation is the easiest part; the hard part concerns

what inferences are to be drawn from causal claims. One of the inferences to be drawn

from the claim that A causes B is that, ceteris paribus if B has changed then A must have

changed. In the context of causal modeling the claim is ambiguous. There is a strong

version, namely:

For any member of the population, ceteris paribus if the value of B for that
individual has changed then the value of A for that same individual has changed.

There is also a weaker interpretation of the claim that variable A has an effect on variable

B:

For any two members of the population, ceteris paribus if they differ in their

It might be claimed that we have it backwards, and that A causes B means that other things equal a change in A is
accompanied by a change in B. But if A causes B does imply that B is a function of A and other variables, then (unless the
function is one-one) a change in the value of A can occur without any change in the value of B, as in B « A . If the relations
are linear then the relation is of course symetrical, and if A causes B then, ceteris paribus, if A changes B will change.
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values of B then they differ in their values of A.

The two versions are not the same, and one can be true when the other is false. The first

sense presupposes that if feature A is a cause, then it makes sense to talk of changing A

for particular individuals. Sometimes that doesn't make sense: for example, it doesn't seem

to make sense to talk of substantially changing the genetic structure of one and the same

individual. Some writers, such as Holland [ 4 5 ] , contend that only when one is prepared to

assert the strong claim is one really talking of causality. Terminology aside, it is important

to recognize that the weaker claim might be correct even though the stronger one fails.

A related consideration is that causal claims may be true only historically. Lieberson

[64 ] points out correctly, that many causal processes are not reversible. So if values of

B came to obtain historically because of what appears to be a linear dependence of B on

A and changes in the value of A, a reversal in the value of A might not bring about a

concommitant reversal in the values of B. When that occurs the dependence of A on B is

not in fact linear.

These points are really cautions rather than objections to the notion of causality or to the

search for causal explanations of non-experimental data They remind us that in

understanding causal claims we must pay attention to what is being talked about Lieberson

enters another caution of a similar kind: If one knows that A causes B, say, one cannot

conclude and should not in general conclude that a change in a third variable, say C, that

has not hitherto varied in the population or sample, will not cause a change in A or in B or

in both.

All of these cautions are valuable, but there is no reason to suppose that they must

necessarily bring trouble for causal modelling. Anyone considering genetic causes of

phenotypic traits, for example, will be unlikely to confuse the weak and strong ceteris

par/bus conditionals. We can consider what differences in genotype between individuals

may produce differences in phenotypic traits, but we are not likely to confuse ourselves

into thinking we can change the genotype of a particular individual. No one is likely to think

that the claim that Head Start participation improves school performance implies that a

sixteen year old who did not participate in Head Start will have his school performance

improved by reversing that condition and entering Head Start at age sixteen. Few of us are

likely to think that because nutritional levels did not vary in a sample of students obtained

in a study of school performance, that major changes in nutrition would have no effect on

school performance. The cautions are sound, and important, but there is nothing in them to

make us abandon the enterprise of causal modelling.
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2.2.2. Baumrind and the Concept of Causality

In the course of a criticism of a paper by O'Donnell and Clayton [ 7 9 ] , arguing that

marijuana use is a stepping stone to heroin use, Diana Baumrind mounts a vigorous attack

on causal modelling She has interesting substantive objections to their argument and she

proposes an alternative causal model of the data, which we will not consider here. The

chief burden of her essay, however, is that causal modelling of non-experimental data can

never justify drawing causal conclusions. It is hard to find in her essay a coherent

argument for that thesis, but she does raise some interesting issues about the concept of

causality.

Baumrind criticizes in particular the idea that causal relations consist in certain sorts of

probabilistic relations, an idea which she (mistakenly) thinks is essential to causal modeling.

The proposal, roughly, is that As cause Bs, where A and B are kinds of events, if the

occurrence of an A event increases the probability of a subsequent B event, and there are

no kinds of events C1,...,Cn, such that, conditional on prior events of kinds C1,...,Cn, events

of kinds A and B are statistically independent Her criticisms of probabilistic accounts of

causal relations are these:

1. It is a "parochial model of causality shared by neither laypersons nor
philosophers of science." (p. 1289)

2. Shultz [ 88 ] has performed experiments that appear to show that people of
all ages prefer a "generative" model of causal relations to covariatioa

3. The correct account of causation is generative: "The generative approach to
causation refers to the notion that the cause produces the effect..Within the
generative model the event called the cause acts to change or to produce the
event called the effect (p. 1291).

4. A parable: "The number of never-married persons in certain British villages is
highly inversely correlated with the number of field mice in the surrounding
meadows. Marital status of humans was considered an established cause of
field mice by the village elders until the mechanisms of transmission were
finally surmised: Never-married persons bring with them a disproportionate
number of cats relative to the rest of the village populace and cats consume
field mice. With the generative mechanisms understood, village elders could
concentrate their attention on increasing the population of cats rather than the
proportion of never-married persons. Note that although the correlation
between marital status and incidence of field mice is not a joint effect caused
by incidence of cats and is therefore a true association...the explanation that
marital status is a cause of incidence of field mice is at best trivial, whereas
the generative explanation that cats consume mice is valuable." (p. 1297)



27

We cannot speak for lay persons, but we can speak for philosophers of science.

Baumrind's claim is false. Several (rather more precise) versions of the probabilistic account

of causality sketched above are advocated by some of the most prominent contemporary

philosophers of science (For example Suppes [ 1 0 3 ] , Salmon [ 8 4 ] and Skyrms [96]). We

can speak about lay persons. What Schultz's experiments show is hard to say. No one

should be surprised if in some circumstances lay people systematically violate probabilistic

criteria for causal attributions. There is considerable evidence that lay, and even expert

judgements about probability and causality violate most every normative standard (see

Kahneman, [ 5 4 ] , and Faust, [24]).

Baumrind's characterization of the "generative" model of causality is not very helpful

because it is not very clear. There are a few contemporary philosophers who analyze

causal relations in terms of an unanalyzed oomph, but the closest thing to a clear and

influential philosophical account that bears any connection to Baumrind's is the

counter factual analysis of causation developed by Mackie, [ 6 8 ] and by Lewis , [ 63 ] . On

these accounts, A causes B if and only if A occurs and B occurs, and if A had not

occurred then B would not have occurred. (In Lewis' theory a model theoretic semantics is

developed for the counterfactuals that arise in this analysis of causation.) These accounts

perfectly well allow increases in never-married persons to cause declines in the population

of field mice.

What Baumrind really seems to mean by "generative" causation is that causal attributions

should come with a specified mechanism by which the causal relation occurs. The

intervening steps should all be spelled out, and verified if possible. That is a perfectly

sensible request, but it is part of methodology, not part of the meaning of "cause." It is a

request that can only be satisfied, in any subject by the examination of correlations,

experimental or otherwise, and the application of prior knowledge. Baumrind's parable is

bootless. In the story, variations in never-married persons do cause variations in field

mice, even if the causation is indirect and nothing in the story prevents the use of

covariance analysis on uncontrolled samples to discover that the intervening variable is the

density of cats.

Lots of models derived from non-experimental data come with plausible speculations about

the process by which the causal relation comes about Thus the apparently astonishing

conclusion (see Crain, [19] ) that annual automobile safety inspections actually tend slightly

to increase highway accidents rather than to decrease them is elaborated with possible

mechanisms. For example, inspections may tend to give automobile drivers an erroneous

view of the safety and reliability of their machines. There are obvious psychological

mechanisms for the apparent effects of responses to some questionaire items on
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responses to other items. Blau and Duncan occasionally suggest mechanisms for the causal

relations they argue for in The American Occupational Structure.

The importance of establishing the details of a causal process depends on the context In

many cases we are perfectly happy to know that plausible mechanisms can be conceived,

and don't much care what the actual mechanism may be. In other cases, we may doubt a

causal claim exactly because no plausible mechanism can be thought of. In still other

cases, we may not have much doubt about the genuineness of the causal connection, but

may be especially concerned to discover its mechanism of action In these respects,

sociological and psychological and epidemiological mechanisms are no different from

chemical mechanisms.

2.3. CAUSES, INDICATORS AND THE INTERPRETATION OF
LATENT VARIABLES

2.3.1. General Objections

Many linear models, including those for which TETRAD analyses are most useful, contain

variables that have not been measured. Mathematically, models with such latent variables

often specify that some of the measured variables are linear functions of one or more of

the latent variables. Further, the latent variables are often given a causal interpretation—their

variation causes variation in the measured variables—and this causal interpretation is

represented in the directed graph of the model. Finally, latent variables are routinely given a

title that carries some meaning with it "socio-economic status", "industrial development",

"authoritarian-conservative personality trait"

Realism and Anti-Realism

A long tradition in philosophy of science holds that what cannot be measured or seen

directly is not worthy of belief. Philosophers (and they have included many distinguished

scientists, such as Pierre Duhem) of this persuasion usually hold that theories that postulate

unobserved objects and properties and relationships are useful and valuable instruments for

prediction and control, for generating new experiments and for guiding the development of

still further theories, but they deny that these virtues give grounds for belief. They

distinguish belief from acceptance. We may have good practical reasons for accepting

theories as good empirical predictors and as useful tools, they hold, but no reason to go

further and actually believe our theories. The best contemporary defence of this anti-
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realist conception is in Bas Van Fraassen's, The Scientific Image, [ 106 ] .

Realist philosophers of science think otherwise. They think we can have as much, perhaps

more, reason to believe in our theories as we do to believe in everyday claims made

outside of science. They distinguish credence from certainty. Belief has to do with

credence, and we can alot more or less of it to a proposition without taking that

proposition to be certain.

Realists and anti-realists in philosophy of science agree that theories that go beyond

observation are useful and inevitable, and they largely agree as well on what virtues make

one theory preferable to another. What they disagree about, for the most part, is whether

those virtues give us reason to believe our best theories.

In the social and behavioral sciences, and in applied statistics generally, there is a much

more radical train of thought which holds that in constructing theories we should not talk

about features that postulate unmeasured features or properties or entities. This view is

very different from the philosophical anti-realism we have just discussed, for it amounts to

claiming that not introducing unobserved features is an overriding virtue of any theory: any

theory that introduces unobserved features is inferior to any theory that does not

These critics think that it is somehow unscientific to introduce theoretical causes that are

not directly measured For example Holland, [ 4 5 ] rejects the introduction of any causal

factors that cannot be manipulated; and many econometricians and statisticians object to

latent variables on the grounds that they do not give any novel predictions. The most

famous modern rejection of latent variables is B.F. Skinner's [ 9 5 ] , on the grounds that

anything that can be predicted with latent variables can be predicted without them

These critics have it exactly backwards. The natural sciences are successful exactly because

of their search for latent factors affecting the phenomena to be explained or predicted.

Newtonian dynamics and celestial mechanics, the theory of electricity and magnetism, optics,

chemistry, genetics and the whole of modern physics would not have come to pass if

natural scientists behaved as the critics of latent variables prefer. Gravitational force,

electical fluids and particles, electromagnetic fields, atoms and molecules, genes and

gravitational fields, none of them could be directly measured or manipulated when they

initially became part of modern science. Few of these notions were introduced initially

because they predicted anything; they were introduced because they explained things.

Newtonian theory explained Kepler's laws, and did so beautifully; Daltonian atomism

explained (then controversial) regularities of chemical substances, such as the law of

definite proportions; general relativity explained the anomalous advance of the perihelion of

Mercury; Bohr's quantum theory explained spectral series of hydrogen. Of course these
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theories did eventually lead to important predictions, but they did so exactly because

people investigated the latent factors postulated by the theories, and sought laws about

them and their properties, and sought to test those generalizations.

Now critics may grant that the introduction of latent variables has been essential in the

natural sciences, but maintain that they are inappropriate in the social and behavioral

sciences. It is hard to think of any convincing reason for this view, however, and we

should demand very convincing reasons for any methodological strictures that contradict

the methodology of our most succesful sciences. Critics may doubt that statistical theories

of nonexperimental data can explain in the same way that theories in the natural sciences

do, or that the explanations can lead to novel predictions. In Part II of this book we will

show that linear causal models can explain in the same fashion that, say, Daltonian atomism

explained the law of definite proportions, or that Maxwell explained electromagnetic

phenomena, or that Copernican theory explained regularities of planetary motion We will

also show that theories with latent variables can lead to novel predictions that would be

unlikely to be found without them.

2.3.2. Interpreting Latent Variables

In the social sciences, latent variables are routinely given some gloss. They are labeled

"socio-economic status," or "cognitive ability." In describing the TETRAD program, and in

applying it to actual cases, we will follow the common practice, but with serious qualms. It

is important to understand some difficulties with the practice, and to beware of certain

confusions that may result from it

Consider socio-economic status. In sociological economic status index will typically be the

result of changes in all of the factors that enter into that index. The structural equations of

a linear model typically apply to the values of the variables for individuals in the

population (or sample), not to averages of values of the variables. (Many of these and

other difficulties with the conventional use of socio-economic status as a latent variable

have been sensibly discussed by Blalock , [9].)

For example, a familiar model for data from the summer Head Start program postulates an

unmeasured socio-economic status as a common cause of father's education, mother's

education, father's occupation and family income. Taken literally, the theory seems to make

no sense, since the measured quantities must, if anything, constitute socio-economic status.

The arrows go in the wrong direction. Suppose one abandons the interpretation of the

latent variable in the Head Start model. Suppose one no longer regards that variable as an

amalgam of education, income and other variables. That does not mean that one should, or
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must, abandon the graph of causal relations postulated by the initial model. It means

only that considerable caution, and more agnosticism, should be used in interpreting what

that latent variable is. There is nothing amiss, logically or scientifically, in having latent

variables that one is not quite sure how to interpret Surely that is better than having latent

variables with an interpretation that cannot be sustained There is nothing wrong with

supposing that something, for which we have no convenient name, but which is not socio-

economic status, acts as a common cause of parental education, occupation and income.

The most important error that inappropriate interpretations of latent variables may occasion

is the failure to consider alternative models. Often variables are clustered together, and

specified to be the effects of a common latent variable, because there is some common

content to their description. In a study of school children, for example, Maruyama and

McGarvey [ 7 2 ] group together a number of variables because they have to do with

popularity, and group other variables because they have to do with achievement, and others

because they have to do with socio-economic status. Within the causal model, these

groupings carry a causal significance. They say that these features have a common cause.

That may be correct but it is not necessarily correct That schoolwork popularity and

playground popularity are both forms of popularity does not imply that they have a

common cause, "popularity", or that they have any common cause at all. There is no a

priori warrant, therefore, for failing to search for other groupings of variables.

2.4. THE IMPORTANCE OF EXPERIMENT

Diana Baumrind, [ 3 ] says that "The objective of the traditional social psychology experiment

is to enable the experimenter to infer unambiguously the existence and direction of causal

relations by ruling out alternative causal explanations ( [ 3 ] , p. 1290)." The objective may

not often be literally achieved, but she is surely right that one of the advantages, perhaps

the principal advantage, of experimental procedures is that they help to reduce the number

of alternative causal models that might account for a body of phenomena From a Bayesian

perspective, experimental data may give narrower posterior distributions than non-

experimental data (compare Leamer [59]).

The advantages of experimental control can be seen from simplecombinatoric

considerations, provided we suppose that the outcome of each experiment is unambiguous.

If we have four variables of concern to us, then there are 46 = 9,216 distinct possible

causal graphs. If, however, we can control each variable experimentally, then we can

consider them two at a time, making sure that other variables do not change, and test

whether wiggling variable X makes variable Y wiggle, and whether wiggling Y makes X
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wiggle. Twelve experiments, two for each pair of variables, will therefore determine the

pairwise causal dependencies. Two experiments, which determine the dependency of X on

Y and of Y on X, will reduce the number of alternative causal graphs for the four variables

to 45 = 1,536, reducing the initial indeterminacy by more than four fifths. Of course it

will take a lot more experiments than that to determine the form of the dependency of X

and Y over a range of values, and far more measurements still to determine all possible

non additive relations among variables.

But experiments aren't always unambigous, which is the point to which we next turn

2.4.1. Zeisel on Experimentation and the TARP Experiment

In criticisms of causal modelling, judgements about issues of principle are often entangled

with criticisms of particularly bad practices. In this subsection and the next, we consider

two particular studies that illustrate what some critics find objectionable about causal

modelling.

The Transitional Aid Research Project (TARP) was one of the largest social experiments

ever conducted The experiment and the treatment of the data, are described in Rossi, et

al., Money, Work and Crime, [ 82 ] . The experiment was intended to test the effects of

financial support for newly released felons on recidivism rates. Payments to newly released

felons in Texas and Georgia were made through the state unemployment commissions for a

period of six months. Control groups in both states received no such payments. The

outcome was nil: payments made no difference to recidivism. Rossi, et al. concluded that

unemployment, which was a condition of receiving the payments in the experiment,

increased recidivism, while the payments themselves decreased recidivism, and the two

effects simply happened to cancel one another out Hans Zeisel was originally on the

advisory panel for the experiment, but resigned in protest over the treatment of the data

He objected, among other things, that there was a better account of the outcome, namely

the obvious one that payments have no effect on recidivisnn

Rossi et al. responded with various ad hominum arguments, [ 8 3 ] , with the claim that they

fully acknowledged and even emphasized the null effects of the payments as administered,

and by citing a previous, smaller scale experiment which they claimed supported their

interpretatioa (That effort, the LIFE experiment, conducted in Maryland, is also discussed in

their book). They further argue that their model is to be preferred to Zeisel's hypothesis

because they thought of it first

...the counterbalancing model and related specification were postulated before
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the structural equations were estimated and were constructed both on the basis
of the result of the prior LIFE experiment in which a payment plan did have a
recidivism reducing effect and by drawing on social science theory concerning
the possible competition between legitimate and illegitimate income producing
activities. There is a vast difference between posing a theory before examining
the data and posing one after examining them. On that basis alone, Zeisel's post
hoc models cannot stand on equal footing with our a priori model. Furthermore,
our modeling was tested through replication, being first constructed on the data
derived from the Texas experiment and then tested on the data from the
Georgia experiment

On the substantive argument, Zeisel wins hands down. The LIFE experiment, performed

under conditions that permitted those receiving payments also to seek legal employment

showed an 8% differential recidivism rate for crimes of theft, and no difference for other

categories of crime. The difference was statistically significant but only barely ( [ 8 2 ] , p.

37-43). The TARP experiment showed no significant difference. The only evidence the

two experiments together provide for the effect of payments on recidivism is the weak

evidence of the LIFE experiment, and that evidence is weakened further, not strengthened,

by the TARP outcome. The temporal argument just cited is fallacious, as we have argued

in a preceding chapter. It certainly makes an important difference if one theory uses the

data to 'adjust a lot of parameters, and another theory accounts for the data without such

fiddling, but in fact it is the hypothesis of Rossi, et al. that seems to require the most

fiddling. But in this case, even the premises of the argument given by Rossi, et al., are

false. The counterbalancing model was not obtained before examining the data It is clear

that the model was developed after the null effect of the payments was known, and was

developed in order to save the experimenter's hypothesis in the face of apparently refuting

evidence. The puzzling claim that the model was postulated before the structural equations

were estimated (how could one estimate equations before obtaining them?) results from the

authors' remarkable conception of scientific testing. Since they confuse estimation with

testing, they believe there is some special virtue in having the equations before estimating.

The claim that the counterbalancing model was tested in any way is charitably described as

Pickwickian. The conception of testing used by Rossi, et al. is certainly peculiar. They

begin their section on "Testing the TARP Counterbalancing Model" ( [ 8 2 ] pp. 108-112) as

follows:

So far the counterbalancing modeLis a reasonable but not yet demonstrated
hypothesis that can seemingly account for both the TARP and LIFE results.
However, the model need not remain on the level of an unproven hypothesis
since it is possible to use the TARP data to estimate coefficients for each of
the links...
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The authors then proceed to "test', "demonstrate" and "prove" their model simply by

estimating its coefficients! No statistical test of the model is reported save for t tests of

the coefficients. Any mathematically consistent identifiable model whatsoever can pass the

"test" of parameter identification, and the t tests of coefficients are only tests of the

significance of the parameters given the assumptions of the whole "counterbalancing

model."

The claim that the model is tested because the same model was used on both the Texas

and the Georgia data is smoke in logical eyes. Any identifiable model can be estimated on

two different samples. We are not told whether the small differences in coefficient

estimates are significant but sameness of the coefficient estimates in the two populations

would show nothing more than that the measured correlations are the same. That might

indicate that the data are reproducible, and give some confirmation of the appropriateness

of linear modeling assumptions, but it has no other bearing whatsoever on the truth of the

counterbalancing model.

Zeisel's methodological conclusion is more sweeping and less tenable than is his criticism

of the arguments given by Rossi, et al. He claims that there is a difference in kind

between correlational and experimental data, and that experiments are always unequivocal.

To interpret correlational data a theory is needed, and unless the theory is
correct the interpretation will not be correct It is the beauty of the controlled
experiment that all the theorizing goes into its design. The result of the
experiment though more limited in its scope than correlational speculation,
speaks for itself and needs no further theoretical support

Would that it were trua It is not It is not even close to the truth. Take any experimental

subject you please, and its history and contemporary prafctice will show the reverse.

Chemistry: Robert Boyle's "pigeon" experiment in which water boiled in a closed flask left

a solid residue, was taken by Boyle to show that water could be turned into earth. Others

disagreed Dumas' measurements of the vapor density of phosphorus and sulfur in the

1830s were taken by Dumas, and others, to refute the atomic theory. The experiment was

interpreted consistently with atomism by Gaudin shortly after, but the interpretation

remained controversial for thirty years. More recently, the interpretation of experiments that

were purported to demonstrate the existence of a new physical state of water

fpolywater") was controversial. Physics: In the late nineteenth century, the foundations of

electrodynamics turned on the interpretation to be given to a large number of optical and

electrical effects, effects that could be produced at any time in almost any laboratory or

observatory. Not least among them was the outcome of the Michelson-Morley experiment

whose interpretation was doubly controversial: many physicists disputed what the
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experiment demonstrated and some (e.g., Miller) disputed that the experiment had revealed

any real (null) effect at all. The significance of experimental comparisons of the solar

spectrum with terrestrial spectra was disputed from 1914 into the 1920s, at least

Recently the interpretation of experiments that purported to detect gravitational waves has

been disputed, and so has the interpretation of measurements of the shape of the sun.

These are not isolated cases. They are typical cases.

Should one think that subjects, such as biology and psychology and sometimes even

sociology, in which experimental and control groups are formed and given different

treatments, somehow provide more certainty about the interpretation of their experimental

outcomes? It seems unlikely that biologists, psychologists and experimental social scientists

somehow provide a certainty that physicists and chemists cannot

Control group experiments cannot be isolated from controversy for several reasons. Two

prominent considerations are sample dissimilarity and unintended treatment effects. That

samples are drawn from a population at random does not guarantee that they are

representative. That subjects are assigned to various treatment classes at random does not

guarantee that the class memberships are matched on all relevant non-treatment variables.

Controversies can arise not simply because of statistical considerations about sample size,

but also because of sampling methods, properties of the actual samples selected, etc.

When a "treatment" is given to an experimental group, whatever is done is a complex

event with many facets. Separating out which facets are responsible for any differences

found between experimental and control groups on outcome variables is not always trivial

or obvious. The behavior of the experimenter's themselves may be the most important

facet as Rosenthal's [ 8 1 ] experiments suggest The knowledge of the subjects

themselves about their role in the experiment may be significant It is exactly these

concerns that are responsible for the double-blind design often used in medical research,

in which neither experimenter nor subject knows which subjects are receiving the

experimental treatment and which are controls. Even so, many medical experiments are

anything but decisive.

The TARP study itself conflicts with Zeisel's opinion of the value of experiments. The

explanation proposed by Rossi and his associates is ad hoc, and their arguments for it are

egregious, but that does not show that their explanation is false. An ad hoc hypothesis can

nonetheless be true, and bad arguments can be given for true hypotheses as easily as for

false ones. Rossi, et al. in effect suppose that a lot of leisure and absence of work

discipline increases the propensity of felons to commit new crimes, and that some cash in

the pocket decreases that propensity, and the contrary effects are about equal. These are

not absurd hypotheses, and they cannot be dismissed out of hand.
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Zeisel and Baumrind seem to share the view that without experimental controls there is no

science, and causal conclusions are never warranted Their opinion is shared by others who

do not bother to argue for it (e.g., Ehrenberg [22]). This is not a sustainable position. Most

of astronomy developed without experimental evidence: Copernican theory was

established without experimental evidence, as were Kepler's laws. Newtonian celestial

mechanics had for experimental support only the law of the pendulum. The principal early

argument for general relativity was its explanation of the anomalous advance of Mercury's

perihelion, a phenomenon established by statistical analysis of non-experimental data using a

lot of assumptions. The first clearly experimental evidence for the theory, Pound and

Rebka's , was not obtained until 1960. Darwin had the experience of animal breeders, and

his own uncontrolled experiments with pigeons, but his major evidence was the observation

of variation and speciation in nature. Contemporary cosmologists observe. They cannot

wiggle the entire universe, or build another cosmos for a control group. Good

experiments are to be treasured, but science does not cease without them.

2.5. JUSTIFYING ASSUMPTIONS

2.5.1. Ling on Causal Modeling

Robert Ling 's, [ 6 7 ] , review of David Kenny 's [ 5 6 ] Correlation and Causation is less a

review than a call to arms against statistical and causal modeling. Despite its brevity, Ling's

review seems to have caught the sentiments of the critics, and it is cited with approval

both by Baumrind and by Freedmaa . The real substance of Ling's criticism turns on the

existence of alternative models of data, and on the failure to search for such alternatives,

a failure sometimes justified simply by appeal to "assumptions."

The logical fallacy underlying path analysis and other forms of inference from
correlation can be illustrated by the following... A researcher believes that malaria
may be caused directly by exposure to swampy air...Having specified the causal
assumption by a path diagram, he finds a significant correlation between the
incidence of malaria (Y) and the swampiness index of numerous locations
sampled in the study. Ergo, the researcher concludes that "mal air" is the direct
cause of malaria

The foregoing example is not atypical of the manner in which theories are
established by those employing the techniques described in this book. Not
infrequently, the causal assumption (theory) is suggested by correlational data,
which are then used (tautaulogically) as if the data were sufficient evidence to
confirm the causal theory. In the path analysis methodology, the researcher can
never disconfirm a false causal assumption, regardless of the sample size or
evidence, so long as the variables alleged to be causally related are correlated
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There is a lot of hyperbole in these paragraphs. Of course the assumptions of path models

and other linear causal models can often be tested, and often are. But testing is not nearly

enough. Often the tests applied to causal models are of low power given the sample size,

and that means that for all anyone knows there may exist many, many alternative models

that would also pass whatever test has been applied. A set of assumptions in a causal

model cannot be justified merely by statistical testing, without a search for alternative

explanations of the data, or without direct arguments from other sources. It remains true,

however, that some of the most objectionable procedures in the social science literature

are exactly as Ling describes them The TARP experiment is a vivid example.

The examples could easily be multiplied They can be found in economics quite as well as

in politiical science and criminology. Ling's accusations are a fair complaint in many cases.

That doesn't make them good logical objections to the technique of causal modelling, or

establish that path analysis is "at best a form of statistical fantasy." Failures of practice do

not establish a failure of principle. Contrary to Ling, nothing in statistical causal modeling

prevents researchers from discontinuing, or even rejecting, direct causal relations between

correlated variables. From early days (see Simon, [91] ) theorists knew that the hypothesis

of direct causal relations could be disconfirmed by discovering other appropriate variables

showing the association to be "spurious", i.e., the result of a common cause rather than a

direct connection. Hypotheses about causal relations, direct or not, can be disconfirmed by

the discovery of alternative models that give better accounts of the data, and do better by

statistical tests. They can be disconfirmed by examining new samples from the population,

or special sub-populations in which some variables do not vary, or by deriving from them

predictions (or retrodictions) which prove to be false. Ling should have blamed some of the

singers, not the song.

2.6. LINEAR THEORIES ARE LITERALLY FALSE

Anyone who thinks there is any point or justification for statistical modelling and for causal

inference from non-experimental data should be prepared to give an example of good

modelling and good inference. There are many dimensions of goodness, and a good study

is not necessarily, or even usually, one that is uncontroversial or unobjectionable. It is one

that enhances our predictive ability, or makes a persuasive case, or undermines our

previous assumptions, and does so by reasonable scientific standards. By those criteria, it is

easy to find good examples of causal inference from non-experimental data In return,

serious criticism of causal modelling methodology (rather than practice) should turn on the

best cases, not the worst
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Blau and Duncan's [10] study of the American occupational structure was recently cited

by the National Academy of Sciences [73] as an exemplary piece of social science Since

it makes heavy use of causal modelling techniques, it is the sort of example that critics

should consider. David Freedman [28] has done just that Freedman levels a great many

criticisms, which we will consider one by one. His principal objections, however, are that

Blau and Duncan do not justify the assumptions used in their model, and that the model is

literally false. So let us first consider the value of literal truth.

2.6.1. The Aims of Linear Models

Nothing is more important in considering the value and limitation of a form of theorizing

than keeping its aims clearly in mind A procedure should not be dismissed for failing to

do what it does not aim to do, or for not aiming and succeeding at what is impossible to

do. In the case of linear causal modelling, the most important point is that little theories of

this kind are approximations. They do not contain the exact truth or the whole truth.

Linear models are used throughout the sciences because they are conceptually simple,

computationally tractable, and often empirically sufficiently adequate. They are almost never

true in every detail. Of course a model that is not true in every detail can still be

approximately true, and close enough to the truth to be relied upon in reasoning about

action and about policy. What we want from social science is not truth in every detail, but

theories that are close enough to the truth to be reliable guides in understanding and

decision making. There need not be a unique theory that answers our need in any case. If

two theories are both literally true, then they must be consistent with one another, but if

two theories are each only approximately true, and thus literally false, they need not be

consistent with one another. Any of several alternative theories may therefore sometimes

meet our need for an approximately true theory on which to base action and policy. So

long as each of them would lead to the same practical decision, it makes little difference

which one we choose. But when the alternatives give different results relevant to decision

making and action, it makes every difference which we choose.

This is not any kind of special pleading for weaker standards in the social sciences than in

the natural sciences. In the natural sciences, nearly every exact, quantitative law ever

proposed is known to be literally false. Kepler's laws are false. Ohm's law is false, Boyle's

law is false, Maxwell's equations are false, and nearly every physicist believes that general

relativity is false (because it is not a quantum theory), and on and oa These theories are

still used in physics and in chemistry and in engineering, even though they are known to be

false. They are used because although false, they are approximately correct Approximation
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is the soul of science.

2.6.2. Biau and Duncan's Model

Blau and Duncan's conclusions are often summarized with a simplified path model relating

father's education, father's occupational status, son's education, status of son's first job,

and son's occupational status in 1962:

Father's
education

V

Respondent's
education

Father•s
occupation

Y Occupation in 1962

W First job

Figure 2-1: Blau and Duncan's Model

The model is elaborated in several ways in the course of Blau and Duncan's book.

Freedman observes, correctly, that Blau and Duncan do not explicitly give a system of

structural equations and distribution assumptions. He charitably, and so far as we can see

correctly, ascribes to them the set of structural equations obtained from the directed graph

above by applying the rules we describe in Chapter 4. Freedman supposes the equations

are meant to apply to individuals in the population, the error terms for different individuals

are uncorrelated and normally distributed, and the error terms for distinct variables are also

uncorrelated Save possibly for the normality assumption, this seems a fair account of what

Blau and Duncan intended. We will consider in sequence Freedman's objections, and some

pertinent responses.

Objection 1:

There is no justification for the equations.

-.the modelers have to make some showing that the structure of the
equations reflects the structure of the phenomena..The only relevant
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considerations are presented on pp. 166-168. In effect Blau and Duncan argue
that V and X. are determined prior in time to U.; likewise, except "for an
appreciable minority/' U. is determined prior to W.; and W. is determined prior
to Y.. This is the whole of the argument..

Freedman suggests that the argument is supposed to lead to the structural equations by a

recursive calculation of values of later variables from earlier variables, and he concludes:

Of course, this parallelism does not establish..[the equations]..as the right
model, since many other systems of equations have the same recursive
structure. For example, the effects could be quadratic rather than linear, or
multiplicative rather than additive. To sum up, the equations proposed by Blau
and Duncan do not have any adequate theoretical foundation.

Response:

Blau and Duncan have a pretty clear idea as to how both the structural equations and the

stochastic assumptions are to be justified, and how justifiable they are:

As in the case with the assumption of linearity, we may for most assumptions
adopt the pragmatic attitude that some departure from their literal truth may be
tolerated if the assumptions facilitate an analytical objective. Yet it is often
difficult to know if one has exceeded a legitimate level of tolerance and,
especially, to comprehend what the consequences of sizeabte violations of
assumptions may be.

We have sought a way out of this dilemma that will put some burden upon
the reader. Instead of using only one or two techniques, with attendant greater
or lesser severity of assumptions, we have varied the techniques and
consequently the assumptions. With some techniques we clearly go well beyond
the point where the requisite assumptions can be at all rigorously justified. This
venture, however, will—to the extent possible—be counterpoised by alternative
treatments of the same data, avoiding at least some of the questionable
assumptions, (pp. 116-117)

The response is, first that the model is offered as an approximation. Indeed, the model

Freedman focuses on is offered as a very first approximation, which is elaborated in the

course of the book. Blau and Duncan never suggest that it is literally true. Second, they

test their assumptions, linearity for example, against other, weaker assumptions that lead to

nearly the same results. They explicitly address both the suggestion that the effects could

be in some power of the variables and the suggestion that they could be multiplicative.

The power function hypothesis is checked by performing a multiple classification analysis

which assumes that the effects are additive but not necessarily linear (pp. 132-139; for a

detailed treatment of these and related techniques see [89]). It is further checked by
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supposing that the effects are only piece-wise linear in categories of independent variables

and showing that the slopes in the several pieces are very nearly the same, save for thinly

populated extreme values of the variables. We find these arguments convincing. A weaker

argument is given regarding multiplicative effects. Blau and Duncan argue that a logarithmic

transformation of variables from similar data gave correlations very close to those they

obtain without such a transformation (pp. 139- 140).

The strategy of using one set of assumptions, preferably weaker assumptions, to test other

assumptions in a theory is ubiquitous in the sciences, and there is nothing wrong with it in

principle, although like any strategy it can be practiced well or badly. It is the strategy

Cannizaro used to argue for his system of atomic weights, and the strategy Jean Perrin

used to determine Avogadro's number. Without it, much of the history of science would

perish. The strategy, and some of its historical and contemporary applications, has been

described in detail by Glymour , [34, 35] .

Linearity is well short of entailing the particular theory Blau and Duncan propose with this

model. They have a further argument of which they perhaps do not make enough. No one,

apparently not even Preedman, disputes that the variables they choose as exogenous and

intervening have a direct or indirect effect on occupational status. The issue is what the

causal relations are. The principal justification for the model is that it explains the

correlation data for these variables very well, and no alternative linear model seems

available which gives a comparably good explanation of the correlations.. Even before

the parameters are estimated, and independently of any normality assumptions, the model

implies constraints on the covariance matrix that are very closely approximated in the data

After estimation, the model accounts for almost—but not quite—all of the empirical

correlations.

Any alternative linear model must do as well. It must also satisfy the temporal constraints

on the variables which Freedman alludes to. The real point of time order is not that it

establishes Blau and Duncan's model, but that it constitutes a powerful constraint on any

alternative. Freedman admits in a footnote that he could not find an alternative eight

parameter model that fits the data as well as Blau and Duncan's initial model. Neither could

we. Nor could we find a model with fewer parameters—such models tend to imply

additional correlation constraints that are not very closely approximated by the data A

model with additional parameters can be made to fit the data, but such models either

sacrifice simplicity while gaining nothing in their capacity to reproduce the correlations, or

they sacrifice simplicity while losing the nice explanation of the constraints satisfied

approximately by the sample correlations. Blau and Duncan's model is certainly not true, but

it bears the marks of an elegant linear approximation to the truth, and that is even more
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than they claim for it

Objection 2.

The assumption that there is no autocorrelation in V or in X is violated by the sampling

technique, since the data were collected from households, and the different respondents (all

male) from the same household will surely have correlated values for these variables.

Response:

We cannot find any data in Blau and Duncan's book on what proportion of respondents

were members of the same household, or how they were distributed The objection is

sound, but its importance depends on that information.

Objection 3:

There is no justification for assuming that the disturbance terms associated with the

dependent variables are uncorrelated. There aret for example, famous dynasties in banking,

politics and film, and the corresponding error terms for education, first job, and

occupational status in 1962 will surely be correlated for members of such dynasties.

Objection 4:

Part of the error terms represent omitted variables, and these variables may act on several

of the variables included in the model:

Still more generally, the model omits families, neighborhoods, geographical
regions. It does not consider the quality of education, or when education was
obtained, or when respondents entered the labor force...There is nothing of
history in the model, and nothing of the economy.

Response to 3 and 4:

Of course one can find cases in which there is good reason to think there are common

sources of variance for the dependent variables. Once again, the model is not assumed to

apply universally and literally. Blau and Duncan explicitly consider in later models the effects

of age, race, ethnic group, geographic region, farm versus non-farm background, marital

status, father in law's occupational status, parental family size, birth order, family climate,

and family type (divorced, not divorced, etc.), and more. Historical factors are discussed

throughout the book, and historical considerations enter explicitly in the justification of the

scales. It is true that these factors do not enter explicitly in the model Freedman attends
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to, but why then complain of it when it is offered as a very first approximation, and the

factors of concern are investigated as modifications and qualifications of the simple model?

Objection 5:

Significantly correlated errors will result in major changes in the estimated values of the

parameters of the model.

Response:

Absolutely. Changes in specification will affect parameter estimates. There seems to be no

evidence, however, that any of the variables Blau and Duncan consider produce a substantial

correlation of the disturbance terms.

Objection 6:

Blau and Duncan make no predictions from their model.

Response:

No predictions are made. Perhaps some could be. Principally, that improvements in the

educational Jevei of a subpopulation in one generation will have little effect on the

occupational status of their descendents if structural social factors prevent the members of

the first generation from using their education to improve their occupational status, and if

the educational improvements are not sustained in the second generation. It is, we suppose,

one consideration pertinent to affirmative action and quota programs, although we have no

idea what role, if any, Blau and Duncans work has had on such practices.

Objection 7:

Their model ignores their own data analysis:

A fair summary is that the data clearly but narrowly violate the assumptions
of the model: the regression curves are nonlinear (pp. 137, 144); the residuals
are heteroscedastic (pp. 139, 144); the slopes vary across subgroups (p. 148).
The path coefficients...therefore have no real existence. What are Blau and
Duncan talking about?

Response:

Freedman's point is that Blau and Duncan's data analysis shows that their assumptions, in
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particular their assumption of linearity, is literally false. It also shows that it is a very good

approximation to the truth, and that is all Blau and Duncan claim for it We should add that

it appears to be at least as good an approximation to the data as are most of the simple

classical chemical and physical laws. Physical chemistry would not be better off without

the ideal gas law, or without the law of Dulong and Petit , but we very much doubt that

the data available in the 19th century gave a substantially better fit for these laws than Blau

and Duncan's data do for the linearity assumption-

Objection 8:

The model fails a bootstrap statistical experiment [ 2 1 ] of a correlation constraint it implies.

Response:

Of course the model fails a significance test Any false model that is very close to the

truth and implies overidentifying constraints will fail a significance test if the test is

powerful enough and the sample size is large enough. In this case the sample size, 20,700

is very large indeed The important thing is that any alternative explanatory linear model

would almost certainly fare worse.

Objection 9:

Blau and Duncan claim that "the entire influence of father's education on son's occupational

status is mediated by father's occupation and son's education", i.e., V has no direct effect

on W or on Y. But the regression coefficient of V in a regression of Y on V, X, U and W

is - .014 and the regression coefficient of V in a regression of W on V, X and U is .026,

and both are statistically significant

The conclusion drawn by Blau and Duncan is unwarranted...But a fair statement
of their results is only as follows: Roughly, the data conform to the equations...,
as depicted in the path diagram, although the differences are highly
significant..Blau and Duncan seem to have been misled by their methodology into
confusing assumptions with conclusions.

Response:

The objection that Blau and Duncan draw an unwarranted conclusion is pedantic. The

regression coefficients are indeed statistically significant They are also dinky, and in any

ordinary sense they are not significant at all. Blau and Duncan's statement is a fair summary

of the facts they find
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Objection 10:

The causal interpretation of path coefficients is nonsensical.

Suppose U, V and X are all functions of a more primitive variable r, which is
uniformly distributed over [0 ,1] . More specifically, let V be r, let X be r2, and
U be r3, but standardized to have mean 0 and variance 1~

Do we really want to say that the direct effect of r on r3 is - . 6 1 1 , while
the direct effect of r2 on r3 is 1.578? How can we vary r while keeping r2

fixed?

The idea must be that structural equations are different from this artificial
example. We need to have the difference spelled out

Response:

It is essential to the usual representation of linear causal models that every variable have a

unique exogenous source of variance. Freedman's "artificial example" violates this condition,

and it is essential to his argument that it do so. That aside, suppose his conditions did

actually obtain for some set of variables and some system. Then the causal claims would

simply be false. That doesn't make the causal claims associated with real path models either

false or nonsensical.

Real science has always proceeded by approximation and idealization. Many of Freedman's

objections fail to appreciate that Blau and Duncan were doing, in a different setting, exactly

what Newton and Dalton and Gay-Lussac and Hertz and Eddington did in theirs:

approximating and idealizing, looking for simple, elegant, plausible, and probably not literally

correct theories that explain the phenomena By the standards the natural sciences impose

on themselves, the American Occupational Structure is not bad work at all, not even

statistically. One example: The Lick expedition of 1922 produced the best data on the

gravitational deflection of light that were available until recent times. We guess that the

gravitational effect accounted for less than 40% of the measured displacements of star

images. The residuals of the least squares fit to the data were essentially unaltered if the

relativistic deflection, which varies inversely with the square of the distance from the limb

of the sun, was replaced by a simple inverse distance decay. Statistics does science many

services, but it does no service at all if it keeps social science in thrall to a false and

fantastic image of how science works.
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2.7. CONCLUSION

The critical attack on the very idea of drawing causal conclusions from non-experimental

data is miles short of convincing Criticisms of actual practice are something else. The

principal faults that beset linear modeling in practice, and that are seized on by critics,

seem to be these:

1. Insufficient data analysis is done to justify the linear approximation and the
stochastic assumptions.

2. Alternative models are not considered, and structural equations are not
justified

3. Inadequate consideration is given to variables that are not included in the
model but may be sources of covariance among variables included in the
model.

4. No testable predictions are made.

TETRAD cannot help those who have not helped themselves about linearity and about

stochastic matters. It can help substantially on the other counts. Later chapters demonstrate

that the program can help to find good alternative models where they exist and can help

detect the existence of important neglected variables, although TETRAD will not tell the

user what those variables are. We will show at least one way in which, using the program,

testable, non-statistical predictions can be made from causal models of correlational data



47

3. OBJECTIONS TO DISCOVERY BY COMPUTER

3.1. INTRODUCTION

The TETRAD program can be thought of as a device for peering into a vast space

populated by causal models rather than by stars and planets. Some people would prefer

not to JooJc There is a line of thought that objects to any computer program that claims to

aid in the discovery of scientific theories. This chapter examines the arguments for that line

of thought7

Some objections apply to aJmost any form of computer discovery, or computer aided

search for theories. The objections we will consider include the following

• People have various kinds of special knowledge that computers do not have,
and that knowledge makes people better at discovery than computers can
possibly be.

• Discovery is a form of inference and inference should procede in accordance
with the requirements of Bayesian statistics and Bayesian epistemology, but
computer programs that aid in scientific discovery often do not work on
strict Bayesian principles.

• Offering computer programs that are intended to aid in the process of
discovery is playing with fire. The programs are bound to be used stupidly
and therefore should not be made available.

In addition, there are special objections to discovery procedures that are applied to

statistical data Such procedures must inevitably look at the data and use background

knowledge together with structural criteria and the data to guide the search for the best

explanations. Such procedures are routinely denounced as "ransacking" and "data mining/' but

arguments against the procedures are rarely given, and never given fully and explicitly. We

identify four lines of argument, which we will discuss in detail in the third section of this

chapter In brief, they are:

Versions of these arguments have been given to us orally or in private correspondence by several people, and since our
response is entirely critical and depends on reconstructing terse remarks, we avoid attributions save to published statements.
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There is a clear difference between "exploratory" procedures and
"confirmatory" procedures. Exploratory procedures that examine the data to
search for theories may provide theories worthy of investigation, but they do
not provide any confirmation of those theories.

It is circular or "tautaulogous" to use the data to search for the best
explanation of the data, and then claim that the theory thus found is
confirmed by that same data

Using the data to discover a theory contradicts the usual frequency
interpretation of test statistics that are based on the same data

In the worst case, using the data to generate a theory will almost certainly
lead to an erroneous theory.

The examination of this second set of arguments is considerably more technical.

3.2. THE GENERAL OBJECTIONS

3.2.1. People Know more than Computers Do

Objection:

Computers literally don't know what they are talking about A computer procedure for

searching for good theories must use structural criteria of some sort in its search, but we

humans know a lot more than structure. We know what the variables mean, how they

were obtained whether some took their values prior to the time that others took theirs,

and more. This knowledge is relevant to choosing a good statistical model, and a computer

does not have it

Comment:

There are two aspects to the objection. Because we humans know things about particular

causal relations, or about the impossibility of particular causal relations, it may be thought

that we can locate correct alternatives faster and more accurately than any computer can.

But further, any computer program that uses structural criteria in its search, whether the

criteria are statistical fit, or explanatory power, or whatever, will be likely to produce many

absurd results, including causal hypotheses that we know cannot be correct
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Response:

The use of structural criteria without the kind of knowledge we humans have of causal

possibilities and impossibilites can indeed be expected to lead to many absurd conclusions.

The sensible thing to do is to combine human knowledge about a domain with the

computer's structural criteria There are two ways in which human knowledge can be

combined with the computer's capacity to carry out systematic search. One way is to let

the computer report the results of its search using structural criteria that are sufficiently

inclusive to permit many alternative solutions to a problem. Then human users can employ

their knowledge to narrow down the alternatives. The other way is to make it easy for

humans to convey their knowledge about the domain to the computer, and then have the

computer use this knowledge and structural considerations to guide its search. One of the

major ideas behind contemporary expert systems is that knowledge specific to some

subject matter can be programmed into the computer, so that the machine can use that

knowledge in guiding its search.

The fact that without substantive knowledge structural criteria alone may sometimes lead to

absurd hypotheses ought not to lead us to reject the use of those criteria when their

results are consistent with what we think we know. Structural criteria encompass all of the

usual virtues of theories, including simplicity, correct predictions, explanatory power, and so

forth; in the absence of complete prior knowledge, we have no better means than these

for forming preferences among our theories.

3.2.2. The Bayesian Objection

Objection:

Artificial intelligence programs for discovering statistical models are really carrying out

decision procedures, but they do not act like rational Bayesian agents. Even if a program

did carry out Bayesian calculations, whatever prior probability distribution and utilities the

program uses may not be shared by human researchers.

Response.

An artificial intelligence program might be designed to simulate a rational Bayesian agent

Programs of this sort have been developed for medical diagnosis (see Gorry, et al., [38]).

But an artificial intelligence program might also be designed to help humans behave more

like ideally rational agents. A program might well do the second sort of thing without

carrying out any explicitly Bayesian calculations.
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An ideal Bayesian rational agent is logically omniscient The agent considers every possible

hypothesis, asigns it a prior probability, assigns or determines a likelihood for the evidence

on each hypothesis, and forms posterior probabilities by conditionalizing on the evidence.

For many reasons, humans are not ideal Bayesian agents. As LJ. Savage, [85 ] , noted, we

humans are always falling short of coherence, and our struggle is always to get a little

closer to it In recent years, Bayesian statisticians have begun to consider explicit strategies

for recovering from incoherence [65]).

One of the most important ways that we fall short of the ideal is in failing to consider

alternative hypotheses. In applying Bayesian procedures to empirical data, we may form a

collection (finite or infinite) of alternative hypotheses to account for the data, in such a

way that each hypothesis determines a likelihood for the data With proper priors, the sum

or integral of our priors over all alternatives in the collection is equal to one. There is

usually a further catch all hypothesis, namely that none of the hypotheses we have

explicitly considered is correct On reflection, we would rarely think that the catch all

alternative has zero prior probability, but we do not know how to use it to assign a

likelihood to the evidence. That is exactly because we generally do not know what the

unexamined alternatives are, or what their mathematical properties may be. In the first

chapter of this book we argued that this failure is one of the major limitations in sciences

in which non-experimental or quasi experimental data are to be explained

From a Bayesian perspective, the TETRAD program is a device for investigating a part of

the catch all hypothesis, and for locating within it specific alternatives that give the

evidence a reasonable likelihood, and that have the virtues of simplicity and explanatory

power. These virtues can be thought of as utilities (see Kadane, [53] , and Hempel, [44]),

or as a constraint on prior probabilities (see Jeffreys, [49 ] , and Zellner, [111]). Of

course, a researcher might not share these utilities, or these priors, but we argue in a later

chapter that they are fundamental desiderata in all sciences.

3.2.3. The "Fire" Objection

Objection:

Even if computer procedures for generating models are, if intelligently used, valuable aids

to discovery, they should nonetheless not be made available exactly because they will not

be used intelligently. Automated procedures may make it easier to fit arbitrary bodies of

data, and to find models that appear to give good explanations for the data, even when the

general modeling assumptions (linearity, for example, or absence of autocorrelation, or

normality, etc.) are seriously in error. If so, they make it easier for people to obtain illusory
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conclusions, and they make science worse.

Response.

The trouble with the argument is that it is generic, and it makes for terrible science policy.

A perfectly analogous argument can be given against every technical innovation,

computerized or not that aids the enterprise of knowledge. There is nothing special in this

regard about programs that aid in discovery. Regression packages make it easier for

people to produce utterly inappropriate models when they neglect autocorrelation,

multicollinearity, nonlinearity, etc. Estimation packages make it possible for people to assign

numbers to ill-justified causal linkages, or even to confuse estimation with testing

Statistical tests make it easier for people to unjustifably think they have established the

truth of a model when it passes some statistical test of low power. Theoretical work, say

Fisher's and Wishart's work on the distribution of correlations, or work on factor models,

can have similar effects. Even programs for automated statistical diagnostics can make it

easier to do stupid things. If one had a package that automatically checked for linearity and

made appropriate transformations, and checked for autocorrelation, distribution assumptions,

etc., it would make it all the easier for people to whip up good statistical analyses with

stupidly chosen variable sets.

The same is true of technical innovations outside of statistics. Every physical instrument,

from the telescope to the linear accelerator, has a variety of stringent conditions for its

reliable use. If the user is unsophisticated, and the conditions for correct use are not met,

a lot of garbage can and usually does result Introductory physics students who repeat

classical experiments with standard apparatus, Millikan's oil drop experiment for example,

rarely get the accepted results. The history of science is riddled with hypotheses advanced

because of inappropriate uses of new technologies. Should we therefore regret the

introduction of the telescope, the microscope, the micrometer, the camera?

Every good technical innovation expands our capacities and presents new possibilities for

discovery, new domains in which inquiry can be carried out It also presents for the same

reason the possibility of new errors, and new stupidities. There is absolutely nothing

special in this regard about automated discovery procedures. The objection therefore rests

on a more general policy, namely that the possible errors of the least competent members

of a community are sufficient reason to suppress the introduction of new technical

developments. Fairly, and therefore generally applied, that is a policy for ending science,

not for furthering it
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3.3. NO PEEKING

3.3.1. Preliminary Remarks

Many social scientists and applied statisticians believe (or at least say) that one should

never, or almost never, search through a body of data to discover theories. Instead, one

should somehow come up with a causal model based on "theoretical considerations." Such

people believe that computer programs that examine data and apply structural crtieria and

background knowledge to that data in conducting a heuristic search are objectionable no

matter how well they perform in practice.

It is hard to make any reasonable case for this rather radical perspective. "Theoretical

considerations/' if they are to have any weight in guiding theory selection, must be well

founded and therefore must be justified by some data or other. The position seems to be

that only theories generated by not looking at any data, or only theories generated by not

looking at any relevant data, can be true or can claim our serious attention. Their is no

rational reason to believe this sort of mysticism, however strongly it may be felt Above

all, the position denies what we know and what we can demonstrate: we know that people

can consider only a tiny fraction of the causal models that are consistent with prior

knowledge; we know that in the practice of statistical modelling, assumptions based on

"theoretical considerations" are rarely well justified and that alternative explanations are

rarely considered systematically; and we can (and will, in succeeding chapters) demonstrate

that with computer aids, better theories can be found. Finally, we know that if close

examination of data in order to search for explanations of it were prohibited, most of the

natural sciences would not have developed We would have to make do without the efforts

of Copernicus, Kepler, Darwin, Cannizarro, and many, many others.

There is a more interesting and more precise kind of objection, not to computer search

for theories, but to certain ways of conducting that search. This line of thought insists that

while relevant data may indeed be examined in the process of searching for a theory to

explain it, the data used to discover a theory must be distinct from the data used to

confirm or test or argue for the theory.

The TETRAD program, like any discovery program, looks at data and searches for a good

explanation of it The causal models found by using TETRAD on a body of data can always

be tested by comparing them with another sample, other than the one used in the search

procedure. In the cases described in later chapters we sometimes do just that So the

program can always be used in such a way that the data used in discovery are distinct
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from the data used in testing. But we also believe that there is absolutely nothing wrong

with using one and the same body of data to discover a theory and to confirm it or test

it. The arguments to the contrary are not inane or mystical, but they are erroneous or

fallacious. We will consider four such arguments.

3.3.2. Exploratory and Confirmatory Procedures

Objection:

Computer searches are exploratory strategies and therefore cannot provide any

confirmation of the hypotheses generated

Response:

It has become routine in the social sciences to distinguish between "exploratory" data

analysis procedures and "confirmatory" data analysis procedures, or between exploratory

and confirmatory uses of data analysis procedures. The TETRAD program is perhaps most

naturally classified as an exploratory procedure. We wish to point out however, that the

distinction carries with it a great deal of dubious intellectual baggage.

"Exploratory" is very often used to suggest that a procedure, or an application of a

procedure, is useful for suggesting hypotheses to be tested, but that it does not of itself

give any reason to believe any of the hypotheses suggested Similarly, "confirmatory" is

often used to suggest that a procedure does not suggest hypotheses, but that when

somehow provided with a hypothesis, the procedure may provide a reason to believe it

Procedures that amount to parameter estimation and statistical hypothesis tests based on

those estimates are called confirmatory, while other procedures usually are not Except as a

misleading terminology for distinguishing statistical hypothesis tests from other procedures

for drawing conclusions from data and background information, this distinction is illusory.

If an "exploratory" procedure routinely turns up hypotheses that do well by statistical tests

and make accurate predictions, and if the procedure rarely turns up hypotheses that do

poorly by such criteria, then the fact that a particular hypothesis is turned up by the

procedure provides some substantial reason to believe the hypothesis, or at least to give it

more credence than those hypotheses that are rejected by the exploratory procedure.

The notion that "confirmatory" procedures such as statistical hypotheses tests provide some

substantial reason to believe hypotheses independently of exploratory procedures is

mistaken, at least in the case of linear models. On small sample sizes tests such as chi

square have low power against the class of all alternatives. Unless all but a handful of
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alternative hypotheses have been ruled out, the fact that a model passes a statistical test

provides almost no reason to give it credence, for there may well b3 billions of alternative

models of the same data that were they to be subjected to statistical testing, would do as

well as or better than the particular model under consideration (see Chapter 1). We cannot

rationally pretend that the alternatives don't exist or that they are inconceivable, or

unconceived If we have no knowledge as to whether or not better theories may be hiding

among the unexamined multitudes, how can it be reasonable to give credence to the theory

we happened to think of and to examine statistically? But when the sample size is large,

and the test has high power, the linear model is usually rejected, exactly because it is at

best an approximation. Thus Blau and Duncan's model of the American Occupational

Structure, which accounts for almost all of the correlations among its variables, is applied

to a sample size in excess of 20,000, and fails various statistical tests (see Fox, [ 2 6 ] ,

Freedman, [27]). This means that the p values of chi square statistics for linear models

can only be used comparatively, but to do that we must discover the alternatives for

comparisoa

In fact, of course, we haven't either the human time or the computer time to do statistical

analyses on more than a small number of alternative models. That fact makes it all the more

important that statistical tests, if they are to be used, be used in conjunction with

exploratory procedures that can search heuristically through enormously large numbers of

possible models to discover those that will provide the best explanation of the data

3.3.3. Equivocating over the Model

Objection:

A procedure that searches for a good theory, using the data that the theory *s supposed

to explain, and then argues that the theory deserves credence because it explains that same

data, is tautologous.8

Comment.

We believe that the principal intuition behind the objection is that in order for a model to

be confirmed it must be tested, and in order for a model to be tested something must be

done that could have disconfirmed the model. Suppose a model is first conjectured and

then the data is obtained to test it Then even if the data actually confirms the model, if

the data had turned out differently it would have disconfirmed the model, and so

See, for example, Robert Ling's review of Kenny's Correlation and Causality. 167)
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something has been done that could have provided disconfirmatioa In contrast if a model

is generated from a data set and then "tested" on that same data set nothing has been

done that could have disconfirmed the model.

Response.

If the argument were sound, everyday counting procedures would be invalid Imagine that

the task is to determine the number of people in a room. We do that by counting, a

procedure that involves generating hypotheses algorithmically as the data changes. We don't

think of the procedure as "tautologous", and we are right not to do so, even though

different data would cause us to generate different hypotheses. It looks as though

something is wrong with the argument

The objection depends on an elementary logical mistake: equivocation. Let's suppose that

an ideal search procedure would use data but would never yield a model in conflict with

that data Now dearly distinguish two different claims:

(I) No possible data, when given to an ideal search procedure, will
result in a model that is disconfirmed by that same data

(II) No possible data can disconf imn the model produced by an ideal
search procedure that uses some particular body of data

I is true, but 8 is false The objection confuses the true claim, I, with the false claim, II, and

the argument turns on that confusion. The mistake is to confuse the true claim that the

generation procedure cannot possibly yield a model that is disconfirmed by the data used

to find that model, and the false claim that nothing has been done that could have

disconfirmed the model actually generated. If variables are measured and a model, call it M,

is generated f rom the data obtained, something has been done that could have disconfirmed

M: the measurements could have turned out differently and if they had turned out

differently they would have disconfirmed M. The situation is in all relevant respects exactly

like the situation in which the model tested is generated without examining the data It is

true that nothing has been done that could result in the generation of a model that is

disconfirmed by the data (at least not if the generation procedure is an ideal one). But that

is not the issue; the issue is whether anything has been done that could have disconfirmed

the model actually generated, in this case M, and something of that kind has been done. If

the data had turned out differently, M would not have been generated, exactly because M
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would have been discontinued The objection turns on failing to keep track of what is

being talked about

Consider counting again if there are twelve people in a room, the counting procedure will

generate the hypothesis that there twelve people in the room, and will stop with that

hypothesis. The data will confirm the conclusion. If there had been only ten people in the

room, the hypothesis that there are twelve would not have been generated by the counting

procedure, exactly because it would have been in conflict with the facts.

3.3.4. Difficulties with Frequency Interpretations

Objection:

If the model is found using the data, and the model is estimated and tested using that same

data, then the standard errors of coefficient estimates and the p values of statistical tests

may lose their usual meaning.9

Comment

Suppose a coefficient in a linear model is estimated by a maximum likelihood estimator.

Given the sample size and the assumption that the model correctly describes an infinite

population, the estimator has certain mathematical properties, such as its variance. Similarly,

given a model, data, and a sample size, the chi square statistic for that model, data and

sample size has certain mathematical properties, such as its p value. The clearest and least

controversial meaning of these statistics is that they are simply mathematical relations

between the stochastic model and the data set

Frequentists give these mathematical relations a further interpretation, and it is this

interpretation that is applied in the objection. Suppose we have a stochastic model, M, a

data set of size n randomly selected from some population, and a probability value, p, for

a chi square statistic calculated from the model and the data The interpretation is that the

p value of the statistic is to be understood as the long run frequency (or limiting relative

frequency) with which a value that extreme would be obtained in a sequence of random

samples of the same size, a drawn from a population that is truly described by the model

M. An analogous long run frequency or limiting frequency interpretation is given to the

standard errors of coefficient estimates.

Bentler, (6) and Bentler and Lee, [60]), make this objection to the practice of standardizing models on the same data that
is used to estimate coefficients or perform chi square tests of the models.
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The point of the objection is just that if the procedure we use involves somehow

estimating the model from the data, then the p values of tests and the variances of

estimators cannot be given this frequency interpretation. For if we imagine a sequence of

samples drawn from the population in which each sample is used to discover a model and

calculate a chi square value and estimate coefficients, then the model found will typically

vary from sample to sample in the sequence. At each step in the sequence we won't be

estimating the same coefficients as occur in M, and we won't be determining the value of

the chi square statistic for one and the same model M.

The objection can be put pictorially. The frequency interpretation of the p value of a test

statistic for M for a given data set is the frequency with which we would get a more

extreme value for the statistic in a sequence like this:

Procedure I

P O P U L A T I O N

generate X
/ I

Sample Saaple Sample Sample

Test M Test M Test M Test M.

But if the mode! M we generate depends on the sample data we obtain, then the

procedure corresponds to the sequence:

Procedure II

P O P U L A T I O N

Test M

Generate Mf Generate M1

Test Mf'Test M1

Generate M'

Test M1 • f...'.
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The p value of the chi square statistic as conventionally calculated does not in general have

anything to do with the long run frequency of values of chi square statistics in a sequence

of this second kind

Response.

The argument is a complicated muddle. First note that except in Monte Carlo studies and

the like, sequences of the sort described are almost never actually carried out We do not

do large numbers of repeated samplings of Head Start students, for example, and apply

one and the same model to them, or a model generating technique to them In practice we

look at no more than a handful of data sets for any collection of variables. We may, or

may not change the model we apply to later data sets based on how our initial models

perform when tested on earlier data sets. We do not chose a model, draw a sample from

a population, standardize the model and estimate it, choose another sample, and so on

infinitely, or even for a long while. In practice we argue over alternative explanations for a

few data sets, and move with our statistical or algorithmic techniques from problem to

problem.

So the attachment of long run frequencies to p values and standard errors is not a

description of scientific practice. Instead it is a way of trying to interpret what the

statistics mean. If you think that probabilities are mysterious but long run frequencies are

not then assigning a long run frequency to a probability claim is a way of making sense of

the probability.

We don't wish to challenge the frequency interpretation of probability. But we claim it

applies just as well to the p values and standard errors of models obtained by looking at

the data as to models obtained by not looking at the data We claim that for a particular

model M, obtained by examining data set D, the p value of a statistic calculated from M

and D can be given a frequency interpretation just like that in the first sequence shown

above. Suppose you draw a random sample D and use it to find a model M, and calculate

a value for the chi square statistic. Now the p value can be interpreted as the frequency

with which a value as large or larger would be obtained in a sequnce just like the first one

above, except for the first trial in the sequence:
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Procedure III

P O P U L A T I O N

Sample Sample Sample Sample Sample

Generate N

Test M Test X Test M Test M Test M.

So, if you want a frequency interpretation of the p value calculated for a model generated

by looking at the data, there it is, as clearly as it is for models generated without looking

at the data Moreover, so far as the frequency interpretation of probability is concerned.

Procedure I and Procedure III are indistinguishable.

Those who make the objection under discussion will very likely fuss at this point and say

something like the following

Further Objection:

Every stage in the sequence associated with the frequency interpretation of a statistic

obtained by a procedure must reproduce all of that procedure. If the procedure generates

a model from the data, then every stage in the sequence associated with the statistic must

also generate a model from the data So Procedure II must be used, not Procedure III and

Procedure II does not give a frequency interpretation of the p values or standard errors of

a fixed model, M.

Further Response:

The appropriate response is quite simple: why? A frequency interpretation is wanted, and

one has been given in Procedure III. Moreover it is an interpretation in which the

frequency agrees with the mathematical p value. Why insist that the only appropriate

frequency interpretation is the wrong one, namely the second of the three sequences we

have shown? We think the answer to this question is that two quite different concerns are

behind the objection, and they have been confused

One concern is to give a frequency interpretation of the statistics. We have shown that to

be a trivial matter. The second concern is with the reliability of the procedure and that is
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a quite different and much more complicated matter. Under the Neyman-Pearson account

of hypothesis testing, we may choose a significance level such as .05, and decide to reject

a model M if it yields a test statistic with a p value smaller than that significance level. The

significance level tells us, under the frequency interpretation, the frequency with which we

would erroneously reject M in a sequence of tests using samples drawn at random from a

population correctly described by M. The significance level tells us something about the

reliability of the testing procedure. It tells the probability that we will reject M, given that

M is in fact true. The procedure for generating the model has nothing to do with this

decision theoretic account of testing the model, and it can be applied to the testing of

computer generated models just as . the frequentist interpretation can be applied to the

statistics for such models. It applies to the model M in Procedure III as well as to the

model M in Procedure I.

But we can quite appropriately wonder about more than the reliability of a testing

procedure once a model is generated We can instead ask about the reliability of any

procedure for selecting theories, where the selection process may consist both of

generating models and testing them. Suppose our Procedure II uses sample data and

background knowledge to generate a model (or a set of alternative models) and then

computes the value of some statistic for. each model and rejects models whose probability

value for the statistic is too small. What is the probability that the true model will not be

generated, or will be generated but then rejected? What is the probability that a false

model will be generated and not rejected? The p values and significance levels don't tell us

the answers to these questions, because they don't tell us anything about the probability

that a procedure generates the true model.

All of this is perfectly true. But it is as true for humans as for computers. Imagine a

statistician who steadfastly refuses to look at the data when he is constructing a model to

explain it He or she generates a model then looks at the data and tests the model. We can

think of the statistician as a biological computer that generates hypotheses and tests them.

What is the probability that the statistician will generate but reject the true hypothesis? That

information is not given by the significance level of the test statistic applied In practice

humans use a complicated and unknown procedure for generating models. They use

information about prior samples to choose the models they will apply to new samples, they

use their prejudices and their imagination, and, often enough, they even look at the data the

model is to explain

The appeal of the objection lies in the almost automatic assumption that there is something

special about hypothesis generation done by people. But human beings go through some

sort of complicated procedure, the details of which we do not know, in selecting a model
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to be tested Presumably one explicitly rejects some models, fails to think of other models

and therefore implicitly rejects them, and so forth If we perform a chi square test of the

model generated by a human, we have of course not determined much about the probability

that the human failed to consider, or prior to testing considered but explicitly rejected, the

true theory. Whether the theory is generated mysteriously by a person, or less mysteriously

by a computer, the significance levels of test statistics mean the same thing, and they do

not mean the probability that the true theory has been rejected They mean, on the

conventional interpretation, the probability of rejecting the null hypothesis, on the

assumption that it is true.

Leaving aside the specific Neyman-Pearson framework in which probabilities are

frequencies, it makes sense to ask about the probability that a hypothesis generation

procedure will generate the true model for a sample of fixed size drawn from a given

population. If a model generation procedure is algorithmic, then there should be a

mathematical fact of the matter as to the limiting frequency with which true models are

generated in a sequence of the second kind (Procedure II). We can expect such

probabilities to be hard to calculate but one could approximate them with a long but finite

sequence of Monte Carlo trials. But in the same way, we can investigate the performance

of any human model generator in a long but finite sequence of the second kind And, we

can likewise investigate the performance of a human aided by a computer search. The

essential practical question is not the absolute probability that an algorithmic procedure

will generate a true model, but the comparison of the algorithmic procedure's behavior

with the behavior of unaided humans and with computer aided humans. We have no

experimental evidence to offer on this question, but we do offer in later chapters a great

deal of indirect evidence that people using the TETRAD program do better than people

without it

3.3.5. The Worst Case Objection

The objections we have considered so far rest on common misunderstandings. But there is

an objection to computer aided construction of statistical models that does not depend on

any misunderstanding. We will give it first informally, and then more carefully.

Objection:

An algorithmic procedure for finding models by examining the data and applying heuristic

search will produce some model, even for data that are in fact randomly generated from

independent variables. With enough variables and a small enough sample, correlations will

appear just by chance, even though the variables are independently distributed, and given
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such data an algorithmic procedure will find a causal model that accounts for the

correlations, even though they are in fact due to chance. Algorithmic procedures guarantee

that a model will be found that appears to account for the data, even if there is no true

account to be given beyond the chance effects of the sampling procedure.

Comment:

A little more precisely, the argument seems to have the following form:

1. Computer aided heuristic searches for statistical models must examine the data for

statistical dependencies among the variables, search for the model or models that best

explain those dependencies, subject the models thus obtained to statistical tests based on

the data, and output those models that survive the tests.

2. No procedure for searching for hypotheses is acceptable if there are circumstances in

which it is very probable that that procedure will yield a false conclusion.

3. For any procedure as in 1., a number r of independent random variables and a sample

size n can be found such that it is very probable that a sample of size n will show k

statistically significant correlations (or other statistic) among h of the r variables, for some

number h and for some number k. That is, it is highly probable that at least k correlations

will be sufficiently high that the probability of correlations as large as those occurring by

chance in a sample of size n drawn from a population of values of the h random variables

is less than .05, or whatever significance level is chosen.

4. In the circumstance described in 3., it is very probable that a procedure such as is

described in 1. will output false hypotheses.

5. Therefore, by 4. and 2., a computer aided heuristic search procedure is unacceptable.T0

Response:

This argument reveals a real problem about discovery. Before explaining why we think the

argument should nonetheless be rejected, we wish to point out that even if one is

completely convinced by the argument, it provides no reason not to use the TETRAD

program. For TETRAD, part of premise 1 of the argument is false. The argument depends

on the assumption that the models generated by heuristic search will be subjected to a

statistical test using the very same data that were used by the program in its search.

Nothing requires that TETRAD be used this way. The program can as easily be used to

This argument is modeled on a similar argument about estimation given by Ronald Giere (321.
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generate models using one sample, and the models it generates can then be tested

statistically on another sample. We have used this procedure, for example, in our study of

the summer Head Start data, described in a later chapter. Anyone convinced by the

preceding argument can use TETRAD in this way. But no one ought to be convinced

Premise 2. is incorrect for two reasons. First it puts all of the weight in judging a

procedure on the desirability of avoiding false theories. We think that is desirable, to be

sura, but it is at least equally important in judging a procedure to consider the desirability

of finding true theories, (see Levi, [61]) , or approximately true theories.

If the only criterion for comparing methods is that of avoiding commitment to a false

theory, then the optimal strategy is clear accept no theories, no matter whether they are

discovered by humans, by humans with computer assistance, or by computers alone. Instead

of any such strategy, we prefer to weigh the desirability of avoiding commitment to a

false theory against the desirability of not overlooking commitment to true theories, or

approximately true theories. Computer programs such as TETRAD help us to avoid

overlooking theories that may turn out to be correct They therefore assist us in avoiding

an important kind of error, and that contribution should not be ignored in assessing the

advantages and disadvantages of computer generated theory.

Second premise 2. assumes that a procedure ought to be judged by the worst imaginable

case. We think procedures should be judged by the expected case. In the majority of cases

researchers are pretty confident that the statistical dependencies they find are due to some

causal structure or other, even while they may be much less confident about any particular

explanation of the data In the vast majority of cases, if the investigator were not strongly

inclined to think that there is some explanation other than chance (or bad measurement

design) for the patterns found in the data, a causal model would not be sought in the first

place. Unless the researcher thinks there is a large probability that the dependencies in the

data are spurious, there is no sufficient reason not to use the data to search for the best

explanation of it Of course, some of the correlations found may be due to chance, and

that is the more likely the smaller the sample size in proportion to the number of variables

considered The investigator should certainly take account of that fact and where

appropriate test a model on new samples.

These theoretical arguments overlook the reality of practice. In practice, many social and

behavioral scientists behave much like natural scientists. Studies of really important

questions are repeated, and the dependencies that demand explanation are the robust ones.

In practice, researchers in the social and behavioral sciences, like their colleagues in the

natural sciences, will inevitably look at the patterns in the data in search for the best
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explanation of it Inevitably, alternative explanations of the same data will be offered by a

series of workers, provided the questions at stake are important enough. That is the

procedure in every empirical science worthy of the name. Artificial intelligence procedures

only aid people in doing better what they will do anyway, and, in most cases, ought to do.

In practice, TETRAD does not make the user overconfident We find that people who

develop models without the systematic heuristic search provided by the computer typically

place too much confidence in particular models. The computer does not mislead us by

generating a single, false theory, when in fact we should withhold acceptance from all

theories. Instead, the computer often warns us, when we have data that do not warrant any

particular conclusion, that there are a great many different ways to explain the phenomena,

none especially better than the rest, and that we are therefore not warranted in accepting

any particular conclusion.

Even while we regard the last argument given against heuristic search as unsound, it does

provide an important caution. Whether in astronomy or sociology, some statistical

dependencies will occur by chance, and if we account for them by causal processes, then

we will make a mistake. That is part of the burden of science: sometimes we are going to

be wrong.11

3.3.6. Explanation and Prediction

The strong conviction that "exploration" or "search" must be separated from confirmation or

testing has a long history, but the arguments for the separation are seldom clearly formed

The conviction is almost universal in applied statistics, shared by Bayesians and more

orthodox statisticians alike. Ultimately, the desire to separate the data used in discovery

and in justification, in theory generation and in theory testing, probably derives from the

conviction that only correct prediction counts as confirming a hypothesis. Explanation after

the fact is discounted, on the grounds that it is, or may be, ad hoc.

Something of the same prejudice is occasionally found in the natural sciences, but it is

much less prevalent The DENDRAL program [ 6 6 ] examines mass spectrograph data to

find the best explanation for that data, and chemists do not find this practice objectionable.

Physicists routinely reexamine old data in search of new explanations. Recently, for

example, data from one of the classic tests of the general theory of relativity, the Eotvos

experiment, was reexamined to argue that the principle of equivalence, which is fundamental

to the theory, is false. Einstein himself argued for the general theory on the grounds that

The technical worst case argument against procedures that generate theories by examining the data can be defeated by
taking a sufficiently large sample size. Thus in the case of Blau and Duncan's study of the American occupational structure,
with a sample size in excess of 20,000, theere is virtually no chance that the correlations and other dependencies among half a
dozen variables are due to chance.



65

it explained data about irregularities in the motion of Mercury, irregularities that had been

known *or sixty years prior to the publication of the general theory in 1915, and that had

been the subject of many alternative explanations. In fact it is clear that Einstein used the

anomalous motion of Mercury and the equivalence principle as guides in his long search for

a satisfactory relativistic theory of gravitation. Copernican astronomy was founded almost

entirely on historical observations of the sun, moon and planets. Most of these

observations had been made centuries and even millenia before Copernicus wrote, and had

been used to obtain other theories, notably the Ptolemaic theory and its modifications.

Cannizzarro's powerful argument for the (then controversial) atomic theory in 1860 was not

based on any newty confirmed predictions, but on a systematic review of the evidence that

had been accumulated in the preceding decades, and on the argument that the atomic

theory provided the best explanation for patterns revealed by that data

Whatever the rhetoric, most physical scientists act as if a good explanation can be nearly

as valuable as a good prediction, and they know that most of their science would not have

emerged if their predecessors had been forbidden to examine the data in searching for

theories, or if data once used to test a theory were thereafter forever tainted and useless

for confirmation.

People rightly worry that a theory constructed by someone after seeing the data will be

constructed specifically to account for that data If the theory is deliberately constructed to

account for the data, then the data provides no test of the theory, and hence no reason to

believe the theory. This worry is well founded, but misstated The notion of "constructing a

theory to account for the data" is complex. In one sense people certainly do construct

theories; they make them up, piece them together, put them forward In another sense, a

theory is simply an abstract object, like sets or numbers. The abstract objects may be

discovered, but discovering them isn't creating them theries are out there and have

whatever logical relations they have with the data, whether or not anyone happens to think

of them Either a theory has the right logical relations with the actual evidence, in which

case the evidence confirms it, or the theory has the wrong logical relations with the actual

evidence, in which case the evidence disconfirms it How a particular human being happened

to discover the particular theory ahs nothing to do with the matter. The job of a computer

program for discovering theories is to find the theories with the right logical relations to

the evidence.

How can this understanding of confirmation and testing be reconciled with the powerful

sense that some theories are unsatisfactory because they are "cooked" to account for the

data? The answer is that the "right' logical relations to the evidence consist in a lot more

than mrely being consistent with the evidence, or entailing the evidence. Cooked theories
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may entail the evidence but they don't entail the evidence in the right way. Put slightly

differently, if the evidence could have been predicted using one theory, but not using

another, then the first theory typically provides a better explanation of the evidence.

The succeeding chapters describe a conception of explanation that applies to linear causal

models, and that is more robost and demanding than the requirement that the theory fit the

observed statistical dependencies. The TETRAD program helps to search for theories that

provide such strong explanations, and while more evidence is always better than less, we

believe it makes no difference of principle whether the theories thus found are tested

statistically on the same data or on new data
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PART II

The TETRAD Program
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4. CAUSAL AND STATISTI * MODELS

4.1. INTRODUCTION

Our principal concern is with procedures for specifying a nrv models to account for

non-experimental or quasi-experimental data We are especu ~ested in procedures

for specifying the causal hypotheses implicit in a model for it u ~ hypotheses that are

often of chief importance in practice, and reliable statistical estir sually depends on

having the correct causal structure.

Most linear models in the social and behavioral sciences have a cau*

often the causal claims within a statistical model are the principal conct

investigatioa Sometimes, of course, no causal interpretation is given l

appropriate. More often, the causal claims in a model are signaled by

Psychologists often mark causal relations by specifying that some variables

and others are independent. Econometricians, and increasingly other social si

causal relations by specifying that some variables are endogenous and others art

oretation, and

ooint of the

*>del, or is

phrases.

oendent

mark

.^ nous.

*>fLinear causal models include a set of equations relating the variables of the model

stochastic assumptions about the probability distributions of those variables, joii

individually, and a set of causal relationships among the variables. Factor analytic r

are of this sort and so are path analysis models, structural equation models, models

random variable coefficients, and many regression models and econometric models. *

strategy behind the TETRAD program is to abstract the causal structure from a statistic*,

model, ignoring the equations and most of the statistical assumptions. We call this

abstract structure a causal model to distinguish it from the fuller statistical model

containing it The causal model consists of a directed graph.

It is possible to work with a very simple mathematical structure, the directed graph, rather

than with the more complex equations and distribution assumptions of a linear model,

because the directed graph of hypothetical causal relations determines important statistical

properties of any linear model that contains it The theoretical basis of the TETRAD

program consists of a number of new theorems about the connection between directed

graphs and statistical properties of models. These theorems are described in this chapter

and proved in chapter 10 of this book. Because of these connections, in later chapters

we will be able to ignore most of the usual mathematical paraphernalia of linear models and
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focus on graph structures.

The aim of this chapter is to explain how causal hypotheses can be represented by

directed graphs, to describe the relationship between directed graphs and the usual forms

of structural equation models, and to describe some of the most important statistical

properties that are determined by the directed graph of causal hypotheses in a model.

4.2. SOME TERMINOLOGY

Linear causal models usually contain parameters whose values are not specified For

example, a model may contain an equation that specifies that variable X is a linear function

of variable Y, but the linear coefficient may not have a specified value Such free

parameters must be estimated from the correlation or covariance data of samples drawn

from the population to which the model is supposed to apply. When we write of a

statistical model we mean a model that may contain free parameters. These parameters

can either be constants with an unknown value, or random variables. When we use the

phrase estimated model we mean the result of specifying the values of all free

parameters in a statistical model, using appropriate sample data Statistical models with

free parameters do not entail actual (non-zero) numerical values for the correlations or

covariances of their variables, but they can entail that the population correlations or

covariances must satisfy certain equations. These equations are sometimes called

overidentifying constraints. Estimated models imply definite numerical values for the

correlations or covariances of their variables, and these values can be compared with the

correlations or covariances exhibited by samples drawn from the population.

4.3. DIRECTED GRAPHS AND CAUSAL MODELS

4.3.1. Directed Graphs

Hypothetical causal relationships implicit in a model may be represented as a directed

graph. A directed graph is simply a list of pairs of variables. The first member of a pair

is assumed to be a direct cause of the second member of that pair.12 Directed graphs can

also be represented by line drawings. For six variables connected with socio-economic

status, say socio-economic status (SS), father's education (fe), mother's education (me),

father's occupation (fo), mother's occupation (mo) and family income (in), one simple causal

Variable X has a "direct" effect on variable Y in this sense provided the variation in Y in the population is due in part to
a variation in X that is not mediated by any other variables that are explicit in the model.
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theory can be represented by a list

<SS,fe>, <SS,me>, <SS,in>, <SS,fo>, <SS,mo>, <fe,fo>,
<e1,fe>, <e2,fo>, <e3,me>, <e4,mo>, <e5,in> }

or by a picture:

fe fo

I t
el e2

me mo

A
e3

in

t t
e4 e5

Figure 4 -1 : Directed Graph Representation

An ordered pair of variables that is in the list of a directed graph, or that is connected by

an arrow in the drawing, is called a directed edge. We can think of a directed edge

pictorially as simply the arrow connecting two variables. The variables connected by the

directed edges are vertices of the directed graph. A directed edge is said to be into its

second vertex (the head of the arrow) and out of its first vertex (the tail of the arrow).

Two vertices connected by a directed edge are said to be adjacent The number of edges

directed into a vertex is its indegree; the number of edges directed out of a vertex is its

outdegree.

4.3.2. Paths and Treks

Sequences of directed edges that connect variables specify a hypothetical path of causal

influence from one variable to the other. More exactly, we define a path from variable u

to variable v as a sequence of directed edges u —> w —> _ —> v, with all arrows

running in the same direction, i.e., the second vertex of each edge in the sequence is the

first vertex of the next edge in the sequence. For example, in the directed graph illustrated

above, the sequence <SS,fe> <fe,fo> is a path from SS to fo, and <SS,fo> is another path

from SS to fo. We will usually write such paths as SS —> fe —> fo, and fe —> fo,
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respectively. A path will be said to contain a variable or vertex if that vertex occurs in

one of the directed edges in the path. A path that contains a subpath beginning and ending

in the same vertex is said to contain a cycle or to be cyclic. A path that does not contain

a cycle is acyclic or open. A directed graph that contains a cyclic path is said to be cyclic

; a directed graph that does not contain any cyclic path is said to be acyclic.

A path in a causal model represents a hypothetical causal influence that runs from one

variable to another. Such an influence produces a correlation or covariance between the

variables that are linked by the path. A model that postulates a path connecting variables

that are actually correlated thus provides a means to explain the correlation.

A causal model can also explain a correlation between two variables as the result of other

variables that affect both of them The model depicted above predicts a correlation

between me and fo because each of these variables is assumed to be affected by a third

variable, SS. We call this sort of connection between two variables a trek, and we

understand a path to be just one special sort of trek.

More exactly, a trek between two variables u and v is either a path from v to u, or a path

from u to v, or a pair of paths from some variable, w, to u and to v such that the two

paths have exactly one variable, w, in commoa An open trek is a trek in which each path

is acyclic. The unique variable common to both paths in an open trek is called the source

of the trek.

For example, in the directed graph above, the pair of paths SS —> fo and SS —> mo is

a trek between fo and mo. SS is its source. The pair of paths SS —> fe —> fo and SS

—> mo is another trek between fo and mo, and SS is again its source. The path fe —>

fo is a trek with fe as its source.

There are a variety of ways to introduce new treks between variables. Suppose we want

to introduce a new trek between fo and me in Figure 4 - 1 . We could do this by adding a

directed edge fo —> me (Figure 4-2-a) , or a directed edge me —> fo (Figure 4 -2 -b) , or

a directed edge fe —> me, (Figure 4-2-c) . We can even add a new variable, call it G,

and introduce the directed edges G —> fo and G —> me, (Figure 4-2-d) , and this list is

by no means exhaustive.
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Figure 4-2: Alternative Ways to Add a Trek

(d)

Finally, we can include a correlation that is not accounted for by a causal model simply by

postulating an unexplained correlation between the appropriate variables, or between causes

of those variables that are external to the causal model. Such external sources of variance

are often called error variables. We can represent unexplained correlations of error

variables by including the error variables in the directed graph and drawing an undirected

line between them, as we do in Figure 4-3.
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Figure 4-3: Producing a New Trek by Correlating Error Terms

The correlated errors e2 and e3 create a new trek between fo and me, even though such

connections are not explicit in the definition of "trek" just given. The calculation of treks in

models with correlated errors is described in the next section.

Different ways of adding directed edges to an initial model may have differing statistical

effects because the total set of treks created may be different In Figure 4 -2 -b we add

me —> fo to our original model and no new trek (and hence no new source of

correlation) is created between fe and me. In Figure 4 -2 -a we add fo —> me to cur

model and we also create a new trek (and a new source of correlation) between fe and

me because of the link fe->fo->me. These are statistically inequivalent causal models.

Different ways of adding directed edges and unexplained error correlations can also have

differing statistical effects. In Figure 4 - 3 a correlated error is introduced between fo and

me. This model is also statistically inequivalent to the model of Figure 4 - 2 - a Such

statistical inequivalences prove to be extremely important in guiding the search for

alternatives to an initial model.

The number of directed edges in a model is important statistically because each additional

edge reduces the number of degrees of freedom of the model by one. The same is true

if instead of adding new treks, we add unexplained correlations of error variables. If we

add an unexplained correlation of the errors of fo and me we do not introduce a new

source of correlation between fe and me. But we do reduce by one the degrees of

freedom of the model.
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4.4. STATISTICAL MODELS FROM CAUSAL MODELS

Causal models form part, often a tacit part, of statistical models. To expand a causal

model into a statistical model equations must be written specifying the the relations among

the variables, and appropriate stochastic assumptions must be made. Since the work of

Herbert Simon [86, 8 7 ] , considerable thought has been given to how the causal part of a

model can be extracted from a set of equations and stochastic assumptions. In practice, a

stylistic convention is often adhered to: writers give an affected variable on the left hand

side of an equation and its direct causes on the right hand side of an equatioa With this

convention in mind, one can often infer the directed graph a theorist intends from the

equations given This kind of reconstruction of the causal model from the equations is not

however, the sort of reduction of causal hypotheses to properties of equation systems

that Simon was after, since it depends on a stylistic convention. We are concerned with

the reverse problem: Starting with a causal model, which is merely a directed graph, how

are the equations of a statistical model to be obtained? For that, either of two simple

process will suffice.

Method I

To get a statistical model from a directed graph simply do the following:

1. Attach a distinct parameter to each directed edge in the directed graph of the modeL

For example:

2. For each variable in the directed graph that has a causal predecessor, (Le., the variable is

not of zero indegree) add an "error" variable directed into that variable but not into any
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other variable.

Thus the model above becomes:

e4 e5

3. For each variable in the model that is not of zero indegree, write an equation specifying

that variable as a linear function of the variables directed into it The parameters are the

linear coefficients. We have there

f e

f o

me

mo

i n

= a i

« a.

* â

as a

SS H

| S S H

| S S '

| S S '

H e l
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H e5
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4. Assume that any pair of variables that are not connected by a trek are statistically

independent

5. Specify that the linear coefficients are either constants of undetermined value, or have a

determinate value, or are random variables distributed independently of each other and of

all other variables in the model.

6. Consistent with the above, make whatever assumption about the distribution of the

random variables seems appropriate.
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Method II

The models obtained by Method I all have uncorrelated errors. Since there are no treks

between the e variables, they are all assumed to be uncorrelated with one another. That

assumption is unnecessary. Instead, when a full statistical model is constructed, follow

steps 1 through 3 of Method I, but rather than assuming that the errors are uncorrelated,

postulate a correlation of the error variables directed into the two variables.

When correlated errors are introduced into a model, the treks between variables are

calculated as if a correlated error between two variables were really a new unmeasured

common cause affecting both variables.

In the same way, if a model has two latent variables, and no causal connection between

them is specified, but it is assumed that the latent variables are correlated, the treks

are computed as if the latent variables had a common, latent cause.

Finally, consistent with these conventions, postulate that variables not connected by a trek

are statistically independent For example, suppose one has a causal model like that

illustrated but with a correlated error between fe and fo rather than the directed edge

from fe to fo. Then simply take the initial model:

f e fo me mo in

and proceed as in steps 1, 2 and 3 to obtain Figure 4-4.
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Figure 4-4:

Finally, specify that the variables e2 and e1 are correlated Pictorially. the final model can

be represented by drawing an undirected line12 connecting e2 and e l , as we do in Figure

4-5.

fe fo me mo in

t 1 t t ;
el e2 e3 e4

i

e5

Figure 4-5: Statistical Model With Correlated Error Terms

The procedures in the TETRAD program assume that if a full statistical model is associated

with a causal model suggested or analyzed by the program, then the statistical model can

be obtained in one of the ways just described In a later chapter we will describe how to

turn TETRAD models into models suitable for estimation and statistical testing by standard

12
Somt writers use t% "•crow" with two h««4s and no tail to signify sue* correlations
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packages such as LISREL and EQS.

If the linear coefficients are assumed to be constants and not random variables, then the

models that result from a directed graph through the procedures just described are

structural equation models.14 So far as the TETRAD program is concerned many of the

assumptions usually made in structural equation modelling can be considerably relaxed The

program will work for models in which the linear coefficients are not constant but instead

are independently distributed random variables. It applies whether or not the error

distributions for different members of the sample have the same probability distribution, so

that models in which the variance of the error variables is not constant (heteroscedastic

models) are permitted The variables of the model can be standardized or not

4.5. TREKS AND COORDINATING PATH EFFECTS

The covariance of two random variables, X and Y, is just the difference between the

expected value of the product XY and the product of the expected value of X and the

expected value of Y, that is Exp(XY) - Exp(X)Exp(Y). The correlation of X and Y will be

their covariance divided by the product of their standard deviations. We assume that the

random variables always have distributions so that these statistics are well defined The data

for which dausal models are to account are usually covariances or correlations, and it is

data of this kind that the TETRAD program is meant to address.

The first job of a theory is to explain the data In the case of linear statistical models,

that usually means explaining the correlations or covariances among the measured variables

in some sample. Suppose we have a statistical model, and the linear coefficients in that

model are somehow specified, whether by statistical estimation, or a priori, or however.15

The estimated statistical model does not determine unique values for the covariances of the

measured variables in the population it is to describe, nor does it determine probability

distributions for covariances in a sample drawn from the population.

To calculate population covariances we need to know the variance of every variable of

zero indegree, including the error variables, and we need to know the covariance of any

The stochastic assumptions that usually accompany structural equation models can be understood in the following way: The
structural equations are understood to apply to each member of the sample. Thus the equations above should be indexed by i.
where i denotes the ith member of the sample. The linear coefficients are not random variables and are assumed (usually
contrary to fact) to be constant in the population, e is assumed to be statistically independent of e if i is not equal to j .
Usually, e and e ^ are assumed to have the same probability distribution. Similarly for e , e ., etc. These assumptions

characteristic of structural equation modelling are appropriate if the stochastic elements are attributed to random sampling with
replacement.

In the case of models with stochastic coefficients, assume the population mean value is specified.
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pair of variables that have, according to the model, an unexplained correlation. These
variances and covariances, together with the directed graph and the values of the linear
coefficients, determine the population covariances of the measured variables according to
the model.

Return to the simple model we considered earlier.

Figure 4-6:

One trek between fe and fo is <SS, fe>, <SS, fo> with coefficients a, and ar and the

other is <fe, fo> with coefficient a0. With any path in the directed graph of a model we

associate the product of the linear coefficients associated with the graph. Thus the path

<SS, fe>, <fe, fo> is associated with the product a,as. The coefficient product is unique up

to permutation of the coefficients in the product no two distinct paths have the same

product of coefficients. Since a trek consists of at most two paths, we can also associate

each trek with a product of linear coefficients, namely the product of all of the

coefficients for any edge in each path in the trek. Thus the trek <SS, fe>, <SS, fo> has

the product a,a2. Again, the product of coefficients associated with any trek is unique up

to permutation of the factors, and no two distinct treks have the same product of

coefficients.

A coordinating path effect for two variables X. Y having a trek with source S connecting

X and Y is the product of the trek coefficients multiplied by the variance of S. For

example, the coordinating path effect for the trek <SS, fe>, <SS, fo> in the preceding

example is just a^VarlSS).
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For any graph, the covariance of two variables, X, Y is Just the sum, over all distinct

treks between X and Y, of the coordinating path effects.

The covariance of fe and fo, Cov(fe, fo), in the preceding example is just a^VartSS) +

a6Var(fe). In applying the rule, source variables that have unexplained covariances postulated

by the model should simply be viewed as having a common latent cause16 whose variance

is equal to the unexplained covariance.

So the population covariances a model implies are determined by the variances of its

source variables, the linear coefficients, and the directed graph of causal relations

postulated by the model. The probability distribution of the sample covariances is

determined by these factors plus the joint distribution assumed for the variables. The

directed graph itself determines very little about the covariances. In fact all that the

directed graph may imply about the values of any particular covariance is that if the

covariates are not connected by a trek, then their covariance is zero. But if we are to

search for alternative models to explain the data, and the automatic part of the search uses

only the data, the directed graphs of alternative models, and some distribution assumptions,

then the directed graph alone must determine something about the population covariances.

And it does. The directed graph of a model determines patterns among the covariances of

the measured variables in the population, without determining unique values for those

covariances. These patterns are overidentifying constraints.

4.6. CONSTRAINTS ON CORRELATIONS

4.6.1. Overidentifying Constraints and Directed Graphs

Before the coefficients of a statistical model are estimated or specified, the model does

not imply unique values for the population covariances, but it can imply that whatever those

covariances may be, they must satisfy certain conditions. Whatever the population

covariances may be, if they are consistent with the model then they will satisfy these

conditions, no matter what values the linear coefficients may have. Conditions of this kind

are called overidentifying constraints in the econometrics literature, for the reason that

when a model implies such constraints there are generally multiple ways to estimate its

parameters. Blatock [ 7 ] calls these conditions prediction equations, because they also

represent implications of a statistical model that can be tested more or less directly.

That is, if X and Y are assumed to. have correlated errors, in applying this rule one treats them as though the model
contained a latent variable T and directed edges T •-> X and T --> Y whose associated coefficients are fixed at one.
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Certain important kinds of overidentifytng constraints are determined entirely by the

directed graph of a model, in order to determine whether a statistical model implies these

sorts of constraints, one need only examine the causal model embedded in it Although

there are other kinds, the two sorts of overidentfying constraints that we shall consider,

and that are entirely determined by the directed graph, are vanishing partial correlations

and tetrad equations.

4.6.2. Vanishing Partial Correlations

Consider the simple example given by the following causal model and associated structural

equation modet

x l -^H x2 x3

I
e2 e3

Figure 4 -7 :

Given any arbitrary numbering of a set of measured variables, the correlations of the

variables can be arranged into a square, symmetric matrix whose diagonal elements are all

unity. If the correlations are those that obtain in the population, the matrix is called the

population correlation matrix If the correlations are those in a sample, then the matrix is

the sample correlation matrix In the present example we can write the population

correlation matrix as:

p,, p»

1 a
a 1
ato t»

ah

1

where a and b are undetermined linear coefficients.

In this simple example the model implies a constraint on the correlation matrix The

constraint is easily obtained by considering the treks in the model. First however, we wiil

derive the constraint in the conventional way. by means of the partial correlation
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coefficient The partial correlation of x1 and x3 with respect to x2 is defined to be (see

Anderson, [2]):

' 1 3 ' 1 2 ' 23

1 / 2

which in this case

ab - ab
= 0

- a 2 ) 1 / 2 (1 - b2)1 / 2

Thus the model implies that

which is a constraint on the correlations.

Note that the derivation of this constraint did not depend on assigning any particular

numerical values to the coefficients a and b. The model will imply the vanishing partial

correlation no matter what values a and b might have.17 We are especially interested in

models that imply constraints no matter what values the non-zero linear coefficients may

have. We will say in such cases that the model implies the constraint or entails the

constraint or sometimes for emphasis that the model strongly implies or strongly entails

the constraint In cases in which estimated models determine a constraint because of

particular values of the parameters, we will say that such a model weakly implies the

constraint

We can derive the same constraint by considering the treks in the graph of the model: If

the variables are standardized the correlation between two measured variables is equal to

the sum, over all treks connecting the variables, of the product of the coefficients

corresponding to the directed edges in the trek (see Heise [43]). Consider the graph of

the model again:

Unless, of course, a * b * 1. in which case the partial correlaion is not defined.
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Figure 4-8:

In this case there is but one trek between x1 and x y hence:

23

or

23

It turns out ithat this derivation does not depend on the assumption that the variables are

standardized. We do not need to know or stipulate anything about the variances of the

variables in order to derive the vanishing partial correlation from the directed graph. There

is argeneral principle involved in the example

Theorem 1: The directed graph of a model alone determines the vanishing partial

correlations the model implies.

This theorem (as well as the remaining theorems stated in this chapter) holds no matter

what the graph may be It holds for cyclic graphs as well as acyclic graphs. In Chapter 10

we prove the following theorem, which provides a condition on directed graphs that is

necessary and sufficient for the implication of a vanishing partial correlation:

Theorem 2: For any directed graph, G, and any three distinct variables, x, y and z which

are vertices of G, the following two conditions are equivalent

(1) every trek between x and z contains y, and either every trek between y
and z contains an edge directed out of y or every trek between x and y
contains an edge directed out of y;
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(2) any model for which G is the causal graph implies that p ~ px p - 0.

This theorem means that the partial correlation constraints implied by a linear causal model

can be determined entirely from its directed graph. For example the directed graph:

x1 x2 " • * x3 " • * x4

(where we neglect to write the error variables explicitly) entails that

as well as other vanishing partial correlations. The partial correlation p22 3 tis undefined

because its denominator is identically zero, but the numerator meets the conditions x>f the

theorem if in the theorem we take x to be x2, y to be x3 and z to be x3 3nd note -that

there is in that case no trek between y and z, so all treks between y and z (of -which

there are none) satisfy the condition that they contain an edge out of y.

There are fast algorithms for determining the properties of directed graphs "that zre

relevant to the implication of vanishing partial correlations, and the TETRAD ^program

embodies such an algorithm. In Chapter 10 we give the algorithm and prove its adequacy.

4.6.3. Tetrad Equations

Tetrad equations involve products of correlations among a set of four measured variables.

There are three possible inequivalent products of two correlations which involve all and

only four variables. Eg., if the four variables are w, x, y, and z, then the three possible

correlation products are

P P
P P
P P
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Tetrad equations say that one product of correlations (or covariances) equals another

product of correlations (or covariances). There are three possible tetrad equations, any

two of which are independent in a set of four variables. They are:

The simple modet

p p =

• • » ' y*

P P =

P P =

' • « ' y l

f e me mo

entails the tetrad equations:

Figure 4 -9 : One Factor model

' io.im' mmjno ' iojnm* ft.mo

* fo,mo' im.mm Pio.tmPmm.mo

Pio.moPim.mm * io.mm* im.mo

More complex models can entail much more complicated sets of tetrad equations.

In simplest terms, a tetrad equation is implied by a causal model if and only if the directed

graph associated with the model possesses an appropriate symmetry property. Suppose we

give each directed edge in Figure 4 - 9 a distinct letter as a label For example:
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f e fo me mo

4
e2

e3 e4

Suppose we traverse the treks between measured variables, forming the product of the

labels of all of the directed edges we pass over. In this case there is but one trek

between each pair of variables. If we follow the trek connecting fe and fo we pass across

the directed edge from SS to fe, with label a, and across the directed edge from SS to

fo, with label b. So we form the product of labels, (ab), and for reasons that are explained

in detail in Chapter 10, we associate that product of labels with the correlation, p{ fQ, of

fe and fo. In the same way, we associate the correlation of me and mo with the the

product (cd). of fe and me with the product (ac), of fe and mo with the product (ad), and

so oa This labeled graph has the following symmetry: If we multiply 'the label -product (ab)

by the label product (cd), we get the same total product that is obtained by multiplying the

label product (ad) by the label product (be):

(ab) (cd) = (ad) (be)

On substituting the associated correlations for the respective label products, this equation

becomes a tetrad equation

"\%.\o* m«,mo *

In the same way, the two other tetrad equations implied by this model can be derived from

examining the symmetry of label products.

Theorem 3: The tetrad equations strongly implied by a statistical model are determined

entirely by the directed graph of the modeL
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The tetrad equations implied by a causal model are therefore also implied by all statistical

models whose causal hypotheses are represented by the causal model. The causal model

makes certain assumptions about the joint distribution of some variables, and about the

existence of moments , but does not otherwise restrict the distribution of each variable

individually. How the variables are distributed does not matter the tetrad equations are

implied no matter whether the variables are standardized or unstandardized, normally

distributed or not

In fact something much stronger than Theorem 3 holds. There exists an algorithm for

deriving the tetrad equations implied by any directed graph. The algorithm is described in

chapter 10, where its adequacy is proved

4.6.4. Tetrad Equations Derived from Vanishing Partial Correlations

We have said that the implication of both vanishing partial correlations and of tetrad

equations is determined by the directed graph of a model, and we have said in Theorem 2,

what property of a directed graph determines whether or not that graph implies a

particular vanishing partial correlation. We have noted the symmetry property that

determines tetrad equations, and that property in fact gives an entirely graph theoretic

means of computing the tetrad equations implied by a model. One might wonder whether

there is some connection between vanishing partial correlations and tetrad equations. There

is. A directed graph implies a tetrad equation if it implies that four numerators of partial

correlations vanish:

Theorem 4: A directed graph G, implies the tetrad equation

if for some variable v it implies the four conditions:

P ~ P P = 0
' IJ ' iv' jv

P\k ^iv/\v "~
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x3 x4
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implies that

and the reader can verify that the numerators of the partial correlations

must all vanish.

In the model

>24.3

>23.3
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me

e 3

mo

all three possible tetrad equations among fe. fo. me and mo are implied, because the model
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implies that all of the partial correlations among these variables vanish when SS is
controlled for.

The converse of this theorem is not true A model can imply a vanishing tetrad difference

without implying vanishing partial correlations that in turn imply the tetrad equation. For

example, the model (in which we neglect to exhibit error terms*

implies that P}5p22 — P1%PX2
 = ®* ^u t '* does not imply any corresponding set of vanishing

partial correlations.

4.6.5. Grpahs and Constraints

Because of the preceding theorems it makes sense to speak of the vanishing tetrad

differences and vanishing partial correlations as implied by a graph. A few elementary

definitions enable us to state several important properties of graphs and the constaints they

imply. A graph can be described by it set V of vertices and its set E of edges. G s

<V,5> is completely disconnected if and only if it has no edges. La, if and only if E is

empty. G is a subgraph of G if and only if V V and E E With these definitions, the

following facts hold.

Theorem 5: A completely disconnected graph implies all possible vanishing tetrad

differences and vanishing partial correlations among its vertices.

Theorem 6: If G is a subgraph of G, then G implies every vanishing tetrad difference and

every vanishing partial correlation implied by G

4.6.6. Other Constraints

There are many other forms of constraints that can be implied by linear models. Models
with six or more measured variables can imply vanishing sextad differences, for example,
and models with eight or more measured variables can imply vanishing octad differences,
and so oa A model only implies higher order constraints of this kind, however, if it also
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implies a set of vanishing tetrad differences that also imply the higher order vanishing

differences. So in a sense, these higher order constraints are nothing new.

A model may also imply higher order vanising partial correlations, in which the effects of

two or more variables are controlled for. TETRAD does not compute higher order

vanishing partial correlations that may be implied by the model.

There are in addition higher order constraints that are independent of tetrad constraints. A

model with at least five measured variables may imply pentad constraints, which assert

that a sum of products vanishes, where each product has five correlations as factors. If a

model implying pentad constraints has but one common source, then the pentad constraints

will be implied as well by the tetrad equations the model implies, but other models can

imply pentad constraints that are independent of vanishing tetrad differences.

The existence of other constraints means that a procedure, such as TETRAD, that searches

for models by attempting to explain the vanishing tetrad differences and vanishing partial

correlations found in the data, will tend to be too generous. It will generate models that do

not explain higher order constraints that hold in the data, and it will also generate models

that imply higher order constraints that do not hold in the data We will see in Chapter 8

that TETRAD occasionally generates alternative models that perform very differently when

tested statistically.

4.6.7. Latent Variables and Overidentifying Constraints

Nearly all causal models contain "latent" variables. Latent variables are simply any variables

that occur in the model but that have not been measured The most ubiquitous sort of

latent variables are error terms, but latent variables also often occur as common causes of

several measured variables, and unlike error variables they usually carry with them some

theoretical interpretatioa

Notationally, TETRAD distinguishes between latent and measured variables by whether or not

the first character in the variable's name is capitalized If the first letter is capitalized,

TETRAD interprets it as a latent variable. In our figures, we follow the same convention.

We also follow a somewhat standard convention of putting measured variables in boxes,

interpreted latent variables in circles, and uninterpreted error terms in nothing at all.

"Latent' does not mean " unobservable," and merely because a variable happens not to be

among those measured in a study does not mean that the the variable could not be

measured, were we careful and clever enough. Some philosophical and methodological
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issues concerning latent variables will be discussed in a later chapter. For now, we wish

only to explain some connections between latent variables and overidentifying constraints.

We know from Theorem 4 that a model implies a tetrad equation if it implies that all of

the numerators of their partial correlations vanish when taken with respect to some

common variable. If the converse of Theorem 4 were true, then whenever we found a set

of tetrad equations to hold, and also found that among the measured variables, no set of

vanishing partial correlations hold that imply the tetrad equation, then we could conclude

that the tetrad equations could only be explained by a model that introduces a latent

variable. We know from the model shown in Figure 4 - 9 that the converse of Theorem 4

is not true. We have, however, found no case in which a model without cycles implies a

tetrad equation unless it also implies a set of vanishing partial correlations that imply that

tetrad equation. Our experience is not proof that such models do not exist, but we suggest

the following two heuristics:

\) If a set of tetrad equations hold among measured variables, and no vanishing partial

correlations hold among the measured variables that imply the tetrad equations, and no

cyclic model without latent variables is acceptable, then ceteris paribus a model with

latent variables provides the best explanation of the data.

2) If a set of vanishing partial correlations among a set of measured variables hold in

the data and imply tetrad equations that also hold, then do not introduce a latent

variable as a common cause of the measured variables unless there is good substantive

reason to do so.

4.7. CORRELATED ERRORS ARE NOT EQUIVALENT TO DIRECT
EFFECTS

Part of the power of the TETRAD program lies in its ability to use overidentifying

constraints to discriminate among circumstances in which X causes Y, Y causes X or X and

Y have correlated errors. Models with direct causal effects between their measured

variables may have quite different statistical properties from models in which the direct

effects are replaced by correlated errors. That is because the statistical implications of a

causal model are determined by its set of treks, and directed edges can create very

different treks than those created by correlated errors. Since this aspect of causal models,

although simple enough, is sometimes misunderstood, we will give a more formal

demonstration.

Two examples of linear causal models, including both graphs and equations, are given
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below. Structurally, they are typical of many measurement models in sociology,

psychometrics and social psychology.

e l e2
f 4 f

e3

x2 x3 X4 x5

e4 e5

Figure 4-10: Model 1

The equations for Model 1 are:

or in matrix form

x1 = a.F + e1

x2 = a / + e2

x3 = a3F + e3

x4 = a4F + e4

x5 = a5F + e5

A(F) + E

Here X is the column vector of the xi, A is the column vector of the a., (F) is the matrix

whose one element is F, and E is the column vector of el To get the correlation matrix

for this model we multiply each side of the matrix equation by its transpose and take the

expectation value of both sides of the resulting matrix equatioa (We assume that the

means of all variables are zero and that F has unit variance).

The result is
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= Exp(XX*) = AIIA1 + T + ExpMRE') + ExpfEfRA')

The graph implies (under the assumption that variables between which there is no trek are

statistically independent) that the last two terms on the right hand side are zero. Intuitively,

this is because the model implies that the error terms are independent of the latent factor

F. Here II is just the one element matrix consisting of the variance of F. T, the covariance

matrix of the e. variables, is a symmetric matrix with non-zero diagonal and with its (1,21

(2,1), (2,3) and (3,2) members also nonzero. The independent parameters of the model

consist of the five members of A (the a), the variance of F, the five diagonal members of

T and any two independent non-diagonal non-zero members of T. A statistical model is

not yet fully determined until one specifies what family of probability distributions the

parameters parameterize. If, as is commonly assumed, the distribution is multinormal, then Z

parameterizes the distributions since the means are all assumed to be zero.

The components of the preceding matrix equation assert that

P.. = a.a.
' «j • J

Elementary algebra then shows that this model entails that

^13^45 "" ^14^35 ~" ^15^34

We recognize these equations as three tetrad equations.

Consider a second model, shown in Fig. 4 - 1 1 .



e l e2 e3 e4

Figure 4-11: Model 2

The equations for this model are:

x l = afF + e l

x2 - axl = â F + e2

x3 - bx2 = aaF + e3

x4 = a F + e4

x5 = atF + e5

In matrix form these equations are

BX = AtF) • E

or equivaiently.

95

X =

where X is a column vector of the xi variables, A is the column matrix of the a., E is the

column vector of the variables ei, and
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B =

1

-a

0

0

0

0

1

-b

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

The matrix B*1 looks like B except that -a is replaced by a and -b is replaced by b and

the (3,1) element is not zero but ab.

The covariance matrix is again obtained by multiplying both sides of the matrix equation by

their respective transposes, and taking expectation values. This gives:

Z = Exp(XX<) = B^ ^'1*) + Exp(B"1A(REtB"lt)

where II is the variance matrix of F, and T is the covariance matrix of the ei variables.

The last two terms on the right vanish. That is again because there is no trek between any

ei variable and F. Therefore F and each ei must be statistically independent which implies,

since all variables have zero means, that the expected value of F*ei is zero for all i. For

the same reason the expected value of the product of any two distinct ei variables is zero.

All of the off-diagonal elements of T are therefore zero.

Examining the components of the covariance matrix, we find that the equation

35

is not implied, which proves that the two models imply different constraints on the

covariance matrix, and are therefore inequivalent

4.8. STATISTICAL ISSUES, BRIEFLY CONSIDERED

The parameters of a model must be estimated from sample data, and sample data must be

used to perform statistical tests of a model. The TETRAD program does not do statistical

estimation of parameters, and performs only statistical tests for vanishing tetrad
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differences and vanishing partial correlations, but no tests of models or of the significance

of parameter estimates. TETRAD is a program for helping in model specification, not for

estimating parameters and performing statistical tests of models. Thus the program is best

used in conjunction with a statistical package that will perform these analyses. There are

several packages of this kind some of them virtually indistinguishable save for ease of use

or speed of processing.

Different statistical procedures are favored in different social science disciplines, often for

reasons that are unclear. Econometricians tend to prefer least squares estimates of

parameters, perhaps because they so often consider regression models. From a graph

theoretic point of view, regression models are simply those in which one dependent

variable is affected by several independent variables, and there are no further causal

connections or correlated errors, so that the system can be represented by a single

equation.) For more complex models, multi-stage least squares procedures are often used

in econometrics. In other social sciences, full information maximum likelihood estimators are

more commonly used These procedures have been automated in the LISREL computer

program and in the recently released EQS computer program. In later chapters we will

estimate parameters using the EQS program.

Hypothesis tests are also performed in different ways in different social science disciplines.

There are, for example, various tests of the assumption of linearity but they are rarely

performed in many social science disciplines in which linear models are used A specific

model can only be tested provided the model implies some constraint on the

variance/covariance matrix. Regression models do not, and so the tests performed on them

are usually only tests of the estimated regression coefficients. In social sciences outside

of econometrics, models are often subjected to " chi square" tests in conjunction with

maximum likelihood estimates of parameters. An especially clear discussion of these tests

can be found in Fox , [ 26 ] . These tests compute a statistic that, on the assumption that

the variable distribution is multinormal, is asymptotically distributed as chi square with the

number of degrees of freedom equal to the number of variances and covariances among

the measured variables minus the number of free parameters (including variances) of the

model. Chi square statistics of this kind are computed by both the LISREL and EQS

programs.

The proper use and value of these statistical tests is a controversial matter which we will

discuss in Chapter 5.
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5. THE STRUCTURE AND METHOD OF TETRAD

5.1. INTRODUCTION

The TETRAD program helps to search for good models of correlation or covariance data

This chapter describes the methodological principles behind TETRAD, how they are realized

in the program, and how these principles can be used with the program in searching for

good causal models. It lists the output the program provides, describes some of the

calculations that go into the output, and illustrates of how the output can be used to find

good causal models. It also discusses goodness of fit tests and compares TETRAD'S

search strategy with other search strategies. More detailed mathematical characterizations

of the fundamental algorithms of the program, and proofs of their adequacy, are given in

chapter 10 of this book. Several cases illustrating the use of the program on empirical

and simulated data are described in later chapters.

5.2. THE METHODOLOGICAL PRINCIPLES THAT UNDERLIE
TETRAD

5.2.1. The Inference Problem

Suppose we have a set of covariances or correlations, and an initial linear causal model to

account for them. The initial model may contain latent variables, but it is otherwise very

simple in the sense that it postulates very few direct causal connections in order to

account for the measured correlations. More technically, let us suppose that the initial

model contains one and only one trek for each measured non-zero covariance. If the

model is estimated from the correlations or covariances and tested, say by a chi square

test, it may do very poorly, and may in fact be rejected by conventional standards. Even

so, suppose we have reason to think that the model is plausible, and that it may well be

true but incomplete. There may be other causal connections among the. variables, there

may be correlated errors, or there may be omitted unmeasured variables that have an

effect on several of the measured or unmeasured variables. If the initial model yields a chi

square value with zero probability, but we think its positive causal claims are nonetheless

plausible, then the problem is to find the "best" elaborations of the initial model.

But what does "best" mean? No one has a complete answer to that question, but we
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propose a mixture of considerations about scientific explanation:

Other things being equal, the best models are those that imply patterns or constraints

judged to hold in the population, that do not imply patterns judged not to hold in the

population, and that are as simple as possible.

For brevity, we will sometimes say that constraints that are judged, on the basis of a

sample, to hold in the population are constraints that hold in ths data

5.2.2. Implying Constraints That Hold in the Data

By Spearman's Principle we mean the following:

Other things being equal, prefer those models that, for all values of their free

parameters (the linear coefficients), entail the constraints judged to hold in the

population.

This is a principle stated ceteris paribus. it can be defeated if one has reason to think that

a constraint on the correlation matrix is satisfied by chance, or if some model that violates

the principle has other extraordinary virtues, or if one has reason to think that the general

assumptions of linear modeling are inappropriate to the case. The reason we call this

Spearman's principle are given in chapter 9.

5.2.3. Not Implying Constraints That Do Not Hold in the Data

By Thurstone's Principle, we mean the following

Other things being equal, a model should not imply constraints that are not supported by

the sample data.

We call this idea Thurstone's Principle, although we mean no historical attribution, because it

is derived from a principle that is fundamental to factor analysis. In factor analysis, one

reduces the difference between predicted and observed correlations (the residuals) by

introducing additional causal structure. The heuristic we use to reduce the residuals is to

avoid implying constraints that are not supported by the data
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5.2.4. The Simplicity Principle

Nearly every methodologist, whether philosopher, statistician or scientist has emphasized

the importance of the virtue of simplicity. It is surprising that something so widely admired

should be so difficult to characterize, but there are no satisfactory general accounts of the

notion of simplicity that apply to the variety of scientific contexts in which the notion is

used. In the special case of causal models, we understand simpler models to be those that

posit fewer causal connections. In effect, we suppose an initial bias against causal

connections, and require that a case be made for any causal claims. This requirement has

nothing to do with whether the data are experimental or non-experimental; in fact it is

because of this bias that good evidence and arguments are demanded for controversial

causal claims, whether about the efficacy of a drug or the effects of pornography.

5.2.5. The Principles Conflict

In practice, the three principles interact and conflict Spearman's principle will tend to be

satisfied by simple models, since such models imply a great many constraints. But

constraints are seldom exactly satisfied in any sample, and thus on the average the fewer

constraints implied, the better Thurstone's principle will be realized Modifying a model to

account for more and more of the empirical covariances generally means adding more and

more free parameters, and thus increasing the complexity of the model, and losing degrees

of freedom. The TETRAD program provides information about how modifications to an

initial model affect both Spearman's and Thurstone's principles. In effect, the user is free to

judge how the explanatory principles are to be weighted

5.3. HOW THE METHODOLOGICAL PRINCIPLES ARE REALIZED
IN TETRAD

5.3.1. The Constraints That TETRAD Calculates

To satisfy Spearman's or Thurstone's Principle strictly, we would have to search for the

models that imply all of the constraints that are judged to hold in virtue of the sample

correlations. In practice, we cannot do that First, we do not know how to test for all

forms of constraints, and second we do not have fast algorithms for computing all forms

of constraints implied by an arbitrary model. Evidently, what is required is some heuristic

procedure for searching and testing the vast space of elaborations of the initial model.



102

Our strategy is to look only at constraints of two special kinds: vanishing tetrad differences

and vanishing partial correlations. These constraints are numerous enough that they help to

discriminate between alternative elaborations of an initial model they are rapidly computable

implications of models, and statistical tests are available for them. Further, these two kinds

of constraints have nice inheritance properties that can be used in building up the best

models from the initial model. Adding directed edges or correlated errors never increases

the number of vanishing tetrad differences and vanishing partials that are implied by a

model. Thus if at any stage a model does not adequately meet Spearman's criterion, no

further elaboration of that model will either, and we can avoid considering all such

elaborations.

5.3.2. Comparing Models

TETRAD will, upon request print a table listing every tetrad or vanishing partial equation

that is implied by a model and every equation that holds to within a user set significance

level. Each time a model implies an equation judged to hold in the population, the model

satisfies Spearman's principle for that equation. TETRAD automatically calculates the number

of equations that hold at a particular significance level the number of those equations that

are implied by the model (the number explained), and the number of equations that are

judged to hold but that are not implied According to Spearman's Principle, other things

being equal we prefer models that explain a greater number of equations that are judged

to hold in the population.

If a model implies an equation that is judged not to hold in the population, then the model

violates Thurstone's Principle for that equation. TETRAD automatically calculates the number

of equations a model implies that do not hold to within a user set significance level Some

equations violate Thurstone's principle more severely than others, i.e they have larger

residuals than others, so it is not only the number of equations that violate Thurstone's

Principle that matters, but the total residual. TETRAD automatically sums the residuals of

all the equations implied by a model and reports that number as the Total Tetrad Residual

(TTR) for tetrad constraints and as the Total Partial Residual (TPR) for vanishing partial

correlation constraints. According to Thurstone's Principle, other things being equal we

prefer models that have the lowest TTR and the lowest TPR

5.3.3. Comparing Elaborations of a Model

The information TETRAD gives is based on the inference problem we sketched above:

starting with a simple model, what are its best elaborations.
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In order to help the user compare elaborations of a model, TETRAD supplies information

on the exfect each elaboration has on the models ability to satisfy Spearman's Principle and

Thurstones Priniciple. If an initial model implies an equation that holds in the data, but the

addition of an edge (or correlated error) would result in a model that no longer implies that

equation, adding the edge causes the model to violate Spearman's Principle for that

equation. If a model implies an equation that would no longer be implied when an edge is

added to the model we say that the edge defeats that equation TETRAD supplies a

measure of the amount of damage to Spearman's Principle each elaboration causes:

l(H-l).Mnemonically, this expression stands for the Increase in the number of equations that

Hold but that are not Implied Other things being equal, we prefer the elaboration that has

the lowest I(H-I) value.

Symmetrically, if an elaboration defeats an equation that is judged not to hold in the data,

then that elaboration prevents the model fromviolating Thurstone's Principle for that

equation. The model previously implied an equation considered false, but after the

elaboration it does not imply that equation. TETRAD supplies two measures of how much

each elaboration helps a model to satisfy Thurstone's Principle. It calculates D(l-H), the

Decrease in the number of equations that are Implied that do not Hold, and it calculates an

elaboration's Rttr, or the Reduction in the total tetrad residual that would result from the

elaboration. Other things being equal, we prefer the elaboration that has the highest Rttr

value and the highest D(l-H) value.

5.4. A SEARCH STRATEGY FOR FINDING GOOD CAUSAL
MODELS

The three principles suggest a strategy for model specification: beginning with a very

simple model, determine how it fares by Spearman's and Thurstone's criteria (number of

equations explained and the TTR, repsectively). Then, step by step, examine increasingly

complex elaborations of the initial model, and determine how they behave. Stop elaborating

as soon as it is judged that a model satisfies Spearman's and Thurstone's principles

sufficiently well. In this way, unnecessarily complex models will not be considered. The

steps in the search look like a tree diagram:
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Figure 5-1: Search Tree

Here M represents the initial model the asterisks immediately below it represent models

that add one directed edge or correlated error to M, the next level of asterisks represent

models that add two edges or correlated errors to M, and so oa The idea is that one first

searches for the best additions at the first level below M, and ignores all additions at that

level that are not -among the best One then considers all daughters of each of the best

first level additions, and sees which among them are best and so oa This sort of

procedure is known as a breadth-first search.Notice that after the search through each

level is completed, if the search is to continue then every daughter of the best nodes must

be generated and evaluated That means that to carry out the search we must have rapid

ways to evaluate the effects of every possible addition to any modeL

The breadth-first'search strategy can be used with the TETRAD program, and we illustrate

it in several cases in later chapters.

5.5. A SKETCH OF THE TETRAD PROGRAM

5.5.1. TETRAD'S Output

The TETRAD program operates in two modes. One mode provides the user with

information to conduct a breadth first search, one edge at a time, as described in the

previous sectioa The other, more automatic mode, conducts a search that does not

necessarily proceed one edge at a time, but which may consider several simultaneous

additions to an initial modeL The two modes can be used together.
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TETRAD requires the user to provide the computer with a directed graph, representing an

initial causal model and a set of variances and covariances, or correlations, for the

measured variables in the model. In addition the user can set a significance level to be used

in testing constraints. With that input the user can obtain any or all of the following

information:

1. A list of all tetrad equations and vanishing partial correlations among measured
variablss that pass a statistical test at a level of significance specified by
the user, as well as the p value of each constraint

Z A list of all vanishing tetrad differences and vanishing partial correlations
implied by the model given to the program, together with the p values of
these constraints for the sample data provided

3. A count of how many tetrad equations and vanishing partial correlations hold
at a specified significance level, of how many of these are explained, i.e.
implied, by the model given to the program, of how many constraints are
implied by the model but do not hold (I-H), and of how many that hold are
not implied (HH).

4. The sum over all tetrad equations implied by the model of (absolute values of)
the tetrad differences found in the sample (TTR value), and the sum, over all
vanishing partial correlations implied by the model of (absolute values of) the
partial correlations found in the data (TPR value).

5. Two tables, the Rttr chart and Rtpr chart, that list, for each possible directed
edge or correlated error that may be added, the effects of adding that edge
or correlated error to the initial model. The information includes I(H-I), D(l-H),
Rttr (or Rptr), and Pi (see section 5.5.6 below).

6. For each possible addition of an edge or correlated error, a list of the tetrad
equations or vanishing partials that are implied by the initial model but are no
longer implied if the addition is made, and the probabilities of the
corresponding residuals found in the sample (on the hypothesis that the
differences vanish in the population). This option is called the "Compare"
function.

7. A crude index of fit, the Pi value, for any model that is an elaboration of a
basemodel specified by the user (see section 5.5.6 below).

8. Sets of suggested elaborations to a simple initial model found by TETRAD'S
automatic search procedure.

We illustrate how these pieces of information can be used to find good causal models in

section 5.5.8 below. First, however, some further explanation is needed of the information

computed by the program.



106

5.5.2. Tetrad Residuals

For full statistical models with specified values for all paiameters, we measure the

difference between a correlation value implied by the model and the observed correlation

by the residual. The residual is a function of the difference between a predicted

correlation value and the observed correlatioa The degree to which a tetrad equation

implied by a model agrees with observed correlations can be measured in a similar way,

but its calculation does not require that the model be estimated.

Consider for example the simple model from a previous chapter

e4 e5

Figure 5-2: Directed Graph Representation

Consider* a tetrad equation that is entailed by the model in Figure 5 - Z The model implies

that

' fo.mm' ft.mo ' fo.mo' mm.1m

If these variables stand for father's education, father's occupation, mother's education,

mother's occupation, and family income for members of some population, we do not

expect that sample correlations will exactly satisfy this equation, even if the model is

correct Suppose the observed correlations among these four variables, estimated from the

sample, are

<x, = .433
to.mm
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<r. = .521
fo,mo

a . = .394
me,fe

The tetrad equation implied by the model can be written equivalently as a vanishing tetrad

difference:

' fo,me' f«,mo ' fo,mo' m«,f«

How much the observation differs from the implication can be measured by the positive

square root of

fo.me fe, mo fo,mo me,fe

With the numbers just givea this quantity, which we call the tetrad residual is

«.433*.381 - .521*391)2>1'2 = .0387

One measure of how well a full statistical model with specified values for all of its

parameters fits the data is the sum of the residuals of all correlations or covariances.

Similarly, one measure of how well a causal model fits the data is the sum of the tetrad

residuals of all the tetrad equations the model implies. As we said above, this quantity is

the Total Tetrad Residual or TTR.

5.5.3. Partial Correlation Residuals

In the same way, we can consider the vanishing partial correlations that a model strongly

implies, and compare them with the actual partial correlations found in the sample data For

each vanishing partial implied by a model we call the corresponding absolute value of the

sample partial correlation the partial correlation residual or PR Just as with the sum

of the tetrad residuals, we can sum the PR values for each partial correlation that must

vanish in the population if the causal model is correct We abbreviate this sum as TPR.

The TTR and TPR values are the heuristic measures we use for how well Thurstone's
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Principle is satisfied by a model. The lower these values are, the better the Principle is
satisfied

5.5.4. The Statistical Procedures

Testing for Vanishing Tetrad Differences

For each foursome of measured variables in a data set there are three possible tetrad

equations which may, or may not hold. For n variables the number of possible tetrad

equations is therefore three times the number of ways of choosing 4 from n. The TETRAD

program tests for each possible tetrad equatioa The test is based on Wisharfs formula

for the variance of the sampling distribution of a tetrad difference. Consider four variables

x1 - x4. Let D be the determinant of the sample variance-covariance matrix for the

foursome of variables such that the (i,j) member of D is the covariance of x. and x. Let

D12 be the upper left corner two dimensional sub-determinant of D, and D34 the bottom

right corner sub-determinant N is the sample size. The formula for the sampling variance

of the tetrad difference:

T = Cov(x1x3)Cov(x2x4) - Cov(xlx4)Cov(x2x3)

is given by:

(IM-1) (N-2) VAR(T) = (N + 1) D12 D^ - D

Other cases are obtained by permutation of indices. The distribution of the tetrad

difference for correlations follows the same formula The TETRAD program converts

covariance tetrad differences to correlation tetrad differences to facilitate comparison of

the tetrad residuals for different foursomes of variables.

TETRAD uses Wisharfs formula to perform an asymptotic test for each possible tetrad

equatioa As the sample size grows without bound, the distribution of a tetrad difference

converges in probability to a normal distribution (see Anderson [2]). The program

compares the tetrad difference found in the data with a normal distribution having variance

given by Wisharfs formula and having mean zero.
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Aside from its asymptotic character, there are several disadvantages to this test The test is

performed on each tetrad equation as though it were independent of the others. For many

reasons, this assumption is almost never correct The result is that in Monte Carlo studies,

for example, we find that true tetrad equations are rejected by the test more frequently

than the significance level would suggest One might view the set of tetrad equations as a

collection of contrasts (see Scheffe1 , [86]) , and seek simultaneous confidence intervals for

all of the tetrad equations implied by a model as well as a test of the entire set of tetrad

equations so implied Such an approach poses a new and difficult statistical problem for

each model, however, and we know of no general method for solving it or for computing

such confidence intervals. In this case it is better to do what can be done, even if some

error is introduced thereby. We regard the procedure as an example of Simon's

"satisficing."

Another disadvantage of the tetrad difference statistic is that it is not very powerful when

the correlations are small. The product of two small numbers is small, and the difference

of such products (when the signs are the same) is smaller still. In Monte Carlo studies we

have found that the statistic tends to be too generous in accepting tetrad equations when

the sample sizes are small (below 300, for example) and the correlations are less than .3.

Testing for Vanishing Partial Correlations

For partial correlations, there is a well-known sampling distribution which can be

transformed to a normal distribution using Fisher's z statistic (see Anderson, [2]).

TETRAD tests for vanishing partial correlations using this statistic.

As with vanishing tetrad differences, the vanishing partial correlations will not generally be

independent, and in testing all of the vanishing partial correlations implied by a model, the

proportion of partials that vanish in the population but fail the statistical test may differ

from the significance value of the test We accept this limitation for the same reasons as

in the case of the test for vanishing tetrad differences.

It should be emphasized that the hypotheses TETRAD tests are not the usual hypotheses of

a "null effect" When testing null hypotheses, an investigator is often interested in rejecting

the hypotheses, and thereby establishing that some effect of interest is significant (The

weakness of such tests has been discussed by Meehl , [76].) In such cases, increasing

the significance level makes it more likely that the null hypothesis will be rejected, and

therefore weakens the test of the hypothesis of interest In contrast, when testing the

hypothesis that a tetrad difference vanishes, one is usually interested in the case in which

the hypothesis is not rejected Increasing the significance level makes it more likely that the
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hypothesis of a vanishing tetrad difference will be rejected and therefore strengthens the

test of this hypothesis. We will often test hypotheses at very high significance levels.

5.5.5. Determining the Constraints Implied by a Model

Given a data set and an initial model the TETRAD program will compute all of the tetrad

equations implied by the model. It will do the same for vanishing partial correlations, and it

will report the sample tetrad difference and sample partial correlation for each constraint

that is entailed by the model. The procedure is rigorous, and there is no restriction of any

kind on the directed graph of the causal model. The graphs can have cycles, directed edges

from measured to latent variables, whatever.

The procedures the program uses to compute the implied vanishing partial correlations are

simply applications of the theorems in Chapter 4. The algorithms are described in more

detail, and their adequacy proven, in Chapter 10. The procedures used to compute the

vanishing tetrad differences implied by a model are not, however, simple applications of the

theorems in Chapter 4. In models with cycles, the number of terms in a coordinating path

effect can be infinite. The TETRAD procedure depends on the fact, proved in Chapter 10

that in all models, cyclic or not, the implied tetrad equations can be computed from the

open treks alone.

5.5.6. Indices of Fit

Many indices of fit have been proposed in the literature on structural equation modelling.

Bentler and Bonett proposed a " normed fit index" [ 5 ] . Let MQ be a model that can be

obtained from any of the models to be compared by fixing parameters. MQ is thus more

restrictive than any of the models to be compared For example, MQ might be the "null"

model that fixes all structural parameters at zero. Let F be any fitting statistic one pleases.

Let FQ be the value of F for MQ estimated from a sample covariance matrix S. In general,

FQ will be worse (i.e., larger) than the F value for any of the models to be compared FQ

provides a standard, or unit, for how bad a model can be, and each of the models to be

compared can be measured for fit by a fraction of FQ. For any model Mt, Bentler and

Bonett propose the index of fit
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The index takes values between 0 and 1, and bigger is better, other things being equal.

The point of the normed index of fit is easily seen with a least squares loss function for

F. In that case F is the sum of squares of residuals. FQ is just the sum of squares of S,

and AQt is just unity, minus the squared sum of residuals of M t as a fraction of the

squared sum of residuals of S. The analogy with the notion of "percentage of variance

explained' in analysis of variance is suggestive. A model can give a test statistic with a

very low probability, even though it explains a very large proportion of the the sum of

squares of S.

Nothing about the normed fit index requires that the function F be one for which a

sampling distribution and appropriate statistical tests are available. Thus a normed fit index

can be calculated for the sum of tetrad residuals. A natural choice for MQ is a model that

implies every possible tetrad equation among the measured variables. A single factor model

in which each measured variable is an indicator of one latent factor, such that there are no

directed or undirected edges connecting measured variables or their error terms, is a

model that implies every possible tetrad equation among the measured variables. A model

represented by a completely disconnected graph also implies every possible tetrad equation

and every possible vanishing partial correlation equation,

TETRAD provides all of the information necessary to calculate a normed fit index using

tetrad residuals.

James , et al. [ 4 8 ] have objected that the normed fit index does not take account of the

number of free parameters in a model. They propose instead the index:

no* = «Vdo> £<F0 " Fk)/F0]

where dfc, dQ are the degrees of freedom of the models MR, MQ respectively. The

objection is not entirely fair, since Bentler arid Bonett do not claim that normed fit ratios

are by themselves a sufficient basis for preference among models, any more than the

probability of a chi square statistic is such a basis. But James, et al., are surely correct that

there is more to good explanation than simply reducing the proportion of the residuals

unaccounted for, and that parsimony is part of what makes for a good explanation.

These indices have a certain arbitrariness, for two reasons. First, any sufficiently

constrained model can be taken for MQ, and different choices will lead to different values

for the indices. The model that specifies that all variables are independent is a fairly
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natural choice for MQ. Second there is no natural or privileged measure of how much

extra residual is worth tolerating for the gain of a degree of freedom The II index

assumes such a measure, but it is fairly arbitrary. The II index is in principle objectionable

since it gives the worst possible value (zero) to any model which specifies that all variables

are statistically independent even when the data are in fact generated by such a structure.

In practice, we are rarely interested in such models, and the objection does not much

matter. For all the arbitrariness, it seems a substantial improvement to prefer models with

greater II values than to base preferences solely on likelihoods, or on Bentler and Bonnetfs

index of fit18

TETRAD uses a surrogate for IL The Pi value calculated by the program is based on the

total tetrad residual, TTR, rather than on any usual fitting statistic. Otherwise, the principles

are the same. The choice of a model MQ in the TETRAD program is equally arbitrary, and

we let the user make it TETRAD'S default for MQ is the model with one common latent

factor for all measured variables. This model is chosen because it implies every possible

tetrad equation, and therefore no model can have a higher TTR value. The user is free to

choose any other model for MQ. The program must be given the TTR value for MQ and it

must be able to calculate the degrees of freedom of MQ. For TETRAD to calculate the

degrees of freedom it must know the number of edges in MQ and the number of latent

variables that are completely exogenous. No Pi value is calculated using partial correlations.

There is no simple connection between the residuals matrix and the sum of the tetrad

residuals, although as the sum of squared residuals approaches zero, the sum of tetrad

residuals must also vanish. For a fixed sample, the sum of tetrad residuals, TTR, can be

changed only by altering the model and the set of constraints implied. Changes in the model

can in principle reduce the TTR without reducing the sum of squares of residuals, although

typically when one statistic is reduced so will the other one be. TETRAD uses the tetrad

residuals rather than any of the usual fitting statistics because the TTR is a rapidly

computable indicator that is minimally dependent on distribution assumptions.

5.5.7. TETRAD'S Automatic Search Procedure

The search for alternative models using the TETRAD'S Rttr chart can be rather prolonged,

and can require a lot of work on the part of the user. TETRAD has an automatic search

procedure that can considerably shorten the search time required The procedure is limited

to models with latent variables.

Alternative fit indices are computed by the LISREL program, although the LISREL VI manual offers no argument for the
particular indices chosen.
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The automatic search procedure does not search for additional edges or correlated errors.

Instead it searches for treks to be added to the initial model. It does not search one trek

at a time, but instead considers the effects of the simultaneous addition of a set of treks.

The output of the search is a set of suggested trek additions to the original model. The

program may suggest several alternative sets of trek additions. The user must then use his

or her judgement to decide how many of these treks to add and to decide how to realize

them as a combination of directed edges or correlated errors. The Rttr chart can be of

considerable help in this regard

The automatic search procedure actually carries out repeated searches, as many times as

the user requests. The suggested treks depend on which tetrad equations are judged to

hold in the population, and that depends on the significance value chosen. In general

increasing values of the significance levels will result in the judgement that fewer tetrad

equations hold, and that in turn will lead the search procedure to suggest more treks, or to

add more sets of suggested trek additions.

How the Automatic Search is Conducted

TETRADs search for suggested sets of trek additions carries out a strategy that insists on

maximizing Spearman's principle, and consistent with that restriction, tries to maximize

Thurstone's principle. For any set of tetrad equations judged to hold in the population, and

any initial model, M, there are sets of trek additions to M that will imply every correct

tetrad equation implied by M, and insofar as is possible consistent with that restriction, will

not imply any tetrad equations that do not hold in the population. TETRAD'S "Suggested

Sets" are just these sets of trek additions to the initial model.

The TETRAD procedure for determining the sets of treks with the properties described is

heuristic, not rigorous. In rare cases the program will suggest a trek that in fact prevents

the implication of a tetrad equation that is implied by the initial model and that holds at the

specified significance level.

Simple initial models usually imply a lot of tetrad equations, some of which hold at a given

significance level and some of which do not If everything implied holds, then no addition

to the initial model can be made that prevents the implication of false tetrad constraints.

As the significance, level is increased, fewer and fewer tetrad equations will hold, and so

more of the constraints implied by the initial model will be judged false, and larger

numbers of trek additions are possible. The program increases the significance level from

0.0 until some tetrad equations implied by the initial model do not hold Then the program

finds all of the sets of simultaneous trek additions that will not prevent the implication of
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any constraint that holds, but will prevent the implication (insofar as possible) of constraints

that do not hold The significance level is then increased again until some tetrad equations

implied by the initial model and holding at the previous significance level no longer hold,

and the search is conducted again This process is repreated for as many iterations as the

user requests. Two or three significance levels are usually enough.

A more detailed description of TETRAD'S search algorithm is given in chapter 10 of this

book.

Limitations of the Procedure

The Suggested Sets of trek additions are really intended for the analysis of multiple

indicators, and may go badly astray for other kinds of initial models. The procedure has

several requirements, and the conditions should be borne in mind when using the program.

• The procedure is heuristic, not rigorous.

• The initial model must be of a simple form. It must not have cycles, and it
must not have directed edges from measured variables to other measured
variables or from measured variables to latent variables. Every measured
variable must depend on one and only one latent variable. Every latent
variable must be connected (but not necessarily connected by a trek) with
every other latent variable. We call the graphs of models meeting these
conditions skeletal.

• The procedure assumes that any treks to be introduced between latent and
measured variables are introduced as directed edges from the latent variable
to the measured variable. In the output suggested treks between latent
variables and measured variables are denoted by directed edges, for example
by "T -> x i :

TETRAD will provide suggested sets of trek additions for models that are not skeletal, but

it will give a warning that the model is improper.

5.5.8. An Example

To briefly illustrate how TETRAD'S output is used, we describe a case that will be examined

in much greater detail in Chapter 8. Recall the summary of TETRAD'S output given above:

1. A list of all tetrad equations and vanishing partial correlations among measured
variables that pass a statistical test at a level of significance specified by
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the user, as well as the p value of each constraint

2. A list of all vanishing tetrad differences and vanishing partial correlations
implied by the model given to the program, together with the p values of
these constraints for the sample data provided

3. A count of how many tetrad equations and vanishing partial correlations hold
at a specified significance level of how many of these are explained, i.e.
implied, by the model given to the program, of how many constraints are
implied by the model but do not hold (I-H), and of how many that hold are
not implied (H-l).

4. The sum over all tetrad equations implied by the model, of (absolute values of)
the tetrad differences found in the sample (TTR value), and the sum, over all
vanishing partial correlations implied by the model, of (absolute values of) the
partial correlations found in the data (TPR value).

5. Two tables, the Rttr chart and Rtpr chart, that list, for each possible directed
edge or correlated error that may be added, the effects of adding that edge
or correlated error to the initial model. The information includes I(H-I), D(l-H),
Rttr (or Rptr), and Pi (see section 5.5.6 below).

6. For each possible addition of an edge or correlated error, a list of the tetrad
equations or vanishing partials that are implied by the initial model but are no
longer implied if the addition is made, and the probabilities of the
corresponding residuals found in the sample (on the hypothesis that the
differences vanish in the population). This option is called the "Compare"
function.

7. A crude index of fit, the Pi value, for any model that is an elaboration of a
basemodel specified by the user.

8. Sets of suggested elaborations to a simple initial model, found by TETRAD'S
automatic search procedure.

We will show each element of TETRAD'S output in turn. The data are from M. Kohn's

National Survey, reported in his C/ass and Conformity, [58] . They concern the answers to

five questions on a much larger questionaire. A factor analysis suggested that the

responses to these questions are due to a single common factor, which Kohn took to be

an authoritarian-conservative personality trait 3101 white, non-farm males were sampled

The initial measurement model is pictured in Figure 5-3. Here q1-q5 stand for the

indicators and e1-e5 their disturbance terms.
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Figure 5-3: Initial AC Measurement Model

In the studies described by Kohn, the subjects were presented with a number of

statements, and they were to indicate how strongly they agreed or disagreed. The questions

were scored on a five category scale from "strongly disagree" to "strongly agree"

We will begin with the one factor model and search for the best elaborations of it The

elaborations may be either directed edges, indicating that the answers given to some

questions have direct effects on the answers given to other questions, or they may be

correlated errors. First we give the initial model and the data to TETRAD and we ask for

information concerning how well the model satisfies Spearman's and Thurstone's principles.

Tne first chart below lists every tetrad equation that could possibly hold in the data,

specifies the absolute value of the tetrad difference for that equation in the sample data,

informs us whether the equation is implied by the model, informs us whether it passes a

statistical test at an unusual significance level .5, and gives us the p value of the tetrad

difference in the sample on the hypothesis that the tetrad difference vanishes in the

populatioa The reason for the significance level chosen will be explained in Chapter 8.
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The graph analyzed in this example is:
AC->ql AC->q2 AC->q3 AC->q4 AC->q5

The significance level is: 0*5000

The sample size is: 3101
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qi
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qi
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qi
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q2
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q3
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Figure 5-4: Statistical Information for the AC Skeleton

In TETRAD'S output we abbreviate the expression:

/ \ j * /Vi =
 P\\M

with

i j , k I = i k, j I

This kind of table covers items 1 and 2 in the list of TETRAD'S output The table shows,

at a glance, that all possible tetrad equations are implied by the model and that only three

of them hold at a significance level of .5.

To have TETRAD automatically determine how well this model satisfies Spearman's and
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Thurstone's principles, we ask for standard output and get the following information, which

comprises items 3 and 4 in the list of output elements.

The graph analyzed in t h i s example i s :
AO>ql AC->q2 AC->q3 AC->q4 AC->q5

The significance level is: 0.5000

The sample size is: 3101

The Total Tetrad Residual, or TTR, is: 0.22699

The Pi value for the model is: 0.000

I-H, the total number of equations implied by the model
that do not hold in the data, is: 12

H-I, the total number of equations that hold in the data but
are not implied by the model, is: 0

The number of equations that hold in the data is 3

The number of equations explained, by the model is 3

The Total Partial Residual, or TPR, is: 0.00000

The Pi value for the model is: 0.000

PI-PH, the total number of equations implied by the model
that do not hold in the data, is: 0

PH-PI, the total number of equations that hold in the data but
are not implied by the model, is: 0

The number of equations that hold in the data is 0

The number of equations explained by the model is 0

Figure 5-5: Standard Results

The measures of how this model satisfies Spearman's principle for tetrad constraints, the

number of equations explained and the (H-I) value, are perfect This is to be expected of

a model which implies every possible equatioa It also trivially satisfies Spearman's principle

for partial correlation constraints, as there are no vanishing partial correlations in the data

at this significance level. Because of this we will not bother requesting any of TETRAD'S

output that concerns partial correlation constraints. Adding elaborations to a model that

implies no partial correlation constraints cannot make it imply them.

The model does not satisfy Thurstone's principle for every tetrad constraint (I-H) is 12,
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which means that there are 12 equations the model implies which do not hold at a

significance level of .5. The other measure of how well a model satisfies Thurstone's

principle is the TTR. For this initial model it is .2269. In itself this number tells us little.

What is important is how much of this TTR can be eliminated by elaborations of the model.

Now we turn to the task of finding good elaborations to this model. The next table, called

the Rttr Chart, gives us a list of each possible addition of a directed edge or correlated

error. For each such addition, we are given the Rttr value, i.e., how much each elaboration

to the initial model reduces the TTR value of the initial model. We are also given D(l-H), i.e.,

how many equations that are implied by the initial model but do not hold (at the .5

significance level) are no longer implied if the addition is made. We are further told I(H-I),

the difference between the initial model and the modified model with regard to how many

equations hold in the data at the specified significance level but are not implied
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Figure 5-6: Rttr Chart For AC Skeleton at .5

Recall that the best elaborations are those that have the highest Rttr value, the highest D(l-

H) value, and the lowest I(H-I) value.

The Rttr chart suggests that either q3->q5, q5->q3, or q3 C q5 are the best single

elaborations to the initial model. Any one of them does more than any other elaboration to

reduce the TTR value, and is thus best by our heuristic for Thurstone 's Principle. Further,

none of these elaborations will prevent the model from implying any tetrad equation that
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holds at the specified significance level and was implied by the initial model ie. their I(H-I)

= 0. No alternative modifications do better. Thus these elaborations are also best by

Spearman's Principle.

Notice that edges and correlated errors involving the pair q1-q4 seem second best One

cannot conclude from this fact that directed edges or correlated errors connecting q1-q4

should be introduced at the second level of search. Once q3->q5, q5->q3, or q3 C q5

has been added to the initial model the q1-q4 elaborations may no longer be the best at

the second level. To find the best further additions, we would consider the initial model

with q3->q5 added, the initial model with q5->q3 added, and the initial model with q3 C

q5 added We would run all of these models through TETRAD again, asking for the Rttr

Charts. Here we will only show an Rttr chart for the initial model with q3->q5 added.



122

The graph analyzed in this example i s :
q3->q5 AC->ql AC->q2 AO>q3 AC->q4 AC->q5

The significance level i s : 0.5000

The sample size is: 3101
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The Total Tetrad Residual, or TTR, is: 0.06700

The Pi value for the model is: 0.56348

Figure 5-7: Rttr Chart For AC Skeleton + q3->q5

Notice that after q3->q5 has been added q1-q4 is no longer the elaboration that most

reduces the TTR. Edges q5->q2, q2->q3, and q3->q2 are now the best according to
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Thurstone's principle. According to Spearman's principle, however, q1->q4 is better than

any of these edges. Its I(H-I) value is only 1 while the other edges have an I(H-I) value of

2. To see exactly what effect adding either of these edges has, we can use TETRAD'S

compare option, which is item 6 in the list of TETRAD'S output We input the skeleton +

q3->q5 and ask for compare first on the edge q1 ->q4 and then on the edge q5->q2.

The graph analyzed in t h i s example i s :
q3->q5 AC->ql AO>q2 AC->q3 AC->q4 AC->q5

Edge added: ql->q4
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The graph analyzed in t h i s example i s :
q3->q5 AC->ql AC->q2 AO>q3 AC->q4 AC->q5

Edge added: q5->q2
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Figure 5-8: Compare Edges q1->q4 and q5->q2

From these charts we can see that the elaboration q5->q2 defeats a superset of the

equations that q1->q4 defeats. The two extra equations that q5->q2 defeats are:
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Tetrad Equation Residual Impld. Held P(diff.)

ql q3f q5 q2 = ql q5, q3 q2 0.0039 y 0.5163
q2 q3, q5 q4 = q2 q5, q3 q4 0.0070 0.2063

It is difficult to decide whether defeating these two equations is desirable. One of them

holds fairly closely, so defeating it would violate Spearman's principle. On the other hand

not defeating the equation that has p = .2063 would violate Thurstone's principle (at a

significance level of .5). The decision should be made according to how the user weights

the two principles.

Item 7 in the list of output elements is PL Pi can give a rough indicator of how to

balance Thurstone's principle with simplicity. The more we elaborate a model the fewer

constraints it implies and thus the more it satisfies Thurstone's principle. More complicated

models have fewer degrees of freedom, however, and a model's performance on a

statistical test depends on its number of degrees of freedom. At a certain point

elaborations help Thurstone's principle but hurt a model's performance on a statistical test

Our Pi measure attempts to give the user some idea of when this point has been reached

Look at Figure 5 -5 again. The model input will serve as the basemodel. Pi values for a

basemodel are undefined, even though we output 0 for their value. In Figure 5 - 7 the

model input is the skeleton plus the edge q3->q5. The Pi value for this model is .56348.

What concerns us is whether the Pi value of further elaborations will be comparable to

.56348 or higher. In the Rttr chart shown in that Figure Pi values are listed for each

candidate elaboration. These are the Pi values of the model input plus the elaboration

shown in the Rttr chart The edge q5->q2, for example, has a Pi value of .567 in the Rttr

chart This indicates that the skeleton + q3->q5 + q5->q2 has a Pi value of .567, which

is higher than the skeleton + q3->q5. This suggests that q5->q2 is certainly a worthwhile

elaboration. The Pi measure is only a heuristic guide, and we have found cases where

adding an edge that decreases the Pi value still brings up the p value of the model.

In this case we would continue to search for a third elaboration. Continuing in this way

we could form a search tree. A full search tree using the Rttr chart can become quite

large, even if one uses substantive assumptions and strong structural criteria to prune the

tree at each level. The second level of a medium sized model can easily contain as many as

twenty nodes, which means that to obtain the next level, the TETRAD program would have

to be run twenty times. Since a run of the program can take several minutes, this search

would be a tedious business if the investigator had to stay at the computer, running case

after case. This task can be avoided by running TETRAD in batch mode. In batch mode the
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user simply creates an input file for each case, and a command file that calls the TETRAD

program, gives the program the appropriate commands, and names the input files and

output files to be used Batch files for a score of cases can be set up in a few minutes.

Finally, we illustrate TETRAD'S automatic search for suggested elaborations on Kohn's initial

model. One command to the TETRAD program produces the following information:
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The graph analyzed in this example is:
AC->ql AC->q2 AC->q3 AC->q4 AC->q5

The significance level is: 0.0500

The sample size is: 3101

Sets of suggested treks at significance level = 0.0418

{q3-q5 }

Sets of suggested treks at significance level = 0.5163

{ql-q3 q2-q5 q3-q5 }

Sets of suggested treks at significance level = 0.8099

{ql-q4 q2-q5 q3-q4 q3-q5
{ql-q3 q2-q5 q3-q4 q3-q5
{ql-q4 q2-q3 q3-q4 q3-q5
{ql-q3 q2-q3 q2-q5 q3-q4
{ql-q4 q2-q3 q2-q5 q3-q4
{q2-q3 q2-q5 q3-q4 q3-q5
{ql-q3 q2-q3 q2-q5 q3-q5
{ql-q3 ql-q4 q2-q3 q3-q5
{ql-q3 ql-q4 q2-q5 q3-q5
{ql-q3 ql-q4 q3-q4 q3-q5
{ql-q3 ql-q4 q2-q3 q2-q5
{ql-q3 ql-q4 q2-q3 q3-q4

The Total Tetrad Residual, or TTR, i s : 0.22699

I-H, the total number of equations implied by the model
that do not hold in the data, i s : 8

H-I, the total number of equations that hold in the data but
are not implied by the model, i s : 0

The number of equations that hold in the data is 7

The number of equations explained by the model is 7

Figure 5-9: TETRAD'S Results on the AC Skeleton

There are a few simple heuristics we use with the suggested sets of trek additions.

1. We add the treks suggested at the lowest significance first in all possible ways

(consistent with substantive restrictions). Thus in this case we would add q5->q3 or

q3->q5, just as we did using the Rttr search strategy.
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2. When a set of treks is added simultaneously, they may interact to form further treks

that have not been suggested with the same set or even at the same signfiicance level.

Thus q5->q3 and q2->q5 together form a trek connecting q2 — q3. In general

realizations of treks that form further treks will further reduce the TTR value of the

modified model but they will also cause a loss in the ability to explain tetrad equations,

and the user must judge whether the gain outweighs the loss. Our rule of thumb is that

we prefer implementations of suggested treks at a given level which create further treks

not suggested at that level only if all treks implied by a modification are suggested at the

next significance level of suggested sets. Thus, for example, we would consider q1->q3,

q5->q3, q2->q5, even though a q2 — q3 trek is created because the set

{q1-q3 q2-q3 q2-q5 q3-q5 }

is suggested at the next level of significance.

5.6. THE VALUE OF P VALUES

In applying TETRAD, we routinely assess the models found using full information maximum

likelood estimation with the LISREL or EQS programs, and associated statistical tests. We

view the probabilities of test statistics, or p values as they are sometimes called as

likelihoods. Likelihoods are just probabilities conditional on hypotheses, and probabilities

can be compared The probability of the chi square statistic for some model and data set

is a measure both of fit and simplicity, for it takes into consideration both the residuals

and the number of free parameters used in producing those residuals. Hypotheses can be

compared by the ratio of the likelihoods they give to the same test statistic on the same

data Of course, that is not all there is, or should be, to the comparison of competing

hypotheses, but it is a consideration, and we will use it repeatedly.

The use of statistical tests has a decision theoretic foundation in Neyman-Pearson theory,

and the most devoted adherents of the tradition reject any theory comparisons that are not

framed as hypothesis tests. They would, in particular, reject the comparison of alternative

models in terms of likelihoods, or simplicity, or explanatory power. The Neyman-Pearson

decision theory is rarely strictly applied, but when it is it does not permit anything but the

rejection of theories. The acceptance of a theory, however tentatively, cannot be justified

on Neyman-Pearson grounds, save in those rare cases in which every alternative theory has

been rejected. Nor does the decision theory provide any judgements about which of

several false theories is the better approximation. But in all of science, including social
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science, the principal job is not to reject false theories, but to find the better

approximations, and to reject the worse approximations.

In practice, in most applications of linear modeling, we can be fairly confident that every

model we will consider is falsa The almost universal experience is that as sample sizes

increase, testable linear models fail powerful statistical tests. The task is not to find a true

linear model, but to find the models that are the best linear approximations to the truth,

and to assess whether that approximation is good enough to serve in practice. In such

contexts, there is little point to decision procedures whose function is to reject false

theories.

There is, to our knowledge, no formal account of the connection between properties of

sample statistics, on the one hand, and the approximate truth of models, on the other. In

the absence of such an account, we use the probabilities of chi square values, simplicity,

and explanatory power to assess models, and where we can we test models by means of

non-statistical predictions.

5.7. TETRAD AND OTHER SEARCH PROCEDURES

Several procedures have been proposed for searching for alternative linear causal models,

given an initial model. Anything that works is to be applauded, but we believe TETRAD has

some considerable advantages. Alternative procedures include the following:

1. Examination of Residuals.

One strategy is to locate the correlation with the largest residual, and to free a structural

parameter associated with a causal connection between the measured variables thus

correlated. Costner and Schoenberg [ 1 7 ] have shown that the strategy is, as one might

expect, often misleading. For example, if a model implies several tetrad equations that are

not even approximately satisfied in the data, the addition of an edge or set of edges

connecting variables whose residual correlations are not maximal may be the most efficient

way to modify the model so that the false constraints are not implied A closely related

strategy examines normed residuals, in which the residuals are assumed to be normally

distributed and are represented in units of the variance of the distribution.

2. Partial derivatives of a fitting statistic.

Byron [ 1 3 ] and in a modified form Sorbom [ 9 8 ] , have proposed a strategy that is now
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embodied in the LISREL programs. The strategy is to treat a statistic as a function, for

given sample correlations, of the *ixed parameters of the model and to consider the partial

derivatives of the function with respect to each parameter. For example, the partial

derivatives may be evaluated at the maximum likelihood estimate of the parameters. The

parameter with the largest squared partial derivative (and appropriate second derivative) is

freed The LISREL VI program contains "modification indices", which are the ratios of

these first derivatives and corresponding second derivatives, and the program will, if

desired, free parameters one after another according to the size of their modification

indices. In other terms, LISREL VI conducts a beam search through the space of

alternative models. Sorbom noted that the strategy may be misleading because it is applied

sequentially, one parameter at a time, and also because a large change in a parameter with

a small partial derivative may produce better fit than a small change in a parameter with a

larger partial derivative. In Chapter 8 we have seen examples, such as the Wheaton data

on alienation, in which the strategy does seem to pass by the best models. Costner and

Herting [18 ] have explored the limitations of the strategy, and suggested that it is not

reliable for detecting connections between indicators of a common latent variable. They also

point out that it may lead to errors if it is not applied one parameter at a time.

3. Testing sub-models.

For multiple indicator models, Costner and Schoenberg described a mixed strategy for

specifying revisions. Part of the strategy amounted to eliminating tetrad residuals by

examining two factor submodels, each with two indicators, and adding directed edges (and

appropriate free parameters) to such submodels when they fail chi square tests. The

modified submodels do not entail a tetrad equation implied by the unmodified submodel,

and thus the modification eliminates a tetrad residual. Costner and Schoenberg did not

propose carrying out an analogous procedure, however, for other kinds of submodels.

Any strategy for finding good alternatives to an initial model is bound to be heuristic, and

that means that it is bound to fail in some circumstances. There are practical and structural

reasons, however, why the nested model search conducted by the LISREL program is

especially inadequate, and since the program is widely used, they deserve to be mentioned

Consider the tree of increasingly less constrained models described in an earlier sectioa

The LISREL search strategy starts with an initial, presumably simple, model as does the

TETRAD strategy. But LISREL determines at each stage a unique model at the next level.

That means that the LISREL procedure considers only a single path through the tree of

alternative models. Searches of this kind are called beam searches in the artificial

intelligence literature. For the reasons mentioned above, the decision at each stage as to
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which is the best parameter to free may be unreliable, and this fragility is compounded by

the beam search. A second difficulty with the LISREL procedure is that it gives no weight

to preserving the ability of the initial model to explain constraints satisfied by the data

Spearman's Principle has no role in the search. A third difficulty has to do with stopping

the search. The LISREL search strategy stops when the chi square difference between a

model obtained at stage n of the search and the next model obtained at stage n +1 , is not

statistically significant The trouble is that models which are elaborations of the n+1st

model, and which are never considered by the LISREL search, may be very significant, and

may have chi square differences (when compared with the nth stage model) that are very

significant For example, we will latter describe a study of aleination for which, starting

with an initial model that has a chi square p value of zero, LISREL finds an elaborated

model with a chi square p value of .335. The LISREL procedure adds two free parameters

to the initial model, and then stops. But with TETRAD we find a further elaboration of the

LISREL model, freeing two more parameters, that has a chi sqare p value of .99. Together,

the two further modifications found with TETRAD make a statistically significant difference

in the fit A fourth, practical, difficulty with the LISREL procedure is that the LISREL

formalism derives from factor analysis, and because of. those origins the formalism does

not permit direct causal relations between measured variables. That means that if one

represents a causal model in the most straightforward way in LISREL, the search procedure

will not discriminate between directed edges and correlated errors between measured

variables. The result is that one cannot detect the direction of omitted directed edges

between measured variables, as one can with TETRAD. This limitation can be overcome in

principle by the artifice of using dummy theoretical variables for measured variables, but in

practice the strategem makes the representation of the models more cumbersome, and may

often fail to be used Using the TETRAD program it is straightforward to find many

plausible models that exhibit much better fit than those produced by LISREL's beam search.
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6. WHAT TETRAD CAN DO

6.1. INTRODUCTION

In the preceding chapters we have claimed a lot for the TETRAD program, and some

readers may well be sceptical. We claim that researchers with TETRAD will do better

science than researchers without it That is a difficult claim to substantiate, and a lot of the

remainder of the book is devoted to mustering evidence for it To give the reader a

sense of what can be done with the program, we present in this chapter a number of

problems that are easily solved with TETRAD'S help. The answers to the problems, and the

methods used to find those answers, are given in later chapters. Using the demonstration

program that accompanies this book, the reader can repeat the same procedures we have

used The answers to problems 1, 2, 3 and 6 are given in Chapter 8; the answers to

questions 4 and 5 are given in Chapter 7.

For now, however, we ask the reader simply to consider the following questions: Can the

problems be solved without using the TETRAD program? We urge the reader to use

whatever techniques he or she may favor to attempt to answer the problems, and see if

those techniques do as well as the TETRAD program.

In real science the answers are not in the back of the book, and sometimes there are no

answers. Some data sets simply cannot be modelled adequately by any remotely plausible

linear theory, and some data sets can be accounted for about equally well by a vast

collection of alternative linear causal models.

Heuristic search can be of help in these circumstances too, although none of the problems

of this chapter show how. On real data sets, TETRAD sometimes yields results that

suggest that no linear model will adequately explain the data In other cases, the program

gives results that suggest that too many linear models will explain the data

6.2. ALIENATION

To do this problem one must use LISREL or EQS or some other program that provides

maximum likelihood estimates and chi square tests.
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Joreskog and Sorbom [46] discuss two models of data on alienation taken from a study

done by Wheaton et al [101]. The models are used to illustrate the operation of the

LISREL programs.

Their first model pictured in Figure 1-0, has a chi square probability (with 6 degrees of
freedom) of zero.

e l e2 e3

Anomia 67| |Poverlessness 67

\

e4+
Anomia 71| |Powerlessness 71

*-^Alienation 7l)

e6

Figure 6-1: Alienation: Original Model

Joreskog and Sorbom amend this model by freeing two parameters and arrive at the

model, shown in Figure 6-2 , with 4 degrees of freedom and p = .335, n = 932.
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lAnomia 67 Powerlessness 67 Anomia 7l[ |Powerlessness 71

x
Alienation 67^) Alienation

z l z2

, X
I Education I TsEIl

•
e5 e6

Figure 6-2: Alienation: Amended Model

The variance-covariance matrix for this problem, with obvious abbreviations, is taken from

the User's Manual to L1SREL IV [ 4 6 ] .

A6 P6 A7 P7 ED SE

A6
P6
A7
P7
ED
SE

11-834
6.947
6.819
4.783

-3.839
-21.899

9.634
5.091
5.028

-3.889
-18.831

12.532
7.495

-3.841
-21.748

9
-3
-18

.986

.625

.775
9
35

.610

.522 450.288

Figure 6-3: Correlations for the Alienation Study

Here are two problems:

Problem 1: Find a model that frees 3 parameters in the original model (and thus has three

degrees of freedom) and gives a cW square statistic with probability greater than .8.

Problem 2: Find a model distinct from that in problem 1, that frees 3 parameters in the

the original model and gives a chi square statistic with probability greater than .9.

Since the solutions to problems 1 and 2 are both about as plausible as the initial model or

the LISREL revision, one might ponder the risks involved in failing to discover these
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alternative theories.

6.3. A PROBLEM USING SIMULATED DATA

In the studies in this section and the next we generated data using SYSTAT BASIC We

produced data for the exogenous variables with a pseudo random number generator

distributed normally with mean 0 and variance 1. All other variables are linear combinations

of their respective immediate ancestors in the directed graph of the modeL The linear

coefficients were also chosen at random, although their values for each particular model

are non-stochastic constants.

6.3.1. Study 1

For the first problem we generated correlational data from a model that is an elaboration
of Figure 6-4.

e2 e3

Figure 6-4:

T1 and T2 are to be interpreted as unmeasured latent variables, and e1-e7 as unmeasured

error terms. T1 and e1-e7 are distributed normally with mean 0 and variance 1. x1-x7 are

our measured variables. The sample size is 5000. The correlation matrix is shown in

Figure 6-5.
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x l x2 x3 X4 x5

x2
x3
X4
X5
x6

0.25120
0.49724
0.36036
0.32524
0.23871

0.30191
0.20448
0.51905
0.12966

0
0
0

.42635
•38348
.27900

0
0
.48400
.44256 0.47144

Figure 6-5: Correlation Data For Study 1. n = 5000

Two edges that were in the model that generated the data have been removed from the

figure shown above. These did not include any edges from measured variables to latent

variables. They are either directed edges from latent to measured variables, directed edges

from measured to measured variables, or correlated error terms. The true model has no

more than one edge between each pair of variables.

Problem 3: Find the two missing edges. You do not have to give a single answer. The

fewer alternative answers however, the better, as long as the correct answer is among the

alternatives.

The space of possible answers to this problem contains 2,190 members.

TETRAD correctly picks out one edge uniquely. It narrows the choices for the second

edge to six; running these six models through the EQS program, and picking those that

have significant p values for their chi square statistics leaves three models, including the

correct answer.

6.4. CAUSAL ORDER FROM CORRELATIONS

6.4.1. Monte Carlo Data: I

The three models pictured in Figure 6-6 all imply different overidentifying constraints.

Specifically, they all imply different sets of tetrad equations.
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(a) (c)

Figure 6-6:

We generated five data sets for this problem. For each of the five data sets, we

randomly selected a model from the above three and then generated data with n = 2000 in

the same way we have described above. The problem is as follows.

Problem 4: For each of the five data sets below,-determine whether model (a), model (b),

or model (c) generated the data

The chance of randomly choosing the correct sequence of models is 1 in 243. In five

minutes a TETRAD user identified the sequence perfectly.
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x2
x3
x4
X5
x6

x2
X3
X4
x5
x6

x2
x3
x4
x5
X6

X2
X3
x4
X5
X6

X2
X3
X4
X5
X6

xl
0.70895
0.70653
0.77571
0.75803
0.69713

Xl
0.73218
0.71264
0.65140
0.75321
0.69263

Xl
0.72900
0.70424
0.65653
0.76259
0.71318

Xl
0.73119
0.77805
0.68019
0.76382
0.70363

Xl
0.74892
0.70336
0.65350
0.75899
0.71367

Data Set

x2

0.61196
0.67201
0.65612
0.59854

0.
0.
0.

Data Set

x2

0.61605
0.56910
0.65899
0.60523

0.
0.
0.

Data Set

x2

0.61704
0.57492
0.66237
0.62563

Data I

x2

0.68057
0.60167
0.67034
0.62473

Data I

X2

0.62088
0.56444
0.65678
0.60912

0.
0.
0.

Set

0.
0.
0.

Set

0.
0.
0.

1

X3

87201
63334
58938

2

x3

88900
64722
60106

3

x3

90401
66115
63339

. 4

X3

92926
85745
79043

. 5

x3

89529
63346
58985

x4

0.84425
0.78916

X4

0.82760
0.76872

X4

0.66115
0.78092

X4

0.84872
0.79385

X4

0.81258
0.75083

X5

0.87428

X5

0.87026

X5

0.87924

X5

0.87863

x5

0.86361

Figure 6-7: Data Sets For Monte Carlo



138

6.4.2. Monte Carlo Data: II

Problem 4 was relatively easy because the only pair of variables with an ambiguous source

of extra correlation was x3 and x4. In this problem we remove that constraint We

generated five data sets from a random elaboration of the skeleton shown in Figure 6-4.

The possible elaborations are not restricted to causal connections between x3 and x4. Any

indicator of T1 may be connected with (or have correlated errors with) any indicator of T2.

Thus one of the following set of alternative elaborations of the model in Figure 6 - 4

comprises the possibilities for each data set

xl
xl
xl
x2
x2
x2
x3
x3
x3

->
->
->
->
->
->
->
->

x4
X5
x6
x4
x5
x6
X4
x5
X6

X4
X5
X6
X4
x5
x6
X4
X5
X6

->
->
->
->
->
->
->
->

xl
xl
xl
x2
x2
x2
x3
x3
x3

el
el
el
e2
e2
e2
e3
e3
e3

<—>
<~>
<-->
<—>
<—>
<—>
<—>
<—>
<—>

e4
e5
e6
e4
e5
e6
e4
e5
e6

Figure 6-8: Possible Elaboration For Monte Carlo II

Problem 5: Identify the correct elaboration of the model in Figure 6 - 4 in each of the

following five data sets.

The chance of choosing the correct sequence by chance is less than 1 in 14,000,000. A

TETRAD user correctly identified every member in the sequence, and, exclusive of creating

the data files, the entire process required only about five minutes.
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x2
X3
X4
X5
x6

x2
x3
x4
x5
x6

x2
x3
x4
x5
x6

X2
X3
X4
X5
x6

x2
x3
x4
X5
x6

xl
0.70137
0.54959
0.77796
0.76528
0.92669

Xl
0.73537
0.56398
0.52982
0.51391
0.72118

xl
0.71903
0.51791
0.50208
0.72145
0.51754

Xl
0.71301
0.57291
0.78770
0.50273
0.53287

Xl
0.70716
0.50878
0.52308
0.50341
0.48956

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

Data Set

x2

.58843

.54506

.53461

.55317

0.
0.
0.

Data Set

x2

.57400

.54909

.54306

.89617

0.
0.
0.

Data Set

x2

.55951

.53428

.90772

.54350

Data I

x2

.59103

.51065

.52626

.56519

Data :

x2

.56222

.50910

.50189

.49444

0.
0.
0.

Set

0.
0.
0.

Set

0.
0.
0.

1

x3

41529
41923
43270

2

x3

40887
40730
56778

3

X3

39059
54715
36724

. 4

x3

40642
38593
41803

: 5

x3

37597
38013
77257

x4

0.76241
0.79971

X4

0.77331
0.75928

X4

0.72531
0.80703

x4

0.72558
0.76173

X4

0.74525
0.73827

X5

0.77696

X5

0.74619

x5

0.73396

x5

0.77435

x5

0.73473

Figure 6-9: Data Sets For Monte Carlo II
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6.4.3. Kohn's Study and Temporal Order Among Interview Questions

M. Kohn's C/ass and Conformity describes several large survey studies that investigate the

relationships between social class, attitudes, and personality structure [58] . One section of

his book explores the relations between social class and a variety of latent factors, one of

which is an "Authoritarian-Conservatism" (hereafter abbreviated "AC ") personality trait

The measured variables for AC are answers to interview questions, measured with a five

category scale from "strongly disagree" to "strongly agree." Five of the questions are:

1. The most important thing to teach children is absolute obedience to their
parents.

2. In this complicated world, the only way to know what to do is to rely on
leaders and experts.

3. No decent man can respect a woman who had sexual relations before
marriage.

4. Any good leader should be strict with people under him in order to gain their
respect

5. Its wrong to do things differently from the way our forefathers did

The correlations among these five variables are shown in Figure 6-10.

ql q2 q3 q4 q5

ql 1.0
q2 0.7161 1.0
q3 0.4505 0.3356 1.0
q4 0.7746 0.5012 0.3525 1.0
q5 0.4263 0.3421 0.3149 0.3014 1.0

Figure 6-10: Correlation Matrix for the Authoritarian Trait Indicators

The initial measurement model is pictured in Fig 6 -11 .
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Figure 6-11: Initial AC Measurement Model

Note carefully that the numbering of the questions is not necessarily the order in which

the questions were asked on Kohn's questionaire. There are five questions, and the

number of distinct possible orderings of them is 5! or 120.

Problem 6: Find the order in which the five questions were asked on Kohn's survey.

Again a unique answer is not required, but the smaller the set of alternatives the better.

With TETRAD , -the number of alternatives was reduced from 120 to 40 possibilities, and

the true ordering of the questions was among the forty.
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7. USING TETRAD TO DETERMINE CAUSAL
ORDER

7.1. INTRODUCTION

In Chapter 6 we posed a number of problems in which data were generated by a known

linear model. The reader was given the data, the sample size, and part of the model used

to generate the data The problem was to find the remainder of the model. Here we are

interested in exhibiting how TETRAD handies these problems.

In the first of these problems, we tell the user which pair of measured variables has a

source of correlation19 in the model that generated the data but not in the model that we

exhibit The task is to determine whether this pair of variables have correlated error

terms, or whether instead the variables are directly causally related That is, the user must

distinguish correlation from causation on the basis of non-experimental correlation data

and a known causal skeleton. Further, if the pair of variables is judged to be directly

causally connected in the model that generated the data, then we ask the user to determine

the direction of causation.

In the second of these problems we impose the same demands as in the first but we add

one: the user is asked to determine which pair of variables has a source of correlation in

the model that generated the data that is not shown in the model given to the user.

7.2. DISTINGUISHING CORRELATION FROM CAUSATION

The following problem has five parts. First consider three models:

we say "is connected
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Figure 7-1:
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(c)

Each of these models is an elaboration of the following skeletal modet

e7

x l

/ \

x2 x3

f f t
91 e2 e 3

Figure 7-2: Skeletal Causal Model

We generated five data sets. For each data set we randomly selected a model from the

three elaborations of the skeletal model and then generated data with n = 2000. The

problem was as follows:

Problem 4: For each of the five data sets below (see page 1331 determine whether

model (a), model (b), or model (c) generated the data.

The TETRAD strategy for solving these problems is easy. We give the common skeletal

graph and the data set to TETRAD. We then ask for the Rttr chart at a significance level
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of .05. We choose this level because the sample size is large, and we know that all of the

normality assumptions implicit in our statistical tests are strictly satisfied, and becuase the

Suggested Sets feature of the program already suggests additions at this significance level.

The Rttr chart tells us how much each possible directed edge or correlated error will

reduce the TTR value of the initial model, and gives us the value of I(H-I) for each

possible addition. I(H-I), it will be recalled, is the increase in the number of equations that

hold but are not implied

For each data set we choose the edge or correlated error with I(H-I) = 0 that has the

highest Rttr value. It should be emphasized that the results given below were obtained by a

user who did not know the correct answers beforehand The TETRAD output for the first

data set is shown below. For the readers convenience, we have surrounded our choice of

the missing edge or correlate errors with "*"s. For data sets 2 - 5 we simply list our

choices.

Edge Rttr D(I-H) I(H-I)

x2->
Xl C

x3->
xl C

x4->
xl C

x5->
xl C

x6->
xl C

T2->

x2->
x3->
X2 C

x2->
x4->
x2 C

x2->
x5->
x2 C

1
 C

M
 H

 C
M

j 
X

 X
 X

X3
Xl
x3

x4
xl
x4

X5
xl
x5

X6
xl
x6

xl

x3
x2
X3

x4
x2
X4

X
X

X
U

l t
O

 U
l

0.328
0.328
0.328

0.166
0.166
0.166

1.311
0.662
0.635

0.628
0.437
0.282

0.635
0.432
0.274

0.170

0.170
0.170
0.170

1.263
0.593
0.569

0.607
0.405
0.254

1
 C

M
 C

M
 C

M

1
1
1

9
5
5

4
3
2

4
3
2

1

1
1
1

9
5
5

4
3
2

4
4
4

in
 in

 in

3
7
3

8
9
6

8
9
6

5

5
5
5

3
7
3

8
9
6
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x2-> x6
x6-> x2
x2 C x6

T2-> X2

** x3-> x4
x4-> X3
x3 C x4

in en in
X
X
X

en in en
X
X
X

x3-> X6
x6-> x3
x3 C X6

T2-> x3

x4-> X5
x5-> x4
x4 C x5

x4-> x6
x6-> x4
x4 C x6

Tl-> X4

x5-> x6
x6-> x5
x5 C x6

Tl-> x5

Tl-> x6

0.609
0.401
0.244

0.166

1.718
1.440
1.397

0.791
0.918
0.619

0.761
0.881
0.567

0.328

0.460
0.460
0.460

0.435
0.435
0.435

0.846

0.846
0.846
0.846

0.435

0.460

4
3
2

1

12
8
8

5
5
3

m
 in en

2

3
3
3

U
l 

U
l 

U
l

6

vo vo vo

3

3

8
9
6

5

0
4
0

7
7
5

7
7
5

4

3
3
3

3
3
3

0

0
0
0

3

3

Our guess is that the edge x3 —> x4 is missing from the skeleton

We list all our guesses in Table 7 - 1 below.
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Data Set Missing Edge or
Correlated Error

1 x3 C x4
2 x3 C x4
3 x3—>x4
4 X4—>X3
5 X3 C x4

Table 7-1: Our Guesses For Problem 4

In each case, the answer chosen is correct

7.3. FINDING WHICH PAIR OF VARIABLES HAS AN EXTRA
SOURCE OF CORRELATION

The problems so far were relatively easy because we know that the omitted edge or

correlated error connected x3 and x4. Recall that the second set of Monte Carlo studies in

Chapter 6 were more difficult in principle, because we were not told in advance which pair

of variables were connected. But in practice, one problem is quite as easy as the other

with the TETRAD program.

We generated five data sets from a random elaboration of the skeleton shown in Figure

7-2. The possible elaborations are not restricted to causal connections between x3 and

x4. Any indicator of T1 may be causally connected with or have correlated errors with any

indicator of T2. Thus the following set of alternative elaborations of the model in Figure

7-2 comprises the possibilities for each data set

xl
xl
xl
x2
x2
x2
x3
X3
x3

->
->
->
->
->
->
->
->

x4
x5
x6
x4
X5
x6
X4
x5
x6

x4
x5
x6
x4
x5
X6
X4
X5
X6

->
->
->
->
->
->
->
->

xl
xl
xl
x2
x2
x2
X3
x3
x3

el
el
el
e2
e2
e2
e3
e3
e3

<—>
<—>
<—>
<—>
<—>
<—>
<—>
<—>

e4
e5
e6
e4
e5
e6
e4
e5
e6

Figure 7-3: Alternative Elaborations For Problem 5



148

Recall problem 5 in Chapter 6.

Problem 5: Identify the correct elaboration of the model in Figure 7 - 2 in each of the

five data sets shown on page 139.

Our procedure is exactly as in problem 4. We give the TETRAD output for the first data

set and then we simply list our guess for each of data set

Edge Rttr D(I-H) I(H-I)

3
3
3

3
3
3

7
3
3

7
3
3

4
0 * *

0

x2->
Xl C

x3->
xl C

x4->
xl C

x5->
xl C

CM
 
H

 C
M

X
X

X

X3
Xl
x3

X4
Xl
x4

X
X

X
en

 
H

 e
n

xl-> x6
** x6-> xl
xl C x6

T2->

x2->
x3->
x2 C

x2->
x4->
x2 C

x2->
x5->
x2 C

x2->
x6->
x2 C

T2->

x3->
x4->
x3 C

x3->

Xl

X
X

X
U

i 
to

 u
i

X4
x2
x4

x5
x2
x5

x6
x2
x6

x2

x4
X3
x4

x5

0.573
0.573
0.573

0.565
0.565
0.565

0.593
1.362
0.567

0.582
1.362
0.554

0.952
1.569

0.932

1.120

1.120
1.120
1.120

0.391
0.659
0.261

0.367
0.655
0.247

0.612
0.726
0.403

0.565

0.380
0.663
0.265

3
3
3

3
3
3

5
9
5

5
9
5

8
12

8

6

6
6
6

3
4
2

3
4
2

5
5
3

3

3
4
2

0
0
0

9
8
6

9
8
6

7
7
5

9
8
6

0.360
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x5->
X3 C

x3->
x6->
x3 C

T2->

x4->
x5->
X4 C

x4->
x6->
x4 C

Tl->

x5->
x6->
x5 C

Tl->

Tl->

x3
X5

X6
x3
x6

x3

X5
x4
x5

x6
X4
X6

X4

x6
x5
x6

x5

x6

0.664
0.247

0.571
0.698
0.367

0.573

0.217
0.217
0.217

0.131
0.131
0.131

0.136

0.136
0.136
0.136

0.131

0.217

4
2

5
5
3

3

to
 r

o
 t

o

1
1
1

1

1
1
1

1

2

8
6

7
7
5

3

4
4
4

5
5
5

5

in
 in

 in

5

4

The missing edge is x6—>x1.

We list all our guesses for problem 5 below.

Data Set Missing Edge or
Correlated Error

1 x6—
2 x2—>x6
3 x2—>x5
4 x l C X4
5 x3 C X6

Table 7-2: Our Guesses For Problem 5

In each of these cases TETRAD was able to give us a unique, and correct answer because

the modeling assumptions were strictly realized the sample size was large, and only one

additional edge or correlated error was required. In cases in which several edges or
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correlated errors must be infered from an initial model and data, the program will not

usually fix upon a single alternative, but it will serve to dramatically reduce the possibilities.

An example of this kind was given in Chapter 6, and it will be treated in Chapter 8.
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8. CASE STUDIES

8.1. INTRODUCTION

This chapter describes the application of TETRAD to a number of cases. Most of the data

sets we discuss are empirical rather than simulated, and have been considered by several

other authors. Wheaton's study on alienation, for example, has been discussed by

Joreskog and Sorbom in the LISREL manual and elsewhere, and by Bentler in the EQS

manual; data from summer Head Start have been considered by a number of authors, and

so have the data from Kohn's National Survey. The empirical cases have been deliberately

chosen to permit the reader to compare the results found with, and without, TETRAD'S aid

They, and the studies done with simulated data, are also intended to illustrate the use of

search heuristics with the TETRAD program. All but one of the empirical data sets we

discuss can be analyzed with the version of TETRAD on the disc accompanying this book.

The discussions of the procedures used in these cases are deliberately repetitive. We hope

that repetition will promote more familiarity than contempt

The case studies illustrate several important points:

• TETRAD can help can find models for empirical data that are both plausible
and that do well on a chi square test, models that have been overlooked by
unaided workers.

• TETRAD can help search for alternative skeletal models. In particular it can
help the user to decide whether or not latent variables ought to be introduced
to account for the data

• Assuming an initial model, TETRAD can help the user discriminate between
correlated errors and direct connections between variables, and can even
discriminate between alternative causal directions for direct connections.

• The program makes it easy to take advantage of the user's prior knowledge in
the search for adequate models. In fact, effective use of the program
requires such knowledge to eliminate hypotheses that do well by TETRAD'S
criteria but make no causal sense.

• TETRAD allows the user to carry out a much more thorough search for
alternative models than can be done by hand, or with the aid of LISREL's beam
search.
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8.2. INDUSTRIAL AND POLITICAL DEVELOPMENT

8.2.1. Introduction

In 1973, K Costner and R Schoenberg proposed a -method for identifying

misspecifications in multiple indicator models. Their procedure is like the TETRAD procedure

in several important respects. Costner and Schoenberg illustrated their technique with a

model of data for industrial and political development

They consider the model:

f Industrial
V Development

Political
Development

GNP Energy Labor

f I t
el e2 e3 e7

Figure 8-1: Costner and Schoenberg's Initial Model

In this model, GNP is gross national product Energy is the logarithm of total energy

consumption in megawatt hours per capita. Labor is a labor force diversification index,

Exec is an index of executive functioning. Party is an index of political party organization.

Power is an index of power diversification, and O is the Cutright Index of political

representation

Using their revision procedure, Costner and Schoenberg arrive at the following modification

of the initial model:
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Political^
DevelopmentJ

e7

Figure 8-2: Costner and Schoenberg's Revised Model

The revised model has a chi square statistic with p = .053, and 11 degrees of freedom.

The fit is marginal. One might want to know if there are good alternatives to this model

or if the fit can be improved by adding further connections. To answer these questions we

use TETRAD, starting with Costner and Schoenberg's initial causal modeL We have included

the Costner and Schoenberg data set on the TETRAD disk. The file name is cs.dat We

urge the user to follow the analysis below with TETRAD and then experiment with the

program by trying other lines of search.

8.2.2. The TETRAD Analysis

We will do two searches, first with the Suggested Sets procedure, and then with the Rttr

chart We begin with the skeletal causal model shown in Fig. 8-3. The abbreviation

scheme we use is shown below:

Industrial Development
Political Development

GKP
Energy
Lafcor
Exec
Party
Power

Cutright Index

ID
PD
gp
en
la
ex
pa
po
ci
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gp en

Figure 8-3: C & S Skeleton

We create a covariance file which we show in Fig. 8-4. The first line of a covariance file

contains the sample siza Each remaining line contains a covariance (or correlation) or

variance and then a variable pair. The same variable name is given twice in each line in

which a variance occurs.

115
1.0 gp
1.0 en
1.0 la
1.0 ex
1.0 pa
1.0 po
1.0 ci
0.95
0.83
0.66
0.56
0.45
0.67
0.83
0.70
0.54
0.38
0.66
0.62
0.54
0.38
0.61
0.47
0.45
0.60
0.64
0.64
0.67

gp
en

!a
ex
pa
po

ci
gp
gp
gp
gp
gp
gp
en
en
en
en
en
la
la
la
la
ex
ex
ex
pa
pa
po

en
la
ex
pa
po
Ci
la
ex
pa
po
ci

ex
pa
po
ci
pa
po
ci
po
ci
ci

Figure 8-4: C & S Data File
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We also create a graph file, which we show below. Each line of the graph file contains

an edge in the graph. Latent variables are capitalized and measured variables are in lower

case.

ID PD
ID gp
ID en
ID la
PD ex
PD pa
PD po
PD ci

Figure 8-5: Graph File For The Skeleton

Using the Sets of Suggested Treks

We proceed to use TETRAD'S run format on this data file, requesting 2 units of suggested

sets. TETRAD'S output is shown below.
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The graph analyzed in this example is:
ID->gp ID->en ID->la ID->PD PD->ex PD->pa PD->po PD->ci

The sample size is: 115

Sets of suggested treks at significance level = 0.5316

{ID->ex ID->po }
{ex-po pa-ci ID->po }
{ex-po ID->ex pa-ci }

Sets of suggested treks at significance level = 0.6027

{ex-po ID->ex pa-po pa-ci }
{ex-po ID->ex pa-ci po-ci }
{ex-po ID->ex pa-po po-ci }
{ex-po pa-po pa-ci po-ci }
{pa-po pa-ci po-ci ID->po }
{ex-po pa-po pa-ci ID->po }
{ex-po pa-ci po-ci ID->po }
{ex-po ID->ex pa-po ID->po }
{ID->ex pa-po pa-ci ID->po }
{ID->ex pa-po po-ci ID->po }
{ex-po ID->ex po-ci ID->po }
{ID->ex pa-ci po-ci ID->po }

The Total Tetrad Residual, or TTR, is: 5.29850

Figure 8-6: C & S Output

Notice that the first of the suggested sets is precisely the one that Costner and

Schoenberg locate with their procedure. Adding those edges to the skeleton and asking

for standard results, we can find the TTR of the revised model. Table 8 - 1 below shows

the TTR, degrees of freedom, chi-square and its associated probability for the skeleton and

the model Costner and Schoenberg suggest20

Notice the difference in the TTR of the skeleton and Costner and Schoenberg's revisioa

The TTR, recall, is just the sum of the tetrad residuals of all of the tetrad equations implied

by the model.

We used EQS/PC to compute the chi-square and its associated probability. We fixed at V a coefficient for one indicator
of each latent construct.
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Edge A d d i t i o n s TTR DF21 X2 p ( X 2 )

None(skeleton) 5.298 13 52.1 <0.001

ID->po, ID->ex 1.149 11 19.5 0.053

Table 8-1: Statistical Results For the Models C & S Consider

The goodness of fit of a model is negatively correlated with the TTR. Adding edges to a

model prevents the model from implying certain tetrad equations and the effect of adding

an edge depends on which equations are no longer implied by the modified model. If the

equations that are no longer implied have large tetrad residuals, the TTR will be substantially

reduced If those equations have a small residuals, explanatory power will be lost without

much reduction in the TTR value. Some edges will reduce the TTR substantially but will

also prevent the model from explaining equations that hold closely in the data The user is

free to weight these factors as he or she wishes.

In its sets of suggested trek additions, however, TETRAD puts priority on preventing the

loss of explanatory power over reducing the TTR. For this case that weighting is for the

most part too severe. ID->ex and ID->po are good suggestions, and they are also the

edges occurring in the suggested sets which most reduce the TTR value. But there are a

number of edges not occurring in the suggested sets that reduce the TTR even more and

that lose little in explanatory power. This conclusion can be drawn immediately from an

examination of the Rttr chart for the original model.

Using the Rttr Chart

The Rttr chart provides powerful information in a general way. Given any linear model, it

informs the user of the exact effect the addition of any single edge has on this models

TTR, its D(l-H), its D(l-H), and its Pi value. The chief disadvantage is that it gives this

information only for single edge additions. Thus it is not generally appropriate to find two

edges which look promising in an Rttr chart and to conclude that both should be added

The two edges may interact in a way not anticipated, they may defeat the same equations

and be redundant, and so forth.

The most effective way to use just the Rttr chart is to perform a tree-like search, in

Degrees of freedom.
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which each node of the tree is a graph which results from the addition of a single edge

to its "parent' graph. Start with a plausible initial model at the root of the tree, run

TETRAD, and ask for suggested sets to find a significance level to use (see below). Then

run TETRAD to obtain an Rttr chart for the initial model at that significance level. From

this chart pick a set of the best individual edges to add Add these edges to the initial

model one at a time to form the first level of the tree. Run TETRAD on each graph in the

first level to obtain an Rttr chart for each of them. Pick the best members from the Rttr

chart for each node and form a second level, etc. Any path down the tree gives a series

of nested models. The only difficulty is in knowing at what point adding edges will no

longer help improve a model's fit TETRAD'S Pi value may sometimes be useful in making

this decision.

The program for Suggested Sets of trek additions finds its significance levels automatically.

The Rttr chart does not The Rttr chart requires the specification of a significance level

which is used to decide whether or not a tetrad equation "holds" in the population. The set

of tetrad equations that "hold" is then used to discriminate among the explanatory powers

of alternative one edge or one correlated error additions to the initial model. The default

value of the significance level is the conventional .05, but generally users should select

unconventional values for the significance level especially when the sample size is not

large. One is not making a real decision as to which tetrad equations literally hold in the

population: in all likelihood, none of them do. One is instead trying to find those patterns

or constraints that are well approximated The most important thing in selecting a

significance value is to find a level that will efficiently discriminate among alternative

models.

Our recommendation is the following

Run the Suggested Sets procedure before running the Rttr chart. Find the significance

levels at which sets of trek additions are first suggested. Choose that value, or higher

values, as the significance level for the Rttr chart.

In this case we use the significance level of the second unit of suggested sets of trek

additions, .532. Asking for an Rttr chart for the skeleton at a significance level of .532,

we obtain the following results.
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Edge Rttr D(I-H) I.(H-I)

(Not

gp->

gp->

en->

en->

la->

la->

in a suggested

ex

po

ex

po

ex

po

3.

2.

3.

2.

3.

2.

set)

178

693

186

697

111

593

(In a suggested set)

ex->
po->
ex c

ID->

pa->
po->
pa C

pa->

pa C

po->

po C

po
ex
po"

ex

po
pa
po

ci
pa
ci

ci
po
ci

1.
1.
1.

2.

2.
2.
2.

1.
1.
1.

H
H

H
• 

• 
•

422
422
.422

920

003
003
003

553
553
553

617
,617
617

24

25

24

25

22

24

14
14
14

18

13
13
13

14
14
14

13
13
13

2

1

2

1

4

2

0
0
0

0
H

H
H

0
0
0

H
H

H

ID-> po 2.407 .18 0

The Total Tetrad Residual, or TTR, is: 5.29850

I-H, the total number of equations implied by the model
that do not hold in the data, is: 56

H-I, the total number of equations that hold in the data but
are not implied by the model, is: 1

The number of equations that hold in the data is 14

The number of equations explained by the model is 13

Figure 8-7: Rttr Chart At .532

The notation "ex C po" means that the error terms for ex and po BTB correlated.
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We have included only those edges not in the suggested sets that seem especially

promising There are a number of edges that considerably reduce the TTR value without

extracting a high cost in explanatory power, and many of the treks in the second unit of

suggested sets of trek additions are not among the best of these. We expect that

additions to the skeleton included in the suggested sets, with the exception of ID->po and

ID->ex, will not substantially improve the fit of the model, and that expectation is

confirmed by the findings summarized in the following table.

Model (Additions to Skeleton) p(X2)

1) ID->po, ID->ex 0.053

2) ID->po, po->ex 0.037

3) ID->po, po->ex, ci C po 0.049

4) ID->ex, ex->po, pa C po, ci C po 0.037

5) ID->ex, ID->po, pa->po 0.054

6) ID->ex, ID->po, po C ci 0.056

Table 8-2: The Best Models From The Suggested Sets

These models are only marginally significant We can do better by seeking revisions with

the help of the Rttr chart

The Search

Adding edges to a model reduces the TTR but also reduces the degrees of freedom.

After a certain number of additions, the reduction in the TTR is no longer large enough to

offset the loss in simplicity and explanatory power. In adding two edges, Costner and

Schoenberg have substantially lowered the TTR, but their revision still has a TTR of 1.149.

Pi helps indicate if adding another edge might improve the fit still further. We illustrate a

full tree like search below.

We start with the skeleton and request a full Rttr chart with the significance level set at

.532. The Pi values are calculated using the skeleton as a base model. Already screened

results were shown above in Figure 8-7 . ; We construct the following tree, shown below.

Each edge and correlated error is shown along with the TTR and Pi value of the model that
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results from its addition.

Root

Initial
Model

Level 1

Edge

ID->ex

ID->po

gp->ex

gp->po

en->ex

en->po

la->ex

la->po

TTR

2.38

2.85

2.12

2.61

2.11

2.60

2.19

2.71

Pi

.509

.419

.554

.469

.555

.470

.542

.452

Figure 8-8: Tree With First Level Added

We now run TETRAD on each of the eight models occupying a node in the first level of

the tree and request an Rttr chart for each. We also ask TETRAD to give us Pi values for

the models on the first level and to indicate in the Rttr charts the Pi values of models that

are elaborations of the first level. To illustrate, we show part of the Rttr chart and

standard results for the most promising model on level one, the skeleton plus the edge

en->ex .
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Edge

gp-> ex

ID-> po

gp-> po

en-> po

la-> po

ex-> po

Rttr

0.091

1.231

1.452

1.426

1.386

1.426

D(I-H)

2

14

20

19

19

19

KH-I)

2

0

1

1

2

1

Pi

0.523

0.705

0.741

0.737

0.730

0.737

The Total Tetrad Residual, or TTR, is: 2.11220

The Pi value for the model is: 0.55510

I-H, the total number of equations implied by the model
that do not hold in the data, is: 32

H-I, the total number of equations that hold in the data but
are not implied by the model, is: 3

The number of equations that hold in the data is 14

The number of equations explained by the model is 11

Figure 8-9: Rttr Chart For Skeleton + en->ex

Notice that the Pi value for the model is .555, as the Rttr chart for the skeleton indicated

it would be. We include the edge gp->ex in this chart to illustrate that it may be unwise

to add both of two edges that do well in the same Rttr chart Look again at Figure 8 -7 .

Edges gp->ex and en->ex both look extremely promising After we add en->ex, however,

the Rttr chart shows that gp->ex is not a good further addition. En->ex and gp->ex are

almost entirely redundant

We illustrate how to form the second level of the tree by showing the level under en->ex,

the most promising node.
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Root Level 1 Level 2Level 1

Edge

(ID->ex

(ID->po

(gp->ex

(gp->po

(en->ex

(en->po

(la->ex

(la->po

TTR

2.38

2.85

2.12

2.61

2.11

2.60

2.19

2.71

Pi

.509)

.419)

.554)

.469)

.555)

.470)

.542)

.452)

(gp-> po .660 .741)
Init ial (ID-> po .881 .705)
Model (en->ex 2.11 .555) (en-> po .686 .737)

(la-> po .726 .730)
(ex-> po .686 .737)

Figure 8-10: Tree With Part of Second Level Added

If we add the edge gp->po the resulting model has a Pi value of .741. The Pi value is

increasing rapidly, and the models with two additions still explain most of the equations that

hold, so searching for a third addition seems certainly worthwhile. We add each of the

five edges in turn and ask TETRAD for an Rttr chart Below we show part of our third

level under the additions gp->po and en->po.
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Root Level 1 Level 2 Level 3

Edge TTR Pi

(ID->ex 2.38 .509)

(ID->po 2.85 .419)

(gp->ex 2.12 .554) (pa->en .237 .735)
(ci->en .237 .735)

(gp->po 2.61 .469) (gp-> po .660 .741) (la->pa .206 .739)
Initial (ID-> po .881 .705)
Model (en->ex 2.11 .555) (la-> po .726 .730)

(ex-> po .686 .737) (pa->en .297 .734)
(en->po 2.60 .470) (en-> po .686 .737) (la->pa .252 .740)

(ci->la .301 .733)
(la->ex 2.19 .542)

(la->po 2.71 .452)

Figure 8-11: Tree With Part of Third Level Added

The Pi values of the third level are leveling off and in some cases decreasing. This

indicates that searching at the fourth level might be fruitless.

Proceeding in this way for the entire tree, we arrive at 20 distinct models that reduce the

TTR to between approximately .2 and .3 and that add only three edges to the skeletoa

We then run all twenty models through EQS/PC23, getting parameter estimates and

goodness of fit results. The results are in Table 8-3 below.

8.2.3. Goodness of Fit Results

See chapter 11 for help in running twenty models in batch format.
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Additions to Skeleton TTR Eqs. Explained P(X2)

5) en->po, la->pa, po->ex
6) en->po, la->ex, ex->pa
7) en->ex, la->po, pa->la
8) en->ex, la->por ci->la

9) gp->ex, pa->po, en->pa
10) gp->ex, gp->po, la->pa
11) en->po, en->ex, gp->pa
12) en->po, en->ex, ci->la

13) en->po, la->ex, pa->en
14) ID->po, en->ex, ex->gp
15) ID->pof en->ex, pa->en
16) en->ex# pa->po# la->pa

17) en->ex, pa->po, en->pa
18) en->ex# pa->por ex->pa
19) gp->ex, gp->po, la->pa
20) en->pof la->ex, la->pa

146
220
220
202

202
223
198
198

220
220
270
241

213
358
328
272

286
286
209
222

Table 8-3:

7
6
6
6

6
5
4
4

6
6
5
4

3
5
5
5

6
6
6
6

0.0551
0.1189
0.1002
0.4792

0.4085
0.1108
0.0246
0.0161

<0.001
<0.001
0.5752
0.5198

0.1234
0.1222
0.1526
0.0438

0.0211
0.0096
<0.001
0.0819

Note that in several cases there are models that are almost indistinguishable by TETRAD'S

measures but that perform quite differently on a chi-square test There are four models

that have large p values (p(X2) > .4) and a number that are well above the .05 cutoff. The

skeleton for this model implies higher order constraints, e.g. 50 pentad equations, that

may be violated in the data and that are not considered by the TETRAD program. Of

models that appear indistinguishable by TETRAD'S measures but behave quite differently on

chi square tests, some may imply false higher order constraints not implied by others.

Notice that all four models that do extremely well involve direct connections between en-

po and en-ex. Also notice that the only models that have p(X2) < .001 include neither of

these connections. Of the two, en-po seems more important No model that involves en-

po is insignificant at the .05 level, while models that involve en-ex but not en-po have .01

< p(X2) < .05 .
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Testing TETRAD'S Suggestions About Causal Order

This series of models also offers support for a hypothesis concerning the causal order

between en-po and en-ex. The Rttr chart distinguishes three possible connections among

a pair of variables. Notice that every model we located with the Rttr tree search specifies

the en-po connection as en->po, and the ex-en connection as en->ex.

To test TETRAD'S prediction about this ordering we ran a number of variants of the

ordering through EQS. We exhibit the results in Table 8-4 below.

Edge Additions To Skeleton p(X2)

1) en->po, en->ex 0.5504
2) po->en, en->ex 0.0336
3) en->po, ex->en 0.1434
4) po->en, ex->en <.001

5) enCpo, enCex, exCpo 0.0015
6) T->en, T->ex, T->po 0.001524

7) ID->po, en->po, en->ex 0.6082
8) ID->por po->en, ex->en 0.0477

9) ID->ex, en->po, en->ex 0.6004
10) ID->ex, po->en, en->ex 0.0931

11) ID->ex, ID->po, PD->en 0.2940

Table 8-4: Causal Order Comparisons

The results are unambiguous. In every case in which two models differ with respect to a

causal ordering, the model that accords with TETRAD'S suggestion does markedly better on

a chi-square test

Finally, we exhibit a table of all the models we located with TETRAD'S help, their TTR value,

the number of equations which hold at a significance level of .532 that the models explain,

and the p value of the chi square statistic for each model. The models are ordered by the

probability of their statistic.

Here T is an extra latent variable introduced as a common cause of en, ex and po.
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Model TTR Eqs.

5.300

• 686
.686
.270
.246

.686

.251

.202

.202

.560

.328

.213

.358

.220

.223

.220

1.670
.222
• 146

1.364

1.149
.272

.198

.286

.198

.565

.237

.206

.237

.286
2.345

2.345
.220

.220

.209

Explained21

13

10
10
5
4

10
4
6
6

5
5

5
6
5
6

8
5
7
8

11
5

6
4
8

5
4
6
7

7
6

6
6

P(X2)

0.000

0.6082
0.6004
0.5752
0.5680

0.5504
0.5198
0.4792
0.4085

0.2940
0.1526
0.1434
0.1234

0.1222
0.1189
0.1108
0.1002

0.0931
0.0819
0.0551
0.0477

0.0530
0.0438
0.0336
0.0246

0.0211
0.0161
0.0145

0.0135

0.0133
0.0108
0.0096
0.0015

0.0015
<0.001
<0.001
<0.001
<0.001

Skeleton

1)
2)
3)
4)

5)
6)
7)
8)

en->po, en->ex, ID->po
en->po, en->ex, ID->ex
en->po, en->ex, gp->pa
en->po, en->ex, pa->en

en->po, en->ex
en->po, en->ex, ci->la
en->po, en->ex, la->pa
en->po, la->pa, po->ex

9) ID->por ID->ex, PD->en
10) ID->po, en->ex, pa->en
11) ex->en, en->po
12) en->po, la->ex, pa->en

13) ID->po, en->ex, ex->gp
14) en->po, gp->ex, en->pa
15) en->por la->exf ex->pa
16) en->po# gp->exf po->pa

17) ID->po, po->en# ex->en
18) en->po, la->exf la->pa
19) en->por gp->ex, la->pa
20) ID->exf po->enf ex->en

21) ID->ex, ID->po
22) en->exr pa->po, la->pa
23) en->ex, po->en
24) en->ex, la->po# pa->la

25) en->ex, pa->por en->pa
26) en->ex, la->po#
27) T->exf T->en, T-

T->ID, T->PD
28) en->ex, gp->por pa->en

29) en->exr gp->po, la->pa
30) en->exr gp->por ci->en
31) en->exf pa->po, ex->pa
32) T->ex, T->enf T->po

33) exCen, enCpo, exCpo
34) gp->exr pa->pof en->pa
35) ex->en# po->en
36) gp->ex, gp->po, la->pa
37) gp->ex, gp->por la->pa

Table 8-5: All Models Located With TETRAD

25
Out of a possible 14 that hold at a significance level of .532.
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8.2.4. Conclusion

It is no surprise that TETRAD'S suggested sets yield Costner and Schoenberg's model

immediately. The procedure by which Costner and Schoenberg obtained the model shares

many features of the TETRAD algorithms and heuristics. But to justify the assumptions of

the model we either need substantive knowledge or else grounds for thinking that no

other plausible model explains the data as well. We have explored only a single skeleton,

but in combination with EQS, TETRAD has provided a rather full sense of the possibilities

available within the boundaries of that initial hypothesis. It may be of some surprise,

however that TETRAD helps us to locate a series of plausible models that are not

extensions of Costner and Schoenberg's model, that all include en->po and en->ex, and

that all have a much higher chi-square probability than Costner and Schoenberg's model. It

may also be a surprise that the data so unambiguously choose a particular causal order

among a particular pair of indicator variables.

One value of locating these alternatives is that they force substantive issues to the

forefront and they clarify which substanve issues are most urgent in theory assessment If

one wishes to defend a particular causal analysis of the data, say Costner and Schoenberg's

model, then one is obliged to give good reasons for prefering that explanation to the many

alternatives that seem statistically satisfactory. One might, for example, argue that the

measured variables in this case are indices, and therefore cannot enter into direct causal

relations with one another. (It might be argued to the contrary that causal relations among

indices are acceptable surrogates for causal relations among the variables aggregated by

the indices). Or one might turn to other kinds of data, or other samples, to made a case

for one set of hypotheses as against another. Costner and Schoenberg's model for

example, predicts that increases in per capita energy consumption will have no effect on

power diversification or executive functioning. The best alternative models predict they will

have such an effect

This case illustrates that TETRAD'S procedures are heuristic, not infallible, and says

something about how good they are as rules of thumb. Sometimes models that are

dramatic improvements when judged by statistical tests are models that slightly decrease

rather than increase the Pi value. That is not surprising, given the rather arbitrary character

of the measure. Sometimes models with very low TTR values do poorly when compared

statistically with models having slightly higher TTR values. That is because models can imply

constraints other than tetrad equations, and the TETRAD program does not, in its present

version, take account of such constraints. Typically, however, TETRAD'S indicators are

strongly correlated with statistical indicators.
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The procedure we have described may seem elaborate. In fact it takes much longer to

describe than to carry out The entire TETRAD analysis took about half a day. The EQS runs

took somewhat longer A more thorough search would repeat the analysis on alternative

skeletons. In particular, we could consider skeletons in which the measured variables are

clustered differently. Costner and Schoenberg's model with the PD - > en addition, contains

eight distinct skeletons. All of them could be thoroughly analyzed with TETRAD in the

course of a weekend, with more time required for statistical analysis of the most

promising, distinct elaborations. In view of the time, effort and cost that goes into data

collection, a few days spent analyzing alternative models does not seem excessive.
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8.3. MEASURING THE AUTHORITARIAN PERSONALITY

8.3.1. Introduction

M. Kohn's C/ass and Conformity [ 58 ] describes several large studies that investigate the

relationships among social class, attitudes, and personality structure. In one section of his

book Kohn explores the relations between social class and a variety of latent factors, one

of which is an "Authoritarian-Conservatism" personality trait We are concerned here only

with the measurement model for this latent factor.

Items on intervew schedules used in social psychology are often interpreted as indicators

of a common attitude or character trait that is not directly measured. Latent factors of

this sort may be extracted by factor analysis, or the indicators may be chosen at the

outset to reflect a common trait , After the correlations among the item responses due to

this common factor are extracted, the item, residuals are often still correlated, and these

correlations are usually taken to indicate that the item responses have other common

determinants besides the latent factor they are designed, or thought, to measure. The

correlated residuals are assessed statistically by treating them as the result of correlated

errors in item responses, without any further interpretation.

Thus Kohn (1969) extracted an "authoritarianism-conservatism" factor from his well-known

National Survey data Miller et al. [ 7 8 ] extracted an analogous factor from a parallel

study of Polish men. Miller et al. isolate five "core" items, answers to interview questions,

that are indicators of authoritarian personality in both national groups. Correlation data for

these five indicators are available in an article by Schoenberg and Richtand [ 8 7 ] that

demonstrates a quick maximum likelihood estimation program. The initial measurement

model is pictured in Figure 8-12. Here q1-q5 stand for the indicators and e1-e5 ate

their disturbance terms.
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el e2 e4 e5

Figure 8-12: Initial AC Measurement Model

In the studies described by Kohn, approximately 3,000 subjects were presented with a

number of statements. The subjects were to indiAte how strongly they agreed or

disagreed with these statements. The questions were scored with a five category scale

from "strongly disagree" to "strongly agree." The five questions Schoenberg and Richtand

list are:

1. The most important thing to teach children is absolute obedience to their
parents.

2. In this complicated world, the only way to know what to do is to rely on
leaders and experts.

3. No decent man can respect a woman who had sexual relations before
marriage.

4. Any good leader should be strict with people under him in order to gain their
respect

5. Its wrong to do things differently from the way our forefathers did

Miller et al. note that there are correlated residuals, and while suggesting various alternative

accounts of their source, treat them statistically as correlated errors. Schoenberg and

Richtand do the same. We suggest that such correlated residuals may indicate an

"anchoring" effect among answers to the interview questions, analogous to that described

by Kahneman and Tversky [ 5 4 ] , and by Campbell, et al., [ 1 4 ]
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Anchoring

An anchoring effect occurs when the subject uses the results of some mental process to

serve as a starting point for another, moving from the anchor instead of starting from

scratch Kahneman and Tversky proposed such an effect to explain systematic

performance errors in an experiment involving sequential multiplication tasks performed

under strong time constraints. They found that subjects estimated the final product within

a predictable interval of the product of the first two or three numbers. Extending these

results, they found anchoring effects in a wide range of mental tasks.

A similar effect may operate in questionaires and mental tests. It seems plausible that

anchoring takes place in answering the kind of questions Kohn's study employs. Whether

the subject wants to appear consistent or answers one question with a perspective or

mood already created by a previous answer, the answer to an earlier question might well

affect the answer to a later one# On this assumption, we consider the hypothesis that a

correlated residual between answers to interview questions is due to a causal relation

between the indicator variables. That is, if two indicators have residual correlation not

explained by the common factor already postulated, the excess correlation is due to a

causal relation among the indicators, not to an unexplained correlation among their error

terms.

Miller's Respecification

To interpret the residuals for items in the Kohn study and in the parallel Polish study. Miller

et al. use a method that has become common in the study of measurement models. They

find a maximum likelihod estimate of the factor loadings and locate the parameter (fixed at

zero in the model) such that the partial derivative of the maximum likelihood fitting function

is the largest for that parameter. They consider only parameters representing error

correlations. They free the chosen parameter, reestimate the modified model, and find its

chi square value. If the difference of chi square values between the original model and the

revision is significant, the added correlation is retained The procedure is repeated until the

suggested correlations are no longer statistically significant In this way Miller, et al. obtain

the following model for the five core indicators.
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Figure 8-13: Miller's Revised Model

Schoenberg and Richtand make an identical revision, and when the factor loading of the

first indicator is fixed at unity they find the probability of the chi square statistic to be

0.57.

8.3.2. The TETRAD Analysis

To locate alternative elaborations of the initial model that include causes between indicator

variables, we employ TETRAD. The initial causal model is show in Fig. 8-14.

q i q2 qs q4 qs

Figure 8-14: AC Skeleton

Using the Suggested Sets

We ask TETRAD for 3 units of sets of suggested sets, using the datafile anchor.dat which

is included on the TETRAD disk. The results are as follows.
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The name of this output file is: anchor.ol

The graph analyzed in this example is:
AC->ql AC->q2 AC->q3 AO>q4 AO>q5

The significance level is: 0.0500

The sample size is: 3101

Sets of suggested treks at significance level = 0.0418

{q3-q5 }

Sets of suggested treks at significance level = 0.5163

{ql-q3 q2-q5 q3-q5 }

Sets of suggested treks at significance level = 0.8099

{ql-q4 q2-q5 q3-q4 q3-q5
{ql-q3 q2-q5 q3-q4 q3-q5
{ql-q4 q2-q3 q3-q4 q3-q5
{ql-q3 q2-q3 q2-q5 q3-q4
{ql-q4 q2-q3 q2-q5 q3-q4
{q2-q3 q2-q5 q3-q4 q3-q5
{ql-q3 q2-q3 q2-q5 q3-q5
{ql-q3 ql-q4 q2-q3 q3-q5
{ql-q3 ql-q4 q2-q5 q3-q5
{ql-q3 ql-q4 q3-q4 q3-q5
{ql-q3 ql-q4 q2-q3 q2-q5
{ql-q3 ql-q4 q2-q3 q3-q4

The Total Tetrad Residual, or TTR, is: 0.22699

I-H, the total number of equations implied by the model
that do not hold in the data, is: 8

H-If the total number of equations that hold in the data but
are not implied by the model, is: 0

The number of equations that hold in the data is 7

The number of equations explained by the model is 7

Figure 8-15: TETRAD'S Results on the AC Skeleton
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Notice that TETRAD'S first suggestion is the introduction of a trek between q3 - q5, two

of the variables that Miller, et al. correlate. The addition of this trek does not prevent the

implication of any equation that is significant at the .05 level thus it entails virtually no loss

in explanatory power. No other pairs are included in a set until the significance level is

above .5, so we will use .5 as a significance level in asking for the Rttr chart below. First

however, we pursue the suggestions TETRAD gives.

Prima facie, the second suggested set

{q1-q3 q2-q5 q3-q5 }

has a number of possible orderings. In accord with our theoretical considerations about

anchoring, however, we only consider direct causal relationships between indicators, and

this constraint makes it impossible to order the three pairs that occur in this set without

creating a further trek in addition to those suggested

For example, if we order edges between q2—q5 and q3—q5 as in Figure 8-16, then a

new trek between q2—q3 is produced

el e2 \ e3 e4 / e5 el e2 Ve3 e4 7e5

(a) (33) (c)

Figure 8-16: Edges That Link To Produce A Trek Between q2 - q3

If instead we add edges as in 8-17, then no new trek is created between q2 and q3.
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q i q2 q3 q4

Figure 8-17:

But notice that in Figure 8-17 (and in Figure 8-16 (c), an additional edge connecting q1-q3

will also create a trek between q1 and q5.

The question is: do we want to introduce a trek between q2-q3, between q1-q5, both, or

neither? Looking at the next level of suggested sets, we notice that there is no set with

q1-q5, but there are sets with q2-q3 in them. Using TETRAD'S Compare command we find

that the introduction of a new trek between q1-q5, q4-q5, q1-q2, or q2-q4 will prevent

the implication of an equation that holds at a significance level greater than .91.

Combinations of edges that produce these treks are to be avoided There is a set with

q2-q3 in the third level of suggested sets that is also a superset of the one suggested

set in the second level, namely:

{q1-q3 q2-q3 q2-q5 q3-q5 }

If we directly connect the three pairs that occur in the set from the second level to

produce all and only the four treks in the above set we are constrained to two possible

orderings of the causal connections. Any other ordering would introduce a trek between

q1-q5, or fail to produce a trek between q2-q3. The permissible hypotheses are these:

1) q1->q3, q2->q5, q5->q3

2) q1->q3, q5->q2, q5->q3

Either of these additions, or subsets of them, should do well on a chi-square test They

also contain information relevant to predicting the order in which the interview questions

were asked We cover that topic below.
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Using the Rttr Chart

Using a significance level of .5, we ask TETRAD for statistical information about each

TETRAD equation and an Rttr chart of the skeleton. The statistical information is shown in

Figure 8 - 1 8 below. The Rttr chart for the AC Skeleton is shown in Figure 8 - 1 9 below.

The graph analyzed in this example i s :
AC->ql AC->q2 AC->q3 AC->q4 AO>q5

The significance level i s : 0.5000

The

qi
qi
qi

qi
qi
qi

qi
qi
qi

qi
qi
qi

q2

sample

Tetrad

q2# q3
q2# q4
q3, q4

q2r q3
q2# q5
q3r q5

q2, q4
q2# q5
q4, q5

q3r q4
q3, qs
q4, q5

q3, q4
q3f q5
q4, q5

size is:

Equation

q4 =
q3 =

qs =
q3 =

q5 =
q4 =
q2 =

q4 =
q3 =

q4 =
q3 =

qi
qi
qi

qi
qi
qi

qi
qi
qi

qi
qi
qi

q2
q2
q2

3101

q3r q2
q4, q2

q3, q2
q5, q2
q5, q3

q4, q2
q5, q2
q5, q4

q4f q3
q5, q3
q5r q4

q4, q3
q5# q3
q5, q4

q4

q2

qs

q2

q4
q2

q5
q4
q3

q4

Residual

0.0068
0.0019
0.0087

0.0255
0.0295
0.0039

0.0160
0.0007
0.0167

0.0382
0.0051
0.0331

0.0204
0.0070
0.0134

Impld.

y
y
y

y
y
y

y
y
y

y
y
y

y
y
y

Held

y

y

y

P(diff.)

0.3185
0.8099
0.2241

0.0000
0.0000
0.5163

0.0464
0.9193
0.0285

0.0000
0.3811
0.0000

0.0016
0.2063
0.0418

Figure 8-18: Statistical Information For the AC Skeleton
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Edge Rttr D(I-H) I(H-I)

ql-> q2
q2-> ql
ql C q2

ql-> q3
q3-> ql
ql C q3

ql-> q4
q4-> ql
ql C q4

ql-> q5
q5-> ql
ql C q5

q2-> q3
q3-> q2
q2 C q3

q2-> q4
q4-> q2
q2 C q4

q2-> q5
q5-> q2
q2 C q5

q3-> q4
q4-> q3
q3 C q4

q3-> q5
q5-> q3
q3 C q5

q4-> q5
q5-> q4
q4 C q5

he Total

0.080
0.080
0.080

0.088
0.088
0.088

0.115
0.115
0.115

0.089
0.089
0.089

0.071
0.071
0.071

0.067
0.067
0.067

0.083
0.083
0.083

0.067
0.067
0.067

0.160
0.160
0.160

0.087
0.087
0.087

Tetrad Residual,

4
4
4

in
 in

 in

5
5
5

4
4
4

4
4
4

in
 in

 in
in
 in

 in

Ul
 U
l
 U
l

6
6
6

in
 in

 in

or TTR, is:

t
o
 t
o
 t
o
 i

1
1
1

1
1
1

to
 t
o 
to

to
 t
o 
to

1
1
1

1
1
1

1
1
1

0
0
0

1
1
1

0.22699

I-Hf the total number of equations implied by the model
that do not hold in the data, is: 12

H-I, the total number of equations that hold in the data but
are not implied by the model, is: 0

The number of equations that hold in the data is 3

The number of equations explained by the model is 3

Figure 8-19: Rttr Chart For AC Skeleton at .5
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The Rttr chart shows that a directed edge or correlated error for q3-q5 is clearly the

best candidate for addition. These treks reduce the TTR the most and cost the least in

explanatory power. Notice that q1-q4, Miller's other addition, seems to be the second

best candidate. We don't know how q3-q5 and q1-q4 will interact however, and so we

add only q3->q5 and then q5->q3, asking for Rttr charts in both cases.
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The graph analyzed in this example is:
q3->q5 AC->ql AC->q2 AC->q3 AC->q4 AC->q5

The significance level is: 0.5000

The sample size is: 3.1E+03

Edge Rttr D(I-H) I(H-I) Pi

q2->
qi c

q3->
qi c

q4->
qi c

q5->
ql C

q2->
q3->
q2 C
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q2 C
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q4->
q3 c
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q4 C
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tr tr cr
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CM in
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Figure 8-20: Rttr Chart For AC Skeleton + q3->q5



181

The graph analyzed in this example is:
q5->q3 AC->ql AC->q2 AC->q3 AC->q4 AC->q5

Edge Rttr D(I-H) I(H-I) Pi

q2->
qi c

q3->
ql C
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The Total Tetrad Residual, or TTR, is: 0.06700

The Pi value for the model is: 0.56348

Figure 8-21: Rttr Chart For AC Skeleton + q5->q3

Notice that after either q3->q5 or q5->q3 has been added q1-q4 is no longer the

addition that most reduces the TTR. We are considering only directed edges, not correlated

errors, and we find that the q2-q5 edges do most to reduce the TTR, but they increase

H-l by 2 whereas q1-q4 edges increase H-l by 1. Only the q2-q5 edges result in an

increase in the Pi value compared with the previous models. If we did not already know
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the properties of Miller's model we would certainly include q1-q4 as a node in the second

level. In this case, however, we will confine attention to the q2-q5 connections aid form

the following tree:

Root Level 1 Level 2

Edge TTR PI

Initial
Model

.067

.067

Figure

.563)

.563)

8-22:

1)
2)
3)

4)
5)
6)

(q2->q3
(q3->q2
(q5->q2

(q3->q2
(q2->q5
(q5->q2

.013

.013

.013

.013

.013

.013

.567)

.567)

.567)

.567)

.567)

.567)

Pi values for the Rttr charts of models on level 2 indicate that searching for additional

edges is not worthwile. These nodes look identical according to TETRAD'S Rttr chart To

confirm this we use TETRAD'S "Compare" option. It tells us exactly which equations

previously implied will no longer be implied if an edge is added and it tells us the residual

and the probability for each of these. Adding either q3->q5 or q5->q3 to the skeleton

defeats the implication of the same equations. We compare the equations defeated by node

1 of level 2, which is the skeleton + q3->5 + q2->q3, and node 6 of level 2, which is

the skeleton + q5->q3 + q5->q2.
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The graph analyzed in t h i s example i s :
q3->q5 AC->ql AC->q2 AC->q3 AO>q4 AC->q5

The

qi
qi
qi
qi
qi
q2

edge added was q2->q3

Tetrad Equation

q2, q4 q3 =
q3, q4 q2 =
q3r q5 q2 =
q4, q5 q2 =
q2, q4 q5 =
q3, q5 q4 =

qi
qi
qi
qi
qi
q2

q4, q2
q4, q3
q5r q3
q5, q4
q4r q2
q5, q3

q3
q2
cr2
CT2
cr 5
CJ4

Residual

0.0019
0.0087
0.0039
0.0167
0.0160
0.0070

The graph analyzed in t h i s example i s :
q5->q3 AC->ql AO>q2 AC->q3 AC->q4 AC->q5

The edge added was q5->q2

qi
qi
qi
qi
qi
q2

Tetrad

q2,
q3,
q3f
q4,
q2.
q3,

q4
q4
q5
qs
q4
q5

Equation

q3 =
q2 =
q2 =
q2 =
qs =
q4 =

qi
qi
qi
qi
ql
q2

q4, q2 q3
q4, q3 q2
q5, q3 q2
q5, q4 q2
q4, q2 q5
q5, q3 q4

Residual

0.0019
0.0087
0.0039
0.0167
0.0160
0.0070

Impld. Held

y

y

Impld. Held

y

y

P(diff.)

0.8099
0.2241
0.5163
0.0285
0.0464
0.2063

P(diff.)

0.8099
0.2241
0.5163
0.0285
0.0464.
0.2063

Figure 8-23: Compare For Two Nodes of Level 2

The implication of the same equations is prevented by either additioa It should be

emphasized that the fact that two models imply the same tetrad equations does not mean

that they will produce equivalent Rttr charts. We will not pursue the search tree further.

8.3.3. Goodness of Fit Results

Running all the models we have discussed through EQS/PC, we obtain the following results.
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Edge Additions To Skeleton TTR p(X*)

None (Skeleton) .2269 <.001

Miller's Revision

1) q3 C q5, ql C q4 .0240 0.585

From the Suggested Sets

1) q5->q3, q2->q5, ql->q3
1) q5->q3, q5->q2, ql->q3

From the Rttr Chart

1) q3->q5, q2->q3
2) q3->q5, q3->q2
3) q3->q5, q5->q2

4) q5->q3, q3->q2
5) q5->q3, q2->q5
6) q5->q3, q5->q2

Figure 8-24: Goodness Of Fit Results: All Models

.0130

.0130

.0130

.0130

.0130

.0130

0.994
0.994

0.098
0.098
0.666

0.098
0.666
0.666

8.3.4. Predicting Temporal Order

The TETRAD analysis was carried out with a pilot version of the TETRAD program before

we knew the order in which the questions were asked in Kohn's survey. The results of the

analysis imply predictions about that order. Earlier questions can have causal effects on

later questions but not vice-versa

We present our analysis of the evidence for a prediction about the temporal ordering

among the item responses in stages of increasingly stronger predictions.

Given three questions, there are six possible orders in which the questions can be asked

An intermediate stage of the TETRAD analysis, nodes 3, 5 and 6 of level 2 of the Rttr

search, permitted only three possible causal relations:

1) q3 -> q5 q5 -> q2
2) q5 -> q3 q5 -> q2
3) q5 -> q3 q2 -> q5
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These relations are consistent with only four possible temporal orderings of questions 3, 2

and 5. They require that question 5 either precede both of questions 2 and 3 or else

occur between them; that is to say the possible temporal orderings are:

3 - 5 - 2
2 - 5 - 3
5 - 2 - 3
5 - 3 - 2

We are quite confident of this conclusion, which has an a priori chance of 2/3.

If we now consider the addition of a 1-3 trek, as in the second level of suggested sets,

with the restriction that a trek must not be introduced between 1 and 5, the first of the

preceding causal orderings is eliminated Thus our heuristic procedures led us to the

conclusion that the only admissible possible causal arrangements of q5, q3 and q2 is:

2) q5 -> q3 q5 -> q2
3) q5 -> q3 q2 -> q5

These relations are consistent with only three possible temporal orderings of questions 3,

2 and 5, namely:

5 - 3 - 2
5 - 2 - 3
2 - 5 - 3

In view of the consilience, we are fairly confident that the actual order in which the

questions were asked was one of these three. The hypothesis has an a priori chance of

1/2.

The only permissible way to add the 1-3 trek given our other hypotheses is as q1->q3.

Thus we obtain the two orderings of q1, q3, q5, q2 found from the Suggested Sets

procedure. There are still only two possible arrangements of the directed edges permitted



186

by the TETRAD analysis, but they involve four variables. For four questions there are

twenty four possible orders in which the questions might have been asked The TETRAD

suggestion is consistent with only eight of them:

1 - 5 - 3 - 2
5 - 1 - 3 - 2
1 - 5 - 2 - 3
5 - 1 - 2 - 3
5 - 2 - 1 - 3
1 - 2 - 5 - 3
2 - 1 - 5 - 3
2 - 5 - 1 - 3

The hypothesis that the actual ordering of the questions was one of these has a prior

probability of 1/3, and we have some confidence in the hypothesis.

These predictions were made before we knew the actual ordering of the questions. In fact

it was because we realized that the TETRAD program and our heuristics had yielded

conclusions about causal order contrary to the numbering of the questions in Schoenberg

and Richtand's report26 that we understood that the program was in fact making claims

about the order in which the questions were asked

The actual order of the questions on the National Survey is

2 - 1 - 4 - 5 - 3

which is one of the possible orderings of the five questions allowed by our strongest

prediction.

8.3.5. Conclusion

The data support an interpretation of the correlated residuals as direct causal effects

between indicator variables. Not only do our best models do extremely well on a standard

statistical test they also yield a correct prediction about the order of the interview

questions.

Nothing Schoenberg and Richtand say suggests that the numbering used in their report was the same as the ordering for the
initial study reported by Kohn.
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8.4. ALTERNATIVES TO REGRESSION MODELS

8.4.1. Introduction

Regression models are among the most common linear statististical theories applied to non-

experimental data They are often applied to "demonstrate" the effect of one or more

"independent" variables on a "dependent" variable. The terminology implies strong causal

assumptions, and in many cases the implication is deliberate. Graphically, regression models

may have one or several source variables, which may or may not be correlated and they

contain directed edges from each source variable to the "dependent' variable:

D - < -

Figure 8-25: Graph of a Regression Model

Although presuppositions of regression models, such as the linearity of the dependencies,

or normality, can be tested, the models imply no constraints on the correlations, and so

cannot be tested more directly. Estimates of the regression coefficients are usually

accompanied by t tests in which the null hypothesis is that some regression coefficient is

zero. These tests are, however, no more than tests of the existence of a particular causal

edge on the assumption that the remainder of the regression model is correct Unlike chi

square tests of overidentified models, t tests are not tests of the regression model as a

whole. T tests represent a kind of "bootstrap" test not in the statistician's sense but in a

more general sense (see Glymour, [34]). Part of the theory is assumed in testing one

hypothesis within the theory; in turn, the hypothesis tested is assumed in testing other

hypotheses in the part of the theory that were presupposed in the first test The result is

a kind of circularity which is not vicious, but which is often not very powerful either. The

bootstrap style t tests of regression models do not succeed in eliminating the possibility

that there are other theories that will better explain the data

Because regression models are not testable as a whole, one cannot make a case for such

a model based on the fact that it has passed a statistical test that is powerful against other
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alternative causal hypotheses. And for the same reason, because regression models do not

imply constraints on the correlation matrix, one cannot make a case for a regression model

on the grounds that it explains such constraints. It is therefore very difficult to argue that

a regression model provides the best explanation of the data, unless prior knowledge

guarantees that the implicit causal assumptions are correct When the variables are indexed

by different times, as in econometric time series, that is sometimes possible. More often,

however, regression models contain causal assumptions that are not established by prior

knowledge, and there is no excuse for failing to consider alternative causal explanations of

the data When there are strong constraints that show up in the sample data, and there are

alternative causal theories that can explain those contraints, can pass statistical tests, and

are consistent with our prior knowledge, then the alternative causal models may very well

be preferable to the regression model. TETRAD can be used to help find such alternatives.

8.4.2. The Dependency Theory Example

Timberlake and Williams, [105] , claim that foreign investment in third-world or "peripheral"

nations, causes the exclusion of various groups from the political process within a

"peripheral" country. Put more simply, foreign investment promotes dictatorships and

oligarchies. They also claim that "foreign investment penetration increases government

repression in noncore countries" (p. 144). It is clear that such theses, if true, have

important policy implications. Timberlake and Williams try to support their first claim by

means of a simple regression model. Their more complicated argument for the second

thesis depends on the correctness of the regression model they propose. We will

concentrate on their regression model and on alternatives to it

Timberlake and Williams develop measures of political exclusion, foreign investment

penetration (in 1973), energy development, civil liberties, population, government sanctions in

two years (1972 and 1977) and political protests in those same years. They correlate these

measures for 72 "non-core" countries. All of the variables, save population, have substantial

positive or negative correlations with one another, with absolute values ranging from .123

to .864. It should be noted that their investment data concern a period preceding the

increase in petrodollars loaned to third world countries following the dramatic OPEC

increases in oil prices.

A straightforward embarrassment to the theory is that political exclusion is negatively

correlated with foreign investment penetration, and foreign investment penetration is

positively correlated with civil liberties and negatively correlated with government sanctions.

Everything appears to be just the opposite of what the theory requires. The gravamen of

the Timberlake and Williams argument is that these correlations are misleading, and when

other appropriate variables are controlled for, the effects are reversed
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To sustain the first hypothesis, they regress the political exclusion variable on foreign

investment penetration together with energy development and civil liberties (measured on a

scale whose increasing values measure decreases in civil liberties). Pictorially,

po

Figure 8-26: T & W's First Hypothesis

They find a statistically significant positive regression coefficient for foreign investment

penetration and conclude that their first hypothesis is supported

Timberlake and Williams thus claim to have found evidence that foreign investment in third-

world nations causes governments to be unrepresentative and undemocratic. Their

conclusion implies that the development of democracy and human rights would have been

furthered in the early 1970s if international corporations, the world bank, private banks and

other organizations based in industrial countries had not invested in third world nations. But

what evidence has the regression analysis actually provided?

The analysis assumes that political exclusion is the effect of the absence of civil liberties,

of energy development and of foreign investment They further assume that these causes

act independently, that their effects are additive, and that nothing else has an effect on any

of the independent variables and on political exclusion. They give no particular reasons for

these assumptions, and one might have thought otherwise. For example, one might have

thought that unrepresentative government causes an absence of civil liberties, or each

causes the other. Absolutely nothing has been done to show that the regression model

and its accompaying causal assumptions are correct But Timberlake and Williams do nothing

further to establish it There really is no argument for the regression model, or for the

more particular thesis that foreign investment promotes political exclusion, other than the

"bootstrap" tests provided by the t tests of linear coefficients.



190

8.4.3. The TETRAD Analysis

There are some puzzling features of the data, which we might expect a good theory to

explain. For example, there are in the data some relations among the correlations that hold

much more exactly than we expect by chance. Using TETRAD we find that the following

relations hold almost exactly in the sample data:

B,

P ~" P P = 0
* ev,cv * en.po' po,cv

Actually, in the sample, the differences on the left in equations A and B are not quite zero.

We can test these equations by asking the following: if there were an infinite population in

which equations A and B held exactly, and we drew a random sample of size 72 (the

number of "non-core" nations in the study), how likely would we be to get in that sample

differences that are as large as those we find? If the answer is a very small probability,

we can argue that the sample provides no evidence that the constraints A and B are other

than artifacts. But in fact we find just the reverse. We find, again using TETRAD, that if

the constraints A and B hold, then the probability of obtaining a difference at least as large

as that found in the sample for equation A is .868, and the probability of obtaining a

difference at least as large as that found in the sample for equation B is .800. These

numbers help convince us that A and B are real constraints on the measured variables, and

should, if possible, be explained

These equations are interesting exactly because they are the kind of relationship among

correlations that can be explained by causal structure. The first equation can be explained

by supposing that the only effects of political exclusion on foreign investment, or of

foreign investment on political exclusion, or of any third factor on both political exclusion

and foreign investment, are mediated by per capita energy consumption: one variable

affects another only through its effect on energy consumption. More visually, the first

equation will be explained provided the causal connections between political exclusion and

foreign investment are as illustrated in the next figure:

en'
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In the same way, the second equation, B, can be explained by supposing that any

correlations between energy consumption and absence of civil liberties are due to the

effects of political exclusion, e.g., if increases in per capita energy consumption cause an

increase in civil liberties, they do so because of their direct effect on totalitarianism

Timberlake and Williams' model does not provide any causal explanation of relations A and

B, but it is easy to find assumptions that do explain these patterns, and explain them rather

neatly. We will exhibit some alternative explanations pictorially.

I I . fî *- po| -*- cv

I l l ,

IV.

f i en

e'3 • 4

Figure 8-27: Alternatives to the Regression Model
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T signifies a latent common cause. The causal hypotheses in all figures, under the

assumption of linearity, imply that both A and B hold in the population, no matter what the

values of the linear coefficients may be.

There is also a plausible non-recursive model that explains equation A but not equation B,

namely

VI.

We have used the EQS program to estimate and test Model II. All linear coefficients are

very significant The coefficient giving the dependence of fi on en is positive; the

coefficient giving the dependence of po on en is negative; and the coefficient giving the

dependence of cv on po is positive. The p value for the chi square statistic with 2

degress of freedom is .94.

If one accepts Model II, then the conclusion is that foreign investment in "peripheral"

nations, neither promotes nor inhibits the development of democracy and civil liberties, but

raising the energy consumption per capita promotes both foreign investment and more

representative government, and through representative government increases respect for

civil liberties. We would not on this data, and given the alternatives, argue that Model II

should be accepted We do claim that it, and very likely the other alternatives suggested

here, is preferable to Timberlake and Williams' regression model.
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8.5. INTRODUCING LATENT VARIABLES LONGITUDINAL DATA
WITH SAT SCORES

TETRAD is designed to search for elaborations of an initial model but the program can

also help to decide between alternative initial causal models. We know from an earlier

chapter that tetrad equations can be derived from vanishing numerators of partial

correlations, and we have suggested the following heuristic principle:

If the tetrad equations found to hold in the sample are all implied by vanishing partial

correlations found to hold in the sample, then, ceteris paribus, do not introduce latent

variables to account for the correlations. But, ceteris paribus, if the tetrad equations

found to hold in the sample are not all implied by vanishing partial correlations found

to hold in the sample, then, provided no cyclic model in the measured variables is

plausible, do introduce latent variables to account for the correlations.

In the second case, the latent variables should be introduced in such a way that the model

implies the tetrad equations found to hold, and does so because the structure of the model

is such that measured correlations must vanish when partialed on one or another latent

variable.

8.5.1. An Example

Consider data from a longitudinal study of the performances of 799 school girls on the

Scholastic Aptitute Test The same cohort of students took the test in the 5th, 7th, 9th and

11th grades (see Joreskog, [51]). The variance/covariance matrix is included on the

TETRAD disc in a file named satdat The matrix is:

q5 q7 q9 q l l

qs
q7
q9
qii

67.951
71.01
85.966
97.153

141.
134.
151.

578
748
068

249.
218.

748
757 300.669

Using the TETRAD program, we compute for each possible vanishing tetrad difference and

for each possible vanishing partial correlation, the probability of the sample difference on

the hypothesis that the population difference is zero. The relevant output is:
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Tetrad Equation Residual

q5 q'
q5 q'
q5 qS

7, q9
1. ql
h ql

qi =
q9 =
q7 =

qs
qs
qs

q9,
qi.
qi.

q7
q7
q9

qi
q9
q7

0
0
0

.0953

.0917

.0036

P(diff.)

0.0000
0.0000
0.7580

Partial

q5 q7. q9
q5 q7. ql
q5 q9. q7

q5 q9. ql
q5 ql. q7
q5 ql. q9

q7 q9. q5
q7 q9. ql
q7 ql. q5

q7 ql. q9
q9 ql. q5
q9 ql. q7

Residual

0.4806
0.4542
0.2931

0.2655
0.3177
0.3379

0.4595
0.3208
0.4742

0.3819
0.6347
0.5763

P(diff.)

0.0000
0.0000
0.0000

0.0000
0.0000
0.0000

0.0000
0.0000
0.0000

0.0000
0.0000
0.0000

Figure 8-28:

Because of the time ordering of the variables, no cyclic model without latent variables is

reasonable. The heuristic tells us that an adequate linear model for this data should contain

a latent variable. If, for example, we instead attempt to model the data by supposing that

each measurement is a direct cause of the succeeding measurement e.g.,

e l
t t
e2 e3

q l l

t
e4

Figure 8-29: Path Model

then the model implies the third tetrad equation, and no other vanishing tetrad differences,

but it also implies several vanishing partial correlations, for example, that q5 and q 11 vanish

when partialed on q9. If the model is modified to avoid these incorrect constraints, for
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example by correlating the error terms or by introducing further direct effects between

earlier and later measurements, then the third tetrad equation is no longer implied

If we attribute the correlations to the action of a latent variable or variables, then no

vanishing partial correlations will be implied Unless the latent structure is chosen carefully,

however, the wrong tetrad constraints will be implied For example, if the data are

explained by postulating a single latent variable ("test taking ability," or whatever) and

permitting it to have different linear effects on the several administrations of the SAT, then

we obtain the model:

Figure 8-30: Factor Model

This model implies all three tetrad equations for the four measured variables, and judged

from the sample, two of these implications are incorrect

The simplest way to form a model that implies the single tetrad equation is to introduce

latent variables that imply that the correlations in the tetrad vanish when partialled on some

latent variable. There should be a latent variable such that every trek between q5 and q9,

between q7 and q11 , between q5 and q 11 and between q7 and q9 passes through that

variable. But, in the simplest case, there must be treks between q5 and q7, and between

q9 and q 11, that do not pass through any latent variable common to all treks among the

other pairs, because tetrad equations involving these latter variable pairs do not hold in the

data, and should not be implied by the modeL

An adequate model is obtained if we treat the latent variable as itself lagged
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e3 e4

Figure 8-31: Single, Self Lagged Latent Variable Model

This model implies the tetrad equation found to hold in the sample, and only that tetrad

equation. It does not imply any vanishing partial correlations among the measured variables.

The model is not identifiable, but it is extremely plausible.
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8.6. THE CAUSAL RELATIONS BETWEEN CONSTITUENT
ATTITUDES AND CONGRESSIONAL ROLL CALL VOTING

8.6.1. Introduction

In the mid 1960s a series of articles appeared in the American Political Science Review,

[77, 16, 2 5 ] , all concerning data about constituent attitudes and congressional voting

behavior. The sequence of articles is especially interesting both because of substantive

issues and because of the very different methodological vews of the several authors.

Miller and Stokes, who originally framed the substantive question discussed in all three

articles, attempt to distinguish between two possible causal paths by which constituents

influence their representatives in Congress. The principle methodological problem addressed

by all the papers is that of finding the best causal explanation for the correlational data,

and more specifically, the problem is to distinguish a number of possible causal models that

might explain the same data

Miller and Stokes argue for a particular causal model on the basis of plausibility and

regression results, and then estimate the coefficients in submodels to determine the relative

strengths of the different causal pathways. Cnudde and McCrone self consciously

employ a technique due to Simon and to Blalock, although they do not clearly

characterize the technique.27, The technique amounts to testing models by means of the

overidentiying constraints they imply, and eliminating those that imply constraints found not

to hold in the data Most of the constraints considered are vanishing partial correlations,

but the authors apply no statistical tests. Using a body of substantive assumptions about

the existence and direction of causal relationships among a subset of the variables they

model, Cnudde and McCrone distinguish among possible causal structures for the remaining

variables by showing that some structures imply constraints that fail to hold in the data

Forbes and Tufte rightly demand a justification of the assumptions that limit the number

of overall causal structures examined They show that when Cnudde and McCrone's

assumptions are violated there are alternative models that imply no false constraints but

which lead to quite different substantive conclusions. They fail to realize the role of

explanation in theory assessment, however, and they consider all models that imply no false

constraint to be equivalent

Using the TETRAD program, we show how the Simon-Blalock procedure can be quickly,

conveniently, and more exactly applied, we show that latent variable models can be

eliminated, and most importantly we show how models considered equivalent by Forbes and

For Simon's work, see 190, 91]. For Blalock's, see !7 ) .
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Tufte provide dramatically different levels of explanatory power.

8.6.2. Miller and Stokes' Article

In 1963, Warren Miller and Donald Stokes noted a high correlation between constituent

attitudes and congressional roll call voting behavior in at least two broad dimensions of

policy, domestic intervention and civil rights. In later articles only data on civil rights is

discussed, so we focus on that dimension. Miller and Stokes framed two possible

mechanisms by which a correlation between constituents attitudes and congressional voting

could be explained Voters might recruit candidates who share their attitudes, and those

candidates who are elected then vote according to their own attitudes. Alternatively,

incumbent politicians who wish to stay in office vote in accord with what they perceive to

be their constituents attitudes. Their discussion and those that followed included four

variables. We list them and include our scheme of abbreviation, which we take from

Cnudde and McCrone:

Attitudes of the Constituents
in a Representative's District = d

Representative's Attitudes = a
Representative's Perception
of Constituent's Attitudes = p

Roll Call Vote = r

Figure 8-32: Variables For The Roll Call Studies

Miller and Stokes use regression studies to argue that p is a cause of r and a is a cause

of r, as pictured below.
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They then specify the causal model we picture in Figure 8 - 3 3 below. Their strategy is to

determine the relative strengths of the causal paths from d to r. Following Sewall Wright

they attempt to analyze what proportion of r's variance can be explained by the alternative

causal pathways that correspond to the rival hypotheses they entertaia

Figure 8-33: Miller and Stokes - 1963

They cannot estimate coefficients because the model they specify is underidentified Their

strategy is therefore to consider two sub-models that are identified, namely models I and II

in Figure 8 - 3 4 below, and establish bounds on the values of certain coefficients.

I I

Figure 8-34: Two Sub Models

They argue that in the least favorable of these models, the sum of all the causal paths

traveling from d to r that go through p explains more of the variance in r than does the

sum of all the paths from d to r that go through a Their conclusions turn on the causal

model they embed the two submodels within, and this model is untestable as a whole.
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8.6.3. Cnudde and McCrone

The next article in the series, by Cnudde and McCrone, takes the analysis several steps

further. They summarize their strategy:

...the Simon-Blalock causal model analysis is used to resolve the two
questions: are all the possible causal paths (in the Miller and Stokes model)
operative? What is the direction of causation between the representative's
perception and his attitude?

They quote Blalock to summarize what they take to be the essence of the Simon-Blalock

technique:

to make causal inferences concerning the adequacy of causal models, at least
in the sense that we can proceed by eliminating inadequate models that make
predictions that are not consistent with the data

Cnudde and McCrone make a host of assumptions that limit the number of models they

need consider.

1. There are no cycles in the directed graph.

2. Like Miller and Stokes, they assume that a causes r and that p causes r# and
that r is a cause of no variable.

3. The variable d does not directly cause the variable r.

4. The variable d is not caused by any variable.

5. The variables d, a, and p are all trek connected.28

Given these assumptions, they consider models that vary only with regard to the causal

ordering of d, a and p. We show three of these models, the ones Cnudde and McCrone

explicitly consider, in Figure 8-35.

This simply means that there is a trek between any two.
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(a) (b) (c)

Figure 8-35: Three possible orderings among d, a. and p

The first model (a), postulates no direct causal link between a and p. They note that this

implies:

da

which in turn implies (provided that neither p or p = 1):

This prediction is false, and Cnudde and McCrone conclude that p and a have some direct

causal connectioa They then seek to establish which way the causal direction propagates.

To do this they consider models (b) and (c). Model (b) implies that

This prediction is also false, so this model can be ruled out Model (c) implies that

P. = Pda

This equality holds closely in the data, although no statistical test is given, and the authors
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conclude that this half of the model is confirmed

They then argue that a direct connection between p and r and between a and r cannot be

removed, because in either case the extension of model (c) would imply an equation that

does not hold in the data Finding that the extention of model (c), pictured in Figure 8 -36 ,

predicts no false equations, they conclude that it fits the data as well as does the

Miller/Stokes Model but they consider model (c) superior because it is more parsimonious.

We would put the issue differently.

Neither of these models imply any very false vanishing partial correlations, but the two

models nonetheless have very different implications. Miller and Stokes' model implies no

false constraints because it implies no constraints at all. The Cnudde model implies a

constraint that happens to hold To imply a constraint that holds closely is to explain it

The models are not equivalent on explanatory grounds, and model (c) is preferable.

Figure 8-36: Cnudde and McCrone's Suggested Model

8.6.4. Forbes and Tufte

Hugh Forbes and Edward Tufte's paper turns the confusion concerning equivalence among

models just noted into a disaster. The point of their study is principally methodological.

They use the roll call voting data to illustrate the need for caution when making conclusions

based on causal models. The principal problem they emphasize is the same problem we

belabor. One must consider alternative causal models. They attempt to show that Cnudde

and McCrone have neglected to consider alternative causal models that are indistinguishable

by "the Simon-Blalock technique" and yet lead to very different substantive conclusions.

They are entirely right that alternative explanations must be considered but they think there

is no reason to have any preference between models that imply no constraints (and
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therefore no false ones), and models that imply no false constaints but that do imply

empirically correct constraints on the data. We have argued at length in earlier chapters

that this distinction is fundamental to the comparison of alternative explanations, and is one

of the keys to the success of the natural sciences.

Forbes and Tufte offer the following three causal m6dels, all of which they consider

empirically indistinguishable.

(1) (2) (3)

Figure 8-37: Three models from Forbes and Tufte

They say the following about these models.

Cnudde and McCrone have shown that model (1) fits the data; model (2) also
fits: the addition of the link between district opinion and Congressmen's attitudes
generates no new prediction equations that distinguish model (2) from (1). And
model (3) also fits..: [ 2 5 ] , p. 1260.

They go on to insist that these models are distinguishable only by reliance on vague

hunches and the like.

How do we choose between these three different models, each of which
suggests a different conclusion about the relationship between attitudes and
perceptions? It should be apparent that the choice between them must rest (in
the absence of additional data) on the investigator's hunch about what causal
mechanisms are likely to exist in the real world. The only other imaginable basis
for choice is the criterion of parsimony... [ 2 5 ] , p. 1260.

Some models fit the data because they imply constraints that hold in the data, and explain

why those constraints hold Other models fit the data because they could fit any possible
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data they have a lot of parameters to gerrymander. We imagine that this difference is a

very good basis for choice.

8.6.5. The TETRAD Analysis

We ran TETRAD on all three of the models in Figure 8 -37 , asking for statistical

information about partial correlation equations and tetrad equations. We show the output

for each in successive Figures below.

The graph analyzed in this example i s :
d ->p p ->a p ->r a ->r

The sample size is:

Partial
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d
d
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P
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r

r
r
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. d

• a
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Residual Impld. Held P(diff.
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0.1086
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0.1261
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y
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y
y
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0.0000
0.0000
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0.5470
0.2485
0.0000
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0.0000
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Tetrad Equation

d p , a r
d p , r a
d a , r p

= d a , p r
= d r , p a
= d r , a p

Residual

0.1222
0,1148
0.0075

Impld, Held P(diff.)

0.0136
0.0040
0.8388

Figure 8-38: TETRAD Output on Model (1)
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The graph analyzed in this example is:
d ->p d ->a p ->r a ->p a ->r

The sample size is:

Partial
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r
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Impld. Held
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y

P(diff.)

0.0000
0.0000
0.6253
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0.2485
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0.0000
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0.0000
0.0000
0.0000

Tetrad Equation

d p , a r = d
d p , r a = d
d a , r p = d

a , p r
r , p a
r , a p

Residual

0.1222
0.1148
0.0075

Impld. Held P(diff.)

0.0136
0.0040
0.8388

Figure 8-39: TETRAD Output on Model (2)
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The graph analyzed in this example is:
d ->p p ->r r ->a

The sample size is:

Partial
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d P
d a

d a
d r
d r

a
r
P

r
P
a

p a . d
p a . r
p r . d

p r . a
a r . d
a r . p

Residual Impld. Held P(diff.)
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0.4718
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0.0570
0.1086
0.4825

0.4708
0.1261
0.6701
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0.4409

y

y
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0.0000
0.0000
0.6253

0.5470
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0.0000

0.0000
0.1776
0.0000
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d
d

Tetrad Equation

p , a r
P i r a
a , r p

= d
= d
= d

a , p r
r , p a
r , a p

Residual

0.1222
0.1148
0.0075

Impld. Held P(diff.)

0.0136
0.0040
0.8388

Figure 8-40: TETRAD Output for Model (3)

One can see at a glance that none of the three models implies a false equation, but all

three models are easily distinguished in what they do imply. Model (1) explains two of the

four vanishing partial correlations that hold at a significance level of .177 or higher and it

explains the tetrad equation that holds at a significance level above .83. Model (2), which

Forbes and Tufte cannot imagine a way to distinguish from model (11 implies no equations.

Model (3) does even better than model (1), for it implies all and only those equations that

hold at .17 or higher.

If the only property of a model that matters is that it not imply a false equation, then

these models are indeed indistinguishable, but then we must include a host of other models

in this class. The complete graph among four variables, for example. A causal model

should explain the correlations (Thurstone's Principle), but it should also explain the

constraints those correlations satisfy (Spearman's Principle). Only two of the three models

Forbes and Tufte consider, and only a handful of the possible models, have this property.

By paying attention to a model's explanatory power, we give ourselves an immense
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advantage in distinguishing among otherwise equivalent models.

Latent Variable Models

None of the models considered in this series of articles entertains the possibility that the

correlations are produced by unmeasured variables. With variables as deeply imbedded in

social context as are those in this data set the action of unmeasured factors cannot be

dismissed without consideration Forbes and Tufte's emphasis on considering alternatives is

appropriate, but too narrowly applied Besides the alternatives they consider, there are any

number of latent variable models that might account for the data But for this data, latent

variable models can be dismissed for the same reasons that Forbes and Tufte's alternatives

can be dismissed they do not explain the constraints the data satisfy.

Recall our principles for introducing latent variables, and their justification. When vanishing

partial correlations hold that imply the tetrad equations that hold, do not introduce latent

variables without good substantive reasons to do so. The latent variable models will not

explain the vanishing partial correlations, and models without latent variables that imply the

vanishing partial correlations will also imply the vanishing tetrad difference.

TETRAD shows us that in the roll call voting data, one tetrad equation holds, namely:

d a , r p = d r , a p

Its p value is .8388. Two partials, e.g.:

d a . p and d r . p

hold with p values of .62 and .24 respectively, and are also explained by models (1) and

(3). These vanishing partials imply the single tetrad equation that holds, and any models that

explains these vanishing partial correlations will also explain the vanishing tetrad difference.

The introduction of a latent variable that still allows the graph to imply the above tetrad

equation would not allow the graph to explain these two partials. If we were to introduce

a latent variable as a common cause of either d-a, d-r, or p-a, then we would prevent the

explanation of the vanishing partial correlation equations involving these pairs.
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8.6.6. Goodness of Fit Results

Before exhibiting the results of a chi-square test on all the models we have considered so

far, we would like consider one more alternative.

Model (3) in Figure 8 - 3 7 is difficult to believa It asserts that a representative's roll call

vote is a causal factor in the formation of his or her attitudes, but that a representative's

attitudes have no influence at all on his or her roll call vote, as though a representative

discovers what he or she thinks only by observing his or her own voting behavior. It

seems rather more plausible to simply add a cause from a to r, allowing the relationship

between a and r to be cyclic TETRAD shows that the resulting model, pictured in Figure

8 - 4 1 , explains the same vanishing partial correlations as does model (1) in Figure 8 -37 ,

although it is less simple. The two models are not, however, statistically equivalent

Figure 8-41: Final Candidate

We ran the model above and those shown in Figure 8 - 3 7 through EQS. The results are

given below.

Model

(l)
(2)
(3)
(3a)

DF

2
1
3
2

1.365
1.128
3.207
1.365

P(X')

0.505
0.288
0.361
0.505

Figure 8-42: Goodness Of Fit Results
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8.6.7. Conclusion

All of these models perform acceptably under the chi square test although model (2),

which explains no equations, does markedly worse that the others.

Cnudde and McCrone's procedure, like Blalock's, shares the methodological sensibilities

behind the TETRAD program. The program makes it possible to do this kind of analysis

much more systematically, however, and to distinguish among a much broader class of

alternative models. It also supplies statistical tests in place of informal judgements about

vanishing partial correlations and vanishing tetrad differences.
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8.7. THE EFFECTS OF SUMMER HEAD START

8.7.1. Introduction

Data from the summer Head Start program present a case of considerable practical

importance. At stake is a question about a causal effect whether Head Start participation

improves test scores and subsequent school performance. Head Start was evaluated in

1969 by V. Cicirelli et al. [ 1 5 ] , who argued that the summer Head Start program had no

effect on achievement or ability test scores. The data considered included socio-economic

status variables for Head Start participants and non-participants matched by race and

neighborhood, and scores on two tests, the Illinois Test of Psycholinguistic Abilities and

Metropolitan Readiness Test Unfortunately, the tests were administered to participants only

after participation in summer Head Start J. Magidson [ 6 9 ] , employing a causal model to

make his case, took issue with a portion of the Cicirelli findings, and argued that summer

Head Start participation did have a positive effect on test scores. Magidson's conclusion

was criticized by Bentler and Woodward [ 4 ] , principally on the grounds that the effect

was not statistically significant They also suggested, but did not analyze, a different causal

structure for the data Pursuing the suggestion, Magidson and Sorbom argued that a

second model also led to the conclusion that the program had the desired effect, but again

the positive effect was not statistically significant The Magidson-Sorbom model has been

described again by Sorbom [ 9 7 ] , and yet again by Joreskog and Sorbom in the LISREL VI

manual.

The variables in Magidson and Sorbom's [70 ] model for data from white 6 year old

participants and non-participants in summer Head Start, with their abbreviations, are:

1. Mother's education = me

2. Father's education = fe

3. Father's occupation = fo

4. Family income = i

5. The child's score on the first of two tests given to Head Start participants at
the end of the summer program. = t1

6. The child's score on the second test = t2

The sample correlations among these variables are:
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Participants (N = 148)

me
fe
fo
in
tl
t2

1.00
.466
.253
.361
.275
.256

1.00
.203
.182
.265
.122

Non-participants (N =

me
fe
fo
A
M

tl
t2

1.00
.561
.224
.306
.239
.281

1.00
.342
.215
.215
.297

1.00
.377
.208
.251

155)

1.00
.387
.196
.234

1.00
.084
.198

1.00
.115
.162

1.00
.664

1.00
.635

1.00

1.00

Figure 8-43: Head Start Correlation Data

The strategy Magidson and Sorbom pursue is to treat the participants and non-participants

as separate groups to which the same causal model applies, and to assume that all linear

coefficients, save one associated with the effect of Head Start participation on cognitive

ability, have the same values in the two groups. They assume that cognitive ability is a linear

function of SES and of Head Start participation:

CA = a P + b SES + E

where P is a dummy variable equal to zero for non-participants and equal to 1 for

participants. The object is to estimate the coefficient a They use LISREL V, while our

statistical analyses are done with EQS and LISREL IV.

Magidson and Sorbom's initial model for the SES indicators is pictured in Fig 8-44.
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Figure 8-44: Magidson and Sorbom's Initial SES Model

The fit for this model is unacceptable (chi square with 10 do.f. is 43.6). The LISREL

recommendation for revision of the model is to free a parameter for correlated error

between me and fe, giving the model shown in Fig. 8-45.

e4

Figure 8-45: LISREL Suggestion

Here chi square is 31.04 with 22 do.f. (p =.10). On the pooled data, however this model

gives a chi square with p = 0. This is not a happy result since the fundamental assumption

is that the submodel applies to the subgroups individually and jointly.

Magidson and Sorbom postulate that post-test scores depend on latent cognitive ability,

which in turn depends on socio-economic status, and perhaps on Head Start participation.

Their full model for each group is shown in Fig. 8-46.
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e4 e5 e6

Figure 8-46:

Ignoring for the moment the Head Start dummy variable, and with all parameters except for

the SES -> CA structural coefficient specified to be the same in the two groups, chi

square is 31.08 with 23 degrees of freedom, a statistic whose probability is about .10.

But if correct Magidson and Sorbom's revised model should apply to the participant and

non-participant groups separately. Using EQS we find for the participant group alone that

the chi square value (15.38 with 7 degrees of freedom) has a probability of .03. In view

of the small sample size, this is not reassuring.

8.7.2. Difficulties with the Magidson-Sorbom Model

There are several difficulties with the Magidson-Sorbom model. First, the fit is

unacceptable, both for the socio-economic status model and for the model as a whole on

the participant data Poor fit is not a sufficient reason to reject a model if there are

compelling reasons to think that the general assumptions are correct, and if no plausible

alternatives provide better fit But in this case we have no powerful reasons to support the

model's general assumptions, the sample size is not large, and we have no reason to

believe that alternative models might not give much better fit A second difficulty is the

assumption that the structural parameters are constant across the two groups. That

hypothesis is not tested in Magidson and Sorbom's analysis, but it could be given a rough

test by estimating the coefficients separately on the two groups, and comparing them. But
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there is little point in carrying out such a comparison until one has a common model that

fits each group separately.

There are two further substantive difficulties. Magidson and Sorbom's model claims thai

occupation has no direct effect on income, and that the correlation of the two is only

obtained through a common socio-economic status variable. This hypothesis does not seem

likely to be a reasonable approximation to the truth. Finally, the Magidson Sorbom model

assumes that family socio-economic status causes mothers education, father's education,

father's occupation and family income. It is.not clear that this assumption makes sense. For

reasons described in an earlier chapter, family socio-economic status ought, if anything, to

be an effect of the these measured variables, not a common cause of them. The model

assumes that parental education, occupation and income have no effect on children's

cognitive ability; the common socio-economic status variable alone affects cognitive ability.

This seems substantially less likely than that parental education, occupation and income, no

doubt through their effects on unmeasured intervening variables, have an effect on

children's cognitive ability.

8.7.3. The TETRAD Analysis

In investigating alternative models for this case, we will consider three different initial

hypotheses. We will first consider the initial model proposed by Magidson and Sorbom,

which does not contain the correlated errors for fe and me. Second, we will consider an

initial model obtained by adding an fo -> i connection to Magidson and Sorbom's model.

Third, we will investigate the hypothesis that the measured socio-economic status variables

affect some latent variable, which might be interpreted as cognitive ability, or as academic

test taking ability, and that latent variable in turn affects test performances. We find a

number of models that have conventionally acceptable fit for both participant and non-

participant groups. Since we do not carry out a full search, there are quite possibly

several other models that have equally good fit, explanatory power and simplicity. We use

the participant data with TETRAD to search for good models, and test the models obtained

both on the non-participant and on the participant data Contrary to conventional wisdom

that prohibits testing a model on the same data used to discover it, on the grounds that

such tests are "tautological," the participant data sometimes provides a more severe test of

the models than does the non-participant data, producing much lower p values.
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Magidson and Sorbom's Initial Model

When we pass the initial model through TETRAD and ask for the suggested sets, we obtain

the following:

Sets of suggested treks at significance level = 0.5156

{fo-tl }

Sets of suggested treks at significance level = 0.6936

{me-fo fe-tl fo-tl }

Sets of suggested treks at significance level = 0.7720

{me-fe me-fo fe-tl fo-tl i-tl }

{me-fe me-fo me-tl fe-tl fo-tl }
{me-fe me-fo me-tl fe-tl i-tl }
{me-fe me-fo me-tl fo-tl i-tl }

Figure 8-47:

We note that the program does not suggest the fo—i trek which we consider to be

required on substantive grounds.

We further note that the second unit of suggested treks could be simply realized by a

common cause of fo, t1 and fe, if a trek between fe and fo were permissible. Equally, a

common cause of t 1 , me and fo could be implemented if a trek between me and t i were

permissible- The third unit of suggested sets does not contain a trek between fe and fo,

but it does (in the second set) contain a trek between me and t1 . Moreover, the second

suggested set in the third unit contains the unique suggested set of the second unit Both

our heuristics and simplicity recommend implementing the second suggested set of trek

additions in the third unit We realize the recommended treks by correlating the errors of

me and fe, and by introducing a new common cause of me, fo, and t1. The graph of the

model is:
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e6

Figure 8-48: A Revision Suggested By TETRAD

This model has a low TTR value, .1415. The initial model has a TTR of 1.34.

Occupation and Income

We now assume Magidson and Sorbom's initial model but with the addition of fo -> i. If

we give this model to TETRAD and ask for suggested sets, TETRAD ignores the fo -> i

connection (because the model is not skeletal), and we get the same suggestions as before.

We consider instead the RTTR chart We choose a significance level of .7, roughly the

level of the second unit of suggested sets of trek additions. The RTTR chart is given

below.

The graph analyzed in this example is:
fo->i SS->me SS->fe SS->fo SS->i SS->CA CA->tl CA->t2

The significance level is: 0.7000

The sample size is: 148

Edge Rttr D(I-H) I(H-I)

me->
fe->
me C

me->
fo->
me C

fe
me
fe

fo
me
fo

0.383
0.383
0.383

0.423
0.423
0.423

7
7
7

10
10
10

1
1
1

1
1
1

me-> 0.275
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i-> me 0-423 10 1
me C i 0.275 6 1

me-> t l 0.192 6 1
tl-> me 0.326 9 2
me C t l 0.192 6 1

me-> t2 0.217 6 1
t2-> me 0.326 9 2
me C t2 0.217 6 1

fe-> fo 0.297 8 3
fo-> fe 0.297 8 3
fe C fo 0.297 8 3

fe-> i 0.158 4 3
i-> fe 0.297 8 3
fe C i 0.158 4 3

fe-> t l 0.261 7 0
tl-> fe 0.419 10 1
fe C t l 0.261 7 0

fe-> t2 0.276 6 1
t2-> fe 0.419 10 1
fe C t2 0.276 6 1

fo-> tl 0.365 10 1
tl-> fo 0.656 15 2
fo C tl 0.365 10 1

fo-> t2 0.443 10 1
t2-> fo 0.656 15 2
fo C t2 0.443 10 1

i-> tl 0.365 10 1
tl-> i 0.377 9 2
i C tl 0.237 6 1

i-> t2 0.443 10 1
t2-> i 0.377 9 2
iC t2 0.235 6 1

The Total Tetrad Residual, or TTR, i s : 0.79826

We eliminate all directed edges from test score variables to indicators of SES because

they make no sense. The Rttr chart suggests several possible additions:
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i-> t2
fo->
f o C
fe C
fe->
me->
fo->
me C

t2
t2
tl
tl
fo
me
fo

0.443'
0.443
0.443
0.261
0.261
0.423
0.423
0.423

10
10
10
7
7
10
10
10

1
1
1
0
0
1
1
1

Figure 8-49: The Rttr Charts Best Candidates

A proper search would now treat each of these edges as second level nodes in a search

tree, and investigate third level nodes.29 We will not pursue the search, however, but we

will subsequently give chi square results for these models.

An Alternative Hypothesis

The Magidson-Sorbom model assumes that parental education, occupation and income are

not causes of whatever abilities account for performance on the two tests. It seems to us

more plausible that these measured variables do cause the capacities exhibited on the tests,

and we will use TETRAD to explore that hypothesis. Since parental education, occupation

and income are highly correlated we assume that they have a common unmeasured source

of covariance, but we give no interpretation to this latent variable

The initial model we assume looks as follows (neglecting error terms):

Figure 8-50: An Alternative Causal Skeleton

We note in passing that the correlated error between me and fe. suggested by LISREL for addition to the Megidson and
Sorbom initial model also has the highest Rttr value for that model. But when the causal connection between occupation and
income is imposed, the Rttr chart shows that an me fe connection is no longer distinguished either by Rttr value or by IU-M).
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This model is not a conventional multiple indicator model, because it has directed edges

from measured variables to latent variables. TETRAD will nonetheless suggest trek additions

for it if we request them. The suggested treks are supposed to be those that will not

prevent the implication of any tetrad equations that hold at the appropriate significance

level. A rough but quick check of whether the TETRAD heuristic is working as it should

can be obtained from the Rttr chart at the same significance level: every trek in any

suggested set should have a I(H-I) value of 0. When we ask TETRAD to suggest trek

additions to the initial model we obtain the following:

Sets of suggested treks at significance level = 0.0367

{me-fe }
{fo-i }

Sets of suggested treks at significance level = 0.0927

{me-fe fe-tl }
{me-fe fe-t2 }
{fe-tl fo-i }
{fe-t2 fo-i }

Sets of suggested treks at significance level = 0.2655

{me-fe fe-tl i-tl }
{me-fe fe-tl i-t2 }
{me-fe fe-t2 i-tl }
{me-fe fe-t2 i-t2 }
{fe-tl fo-i i-tl }
{fe-tl fo-i i-t2 }
{fe-t2 fo-i i-tl }
{fe-t2 fo-i i-t2 }

Figure 8-51:

The Rttr chart with the significance level set at .1 shows that the first unit of suggested

sets does have I(H—I) equal to zero, but that the suggested trek additions in higher units are

not reliable.

Of the suggested trek additions in the first unit, we prefer fo - > i, for reasons already

explained. If we add fo - > i to the initial model and again ask for the Rttr chart at the

same significance level we obtain:
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The graph analyzed in this example is:
me->CA fe->CA fo->in fo->CA in->CA T ->me T ->fe T ->fo T ->in CA->tl CA->t2

The significance level is: 0.1000

The sample size is: 148

Edge Rttr D(I-H) D(H-I)

me->
fo->
f o C

me->
in->
in C

me->
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tl C
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in C
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me
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me
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fe
fe

tl
fe
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t2
fe
fe
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fo
fo
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in

0.027
0.027
0.027

0.027
0.027
0.027

0.186
0.110
0.083

0.186
0.110
0.083

0.027

0.027
0.027
0.027

0.027
0.027
0.027

0.186
0.145
0.118

0.186
0.145
0.118

0.027

0.186
0.179
0.152

0.186
0.179
0.152

0.027

0.186
0.123
0.095

O
 

O
 

O
 

1

0
0
0

3
1
1

3
1
1

0

0
0
0

0
0
0

3
3
3

3
3
3
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3
2
2

3
2
2

0

3
1
1

1
1
1

1
1
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3
3
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3
3
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1
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1
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3
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0
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in->
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in
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0.186
0.123
0.095

0.027

0.186

0.186

0.027

3
1
1

0

3

3

0

3
3
2

1

3

3
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The Rttr chart shows that there are no outstanding elaborations at this stage in the search.

A number of edges will reduce the TTR by .186 but cost three equations in explanatory

power, and a number will reduce the Rttr by .145 and only cost 1 equation in explanatory

power.

A thorough search would therefore generate a great many nodes at this level of the search

tree. We will not conduct a thorough search, but we will consider the statistical properties

of the model that adds the further edge fe->t1 . For symmetry, we also consider the

effects of adding fe->t1 and fe->t2 to our skeleton and fo - > i.

8.7.4. Goodness of Fit Results

The following table summarizes the chi square results for the models we have considered
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Model Data Set DF X2 p(X2 )

Magidson & Sorbom's Skeleton

lp) me C fe Part. 7
lnp) me C fe Non-part. 7

2p) me c fe, T->me,fo,tl Part. 4
2np) " Non-part. 4

3p) fo->i, i->t2 Part. 6
3np) fo->i, i->t2 Non-part. 6

4p) fo->i, fo->t2 Part. 6
4np) fo->i, fo->t2 Non-part. 6

5p) fo->i, fo C t2 Part. 6
5np) fo->i, fo C t2 Non-part. 6

6p) fo->i, fe C tl Part. 6
6np) fo->i, fe C tl Non-part. 6

7p) fo->i, fe->tl Part. 6
7np) fo->i, fe->tl Non-part. 6

8p) fo->i, me->fo Part. 6
8np) fo->i, me->fo Non-part. 6

9p) fo->i, fo->me Part. 6
9np) fo->i, fo->me Non-part. 6

10p) me C fo, fo->i Part. 6
lOnp) lf Non-part. 6

15.38
11.79

11.05
4.35

10.09
8.39

11.66
8.12

11.66
8.12

9.12
8.12

9.12
8.12

57.82
70.85

11.93
73.35

11.93
3.11

.031

.107

.026

.360

.121

.211

.070

.230

.070

.230

.167

.236

.167

.236

<.001
<.001

.064
<.001

.064

.795

Our Skeleton

lip) fo -> i Part. 4
llnp) " Non-part. 4

12p) fo->i, f e - t l Part. 3
12np) " Non-part. 3

13p) fo->i, fe->tl , fe->t2 Part. 2
13np) " Non-part. 2

Figure 8-52: Goodness of Fit Results

These results were all obtained using the EQS program. The coefficient estimates are

reasonably stable between groups for significant models, such as models 4 and 12.

10.22
6.83

4.02
6.44

4.02
6.44

.037

.145

.260

.092

.134

.040
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8.7.5. Conclusion

Although we have not carried out a thorough search, the case does illustrate how TETRAD

can be used in combination with substantive hypotheses about the domain With the

program models are found that fit the data for both participant and non-participants in

summer Head Start
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8.8. ACHIEVEMENT, ABILITY, AND APPROVAL IN SCHOOL AGE
CHILDREN

8.8.1. Introduction

This section is concerned with two points. First every case so far examined in this book

can be processed using the version of TETRAD on the floppy disk, which is limited to 9

variables. On the personal computer, the program can, however, process models with as

many as 23 variables. We do not know the size limits for models processed on the

Microvax version of the program, but they are considerably larger. This section illustrates

the use of the program on a series of models each with 19 variables. All of the work was

accomplished on a IBM compatible machine with 256K RAM and without an 8087

coprocessor. Processing models of this size can take as long as several hours, depending

on the information requested It is most conveniently done in batch mode, or while the user

has something else to do that does not require the computer. The work described in this

section took about an hour of user time and about a half a day of computer time.

Second, we have emphasized throughout the importance of searching for alternative

models. But for the most part the cases we have considered have shown how TETRAD can

be used to search for elaborations of an initial model, not how the program can be used

to search for alternative initial models. The case we consider here is chosen to illustrate

one way in which TETRAD can be used to search for alternative skeletal, or nearly skeletal,

models. The models we found were not subjected to a chi square test, but we are

confident that all of them would yield p values that are essentially zero. The search we

describe is partial, but a more thorough search could be executed using the same

techniques. We stop with a skeletal model that might be given to TETRAD for further

elaboration. We do not investigate these elaborations here, but consider only the problem

of locating plausible initial models.

8.8.2. The Maruyama and McGarvey Study

The data we consider are contained in a study by Maruyama and McGarvey, [72 ] , of the

causes of scholastic achievement The data consist of correlations30 of a number of

measures of ability, socio-economic status, peer popularity, evaluations of parents and

teachers, and academic achievement The measures, with our abbreviations, are:

30
The data are in fact partial correlations, with sex and grade level controlled for.
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1. Duncan Socio-Economic Index = se

2. Education of head of household = ed

3. Number of rooms per person in house = rm

4. Scores on standardized verbal tests = va

5. Verbal grades = vg

6. Peabody Picture Vocabulary Test = pv

7. Ravens Progressive Matrices = pm

8. Playground popularity = pp

9. Seating popularity = sp

10. Schoolwork popularity = wp

11. Father's evaluation = fe

12. Mother's evaluation = me

13. Teacher's evaluation = te

Maruyama and McGarvey assume these variables form five clusters, with the members of

each cluster sharing a common latent variable. The latent variables are named Socio-

economic status (SS), Academic ability (AB), Achievement (AC), Acceptance by peers <AP),

and Acceptance by signficant adults (AS).

The model Maruyama and McGarvey consider is given by the following graph, in which we

have omitted error terms.
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se ed va vg

f e me t e

Figure 8-53: Maruyama and McGarvey Model

Maruyama and McGarvey are concerned with whether academic achievement causes

"acceptance by significant others/ or whether instead acceptance causes achievement or

whether each has an effect on the other, or whether, finally, any covariation between

acceptance and achievement is due to common causes. The model depicted above is

proposed "to test the competing alternatives." In effect Maruyama and McGarvey simply use

LISREL to estimate the standardized coefficients associated with AC->AP and AP->AG They

find that the first is .270 and the second is .232, and while they perform no formal test

of significance of the difference, it seems likely that the difference is not significant The

overall model yields a chi square statistic with a p value of zero.

Their study is offered to illustrate a strategy for using LISREL to decide causal questions.

There are any number of reasons for rejecting the procedure, and for denying that the

particular study is of any weight The procedure does not really test the alternative causal

relations between acceptance or approval and academic achievement Maruyama and

McGarvey note that there are a number of other alternative plausible conections among the

latent variables, and that their model excludes the very real possibility that acceptance and

achievement have common causes. Their strategy is in effect to pick a particular causal

model from among many alternative possibilities, and to have edges in the model that
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represent particular causal hypotheses of interest and use estimates of these coefficients

to decide among the hypotheses. Without persuasive justification for the model assumed,

this seems a risky strategy. The particular case is still more dubious. Maruyama and

McGarvey obtain an insignificant difference from a model that fails a chi square test on a

sample of middling size.31

Before we begin our search, we note that TETRAD makes it easy to apply another strategy.

Citing Bentler and Woodward, Maruyama and McGarvey suggest that one might compare the

two models obtained from theirs by deleting, respectively, the AP->AC edge and the

AC->AP edge. An approximate comparison of these alternatives can be obtained in one

step with TETRAD by omitting both edges from the model, and asking for the Rttr chart

(for latent-iatent connections only) of the submodel that results. The output is obtained in

about ten minutes.

Edge Rttr D(I-H) I(H-I)

AC->AP 16.295 247 179
AP->AC 13.536 203 133

does substantially more to reduce the TTR value than does AP->AC, and we

would therefore expect the deletion of AC->AP from the Maruyama and McGarvey model

to give poorer fit than the deletion of the AP->AC edge.

8.8.3. A TETRAD Search

Maruyama and McGarvey's study presents a case in which there are thirteen variables

clustered into five groups. There are an enormous number of ways of specifying causal

connections among the five latent variables (in fact 410 different ways if no further

variables are introduced), and we have few strong theoretical guides to exclude possibilities.

We can be confident that peer and adult approval do not cause socio-economic status, and

neither does achievement We can be less confident that achievement does not cause

ability, and we have some evidence (see Brophy and Good, [12] ) that socio-economic

status has an effect on adult approval, but we cannot be confident of much else a priori.

When we have limited knowledge of this kind, the best we can do is to search for

Equally dubious, the data are partialed on a dichotomous variable (sex) and then the partial correlations are assumed to be
generated by normally distributed random variables.
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alternatives that give a reasonably good fit explain patterns in the data, and are not

excluded by what we think we know.

The actual problem is rather worse, since alternative clusterings are surely possible. We

will however, assume for purposes of illustration that the measured variables are clustered

in the way Maruyama and McGarvey propose, and consider how we might search through

the possible causal connections among the latent variables.

Our procedure is to begin with a model in which there are no causal connections among

the latent variables. Because there are no treks connecting variable pairs in most foursomes

of variables, the disconnected cluster model will imply a great many tetrad equations and

have an enormous TTR value. We give this model to TETRAD and ask for the Rttr chart for

edges connecting latent variables. We add the connection that has the highest Rttr value,

and run the modified model through TETRAD again. We continue in this way until there are

edges from measured to measured variables, or from latent to measured variables, that

have Rttr values greater than any addition connecting only latent variables. If at any stage

we find that several alternative additions produce nearly the same Rttr value, the search

branches, and every alternative is considered. Since the primary problem is to find latent

variable models that dramatically reduce the TTR of the disconnected clusters,

considerations about the explanation of tetrad equations plays a secondary role.

This search procedure is not very thorough, and it will undoubtedly overlook many excellent

models. It is undoubtedly a far better search, however, than people are able to do without

the aid of the program. We will not even carry out the full search procedure, but will

rather follow only one line, noting where the search might reasonably branch.

We note at the outset that the Maruyama and McGarvey model has a TTR value of 12.9.

Their model also implies some vanishing partial correlations, since it implies that the

indicators of adult approval are uncorrelated with the indications of socio-economic status

and ability. At a significance level of .4, the model explains 52 vanishing partial correlations

that are not rejected by the significance test, and implies 38 vanishing partial correlations

that do not hold Another 165 vanishing partial correlations hold at that significance level,

but are not implied by the model. The tetrad residuals are in this case more powerful

indicators of fit There are 1031 tetrad equations that hold at the .4 significance level, and

the model implies 240 that do not hold and 499 that do hold. We will consider only the

TTR values in our search.

We begin our search with the model in which the five clusters are disconnected, that is:
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se ed nn va vg

pv pm|

/T\
fe me te pp sp wp

Figure 8-54: Disconnected Model

We give this model to TETRAD and ask for the Rttr chart The connections among latent

variables have the largest Rttr values, and of these, the connections between SS and AB

most reduce the TTR value. In this case it mades no difference for any connection which

way the arrows go, or whether there is a common cause. The relevant output is given

below:
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The graph analyzed in this example is:
AC->va AC->vg SS->rm SS->se SS->ed AB->pm AB->pv AP->sp AP->pp
AP->wp AS->fe AS->me AS->te

The significance level is: 0.4000

The sample size is: 249

Edge Rttr D(I-H) I(H-I)

SS->AC
SS->AB

SS->AP
SS->AS

AC->AB
AB->AC

AC->AP
AP->AC

AC->AS
AS->AC

AB->AP
AP->AB

AB->AS
AS->AB

AP->AS
AS->AP

5.360
4.711

2.070
2.565

6.331
6.331

5.338
5.338

4.438
4.438

2.708
2.708

3.232
3.232

3.244
3.244

68
55

35
37

67
67

76
76

54
54

54
54

57
57

56
56

16
29

55
53

5
5

00
 0

0

30
30

30
30

27
27

34
34

The Total Tetrad Residual, or TTR, is: 64.05317

I-H, the total number of equations implied by the model
that do not hold in the data, is: 1024

H-I, the total number of equations that hold in the data but
are not implied by the model, is: 2

The number of equations that hold in the data is 1031

The number of equations explained by the model is 1029

The Total Partial Residual, or TPR, is: 75.67931

PI-PH, the total number of equations implied by the model
that do not hold in the data, is: 523

PH-PI, the total number of equations that hold in the data but
are not implied by the model, is: 3

The number of equations that hold in the data is 217

The number of equations explained by the model is 214
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Evidently a connection between ability and achievement is most important

We add AB->AC to the disconnected model since it seems the most plausible connection

between the two variables.

When we give the revised model to TETRAD and ask for the Rttr chart we find that

connections between AB and SS have the highest Rttr value, 9.7. We can introduce a

connection between AB and SS by means of a new latent variable, T, which serves as a

common cause. One could as well introduce a direct effect of SS on AB. We obtain two

alternative revised models, which look like this:

" I ed va vg

/t\
f e me t e ?p sp wp

Figure 8-55: Disconnected Model plus AB->AC, T->AB, T->SS
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-
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Figure 8-56: Disconnected Model plus AB->AC, SS->AB

We will pursue only the first branch of the search. When we again give the model of

Figure 8 - 5 5 to the program the following lines of the Rttr chart give the best results.

The graph analyzed in t h i s example i s :
AC->va AO>vg SS->rm SS->se SS->ed AB->pra AB->pv AB->AC AP->sp
AP->pp AP->wp AS->fe AS->me AS->te T->SS T->AB

The significance level is: 0.4000

The sample size is: 249

Edge Rttr D(I-H) KH-I)

AC->AP

AC->AS

T->AP

T->AS

10.771

10.610

10.895

11.533

171

163

170

176

111

119

148

142
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T->AS has the highest Rttr value, 11.533. This is a plausible connection, supported by

research cited by Brophy and Good [12 ] . The other edges shown are close, so again the

search might branch, but we will follow only the line indicated by this alternative. We add

T->AS to the model, obtaining

f e me t e pp sp wp

Figure 8-57: Disconnected Model plus AB->AC, T->AB, T->SS, T->AS

Continuing with the search, we give this model to TETRAD and request another Rttr chart

We show the relevant parts of it below.
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The graph analyzed in th i s example i s :
AC->va AC->vg SS->rra SS->se SS->ed AB->pm AB->pv AB->AC AP->sp AP->pp
AP->wp AS->fe AS->me AS->te T->SS T->AB T->AS

The significance leve l i s : 0.4000

The sample s ize i s : 249

Edge Rttr D(I-H) I(H-I)

AC->A?
AP->AC

AB->AP
AP->A3

AP->AS
AS->AP

19.257
13.064

16.256
17.066

14.902
16.019

344
212

296
303

280
288

280
172

220
285

224
282

T->AP 16.072 260 220

Here there is a unique best edge, AC->AP. So far we have the following model

fe me te ?p sp vp

Figure 8-58: Disconnected Model plus AB->AC. T->AB. T->SS. T->AS. AC->AP
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Giving this model to TETRAD, we request an Rttr chart and standard results. The relevant

output is shown below.
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The graph analyzed in this example is:
AC->va AC->vg AC->AP SS->rm SS->se SS->ed AB->pm AB->pv AB->AC
AP->sp AP->pp AP->wp AS->fe AS->me AS->te T->SS T->AB T->AS

The significance level is: 0.4000

The sample size is: 249

Edge Rttr D(I-H) I(H-I)

AC->SS
SS->AC

AC->AB

AP->AC

AO>AS
AS->AC

AC->T
T->AC

SS->AP
AP->SS

AB->AP
AP->AB

AP->AS
AS->AP

AP->T
T->AP

2.628
3.817

1.863

1.306

3.143
3.817

1.863
1.863

5.483
4.438

1.306
4.474

5.462
5.483

4.474
3.537

54
75

33

19

63
75

33
33

102
87

19
74

110
102

74
58

66
75

27

29

57
75

27
27

162
141

29
106

118
162

106
98

The Total Tetrad Residual, or TTRr is: 17.24747

I-H, the total number of equations implied by the model
that do not hold in the data, is: 321

H-I, the total number of equations that hold in the data but
are not implied by the model, is: 469

The number of equations .that hold in the data islO31

The number of equations explained by the model is 562

The Total Partial Residual, or TPR, is: 0.00000

PI-PH, the total number of equations implied by the model
that do not hold in the data, is: 0

PH-PI, the total number of equations that hold in the data but
are not implied by the model, is: 0

The number of equations that hold in the data is 0

The number of equations explained by the model is 0
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Notice that now the model implies no vanishing partial constraints, because it is now trek

connected The model we have now reached reduces the TTR to around 17.2, and it still

explains 562 equations that hold at a significance level of .4. The Rttr chart contains three

edges that look most promising, SS->AP, AP->AS, and AS->AP. That SS causes peer

acceptance is certainly plausible, so we elaborate our model accordingly.

f e ae ze sp wp

Figure 8-59: Disconnected Model plus AB->AC, T->AB, T->SS, T->AS, AC->AP,
SS - > AP

Running this model through TETRAD shows that the Rttr chart now contains other edges

that do more to reduce the TTR than any edge from a latent to another latent variable. Its

performance on TETRAD'S standard measures is shown below.



238

The graph analyzed in this example i s :
AC->va AC->vg AC->AP SS->rm SS->se SS->ed SS->AP AB->pm AB->pv
AB->AC AP->sp AP->pp AP->wp AS->fe AS->me AS->te T->SS T->AB T->AS

The Total Tetrad-Residual, or TTR, i s : 11.76464

I-H, the total number of equations implied by the model
that do not hold in the data, i s : 219

H-I, the total number of equations that hold in the data but
are not implied by the model, i s : 631

The number of equations that hold in- the data is 1031

The number of equations explained by the model is 400

Compare this model with Maruyama and McGarvey's. The new model is as plausible, and it

has a TTR value of 11.7 compared to the Maruyama and McGarvey model TTR of 12.9. The

new model implies no vanishing partial correlations that fail a significance test at a

significance value of .4, whereas Maruyama and McGarvey's model implies 38 incorrect

vanishing partial correlations. We therefore expect that the new model will provide a better

fit although we would still expect it to fail a chi square test at the .05 significance level.

We would not on the basis of this data and this cursory search put any weight on the

substantive claims our model makes. We remind the reader that any number of equally

good models might be found by making different choices at stages in the search.



239

8.9. THE STABILITY OF ALIENATION

8.9.1. Introduction

A study by Wheaton et al., [ 1 0 7 ] , on the stability of alienation has become a standard

example in manuals for computer programs that perform statistical analyses of structural

equation models. Joreskog and Sorbom [ 5 0 ] discuss the example in the LISREL manuals,

Bentler discusses the example in the EQS manual , and we introduce it here to illustrate

the use of the TETRAD program. Covariance data for this case are on the floppy disk. The

file name is "Aliendat"

The alienation study shows the use of both structural criteria and plausibility criteria in

respecifying an initial causal model. The interpretation of variables in the initial model rules

out a host of possible elaborations, and therefore reduces the search space significantly.

The initial causal model is pictured in Figure 8 -59 . The probability of its chi square

statistic (with 6 degrees of freedom) is less than .001.
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|Powerlessness 57
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x /

i

e5 e6

Figure 8-12: Alienation: Original Model

Alienation is a latent construct measured by anomia and powerlessness at two different

times. SES is socio-economic status, also latent measured by Duncan's socio-economic

index and an index of educational achievement Using the LISREL search procedure, the
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initial model is amended by freeing two parameters that correspond to correlations for

error terms for the same indicator measured at different times. The revised model, shown

in Figure 8 - 6 1 , has 4 degrees of freedom and p = .335, n = 932. It is proposed by

Joreskog and Sorbom , and by Bentler.

el

| Anemia

V
67

32

1
|Pcwerlessness 67

Alienation 67 }

|Education

\ [

(SESJ

1 |SEI

e3

Anomia 71|

X

e4

|Powerlessness 71}

/

-^-(Alienation 71^

e5 eS

Figure 8-61: Alienation: Amended Model

It is certainly plausible that indicators measured at different times have correlated errors,

and the probability value of the chi square statistic is high. But a researcher who settled

for this account of the data would have missed many possibilities. We can find alternative

models with the TETRAD program, and then use LISREL or EQS to compare the values of

their chi square statistics.

8.9.2. The TETRAD Analysis

We use the abbreviation scheme given in Figure 8 - 6 2 , and we give TETRAD the initial

model pictured in Figure 8 -63 .
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Alienation 67
Alienation 71

SES
Anomia 67
Anomia 71

Powerlessness 67
Powerlessness 71

SEI
Education

Figure

= A6
= A7
= SE
= a6
= a7
= P6
= P7
= se
= ed

8-62: Abbreviation Scheme

Figure 8-63: Alienation: Skeleton

We will conduct two searches for modifications of this initial model One of them, using

the Suggested Sets of trek additions, is easy and almost instantaneous, and leads to an

extremely good model. The other search, using the Rttr chart is much more tedious, but it

recovers the same model found with the Suggested Sets and another that is nearly as

good

Using the Suggested Sets

Asking for statistical information, we get the output we show below. Asking for three

units of suggested sets, we get the results in Figure 8 -64 .

The graph analyzed in this example i s :
A6->a6 A6->p6 A6->A7 A7->a7 A7->p7 SE->ed SE->se SE->A6 SE->A7

The significance level i s : 0.0500
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The sample size is:

Tetrad Equation

932

a6 p6, a7 p7
a6 p6, p7 a7
a6 a7, p7 p6
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Residual

0.1510
0.2354
0.0844

0.0014
0.0618
0.0604

0.0287
0.0501
0.0214

0.0638
0.0570
0.0068
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0.0289
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0.2520
0.2334
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0.0532
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0.0294
0.0441
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0.1981
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0.0927

0.0189
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P(diff.)
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0.0024
0.1562
0.0354
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0.0000
0.0447

0.0000
0.1044
0.0000

0.0320
0.0362
0.0000

0.0000
0.0000
0.9399

0.0000
0.0000
0.3616

0.5296
0.0000
0.0000

0.1534
0.0000
0.0304

0.0000
0.0000
0.1300

0.0000
0.0000
0.4903



243

a7
a7
a7

P7,
P7,
ed,

ed
se
se

se =
ed =
P7 =

a7
a7
a7

ed,
se,
ser

P7
P7
ed

se
ed
P7

0
0
0

.2638

.2547

.0091

0.0000
0.0000
0.2819

Sets of suggested treks at significance level = 0.1307

{a6-a7 }

Sets of suggested treks at significance level = 0.4903

{a6-a7 p6-se p7-se

Sets of suggested treks at significance level = 0.5296

{p6-a7 p6-se p7-ed p7-se }
{p6-a7 p6-se A6->a7 p7-ed
{p6-a7 p6-se A6->a7 p7-se
{p6-a7 p6-se p7-ed A6->p7
{p6-a7 p6-se p7-se A6->p7
{p6-a7 p6-se SE->a7 p7-ed
{p6-a7 p6-se SE->a7 p7-se
{p6-a7 p6-se p7-ed SE->p7
{p6-a7 p6-se p7-se SE->p7
{a6-a7 p6-a7 p6-se p7-se }
{a6-a7 p6-se A6->a7 p7-se
{a6-a7 p6-se p7-se A6->p7
{a6-a7 p6-se SE->a7 p7-se
{a6-a7 p6-se p7-se SE->p7
{a6-a7 p6-a7 p6-se p7-ed }
{a6-a7 p6-se A6->a7 p7-ed
{a6-a7 p6-se p7-ed A6->p7
{a6-a7 p6-se SE->a7 p7-ed
{a6-a7 p6-se p7-ed p7-se
{a6-a7 p6-se p7-ed SE->p7

The Total Tetrad Residual, or TTR, is: 0.37422

Figure 8-64: Suggested Sets For Skeleton

According to the suggested sets, it appears that a6-a7 is the best single trek to add to

the skeleton. This trek can be realized as a direct cause from the value of a6 to the value

of a7, or as a correlated error, but it cannot be interpreted as a cause from a7 to a6. We

regard the correlated error as the most plausible realization of this suggested trek addition.

The second suggested set contains a6-a7 and it also involves a pair of treks from se to
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the measures of powerlessness at two different times. It is certainly plausible that a

measure of SES and a measure of powerlessness have correlated errors. It is natural to

suppose that if SES is correlated with a measure of powerlessness at one time then it is

correlated with the same measure at a later time, and the second set of suggested treks

agrees with that judgement which we can think of as a symmetry requirement imposed on

our models. The socio-economic index cannot it would seem, be either a cause or an

effect of the responses given to questionaire items, and so it seems less reasonable to

implement the suggested treks by means of directed edges connecting p6, p7 and se.

An immediate realization of the second set of suggested treks is therefore a very plausible

elaboration of the initial model namely.

a6 C a7, p6 C se, p7 C se

This model has a chi square probability of .9103. In view of the goodness of f i t and the

fact the the models in the third unit of suggested sets of trek additions will all fail to

explain one or more tetrad equations that hold at a significance level of .49, we do not

consider models from the third unit In fact it also turns out that all of the plausible

models from the third unit of suggested trek additions have chi square probabilities lower

than .9103.

8.9.3. Searching with the Rttr Chart

The significance values for the first two suggested sets are .13 and .49 respectively. We

compromise and choose .4 as the significance level for the Rttr chart The chart produces

a number of good candidate additions from which we form the first level of a search tree.

The fragment of the chart containing only the best additions is illustrated below.
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The graph analyzed in this example is:
A6->a6 A6->p6 A6->A7 A7->a7 A7->p7 SE->ed SE->se SE->A6 SE->A7

The significance level is: 0.4000

The sample size is: 932

Edge Rttr D(I-H) I(H-I)

a6-> a7 0.276 6 1

a6 C a7 0.249 5 0

p6-> a7 0.276 6 1

p6-> p7 0.229 5 2

The Total Tetrad Residual, or TTR, i s : 0.37422
I-H, the total number of equations implied by the model
that do not hold in the data, i s : 11

H-I, the total number of equations that hold in the data but
are not implied by the model, i s : 1

The number of equations that hold in the data i s 5

The number of equations explained by the model i s 4

Figure 8-65: Reduced Rttr Chart For The Skeleton

What makes these additions to the initial model superior to alternative elaborations is that

_ they have small values for I(H-I) and relatively large values for Rttr. The small values for

I(H-I) mean that most of the equations that hold at this significance level and are implied by

the initial model are also implied by the revised model. So these modifications are best by

Spearman's Principle. The large values of Rttr mean that these models have smaller TTR

values than do other one step modifications of the initial model, so they are best by

Thurstone's Principle.

We now request an Rttr chart for each of the models produced by adding one of the

edges above to the initial model. These Rttr charts give us information about the second

- stage or level of modification of the initial model. After locating the superior candidates in

? each Rttr chart, we form the second level of the Rttr search tree. We show this in Figure

8 - 6 6 below.
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Root Level 1 Level 2

Edge TTR Pi

a6->a7 .098 .737

a6 C a7
(T->a6,T->a7)

Init ia l
Model

p6->a7

p6->p7

ed->a6
a6->se
se->a6
a6 C se
p6->se
p6 C se
a7->se

a6->se
a7->se
T->se
p6 C se

a6->se
p6->se
a7->se

se->a6
ed->p6
se->p6
p7->ed

.007

.007

.007

.040

.007

.038

.007

.014

.014

.022

.053

.007

.007

.007

.033

.001

.001

.021

.817

.817

.817

.743

.817

.774

.817

-
-
-

-
—

Figure 8-66: Two Levels of the Rttr Tree

Proceding to a third level in this way would require running TETRAD on the 18 second

level models and finding their Rttr charts. This is perfectly feasible, and would require

perhaps two hours. It could be done easily in batch mode. An alternative procedure,

however, is to reduce the number of level 2 alternatives by computing their chi square

statistics, keeping only the those second stage models with significant p values, and then

proceding with the TETRAD analysis. Using EQS on a personal computer (without a

coprocessor) to estimate and test the eighteen models requires several hours. To illustrate

the possibility, however, we ran EQS on all eighteen models in batch mode. The computer

did the work overnight while we slept The results are given below.
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Edges Added To Skeleton DF P(XJ)

1)
2)
3)
4)
5)
6)
7)

8)
9)
10)
11)

a6->a7
a6->a7
a6->a7
a6->a7
a6->a7
a6->a7
a6->a7

, ed->a6
, a6->se
, se->a6
, se C a6
, p6->se
, p6 C se
, a7->se

a6 C a7, a6->se
a6 C a7, a7->se
a6 C
a6 C

a7, a6 C se,
a7, p6 C se

a7 C se

12) p6->a7, a6->se
13) p6->a7, p6->se
14) p6->a7, a7->se

15) p6->p7, se->a6
16) p6->p7, ed->p6
17) p6->p7, se->p6
18) p6->p7, p7->ed

4
4
4
4
4
4
4

4
4
3
4

4
4
4

4
4
4
4

0.0106
0.0436
0.0733
0.0665
0.0293
0.0565
0.0492

0.5097
0.4057
0.8017
0.6539

<.001
<.001
<.001

<.001
<.001
<.001
<.001

Figure 8-67: Intermediate Results For Level Two

The tree can be pruned by eliminating the last two nodes on level 1 and all of their

descendants. That leaves us with the smaller tree:

Root Level 1 Level 2

Edge TTR Pi

In i t ia l
Model

a6 C a7
(T->a6,T->a7)

3 .737

7)

Figure 8-68:

ed->a6
a6->se
se->a6
a6 C se
p6->se
p6 C se
a7->se

a6->se
a7->se
T->se
p6 C se

Pruned Tree

.007

.007

.007

.040

.007

.038

.007

.014

.014

.022

.053

.817

.817

.817

.743

.817

.774

.817
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TETRAD indicates that in most of these cases searching for a third edge would be of

marginal value. Look at the nodes on level 2 under a6->a7. Most have a TTR of .007.

That is because they imply only a single tetrad constraint which holds very, very closely.

Consider, for example. Figure 8 -69 , which contains the statistical information for the first

graph on level 2, namely:

Initial Model + a6->a7 + ed->a6

The figure contains only information on those equations that hold or that are implied Only

one equation is implied by the model, and the tetrad difference in the sample is only .0075.

The graph analyzed in this example i s :
a6->a7 ed->a6 A6->a6 A6->p6 A6->A7 A7->a7 A7->p7 SE->ed SE->se SE->A6 SE->A7

The significance level i s : 0.4000

Tetrad Equation Residual Impld.

a6 p6, a7 ed = a6 a7, p6 ed 0.0014

a6 p7, ed p6 = a6 ed, p7 p6 0.0068

a6 ed, se a7 = a6 se, ed a7 0.0007

p6 a7r p7 ed = p6 p7r a7 ed 0.0081

p6 ed, se p7 = p6 se, ed p7 0.0075 y

Figure 8-69: Statistical Information For Skeleton + a6->a7, ed->a6

The implied tetrad equation holds closely. We prefer models that explain the equation to

models that do not imply it There is, therefore, no reason to add any further directed

edge or correlated error to this modification of the initial model.

The situation is nearly the same for the other nodes. The node under a6->a7 that adds a6

C se implies only two equations, each of which have very high p values.

Only the node that adds p6 C se to a6->a7, the last node in Figure 8 -68 , seems worthy

Held

y

y

y

y

y

P(diff.)

0.9436

0.6085

0.9399

0.5296

0.4903
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of further modification. That model implies only two tetrad equations, each of which has a

p value less than .4. Remarkably, there are three additions to this graph which defeat the

implication of these and only these two equations, and one of them is p7 C se. We

therefore arrive again at one of the models obtained from the Suggested Sets of trek

additions.

Turning to the nodes on level 2 under a6 C a7, which did much better on a chi square

test than did those under a6->a7, we need not search under a6->se or a7->se. The

graphs corresponding to those nodes imply only two equations, both of which hold at .49

or better. The other two nodes still deserve further consideratioa

The third node under a6 C a7, called T->se should be explained TETRAD will only accept

directed graphs, not graphs with undirected lines representing correlated errors. To give

TETRAD a model with a correlated error, the correlated error must be represented as a

latent common cause. If we then ask for an Rttr chart, TETRAD assumes T is a latent

variable just like A6, A7 and SE It calculates the effect of adding extra edges from T to

other indicators and includes them in the Rttr chart T->se is just such an edge. The

graph corresponding to this node actually adds three free parameters to the initial model.

The following two models are both realizations of this node.

a7 P7

e4

i

Figure 8-70: Two Models That Realize Node 3 Under a6 C a7
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The model in Figure 8 - 7 0 - b is given to TETRAD, requesting standard output with the

following results:

The graph analyzed in this example i s :
SE->ed SE->se SE->A6 SE->A7 A6->a6 A6->p6 A6->A7 A7->a7 A7->p7
T ->a6 T ->a7 T ->se

The Total Tetrad Residual, or TTR, is": 0.02236

I-H, the total number of equations implied by the model
that do not hold in the data, i s : 0

H-I, the total number of equations that hold in the data but
are not implied by the model, i s : 2

The number of equations that hold in the data is 5

The number of equations explained by the model is 3

Figure 8-71:

There is no need to search for a further addition to this model. It explains three of five

equations that hold at .4 or better, and it implies no equation that does not hold at .4 or

better.

The final node under a6 C a7, p6 C se, is represented for TETRAD as the graph in the

output file we show in Figure 8-72. The Rttr chart for this node is unambiguous. There

is a single best addition, which we show below.
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The graph analyzed in t h i s example i s :
SE->ed SE->se SE->A6 SE->A7 A6->a6 A6->p6 A6->A7 A7->a7 A7->p7
T ->a6 T ->a7 Tl->p6 Tl->se

Edge Rttr D(I-H) I(H-I)

p7 C se 0.038 3 0

The Total Tetrad Residual, or TTR, i s : 0.05387
I-H, the t o t a l number of equations implied by the model
that do not hold in the data, i s : 3

H-I, the t o t a l number of equations that hold in the data but
are not implied by the model, i s : 2

The number of equations that hold in the data is 5

The number of equations explained by the model is 3

Figure 8-72: Rttr Chart For Final Node Under a6 C a7

If we add p7 C se, the resulting model will explain three of five equations that hold at .4,

it will imply no equation that holds at .4, and it will have a TTR of .0158, which is very

low. It is striking that the program and heuristics use structural criteria to find the addition

that is also preferable on grounds on symmetry.

8.9.4. Goodness of Fit Results

Using EQS in batch mode, p values for the chi square statistic of all of the final models

described above were obtained The results are given below:
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Edges Added To Skeleton

None

From Suggested Sets

1) a6 C a7, se C p6, se C p7

From the Rttr Chart

TTR

.3742

.0158

Equations
Explained (at .4) P(X2)

<.001

0-9103

0.0106
0.0436
0.0733
0.0665
0.0293
0.0565
0.0895
0.0492

0.5097
0.4057
0.8017
0.6539
0.9103

a6->a7, ed->a6
a6->a7, a6->se
a6->a7, se->a6
a6->a7, se C a6

2)
3)
4)
5)
6) a6->a7, p6 C se
6a) a6->a7, p6 C se,
7) a6->a7, a7->se

a6->a7, p6->se
a6->a7,

p7 C se

8) a6 C a7, a6->se
9) a6 C a7, a7->se
10) a6 C a7, a6 C se, a7 C se
11) a6 C a7, p6 C se
lla) a6 C a7, p6 C se, p7 C se

4 of 5

007
007
007
014
007
027
006
007

014
014
022
053
016

1
1
1
2
1
2
2
1

2
2
3
3
3

Table 8-6: Goodness of Fit Results: All Models

Of the models obtained with the Rttr chart, we can eliminate models 1 through 7 because

of their chi square p values. Models 8 and 9 do well on the chi square test but they

violate the symmetry constraint and are not as plausible as the other promising models.

Model 10 is a good model. It satisfies the symmetry constraint it is plausible, and it does

extremely well on the chi square test Model 11a is the same model as model 1 from the

suggested sets.

These considerations leave us with two models that seem the best on all criteria

Edges Added To Skeleton

None

1) a6 C a7, se C p6, se C p7
2) a6 C a7, a6 C se, a7 C se

TTR

.3742

.0158

.0226

Equations
Explained (at .4) P(X')

<.001

0.9103
0.8017

4 of 5

3
3

Figure 8-73: Most Promising Models
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While Model 1 has a nice symmetry between the indicator se and the indicator

powerlessness measured at two different times, it asserts that there is no correlation

between the error terms for powerlessness at the different times. It would seem more

plausible to add another correlated error between p6 and p7. If we do, we get this result

Equations
Edges Added To Skeleton TTR Explained (at .4) p(X2)

la) a6 C a7, se C p6, se C p7f p6 C p7 .0008 1 0.9936

8.9.5. Conclusion

With TETRAD'S help we have found three models which perform substantially better on a

chi square test than the one standardly exhibited in causal modelling texts. Two of these

models lose a single degree of freedom in comparison with the model suggested in the

LISREL and EQS manuals.

In fact however, we have done something else at least equally important We have

performed a search for alternative models. In order not to make the discussion even more

lengthy, we have not described all of the details of that search. For example, we have

ignored all of the suggested sets of treks the program produced on the third iteration of

the Suggested Sets procedure. We did so because the model found at the second iteration

will explain more equations that hold at a high significance level (.4) and because it has an

extraordinarily good fit In fact all of the models obtained from consideration of the third

unit of suggested sets have lower chi square p values than does the model obtained from

the second unit

This case also exhibits something of the role that background knowledge can play in causal

modelling with TETRAD. At several points in the analysis we appealed to the knowledge

that a6 and a7, and similarly p6 and p7, were the same indicator measured at different

times. We also appealed to our knowledge of the time order in eliminating possible causal

connections.
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8.10. A SIMULATED CASE

8.10.1. Introduction

Causal modelling takes place amidst a host of assumptions. The investigator must assume

the relationships among variables are essentially linear he or she must assume that each

variable explicitly modelled has an independent source of variation, etc. Despite tests for

various assumptions, with real empirical data we cannot be certain that the assumptions are

met One important kind of test of a discovery procedure is how it fares with such data,

and how the results obtained compare with results obtained by researchers who use other

procedures. But another important test of a discovery procedure concerns its performance

when the assumptions of linear modelling are known to be satisfied We consider a case

in which the data are generated artificially, and the various linearity and stochastic

assumptions, as well as the initial model are known to be correct We used SYSTAT

BASIC to generate data from the statistical model shown in Figure 8 -74 , with n = 5,000.

The equations expressing the causal dependencies can be read from the graph in the usual

way. We generated values for exogenous variables with a pseudo-random number

generator. The data and a fragment of the model (two edges were omitted) are then

submitted to a TETRAD analysis. The results reported here are not really a test since they

were not done blind, but the results are sufficiently unambiguous that we are confident that

they could be repeated in similar studies in which the TETRAD user did not know the

missing edges beforehand
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et2

e6

where:

Tl, el-e6, and et2 are distributed N(O,1)

= .865; b = .458; c = 1.217; d = .398;
= .567; f = .854; g = .772; h = .593; j = -626;

Figure 8-74: Model That Generated The Data

The correlations generated from this model and a ske.eton that does not include the edges

T2->x4 and x2->x5 were given as problem 3 in Chapter 6.

8.10.2. The TETRAD Analysis

Recall that the skeleton in problem 3 from Chapter 6 is as follows.

xl x2 j x3 X4 X5 x6

Figure 8-75: Skeleton
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Giving this skeleton to TETRAD along with the correlations, we ask for sets of suggested

edges. The first unit of suggested sets contains enough sets, and each of them large

enough, that we need not worry about a second unit

The covariance f i l e used for this run is named: sim.dat
The graph f i l e used for this run is named: sim.g
The name of this output f i l e i s : sim.ol

The graph analyzed in this example i s :
Tl->x2 Tl->x3 T1->T2 T2->x4 T2->x5 T2->x6

The significance level i s : 0.0500

The sample size i s : 5000

Sets of suggested treks at significance level = 0.0000

{x2-x5 x4-x5 X4-X6 }
{x2-x5 x4-x5 x5-x6 }
{x2-x5 x4-x6 x5-x6 }
{X2-X5 X4-X5 Tl->x4 }
{X2-X5 x4-x6 Tl->x4 }
{x2-x5 X4-X5 Tl->x5 }
{x2-x5 x5-x6 Tl->x5 }
{x2-x5 X4-X6 Tl->x6 }
{x2-x5 X5-X6 Tl->x6 }
{x2-x5 Tl->x4 Tl->x5
{x2-x5 Tl->x4 Tl->x6
{X2-X5 Tl->x5 Tl->x6

The Total Tetrad Residual, or TTR, i s : 1.37366

I-H, the total number of equations implied by the model
that do not hold in the data, i s : 15

H-I, the total number of equations that hold in the data but
are not implied by the model, i s : 2

The number of equations that hold in the data is 14

The number of equations explained by the model is 12

Figure 8-76: Suggested Sets For the Skeleton

The sets all contain the trek x2-x5, so we expect it to be in the original model and to do

well in an Rttr chart Treks in these sets are suggested at a significance level of .000,

which means that all tetrad equations implied by the initial model and having a p value

greater than zero are also implied by any model that adds a suggested set of treks (and
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9. A BRIEF HISTORY OF HEURISTIC SEARCH IN
APPLIED STATISTICS

The methods that are used in the TETRAD program derive from work in statistics,

biometrics and psychometrics that is now long forgotten, but once captured the attention

of some of the best workers in these subjects. That work forms a fascinating piece of

the history of applied statistics. The story that follows is certainly not complete, especially

in its recounting of more recent work.

We may forget how closely the development of statistics and probability was sometimes

tied to the desire to be able to infer causes from frequencies. George Boole , for

example, seems to have thought that the principal application of his algebra was to enable

one to infer causes from probabilities, and to that end he embedded his algebra in a rather

idiosyncratic theory of probability. His work was roundly, and from a modern point of view

rightly, criticized by Cambridge Bayesians. Toward the close of the 19th century, Galton

and Pearson developed the ideas of regression and correlation to attempt to describe the

statistical manifestations of genetic inheritance. Pearson remained a major force in

statistics after the turn of the century, and his students, such as Yule , made major

contributions to the subject

Charles Spearman was an English psychologist who sought to combine the psychometric

innovations of workers such as Binet with the new statistical methods that were emerging

from mathematicians such as Pearson Pearson did not like the result, and he and Spearman

remained antagonists for a long while. In 1904 Spearman published two papers. One, "The

Proof and Measurement of Association Between Two Things" introduced a "correction for

attenuation" in the estimation of the correlation coefficient between measures that are

severally subject to error. Pearson thought Spearman's mathematics hopelessly obscure and

wrote that "Perhaps the best thing at present would be for Mr. Spearman to write a paper

giving algebraic proofs of all the formulas he has used, and if he did not discover their

erroneous character in the process, he would at least provide tangible material for definite

criticism, which it is difficult to apply to mere unproven assertions."

The other paper Spearman published, [ 101 ] , "General Intelligence Objectively Determined

and Measured", drew less notice but was more important In it, from a variety of tests

with a small sample of London school boys, Spearman argued that there is one common

component to all manifestations or tests of "intelligence". Reading Spearman's paper

nowadays one is struck by the bizzare choice of tests, many of which involved motor

skills or sensory discrimination, and the absurd sample sizes, but that is not the point The
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point is Spearman's argument, for it was the argument that caught the imagination of

statisticians and psychometricians.

Spearman's argument given rather obscurely in this first paper but more clearly in

subsequent papers, was as follows:

Suppose there are four measured variables xy x2, x3 and x4, and their correlations (Pearson

product-moment correlations, that is) have values that satisfy three equations:

^12^34 ^13^24 "~

^12^34 P\API2 ~

^13^24 ^14^23 ""

These constraints on the correlations can be explained in a powerful way by supposing that

each of the measured variables is affected by a single common unmeasured variable, and

that each of the measured variables is also affected by an unmeasured variable specific to

it and having no effect on the other measured variables. The algebra is easy:

x, = a,G + s,
x2 = a2G + s2

x3 = a3G + s3

x4 = a4G + s4

G, the s. and the x. are random variables, the a. are undetermined constants. Multiplying

each side of the first equation by the corresponding side of the second equation and

averaging we get

) = Expfc^G2 + a^G + a^G + s^)

For algebraic simplicity assume that all of the variables have mean 0. Since there is

assumed to be no causal connection between the se\

variables and G, their covariances should vanish, leaving

assumed to be no causal connection between the several s. variables, or between these
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Analogous equations are obtained in the same way for the other covariances of the

measured variables. Hence, for example:

Cov(xix2)Cov(x3x4) - Cov(x1x3)Cov(x2x4) = a^a^VarfG) 2 - a1a3a2a4Var(G)2 = 0

The correlation coefficient is just the covariance divided by the product of the standard

deviations of the correlated variables, so the difference of the products of the correlations

coefficients must also vanish-

Spearman's point was that the assumption of one common factor would explain why these

constraints on the correlations, or tetrad equations as they came to be called, were

satisfied in the population. The thing that must be emphasized, although it is simple enough,

is this:

The one factor model implies that the three tetrad equations will hold in the population

no matter what the values of the coefficients a. may be.

The converse is also true, Spearman thought That is to say, if correlations among four

variables satisfy the three associated tetrad equations, then the correlations can be

generated from some one factor model, with appropriate values for the linear coefficients.

The three tetrad equations are the necessary and sufficient statistical conditions for the

admissability of a one factor explanation of the correlations. This amounts to saying that a

one factor model implies no other independent constraints on the population covariance

matrix besides the vanishing of all tetrad differences.

Analogous arguments apply for any larger number of measured variables. If there are n

measured variables then the number of possible tetrad equations among these variables is 3

times the number of ways of choosing 4 from n. If the correlations are due to the action

of one common cause, then all of the tetrad equations must hold, regardless of the values

of the linear coefficients and, conversely, if all of the tetrad equations hold, then the

correlations can be generated by a one factor model with appropriate values of the linear

coefficients.

Spearman realized that the three tetrad equations could be derived from alternative models

with multiple latent factors, provided the linear coefficients were chosen to have

appropriate values, but only the one factor model, he seems to have thought, would imply

the tetrad equations no matter what the values of the coefficients might be. Spearman's

dominant methodological idea, never fully articulated, seems to have been that the best
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explanation is one which generates constraints found in the population measures without

having to assume special values for its" parameters. In other terms, he preferred those

explanations which were robust or resilient over changes in the specification of the value

of free parameters.

Whether Spearman realized it or not he was appealing to a methodological idea that runs

throughout the sciences. Kepler gave an analogous argument for the superiority of

Copernican to Ptolemaic astronomy [ 3 1 ] . In the same years that Spearman was applying

the argument to pscyhometrics, Harold Jeffreys, who was later to make distinguished

contributions to statistics, and Arthur Eddington were making an analogous argument for

Einstein's general theory of relativity.

In the years after 1904 Spearman and his students published a number of studies all of

which supported his hypothesis of "General Intelligence", and critics such as Thorndike

published contrary studies. Some critics, notably G Thomson argued that the tetrad

equations need not be explained by a single common factor, but could instead be satisfied

if the test items were produced by a sufficiently large number of completely independent

factors. The argument was rather muddled

Neither Spearman nor his students nor his critics seem to have noted that there are a

number of alternative models that have the same'relationship to the tetrad equations as

does the one factor model. Pictorially, both of the following models entail that three

tetrad equations will hold in the population, no matter what the values of the linear

coefficients.

/ i \ I
x l x2 x3 x4

I /V i
X l x2 x3 X4

It is hard to know what Spearman would have said about these alternatives. He might have

dismissed them on the grounds that they are less simple than the one factor theory, which

indeed they are. More likely, he would have held them to be "subtheories" of the one

factor model—that is, they amount to saying that the single factor consists of two or

three causally connected components. Spearman had nothing against substructure.
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In fact however, the case is even worse, for three tetrad equations among four latent

variables are robustly implied by models that have no latent factors, but simply postulate

directed effects of the measured variables on one another. For example:

The example is but an instance of Sewall Wrights "path models." Wrights work [Wright],

was published in 1921 and drew immediate attentioa So far as we know, however, none

of the psychometricians of the day. Spearman included, entertained the thought that the

responses their subjects gave to earlier items on batteries of mental tests might have an

effect on the responses given to later items.

The increasing appreciation of the importance of sampling error made it urgent for

Spearman to find a means to determine whether or not a tetrad difference is small enough

that it can be plausibly thought to be due to sampling variation from a population in which

the true value of the tetrad difference is zero. What was required was a knowledge of the

sampling distribution of tetrad differences under the assumption that the underlying

distribution of the variables is multinormaL In 1926 Spearman and Karl Holzinger,

[Holzinger26], produced an approximate formula for the variance of the sampling

distribution of the tetrad residual, or tetrad difference, under the assumption that the

difference is zero in the population A year later they obtained an analogous formula for a

collection of tetrad differences, again under the assumption that they are all zero.

Truman Kelley , [ 5 1 ] , a psychologist at Stanford and a capable statistician, had earlier

derived an approximate formula for the sampling distribution of the ratio of the correlation

products rather than the difference of the products. Spearman seems never to have used

this statistic, and Kelley himself eventually gave up using it in favor of the tetrad

difference In retrospect, Kelley's strategy seems the better. Spearman was in reality

making two inferences. One, that the tetrad residual found in a sample was due to chance

and the population tetrad difference was actually zero. Two, that the zero tetrad difference
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in the population was due to the causal structure generating the data, and not dependent on

the particular values of the linear coefficients. But the tetrad difference is the difference

of two small numbers, and the difference of two small numbers is small. Hence, whatever

the model if the linear coefficients were such as to produce small correlations, small

tetrad differences would be expected in the population and in the sample. The ratio of two

small numbers, by contrast need not be small. Put in other terms, but still informally.

Spearman's statistic has less power to descriminate between small tetrad differences due

to causal structure and small tetrad differences due to small correlations.

In 1927 Spearman published the most detailed defense of his theory, together with the

statistical formulae. The Abilities of Man. [ 9 9 ] , drew a lot of attention, including some

unwelcome attention from Spearman's old nemesis, Karl Pearson. Pearson wrote unflattering

and anonymous assessments of the book in Nature, and then, with Margaret Moul, a critical

but substantive contribution in Biometrika, [ 80 ] . Pearson and Moul addressed the question

of the sampling distribution for tetrad differences, assuming a vanishing difference in the

population and multinormally distributed variables. They did not obtain an exact sampling

distribution (and so far as we know the question is still open) and they did not improve on

Spearman and Holzinger's formula for the sampling variance. They did, however, observe

that the distribution of tetrad differences is certainly not normal. Pearson roundly criticized

Spearman, principally on two counts. One, that (using Spearman and Holzinger's formula for

the sampling variance) the tetrad residuals in Spearman's data were sometimes quite large.

Two, that Spearman had used very small samples (e.g., 50 subjects) and in his statistical

analysis had assumed that the sampling distribution of the tetrad differences is normal.

Pearson's point was that the sampling distribution is only asymptotically normal, and the

sampling variance formula could therefore only be used to decide the significance of a

tetrad residual provided the sample sizes were reasonably large, and Spearman's samples

weren't

Spearman didn't get the point, for he replied [100 ] that he made no assumption about the

normality of the distribution of the tetrad differences. But if so, he could not have made

the judgements he did about significance, or converted from sampling variance to probable

error in the way that was then customary, a transformation that assumes a normal

distribution

John Wishart , [ 1 0 8 ] , next took up the problem of the sampling distribution of tetrad

differences. He did not attempt to find an exact sampling distribution, but he did find an

exact formula for the variance of the distribution. The exact formula gives a larger standard

deviation than does Spearman and Holzinger's approximate formula, and had the effect of

making Spearman's judgements in The Abilities of Man look a bit more reasonable.
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Spearman was interested in tetrads because he saw in them an argument for his

psychological theory. But others saw in his work something much more important namely a

general procedure for finding the best linear causal models to account for statistical data

This ingenious work, pursued in different ways by Maxwell Garnett, [ 3 1 ] , Truman Kelley,

[55land Karl Holzinger, [ 4 7 ] came to naught for reasons we will describe subsequently,

but it is the real key to our own heuristic search procedures. To explain their ideas, one

statistical remark is necessary. Spearman's tetrad equations amount to a simple constraint on

the population covariance matrix. (Nowadays, such constraints are given the slightly

misleading name of " overidentifying constraints" because they usually determine more than

one independent estimate of some parameter of the theory.) Now there are other possible

restrictions one could put on the covariance matrix, and in fact the a priori possibilities

are endless. Garnett and Kelley in effect posed the following problem:

Find for any linear causal model the constraints on the population covariance matrix

necessary and sufficient for the admissibiltiy of the model in the sense that the model

will imply the constraints for all values of its linear coefficients, and will not imply

any further independent constraints.

This is an elegant problem, but one cannot hope to solve it for all possible cases. If, to

the contrary, one could classify all of the possible linear models by the constraints

necessary and sufficient for them, then by estimating from the sample covariance matrix

which constraints are satisfied by the population covariance matrix, one could hope to find

the best explanation for any body of data Kelley fully realized there were far too many

possible cases.

Garnett, and especially Kelley, worked out the constraints for a number of models, and the

results are reported in Kelley's oddly titled Crossroads in the Mind of Man. Kelley's book

contains analyses of the following cases:

1. Three variables, one specific factor (i.e. a latent error term) and one common
factor (i.e. a latent common cause). (Two of the variables must be perfectly
correlated).

2. Three variables, two specific factors and one common factor. (The product of
two of the correlations must equal the third)

3. Three variables, three specific factors and one common factor. (The absolute
value of the product of every pair of correlations must be less than the third
and one or three of the correlations must be positive.)

4. Three variables, two common factors, no specific factors. (The multiple
correlation coefficients of each variable with the other pair must all equal
unity.)
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5. Four variables, one common factor four specific factors. (This is Spearman's
case.)

6. Four variables, one common factor, three specific factors. (Kelley gives only a
sufficient condition.)

7. Four variables, two common factors, four specific factors. (The condition is a
slightly complicated inequality)

8. Five variables, two common factors, five specific factors. (The condition is the
vanishing of a linear combination of 12 terms each involving a product of five
correlations. Kelley calls such a polynomial a "pentad".

9. Four variables, four specific factors, a common factor and a factor common
to x r x2 or a factor common to x y x4. (The tetrad differences (12M34) -
(131(24) and (12H34) - (14)(23) are equal, and hence of necessity the remaining
tetrad difference vanishes.)

It should be noted that the last case contains redundant conditions. If, from a foursome of

variables, two tetrad differences are equal then it follows necessarily (no matter what the

model that generated the data) that the remaining tetrad difference vanishes, and conversely

if a tetrad difference vanishes then necessarily the two remaining tetrad differences must

be equal to one another.

Kelley's work was very nice, and in some ways the best done by the psychometricians of

the time. As a strategy for locating the best linear causal model, however, it was clearly

doomed There are, as the first chapter of this book emphasizes, just far too many

possible cases for a complete classification to be carried out Each case that generates

distinct algebraic constraints requires a distinct sampling statistic, and even the indefatigable

Kelley did not obtain sampling variances for some of his cases. Kelley realized as much,

and he wrote that "we do not have, and certainly cannot readily obtain, criteria for six,

seven or more variables at a time." (p. 101).

On the other hand, the cases Kelley did cover offer a kind of heuristic guide in the search

for models that will best explain the data However large the model considered, it can be

depicted as a directed graph, and the graph will have subgraphs consisting of only three,

or four, or five measured variables, and their connections to each other and to latent

variables. According to the structure of the subgraphs, constraints of the kinds that Kelley

studied will be implied Thus one might hope to guide the selection of models by

comparing the constraints (of the sort Kelley describes) that hold in the data with the

constraints of the same sort implied by a hypothetical model, and altering the model if

necessary until what holds and what is implied fit together. This is exactly what Kelley

himself did
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Kelley applied his analysis to a data set involving nine measured variables for a sample of

140 seventh graders. He settled for trying to fit the mode1 to the vanishing tetrads found

approximately in the data The pentads were just too troublesome to calculate. Holzinger

took over the same strategy for the same data in defence of a model that was closer to

Spearman's views. A year later, in his Statistical Resume of the Spearman Two Factor

Theory. Holzinger repeated the same strategy on various examples. He discussed, for

example, the case in which there are four measured variables and only one tetrad equation

holds, and pointed out, as Kelley had, that the pattern can be accomodated by supposing

their is an additional common factor (or as people would say nowadays, correlated error)

between either of two pairs of the measured variables. Which pair had the additional

common factor, he noted, could be determined if there was an additional, fifth, measured

variable.

Holzinger's Statistical Resume was nearly the last gasp of tetrad analyses. Spearman's

argument that the best explanation is one that robustly implies the constraints found on the

covariance matrix had briefly led to a strategy for scientific discovery. The strategy used

the most commonly occurring constraint on a covariance matrix, the tetrad equation. It

proposed to compute the tetrad equations implied by a model, compare them with the

constraints satisfied by the data, and alter the model if there was a misfit That strategy

failed for computational reasons. The determination of the tetrad equations implied by an

arbitrary model, even a model with as few as nine or ten variables, was excessively

tedious.

The real death of these analyses of constraints on the covariance matrix came at the hands

of Hotelling and Thurstone. In the early 1930s Harold Hotelling developed both principal

components analysis and canonical correlation analysis. The two techniques enabled

researchers to manipulate their data and define constructs which localized the variance of a

set of variables, or the correlation of two families of variables. But more important

perhaps was Thurstone's contribution.

Thurstone's The Vectors of Mind [ 1 0 4 ] appeared in the middle of the 1930s, and it

effectively ended the analysis of tetrad equations and overidentifying constraints among

psychometricians and social scientists for another quarter century. Despite the denunciations

of factor analysis one hears nowadays, and which as the reader will discover, we endorse,

Thurstone's book was elegant and revolutionary. Written in a lucid and courteous style.

Vectors of Mind was for its time a mathematical tour de force, completely in command of

the relevant matrix theory, geometry and statistics. Equally important, however, it had a

simple and appealing philosophical theme—science is nothing more than simplification—

and it combined that theme with an easy algorithm for doing science as Thurstone
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conceived it an algorithm that could be carried out by hand with pencil and paper The

procedure was not tied to any one theory of mental or social phenomena, but to a general

conception of science. In Thurstone's view science was nothing more than the erection of

"constructs" which describe the data more simply, with fewer "degrees of freedom", and

he provided an almost magical procedure by which science could be done, theory

discovered, progress made.

Spearman's tetrads were discussed by Thurstone, but as an inferior and inadequate special

case. The motivation behind them, and the conception of scientific explanation from which

they sprang, was never mentioned Spearman , a mediocre mathematician, a rude and

aggressive controversialist a man tied to one theory and without an automatic method for

discovery, had little chance against Thurstone. Neither did Kelley and Holzinger , who

quickly converted from the analysis of constraints on the covariance matrix to the methods

of factor analysis.

In almost every way, save that it was an effective and easy procedure for producing

theories, Thurstone's factor analysis was inferior to the efforts at constraint analysis

pursued by Spearman and Kelley and Holzinger and others. Psychometricians had not

entertained the possiblity that measured variables might have direct effects on one another,

or even on latent variables, nor had they analyzed models in which latent variables had

causa/ effects on one another, but nothing in the earlier procedures prohibited such

analyses. With factor analysis such relationships were impossible because they were beyond

the algorithm, and the philosophical views that went with factor analysis discouraged

researchers in psychometrics, and in the many other subjects to which factor analysis

quickly spread, from even thinking of the possibility.32 Thurstone's factor analysis did not

in any serious sense, conduct a search for alternative theories of the data Instead it

churned out a representative of a collection of statistically equivalent models. Worst of all,

perhaps, Thurstone's methods abandoned the insight into scientific explanation that had lain

behind Spearman's procedures and that had, for a brief while, threatened to bring statistical

modeling into the spirit of the natural sciences. For Thurstone, constraints exhibited by the

sample covariance matrix had to be satisfied, but they were to be satisfied by adjusting the

linear coefficients—the factor loadings—in whatever way necessary. Thurstone was the

Ptolemy of statistical modeling.

We think it is fairly clear why none of the psychometricians, from Spearman to Thurstone, considered models in which the
latent variables have causal effects on one another. The psychometricians believed their latent factors were genetically
determined traits or faculties or abilities. Since the traits were determined by genetics, they could have no causal effects on
one another (and neither could they be causally influenced by the manifestations of these traits in observable behavior). Of
course, since the traits might have common genetic causes, it was permissible for them to be correlated, as Thurstone's factor
analysis allowed. Just why the psychometricians had this conviction is less clear, but two speculations are possible. The
source of the study of correlation was Galton's and Pearson's genetic studies, and so it was natural enough for
psychometricians to look to biological models. Second, the assumption that the traits manifested by test scores were genetic
fit comfortably with their conviction of the superiority of the white race. Truman Kelley, for example, ended his Crossroads of
the Mind (55) with a discussion of the implications of psychometrics for eugenics.
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Thurstone's triumph, and the reasons for it are evident in Guilford 's Psychometric

Methods, [ 4 0 ] , which appeared in 1936. Guilford gives a detailed and sympathetic

treatment of Spearman's views and of tetrad methods, before recommending that they be

abandoned in favor of Thurstone's factor analysis, which is described in even greater detail.

Guilford's reasons for the preference were succint

The use of the tetrad is a laborious procedure except when one is dealing
with a small number of tests. The number of tetrads increases enormously as
the number of tests increases. With 10 tests there are 630 tetrads and 20
tests there are 14,535. More effective and economical methods are now
available; hence tetrads have little more than historical importance.

We have no pretense to surveying the history of statistical modeling from the mid-thirties

to the present, and we have already ignored the important developments that had taken

place in econometrics. But it is worth saying a few words about what happened to the

fundamental idea of Spearman's school, namely that linear causal models should be assessed

by their ability to robustly entail constraints on the covariance matrix, no matter what the

values of their linear coefficients.

Constraints on the covariance matrix came to be known in the economics literature as

"overidentifying constraints". For reasons we do not pretend to understand many

econometricians were much more interested in parameter estimation than in theory testing,

and overidentifying constraints made consistent unbiased estimation more difficult For that

reason some econometricians adopted the exact contrary of the views of the Spearman

school, and recommended avoiding models that imposed any constraints on the covariance

matrix.

The connection between statistical models and causal notions was reinvigorated by Herbert

Simon s work in the 1950s, which attempted to derive the causal claims of a statistical

model from the identifiability relations of the variables of the model. The analysis seems to

have given some applied statisticians encouragement to think explicitly about the connection

between statistical models and the causal conclusions people habitually drew from them In

psychology, Donald Campbell 's, work on inferring causal order from the correlations of

time- lagged variables, and in economics the work of Herman Wold , had similar effects.

The effect was perhaps most pronounced in sociology, a subject which came rather late to

statistical methods and causal models. The leading practitioners, thinking the issues through

afresh, in effect rediscovered many of the ideas of the Spearman school.

The clearest example is Hubert Blalock 's Causal Inferences in Nonex peri mental Research f

[ 7 ] which appeared in 1961. Blalock reinvented the procedure of examining the
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constraints on the covariance matrix robustly implied by a linear causal model. The models

he considered were not however, latent factor models of the kind considered by the

psychometricians, but were instead path models with no common unmeasured variables,

models in fact of the very kind introduced by Sewall Wright The constraints on the

correlation matrix in these cases are not tetrad or pentad equations or the like, but

constraints on partial correlations. Blalock makes no reference to any of work done by

the Spearman school.

Spearman's ideas were noted by Herbert Costner and O.D. Duncan , however, who

considered the patterns of tetrad equations implied by a number of simple latent variable

models in which the latent variables have causal effects on one another and each latent

variable affects two or more measured indicator variables. They do not refer to the work

of Kelley or Holzinger , but their basic idea is much the same. Costner, in collaboration

with Ronald Schoenberg , even proposed a more or less systematic procedure for revising

linear models with latent variables by locating submodels having two causally connected

latent variables each with two measured indicators. Such submodels imply a single tetrad

equation, which is no longer implied if a measured indicator of one latent variable has a

common factor or correlation with a measured indicator of the other latent variable. If the

appropriate tetrad equation is not found to hold empirically, Costner and Shoenberg

recommend modifying the model accordingly. Costner and Schoenberg's procedure is still

occasionally cited, but does not seem to have been much used perhaps because it was

confined to locating special sorts of erroneous model specifications and was not really

algorithmic. Kelley and Holzinger would have liked the work. The development of computer

programs such as LISREL that automatically carry out maximum likelihood estimates of

parameters and perform significance tests led to a quite different strategy for revising

models. The strategy is quite alien to the tradition of the Spearman school and to Costner

and Schoenberg's procedure, for it pays no attention to robustly accounting for constraints

satisfied by the sample covariance matrix. Instead, the revision procedure locates the fixed

parameter for which a small variation will most increase the value of a fitting function,

revises the model by adding the corresponding free parameter, reestimates, and tests to

see if the difference in chi square values of the original and modified models is signficant

With this procedure an initial model may robustly explain constraints on the covariance

matrix but the modified model may very well be unable to robustly explain those

constraints. If the procedure is not quite as Ptolemaic as Thurstone's factor analysis, neither

is it as Copernican as the constraint analyses of the Spearman school. Perhaps we should

think of it as Tychonic.

The early psychometricians knew how to compute the covariances or correlations implied

by an estimated model, given the variances of the exogenous variables and the values of
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the linear coefficients. With Kelley's results they knew how to determine the tetrad

equations and certain other constraints for special cases. So far as we know, however,

they had no general method for computing covariances and correlations when the models

were, in contemporary jargon, non-recursive, that is, when the directed graph of the causal

model contained a cyclic path leading from one variable back to that same variable. No

such models occurred in psychometrics, but they did occur elsewhere. The general solution

to the problem was provided by an outsider, Samuel Mason. His doctoral thesis in the

1950s was devoted to the effects of loops in circuits, and it provided a general procdure

for computing the correlations or covariances of a recursive or non-recursive model, given

the variances of the exogenous variables and the values of the linear coefficients. Mason's

work was elaborated for social scientists by David Heise in his Causal Analysis.

The moral to this story is that Spearman, Kelley, Holzinger and others had a good idea

about scientific explanation and about how to search for good explanations of

nonexperimental data The idea was not entirely lost, and persists here and there in recent

work in statistical modeling. That it never came to fruition was due to computational

problems, not to statistical difficulties. What was lacking was a general algorithm that would

permit the rapid calculation of the tetrad equations (or other constraints) robustly implied by

any linear causal model, and would compare .those constraints with the constraints

approximately satisfied by the sample covariance matrix. That is a lot of course, but it is

more a problem in algorithm design than in statistical inference. With such a procedure

embodied in a computer program, researchers would no longer have to bother with lengthy

and tedious analyses of the implications of a very few causal models. The implications of

any model would be immediately available. With such a procedure researchers would not

have to resort to accepting or rejecting a model entirely, but could instead systematically

examine the logical workings of parts of a complex model, and modify the parts as need

be. A program of this sort would in fact serve as a research tool for determining the

sorts of results that Kelley, Holzinger, Costner and Duncan wrung out by hand in a few

simple cases. With it, one could locate general rules about what modifications of a model

would or would not prevent the robust implication of particular tetrad equations, or other

constraints. If such general rules could be found, and themselves incorporated in a

computer program, we would have the best result of all: with such a procedure,

appropriately designed, researchers could implicitly search through millions of alternatives

for those modifications of an initial hypothesis that best explain the constraints satisfied by

the sample data TETRAD is such a program.
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10. MATHEMATICAL FOUNDATIONS

10.1. THE ALGORITHM

The TETRAD program has four major components.

1. It calculates the vanishing tetrad differences and vanishing partial correlations
implied by any model given to it

2. It determines the tetrad equations and vanishing partial correlations that pass
a statistical test at a significance level set either by the user or automatically.

3. It determines which sets of further treks can be added to the model to
prevent the implication of "false" tetrad equations without preventing the
implication of "true" tetrad equations implied by the initial causal model.

4. For each edge not already present in a model, and for each correlated error
between vertices not connected by an edge, it calculates changes in which
vanishing tetrad differences, and which vanishing partial differences are
implied

10.1.1. Computing the Implied Equations

The general rules the program uses to compute the tetrad equations implied by a directed

graph are as follows.

If u, v# w, x, are four distinct measured variables in the graph, the graph implies the tetrad

equation:

* UVf WX ' UX'UVf WX ' UX' VW

if and only if
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t € T u v

n «* 2 <n

t f T v w

where e is an edge, L(e) is the label (coefficient) of an edge, and T. is the set of open

treks between i and j .

In the next section, we prove that this rule correctly calculates the tetrad equations implied

by any directed graph that represents a linear statistical model.

The TETRAD program uses a modification of a well known path finding algorithm33 to

compute the tetrad equations a model implies. It first calculates the open paths and the

open treks between each pair of variables in the graph. The program then calculates, for

each pair u,v of measured variables, the trek sum for that pair. The products of the trek

sums are then compared to determine whether or not they constitute an algebraic identity.

If they do34, the model implies the corresponding tetrad equatioa The program proceeds

in this way through all foursomes of measured variables.

Computing the Paths between Two Vertices in a Directed Graph

To compute the paths between any pair of variables TETRAD uses an algorithm for

computing the cost, c(vi,vj), associated with vertices vi and vj in a directed graph.

Suppose we have a directed graph G = (V,E). V = {v1 . . vn}, is the set of vertices in G,

and E the set of edges. We have a labeling function L(V X V) -> S, where (S,+,«0,1) is a

closed semi-ring, and E is a subset of S. We define the label of a path to be the

product *, of the labels of the edges in the path, taken in order. The label of a path of

zero length is 1, the identity element The label of a path which does not exist is 0. We

want for all i and j between 1 and n, c(vi,vj), or the sum over all paths from vi to vj of

the path labels. We calculate c(vi,vj) as follows.

3 3 M l . pp.195-201

If there arm no treks between a pair of variables on one side of an equation and no treks between a pair on the other
of the same equation, the graph implies the equation and TETRAD counts it as doing so.
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Begin

1 For 1 <= i , j <= n and i <> j DO C^ : = L ( v i , v j ) ;

2 For k:= 1 t o n DO

3 For 1 <= i , j <= n DO

5 For 1 <= i , j <= n DO c ( v i , v j ) : = Cn ;

End

The complexity of this algorithm is O(n3), since line 4 is executed n3 times while lines 1
and 5 are only executed n2 times.

Calculating the trek sum between two vertices is then simple.

Begin

1 For 1 <= i , j <= n DO t(vi ,vj) := c (v i ,v j ) ;

2 For k:= 1 to n AND k <> i , j DO

3 t(vi rvj):= t(vi,v:j) + c(vk,vi)*c(vk,vj);

End

10.1.2. Suggesting Modifications

To determine the sets of suggested trek additions to an initial model the program

proceeds through all foursomes of measured variables. For each foursome, it locates an

appropriate subgraph of the initial model and determines whether or not to recommend the

addition of a trek between any pair of variables in the subgraph. The treks may be

produced by edges directly connecting two measured variables, or by a common error

term connecting the measured variables, or by a directed edge from a latent variable

already in the graph to one of the measured variables.

The program's recommendations do not distinguish between directed edges connecting two

measured variables in either direction and the introduction of a new error variable
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connected to two measured variables. In the program's recommendations, all of these

possibilities appear as a measured variable pair in a set of suggested treks. The program

does distinguish, however, between these sorts of modifications and the addition of a

directed edge between a latent variable and a measured variabla If the program

recommends the addition of a directed edge between a latent and a measured variable, then

a pair consisting of the latent and the measured variables occurs in the -set of

recommendations. For example, if TETRAD received the skeleton in Fig. 10-1 and it

recommended the pair [T1-> 4 ] , then there is only one way to augment the skeleton, the

one we show in Fig. 10-2. We suggest this distinction notationally by listing a suggested

trek between two measured variables x,y as [ x - y ], but a suggested trek between a

latent variable T1 and a measured variable w as [ T1 -> w ].

Figure 10-1:

Figure 10-2:

How TETRAD Finds Its Recommendations

The sets of suggestions must strictly satisfy Spearman's principle for a given significance

leveL TETRAD starts with the significance level set at 0.0 and increases it to a level at

which at least one equation is considered false. For that significance level, the program

does the following.

TETRAD first cycles through all sets of four measured variables and determines which
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equations hold empirically in the foursome at the current significance level. For each

foursome, it puts any treks which, if added to the graph, would defeat the implication of

equations that hold into a set called DP] (dontpick).

TETRAD then cycles again through all foursomes of measured variables. For each

foursome of variables, TETRAD considers whether or not the model implies a tetrad

equation in those four variables that does not hold at the given significance level. If it

does not the program goes to the next foursome. If the model does imply an equation

that does not hold in the data for those four variables, the basic strategy is to divide and

conquer.

For each foursome of variables that implies a tetrad equation that does not hold in the

data, the program examines the subgraph consisting of

1. The four measured variables, say x1 . . x4.

2. The latent variables to which x1 . . x4 are adjacent (called parents).

3. The directed edges from parents to adjacent measured variables.

4. All treks, including theoretical variables which are not parents, between the
parents.

For example, the graph in Figure 10-3 is skeletal. The subgraphs for variables x 1 - x 2 - x 3 -

x5 and variables x 1 - x 2 - x 5 - x 6 are shown in Figure 10-4.
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/ l \ I
x1 < x 2 x3 x4

A
x5 x6

Figure 10-3: Skeleton

>

x1

(

/ f
x2

\

x3

\

x5 x1 x2 x5 x6

(Subgraph for vars. x1-x2-x3-x4) (Subgraph for vars. x1-x2-x4-x5)

Figure 10-4: Subgraphs

If this strategy is applied to a skeletal graphs, there is a unique parent for each measured

variable, and there are no treks between measured variables that do not go through a

parent TETRAD issues a warning that the algorithm may be inaccurate if the graph is not

skeletal

Based on the structure of the subgraph for each foursome, the program assigns the

subgraph to one of nine types. The types are really equivalence classes of such subgraphs,

where the equivalence relation is restricted to subgraphs that imply at least one tetrad

equatioa

Two skeletal subgraphs A, B with four measured variables are equivalent if and only if.

1. There is a 1-1 map F:{measured and parent variables in A} —> {measured
and parent variables in B}. We consider an edge an ordered pair of vertices,
<v1,v2>. Thus F<v1,v2> = <F(v 1 ).F(v2)>. Latent variables in the subgraph are
parent variables in this definition only if they are directly connected with one
of the four measured variables.

2. xt is measured in A if and only if F(x.) is measured in B.

3. T. is a parent in A if and only if F(x.) is a parent in B.

4. If T. is a parent of x. in A, then F'̂ FfT.) is a parent of F"1(F(x.) in A.
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5. A and B imply the same tetrad equations.

6. If any edge(s) from latent to measured variables or from measured to
measured variables in A is added to A (forming A 4 ), and F(edge(s)) to B,

B
\ugment.d

For example, all of the subgraphs having two parent variables connected by a trek and

having each parent adjacent to two of the four measured variables, form a type.

We illustrate the nine types with a representative from each equivalence class. In these

illustrations, any number of latent variables may be inserted between the parent variables,

so long as the path connections are retained, and no treks are introduced that violate the

conditions stipulated in the diagrams.

Directed Edge =
Any Path =
Any Trek =

Latent Parents = Tl . . T4
Measured Vars. = xl . . x4
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1)

1
Parent

xl x2 x3 x4

2)

2
Parents

©•
i\

xl x2 x3 x4

3)

2
Parents Xl x2 x3 x4

4)

Parents
xl X2

T2

i
x3 x4

Tl - T3 must be trek connected through T2

5)

Parents
xl x2

T2
i

Y
x3 x4

Must be an acyclic graph

Figure 10-5: Representatives of Subgraph Equivalence Classes



6)

Parents
Xl x2 x3 x4

T2 - T3 must be treJc connected through Tl
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7)

3
Parents

T2 - T3 must not be trelc connected

8)

4
Parents

'T2

XI

T3

x2 I x3 X4

Tl - T4 must be trefc connected through T2 & T3

9)

4
Parents

x l

s ^

x2 x3 X4

Figure 10-6: Representatives of Subgraph Equivalence Classes (continued)
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Based on the type of the subgraph, the program knows all of the additional treks that will

defeat the implication of the false equations involving the foursome of measured variables

occurring in the subgraph. TETRAD removes any treks from this set that are also in DP,

thereby disallowing any candidates for addition that would violate Spearman's principle

After removing the treks that are also in DP, the program forms sets of treks LM that are

locally minimal in the following sense:

For the subgraph under consideration, each set LM., but no proper subset of LM., will,

when added to the graph given to the program, defeat the implication of as many false

tetrad equations involving the measured variables of the subgraph as is possible without

defeating the implication of any true tetrad equations implied by the full graph.

As the program proceeds from foursome to foursome it forms globally minimal sets GM

that have a similar property. For each set GM., and no proper subset of GM., the set GM.

will defeat as many false equations involving all foursomes considered so far as is possible

without defeating any true ones. After all foursomes are considered the sets GM. are the

sets of suggested trek additions.

TETRAD outputs the sets and the first significance level at which the sets of the suggested

trek additions are non-empty. It then increases the significance level until the sets of

suggested trek additions are different

10.1.2.1. Computing the Rttr Values

The Rttr value for an edge is the amount that the TTR will drop if that edge is added to

the graph input adds that trek to the graph input and recalculates the TTR value. It

recalculates the TTR value by determining what paths and treks would be added to a graph

if a given edge were added The difference between the original TTR and the recalculated

TTR is the Rttr for the trek in question. The RTTR value is calculated for each edge that is

not in the current model, and for each correlated error between vertices that are not

connected by an edge in either direction. Although guaranteed to be accurate, this

procedure can be rather time consuming!, due to the large number of edges and correlated

errors that must be considered As a result, if you request the Rttr chart for treks which

involve a latent variable, you must expect a substantially longer processing time.
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10.2. PROOFS OF CORRECTNESS OF THE ALGORITHMS
EMPLOYED BY TETRAD

10.2.1. Introduction

In this section three fundamental results about statistical linear causal theories will be

proved These theorems will be stated precisely later. Informally, they are:

1. Any two theories with the same causal graph imply the same tetrad equations
and the same vanishing partial equations.

2. For any theory in which each variable has a unique external source of variance
uncorrelated with any other source of variance, the algorithm employed by
TETRAD correctly calculates the tetrad equations that the theory implies.

3. For any theory in which each variable has a unique external source of variance
uncorrelated with any other source of variance, the algorithm employed by
TETRAD correctly calculates the partial equations that the theory implies.

The second point is not obvious for two reasons. When TETRAD determines whether or

not a given tetrad equation is implied by a theory, it does not correctly calculate the

covariances in that tetrad equation. That is because the covariances are functions of

variances of some variables, and TETRAD does not take into account these variances.

Correct calculation of the covariances occurring in tetrad equations requires consideration

of such variances. Second, in the case of cyclic graphs, the complete calculation would

involve taking the sums of products of labels of edges in any trek connecting two

variables in a covariance; TETRAD only considers the sums of products of labels of edges

in open treks (treks without any cycles). The program nonetheless correctly computes the

tetrad equations implied by a model.

Before giving the formal definitions and lemmas needed to state and prove these theorems,

we will give an example which illustrates them.

10.2.2. Tetrad Equations

Assume that there is a set R, of random variables {x1#x2,x3,x4,x5,x6} defined over a sample

space Q with a probability measure P, and a set of five homogeneous equations, each of

the form
6

where each a., is a constant (possibly equal to zero). The set of non-zero coefficients a.,

will be called the equation coefficients. For this case
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X 3 S 3 31 X 1

X 4 " 3 41 X 1

X 6 = 3 62 X 2

A causal graph D is associated with these equations. The set of random variables R is the

set of vertices of the graph, x. is adjacent to x. iff x. causes x .

Figure 10-7: Example 1

For each vertex x of positive indegree, x is specified as a function of

Xj xn are ail vertices adjacent to and into x.

where

Note that the causal graph completely determines the form of the equations associated

with it However, different sets of equations can be associated with the same graph, since

the graph fixes neither the values of the coefficients nor the members of R. Since the

members of R are not fixed, neither are the distributions, means or variances of the

variables in R.

According to the trek rules (which are described subsequently)

cov(x5.x6) = a52a62var(x2)

Let us call this form of the equation, prescribed by the trek rules, the trek form of the

covariance. Each term in this equation is of the form
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c.var(x.)

Let us call c. a term coefficient and an exogenous source of variance an independent

variable. Note that each term coefficient c. is a product of powers of the a.., the

equation coefficients. The x. are not necessarily independent variables (x2 is not

independent).

Since x is not independent its variance can be written in terms of the variances of

variables which are independent In this case,

var(x2) = a21
2 varfx^

Upon substitution, then,

cov(x5,x6) = a 5 2a 6 2a 2 1
2 varfx,)

When a covariance is written as a sum of variances of independent variables (as above)

the covariance will be said to be in fully expanded form. Trek form may be, but is not

necessarily, the same as fully-expanded form, since some of the variances in the trek form

may be variances of non-independent variables. Note that if there is a cycle in the graph,

when written in fully-expanded form some covariances will be infinite sums.

In the graph of 10-7

cov(x5,x6) = a52a62a21
2 vartx,)

cov(x3,x4) = a31a41var(x1)

cov(x3,x6) = a31a2ta62var(Xl)

cov(x4,x5) = a41a21a52var(Xl)

Hence,

cov(xg,x6) * cov(x3,x4) =

cov(x3,xfi) * cov(x4,xg) =

This equality obviously holds no matter what the values of the equation coefficients are.

We shall say therefore that the theory described in Example 1 strongly implies the tetrad
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equation.

Some of the ideas illustrated illustrated in the example will now be defined more formally.
Definition 1: Given an ordered n-tuple N = <cy ... ,cn>, an object o is in N iff
o = c for some i between 1 and n inclusive. We shall also write that

O € N

This notation is somewhat ambiguous since * is also used to mean set
membership, but the context will always make it clear which use of * is
intended.

Definition 2: A digraph is an ordered pair <V,E>, where V is a set of vertices
and E is a set of edges. Each edge is either an ordered pair of elements of D
or a 1-tuple consisting of a single element of D. If a member of E is an 1 -
tuple consisting of a single element of D it is called a degenerate edge. The
first element in a non-degenerate edge is called the head and the second
element is called the tail. In a degenerate edge, the head and tail are both the
single vertex occurring in the edge. A non-degenerate edge with a head v. and
a tail v. is an edge from v. to v ; it is also said that the edge is out of v. and
into v.. v. is adjacent to v iff there is a non-degenerate edge from v. to v..
The indegree of a vertex v is equal to the number of distinct non-degenerate
edges into v; the outdegree of a vertex v is equal to the number of distinct
non-degenerate edges out of v.

Definition 3: Two digraphs <V,E> and <V',E'> are isomorphic iff there exists a
1-1 function Z with domain V such that for each v. and v. in V, <v.,v> « V iff
<Z(vl Z(v.)> € E. '

Definition 4: A path of length n is an ordered n-tuple of non-degenerate
edges e , ... , en where for 1 < i < a the tail of e. is equaf to the head of e.+1-
As a special case, a degenerate path is a a 1-tuple consisting of a single
degenerate edge. A degenerate path is of length 0. A degenerate edge may
appear only in a degenerate path. The head of e1 is called the source of the
path; the tail of e is called the sink of the path. The path is said to connect
the source to the sink. Two paths P and P. intersect iff there exists a vertex
in one of the edges of P. which is also in one of the edges of P.; any such
common vertex is a point of intersection. A cycle is a non-degenerate path
in which there exists a vertex which is both the head of an edge in the path
and the tail of an edge in the path. A path contains a cycle iff it has a sub-
path which is a cycle. A digraph is acyclic if and only if it contains no cycles.

Definition 5: A trek t between two vertices v. and v. is an ordered pair of
paths from a common source, in which the source is the only point of
intersection of the two paths. It may be that the source is equal to v. or v., in
which case at least one of the paths must be degenerate. t1 is the first path,
and t2 is the second path. The source of the paths in the trek is called the
source of the trek.
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Definition 6: A set S of equations is non-redundant iff there is no subset T of
S which implies an equation in S but not in T.

Definition 7: Let a stochastic linear causal theory (SLCT) be <D, (O,P), R, X, L>

where

1. (Q,P)is a sample space.

2. R is a set of random variables over (OP).

3. X is a consistent non-redundant set of m homogeneous linear
equationals in n

4. random variables (x,, ... ,x ) where m < n and
1 n

A non-zero value of a. is the equation coefficient of x. in the
•J J

equation for x..

5. D is a labelled digraph <R,E>, (R is the set of random variables which
serves as the set of vertices of the graph.) E is a set of directed
edges in which there is a non-degenerate edge from x. to x. iff a. *
0. There is also a degenerate edge from every vertex. There are no
non-degenerate edges from a vertex to itself.

6. For each vertex x * R of positive indegree, X specifies x as a linear
function of just x i xn, where x l xn are all vertices adjacent and into
x. The coefficients of *v«"*n are non-zero. If x € R is of 0 indegree,
then there is no equation for x in X.

7. If vertices u and v are not connected by a trek, then v and u are
statistically independent

8. L is a function with domain E such that

// ) f ajj i f e n o t degenerate, head(e) = x. and tail(e) = x., i # j
11 if e is degenerate

Variable x. is independent iff x. has zero indegree (no edges directed into x.). Otherwise

x. is dependent. (Note that the property of independence is completely distinct from the

relation of statistical independence. The context will make clear in which of these senses

the term is used)

The requirement that the number of equations be less than the number of random variables

eliminates the possibility that the value of each random variable is constrained to be a

constant Note that this requirement also implies that there is at least one independent
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variable (since otherwise there would be n equations for n variables).

The following lemmas show how to calculate the variance of random variables and

covariances between random variables in terms of the variances of independent random

variables.35

Lemma 8: If x ..x are random variables and
l n

and

then

cov{yyyj - ^ ^ (a. b) cov(x., x )

Lemma 9: If x ..x are random variables and
i n

then

var(/)

Definition 10: A SLCT is acceptable iff in its graph, for every cyclic path P,

n
• € P

(We shall adopt the convention that the sum or product over an empty set is equal to 0.)

If a theory is not acceptable, then there is a cycle in which the product of the labels of

the edges is greater than 1. This implies that the label of any path that contains an infinite
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number of traversals of that cycle will have an infinitely large value. As we shall see later,

this in turn would imply that the equations defining some of the random variables diverge,

and are not well defined For this reason, we will restrict our attention only to acceptable

theories. Henceforth, when the word "SLCT is used, it is to be understood that only

acceptable SLCTs are being referred to.

Definition 11: A tetrad equation is strongly implied by a SLCT <D, (0,P), R, X,
L> iff it is implied by every theory <D, (O,P), R, X', L'> (that is, the theory
implies the tetrad equation for every value of the coefficients in X).

Definition 12: The sets of tetrad equations strongly implied by two SLCTs T =
<D, (O,P), R, X, L> and T = <D\ (0\F), R', X', L'> are isomorphic iff there exists
a 1-1 function Q: R —> R' such that a tetrad equation G is strongly implied by
T iff the equation obtained by substituting for every variable p in G the
corresponding variable Q(p) is strongly implied by T.

Lemma 13: In a SLCT T, if x. and x. are two distinct independent variables, then
any edge out of x. does not occur in any path containing x..
Proof: Since x. and x. are both independent, x. and x. are of indegree 0. It
follows that the source of any path containing x. must be x., since every other
vertex in the path has an edge into it Similarly, the source of any path
containing x. is x. If an edge A from x. were on a path containing x. then both
x. and x. would have to be the source of that path. But that is impossible,
since each path has a unique source, and the two variables are distinct by
supposition D

Definition 14: Given a SLCT <D, (fi,P), R, X, L>:

Let P.. be the set of paths from x. to x.

Let P..n be the set of paths from x. to x. of length n.

Let P..#^#n be the set of paths from x. to x of length less than or equal to n.

Let P..° be the set of open paths from x to x.

Definition 15: Given a SLCT <D, (O,P), R, X, L>, a first level expansion of a
dependent variable x. is the expression on the right side of the equation for x.
in X. J

A n level expansion of an independent variable x. is x. An n+1 level
expansion of a dependent variable x. is the expression resulting from
substituting for each dependent variable x. in the nth level expansion of x. the
first level expansion of x, A full expansion of a variable is an infinite level
expansion of that variable.
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Note that in the case of a theory with an acyclic graph, there always exists a finite n such

that an n level expansion of a variable x is identical to any expansion level greater than n.

The following example illustrates these concepts.

x = l * x i + 2 * x

x = 3 * x + 4 * x
4 3 1

xs = 5 * x4 + 6 * x f

A first level expansion of x5 is simply

5 * x4 + 6 * xf

A second level expansion of x5 is

5 * (3 * xa + 4 * x f ) + 6 * xf

A third level expansion of xg is

5 * (3 * (1 * xf + 2 * xa) + 4 * x%) + 6 * x t

Any higher level expansions of xg will be exactly the same. Hence, the last expression is

also a full expansion of xg.

It is possible for an expression to be equal to an n level or full expansion of a variable x

without being an n level or full expansion of x. For example, the following expressions

are equal to a full expansion of x5, but are not themselves full expansions of x5.

x f = 41 * x i + 30 * xa

xs = 15 * xt + 30 * x2 + 20 * Xf + 6 * x t

The first expression is a modification of the complete expansion of x5 which is a sum of

terms; each combination of variables to a given power occurs in at most one term; in this

case all of the x1 terms are collected together and all of the x2 terms are collected

togther.

The second expression is a modification of the complete expansion of x5 in which the

distributive law has been repeatedly applied to the complete expansion until it is a sum of

terms each of which contains no additions, and in which none of the additions have actually

been carried out (that is the additions in 15 * x1 + 20 * x^ + 6 * xt have not been carried

out to form 41 * x^. There are as many occurrences of each variable in the second

expression as there are in the fully expanded form.

These two particular forms which are equal to expansions of a variable play an important
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part in the proofs that follow. Their definitions are given below.

Definition 16: A collected n level (full) expansion of a variable x is an
expression equal to the n level (full) expansion of x, that is a sum of terms in
which each combination of variables to a given power occurs in at most one
term.

A distributed n level (full) expansion of a variable x is an expression that can be
derived from an n level (full) expansion of x by repeatedly distributing
multiplication over addition until a sum of terms results in which each term
contains no additions, and no additions of terms are carried out

In what follows we shall speak not only of expansions of variables, but also of distributed

or collected expansions of variances, covariances, and products of covariances of variables.

These are all derived from the above concepts by performing the corresponding distributed

or collected expansions on the variables occurring in the variances or covariances, and then

applying lemma 8 or lemma 9.

Note that in a distributed or collected full expansion of a variance or a covariance, the

variables occurring in each covariance will either be identical or independent; hence all of

the non-zero covariances become variances.

Definition 17: Two terms are identically equal iff they are equal for all values
of the equation coefficients.

x is a direct descendant of x. iff x. is into and adjacent to x. DD. denotes
• J J » •

the set of direct descendants of x.

Henceforth, when we write "equal" or "=" in reference to products of labels of paths we

will mean identically equal unless we explicitly state otherwise. Similarly, "not equal" or "*"

in reference to products of labels of paths will mean not identically equal unless we

explicity state otherwise.

Lemma 18: Given an SLCT <D, (Q,P), R, X, L>, the coefficient a. of the variable
x. in a collected n level expansion of a dependent variable x, where x. # x, is

y . || Lie) if x. is dependent

L(e) if x. is independent

Proof: The proof will be by induction on the expansion-level of x.. For the
remainder of the proof it is understood that all expansions are collected
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expansions.

Base case: Since P..1 is equal to P,j*^# \ if i * j, it suffices to show that in a
first level expansion of x, the coefficient a. of x. is equal to

z n *

There can be at most one path in P..1. If there is one path it consists of the
path consisting of the single edge from x. to x.. The label of this edge is the
coefficient of x. in the equation for x. in X. This coefficient is by definition, the

coefficient of x. in the first level expansion of x. If there are no paths in P..1

then the sum is by convention equal to 0, which is the coefficient of x. in the
first level expansion of x. if they are not connected by an edge.

Induction: Suppose that in the nth level expansion of x., the coefficient of an
independent variable x. is equal to

S . I| L{e) if x. is dependent

P . , , ; • • -

y . 11 He) if x. is independent
e € p

It will be shown that in the n+1 t h level expansion of x. the coefficient of a
variable x is equal to

y . 11 Lie) if x. is dependent
p € P . . " * 1 • € P

11 He) if x. is independent

There are two cases. Suppose first that x. is a dependent variable. In the nth

level expansion of x, the coefficient of any variable which is not in DD. will not
be a factor in the coefficient of x. in the n+1 t h level expansion of x.. This is
because when the nth level expansion of x. is first-level expanded to produce
the n+1 th level expansion of x., any term not in DD. will be expanded into a
term which does not have x. as a factor.

On the other hand, the coefficients of any direct descendants of x. that appear

in the nth level expansion of x. will be factors in the coefficient of x. at the

n+1 th level expansion of x.. This is because the first-level expansion of any
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direct descendant of x. will replace that direct descendant with a sum of
variables, one of which is x..

Take an arbitrary random variable xz which is a direct descendant of x. and
appears in the nth level expansion of x. By the induction hypothesis, the
coefficient of xz isz

z n
• "

It follows that after a 1$ t level expansion of an nth level expansion of x., the
coefficient of x. is equal to

(1)z n«-)* ( z n,( ( ) ( ,
Z ° D i p « P2 ." • « •» V € P./

(Each term in this formula is the result of taking the product of coefficients
along a path of length n from a direct descendant x of x. to x., and multiplying
it by the coefficient of an edge from x to x .)

It must be shown now that formula 1 is equal to
(2)

z n
'j

He)

We will show that formula 1 is equal to 2 by showing that there is a 1-1
function mapping terms in 1 onto equal terms in 1.

Each term in formula 1 is the result of taking the product of labels along a path
of length n through a direct descendant xz of x. to x. and multiplying it by the
coefficient of an edge from x to x . The result is a product of labels along a
path of length n+1 from x. to x., which corresponds uniquely and is equal to a
term in formula 2. (See 10-8.)
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path of length 1

f«
I

of length n

Figure 10-8:

Similarly, every term in formula 2 uniquely corresponds to and is equal to a
term in formula 1. This follows from the fact that every path in P.."*1 can be
broken into two subpaths. One subpath is a path from x. to xz of length 1,
where z « in DD.; the other is a path of length n from from xz to x.. The
product of labels of edges of the p2th from x^ to x. uniquely corresponds to
and is equal to a term in

x n
p « *

. The label of the edge from x. to x uniquely corresponds to and is equal to a
term in

n m

Hence the product of the labels of the edges of the two paths uniquely
corresponds to and is equal to a term in formula 1.

The second case occurs if x. is an independent variable The proof is nearly
the same. The contribution to the coefficient of x. from paths of length n+1 is
still

p "

n,, He)
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However, there is now also a contribution to the coefficient of x. from paths
of fength n or less. This is because the 1st level expansion of a nth level
expansion does not change any term in which an independent variable is a
factor. The coefficient of x. in the nth level expansion of x is equal to

2; n
by the induction hypothesis. Hence, the total coefficient of x. in the n+1 th level
expansion of x. is equal to.

n,, «•>+ z< n
Since

P *n+i = P n+i U p ^n

ii U U

it is clear that if x. is an independent variable then its coefficient in an nth level
expansion of x. is

2; n
per5"*' e">

Lie)

D

Lemma 19: Given a SLCT <D, (Q,P), R, X, L>, the coefficient a. of the variable x.
in a collected full expansion of a dependent variable x. is equal to

z n
P € P.. e € p

Lie)

Proof: This follows immediately from lemma 18. •

Theorem 20: Any two SLCTs T = <D, (Q,P), R, X, L> and T = <D', (&?)'. R\ X'f
L'> with isomorphic graphs strongly imply isomorphic sets of tetrad equations.
Proof: Suppose <D, (Q,P), R, X, L> strongly implies a set of tetrad equation.
We will show that an arbitrary <D\ (f^P), R, X'. U> where D and Df are
isomorphic strongly implies an isomorphic set of tetrad equations.

Since D is isomorphic to D1, there is a function Z: R —> R. For each r e in R
let Q(r) = Z{r). We will show that Q is the function mapping R —> R
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establishing the isomorphism between the set of tetrad equations.

Since D is isomorphic to D' it follows that for every equation in X of the form

• „ * ,
there is an equation in X' of the form

The only differences between the equations of X and the equations of X' are
that the values of the coefficients are different and the random variables
appearing in them are different Since a tetrad equation is strongly implied by a
theory iff it is implied for all values of the coefficients, the difference in the
values of the coefficients between the equations of X and the equations of X'
is irrelevant to which tetrad equations are strongly implied We will now show
that which random variables occur in the equations is also irrelevant to which
tetrad equations are strongly implied.

Throughout the rest of this proof we assume that all expansions are distributed
expansions.

The product of two covariances of T when written in fully expanded form is a
sum of terms each of which is of the form

c * var(x.) var(x)
t i j

where each ct is equal to a product of equation coefficients of T raised to
some positive power.

The product of the corresponding two covariances of T when written in fully
expanded form is a sum of terms each of which is of the form

c't * var(Q(x.)) var(Q(x.))

where a., raised to some power w is a factor of ct iff the corresponding
constant a'., raised to the same power w is a factor of c'.

Since the tetrad equality holds for all values of the equation coefficients, it
follows that there is a 1-1 function that maps terms on the I.Ks to terms on
the r.h.s. which have identically equal term coefficients; i.e., the r.h.s. must have a
term coefficient that is a product of the same equation coefficients raised to
the same powers. That is, for each term on the right side of the equation of
the form

c * var(x) var(x)

there is a term on the left side of the equation of the form
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cu * var(xk) var(x2)

where ct = cu for all values of the equation coefficients. Similarly, we know
that c' = c ' for all values of the equation coefficients of T.

t u ^

There is only way that the tetrad equation could be strongly implied by T while
the corresponding tetrad equation is not strongly implied by T, since the equality
of the term coefficients is an identity in each theory. That is if

but

var(x.) * var(x.) = var(xfc) * var(xz)

var(Q(x.H * var(Q(x.» # var(Q(xk» * var(Q(xz»

(Remember that here "=" means identically equals, and "*" means not identically
equal.)

But we will now show that this cannot happen. We will show that if the term
coefficients of terms on each side of the equation are equal then {x.,x } =
{xk,x2>, which implies that the equation is an identity in each theory.

The proof is by contradiction Suppose that ct and cu are products of the same
equation coefficients raised to the same powers, but {x.,x.} * fx

k 'x
2J-

Suppose without loss of generality that i is not equal to k or z. It follows
from lemma 13 that x. does not occur on any path containing xk or x̂ . But
according to lemma 18 and lemma 8 one factor in the coefficient ct of

ct * var(x.) var(x.)

is the product of all labels of edges in a path with source x.. Hence, the label
of an edge out of x. must appear as a factor in the term coefficient ct. The
coefficient c in the term

u
c

u

cu * var(xfc) var(xz)

is a product of labels of edges on paths with source xfc or xz. It follows then
that the label of an edge from x. cannot appear as a factor in cu since no edge
from x. occurs in any path from xfc or xz. It follows then that ct does not
consist of the same coefficients raised to the same powers as c . This

contradicts our assumption. •

In the following theorem, V " signifies the standard deviation

Theorem 21:

then
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cov(u,v) cov(w,x) = cov(u,x) cov(v,w)

iff

op = p p
* uv* wx * ux* wv

Proof: Suppose that cov(u,v) cov(w,x) = cov(u,x) cov(v,w). Divide each side of
the equation by (a <r a a ). But

U V W X

p p = cov(u,v) cov(w,x)/(<r <r a a )
' UV' WX U V W X

p p = cov(u,x) cov(w,v)/(<r <r a a )
' U X ' W V U X W V

Hence,

p p = p p
' UV* W X ' U X ' W V

The only if clause can be proved similarly. •

The corresponding theorems can similarly be demonstrated for the other independent tetrad

equations among a v, w, and x.

Definition 22: Given a SLCT T = <D, (O,P), R, X, L>, let T.. equal the set of all
treks from x to x.

• j

An edge e is in trek t iff it is in at least one of the paths in t

The length of t is the sum of the lengths of the paths in t

The following theorem states the trek rules for calculating covariances.
Theorem 23: Given a SLCT T = <D, (Q,P), R, X, L>, the covariance of any two
distinct variables x. and x. (cov(x.,x.)) is equal to

' J (3)

X ( ( I T L{e)) * vartSW))
|J

where S(t) is the source of the trek.

Proof: We assume that all expansions in this proof are distributed expansions.

Let U be the set of indices of independent variables.

It follows from lemma 8 and lemma 19 that



cov(x.,x.) =

«•») ( Z II ^>) *var(xu))
u € U * * p € P . e € p ' X p € P . « 6 p ' '

We will show that when each variance term in formula 3 is fully expanded, then
formula 3 is equal to formula 4. From now on, formula 3 will refer to the
fully expanded form of the formula

The general strategy is to show how to associate with each term in formula 3 a
unique term in formula 4, and vice-versa, and then to show that the term in
formula 3 is identically equal to its associated term in formula 4.

First we will show how to associate a term in formula 3 with a unique term in
formula 4; then we will show that the two associated terms are equal.

Take an arbitrary term in formula 3. Let us call Sit) x%. It follows from lemma
9 and lemma 19 that
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(4)

var(x) = X ( ( X II L{e)) 2 * var(xu>)
u 6 U * * p « P e t p

ut

Also, if t is a trek, then

n
e € x

can be written as

It follows that one term in formula 3 for a given trek t and independent variable
xu is of the form

(5)

n ue) n L& n «•> n
e € p ° € t 2

where p and p' are paths from xu to xf. Assume without loss of generality that
tl is the path from xt to x. and t2 is the path from xf to x.. There are two
cases to consider.

The first case is if p is equal to p'. If p is equal to p', then there is one term
of the form 5. Associate this term with the term in 4 which consists of the
product of labels of edges in the paths consisting of the concatenation of tl

with p and t2 with p'. The result of the pair of concatenations is a path from
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\ to xj ^d a Path from xu to x. Hence the associated term clearly occurs in
4 and is equal to the term in 3. (See 10-9.)

Figure 10-9:

In the second case, where p # p', the proof is the same except that there are
two terms of the form of 5. Associate one of the terms with the term in 4
that consists of the product of labels of edges of the paths that are the
concatenation of t1 with p and t2 with p1; the other term in 3 is associated with
term in 4 that consists of the product of labels of edges of the paths that are
the concatenation of tt with p' and t2 with p. Again both of these terms clearly
occur in 4 and are equal to their associated terms in a

Now we will show that an arbitrary term in formula 4 can be uniquely
associated with a term in formula 3 which is equal to it A single term in
formula 4 for a given u is the product of the labels of edges in a path p from
xy to x. times the product of the labels of the edges in a path q from x to x..
Let xt be the last point of intersection of these two paths. It is clear that x is
the source of a trek from x. to x., since the paths from xt to x. and from* x
and x. don't intersect except at xt. We can break p into two parts; pt which is
the subpath from xu to xt, and t, which is the path from xt to x. Similarly, we
can break q into two parts, qt from xu to xt and t2 f r o m ^ to'x.. Hence the
arbitrary term in formula 4 can be written as

* • )

(6)
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Figure 10-10:

Since t is the source of a trek from x. to x. there is a term in the unexpanded
form of formula 3 of the form

( I T Ue)) * var(xt)
(7)

• € t

When varfx) is fully-expanded

var(x)
u € U

v a r ( x » ) )

When this is substituted in to formula 7, the result is

n m - z ((x n (8)

• ft
ut • € p

which is a sum of terms.

Since both p} and q1 are in PM it follows that one of the terms in formula 8 is
just

(9)

But this is just the arbitrary term of formula 4.

(Note that if p1 does not equal q1 then there will two terms of the form 6.
However, there will also be two terms of the form 9 occurring in 3. Hence
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distinct terms in 4 can still be mapped onto distinct terms in 3.)

It follows that there is a 1-1 function mapping each term in 3 onto an equal
term in 4, so the two formulas are equal. •

Tetrad does not correctly calculate the tetrad equations strongly implied by every graph, as

the following example will show.

It is possible that a tetrad equation holds among four variables, even though in the trek

form of the equations for the covariances, there is a term on the left side of the equation

which has a coefficient not equal to the coefficient of any term on the right side of the

equation. Consider example 1 again

We saw that
cov(x5,x6) * cov(x3,x4) =

cov(xvx ) * cov(xA,xJ =
JO 4 D

However, when the covariances are written in trek form the left side of the equation takes

the form
cov(xc,xj * cov(x,,xj =

DO J 4

Written in this form the coefficient on the right side of the equation (a
21

2a
62

a
41

a
52) does

not equal the coefficient on the left side of the equation (a
31

a
62

a
41

a
52)-

When TETRAD determines whether or not a tetrad equation among four variables holds, it

compares only the coefficients and ignores the variances. If there is a term on either side

of the equation which does not have a corresponding term on the other side of the

equation with an equal coefficient then it concludes that the tetrad equation does not hold

For that reason, TETRAD would have concluded that the tetrad equation described above

was not strongly implied However, it can be shown that on a restricted set of graphs

(including all of the ones of interest to social scientists) comparing the coefficients of the

trek forms of products of covariances, while ignoring the variances they are multiplied by,

will correctly compute which tetrad equations are strongly implied

In effect, TETRAD assumes that in every graph, every non-independent variable has

associated with it a unique error term that is uncorrelated with any other error term in the

graph. Tetrad does not calculate the tetrad equations strongly implied by the graph
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that the user enters; it attaches to every non-independent variable a unique error term

uncorrelated with every other error term.

If the user entered the graph of example 1, the actual graph that Tetrad would perform its

calculations on, is depicted below.

Figure 10-11:

A graph is Tetrad-compatible iff every vertex not of indegree 0 is adjacent to a vertex

of indegree 0.

The following theorem shows that the method that Tetrad uses to compute which tetrad

equations are strongly implied is correct if the digraph D of the theory is tetrad-

compatible.

Given a SLCT T = <D, (O,P), R, X, L>, when the covariance of two variables is written in

fully-expanded form and there are cycles in D, the expression can be a sum of an infinite

number of terms. Mason has shown how to reduce this sum of an infinite number of

terms into an equal sum of a finite number of terms.39 Mason's rule will be used in the

proof of the correctness of the Tetrad algorithm. The following definitions are used in the

statement of Mason's rule
Definition 24: An open path is a path which contains no cycles. A loop is a
path in which the head of the source equals the tail of the sink, and no edge
occurs in the path twice.

A loop touches an open path iff the loop and the open path intersect in a
vertex which is not the source of the open path. A loop touches a loop iff

35
(40!. pp. 55-66
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the two loops intersect

A loop is relevant to the variables x. and x. iff it either touches some open
path between x. and x. or it touches another loop relevant to the variables x.
and x..

RL.. is the set of loops relevant to the variables x. and x.

Theorem 25: The coefficient of x. in the fully expanded equation for x. is equal
to

)

n
2 € R L . . - . fc

where * is a special operation in which multiplication is carried out before
division, monomials are deleted if their factors are products of fabels of edges
of touching paths, and the division is carried out only after the deletions have
been performed.

Definition 26: Let Ind be the set of independent variables in a theory. If
cov(x.,x.) is written in the form

z n *•) n (i-n«)
° " ° "•" * "* "

2 6 RLRj • € 2
n
€ RLfc

z n «> n (i-n«>) (

n« % • « '

it is said to be in loop form. If each xk is an independent variable then the
covariance is in completely expanded loop form. If each xk is the source of
a trek between x. and x. then it is in loop trek form.
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An open trek is a trek in which each path in the trek has no cycles.

Let T..° be the set of all open treks between x. and x.
ij r i j

An expression for a covariance is in TETRAD trek form iff it is of the form

2 ( ( I I L{e)) * var(SW))
t f T . . ° « € t

•J

where S(t) is the source of trek t, and none of the additions between terms are
carried out (This is the form in which the TETRAD program calculates
covariances, except that it leaves off the variance factors).

The coefficient of a term in TETRAD trek form is a TETRAD trek coefficient.

It is clear that a theory T strongly implies a given tetrad equation iff when the tetrad

equation is written in completely expanded loop form, for every monomial on the I.Ks

there is a unique equal monomial on the r.Ks.

Given a SLCT T = <D, (Q,P), R, X, L> with no loops in D, every monomial in the loop form

of the covariance is equal to a monomial in the distributed fully expanded form of the

covariance. If there are loops in D, then there may be monomials in the distributed loop

form of the covariance which are not equal to any monomial in the distributed fully

expanded form of the covariance (although of course the sum of the monomials in the

loop form equals the sum of the monomials in fully expanded form).
Lemma 27: Given an SLCT with a tetrad-compatible graph, if when the variables
in a tetrad equation are written in TETRAD trek form there is a 1-1 function f
mapping each monomial P on the I.Ks of the equation to an identically equal
monomial P' on the r.h.s, then the tetrad equation is strongly implied by the
SLCT.
Proof: There are two cases to consider. Either the graph of the theory
contains loops, or it doesn't First we will consider the case in which the graph
does not contain loops.

Each monomial on each side of a tetrad equation in TETRAD trek form consists
of a product of labels of edges occurring in two open treks, times the
variances of the sources of those open treks. Suppose that when the tetrad
equation is written in TETRAD trek form, f maps a term P on the I.Ks to a term
P' on the r.h.s. with an equal term coefficient Let x. and x be the sources of
the treks of the monomial on the I.Ks of the equation, and xfc and x? be the
sources of the treks of the monomial on the r.Ks of the equation. We will
now show that {x.,x.} is equal to i\>x2) The proof will be a reductio.

Suppose, contrary to our hypothesis, and without loss of generality that x. is
not equal to xfc or xz. Since x. is the source of a trek, it follows that the
labels of two edges from x. occur in the TETRAD term coefficient of the
monomial on the I.Ks. From the fact that the TETRAD term coefficient of the
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monomial on the I.Ks equals the TETRAD term coefficient of the monomial on
the rh.s it follows that both edges from x. must occur in paths with sources
that are either xk or xz. The edges from x. must lie in different paths; if they
were in the same path, then x. would occur twice in that path. But since the
paths are acyclic that can't happen Also, the edges from x. must lie in
different treks; if they were in the same trek, then that the paths making up that
trek would have to intersect in x.. But if the paths intersect in x. then x. would
have to be the source of the trek, contrary to our assumptioa It follows that
there must be a path from xk to x. and a path from xz to x..

From the fact that the TETRAD term coefficient of the monomial on the I.Ks
equals the TETRAD term coefficient of the monomial on the r.Ks it follows that
both edges from xk and x2 must occur in paths with sources that are either x.
or x. Since the graph is acyclic, and x. lies on a path from xk and on a path
from xz, it cannot be the case that xfc or xz lies on a path beginning at x..
Therefore both edges from xk and both edges from xz lie on paths with source
x. We will now show that this leads to a contradiction,

j

It is not possible for both edges from xfc to lie on the same path from x. since
the paths are acyclic. If the edges from xk lie on different paths from x. then
the two paths from x intersect at x . If x. is the source of the trek however,

j * J

this is possible only if x. is equal to xfc. By the same argument x. is equal to
x . If x. equals xL then x. does not equal x., since x. does not equal x . But

z j ^ k j ^ i i ^ k

since the paths from x. are acyclic, then the labels of edges from x. appear in
the TETRAD term coefficient of the monomial on the l.h.s. exactly twice (since
x. does not equal x.), whereas there are exactly four labels of edges from xk

and x (and hence from x.) appearing in the TETRAD term coefficient of the
monomial on the r.Ks. It follows that the power of the label of some edge in
the TETRAD term coefficient of the monomial on the I.Ks does not equal the
power of the label of some edge in the TETRAD term coefficient of the
monomial on the r.Ks. This contradicts our assumptioa

The conclusion is that if the TETRAD term coefficient of the monomial on the
I.Ks equals the TETRAD term coefficient of a monomial on the r.Ks then {x.,x }
is equal to {xk,xz}, where x. and x. are the sources of the treks of the
monomial on the I.Ks of the equation, and xR and x̂  are the sources of the
treks of the monomial on the r.Ks of the equation But if the sources are
identical, then any full expansion of the variances of the sources will also be
identically equal. Since the coefficients of the monomials are equal, and the
expansions of the variances of the sources are equal, it follows that when fully
expanded the entire TETRAD terms are identically equal. Since this is true for
any two monomials on the I.Ks and r.Ks with TETRAD term coefficients that are
equal, it follows that the tetrad is strongly implied by the theory.

We now consider the case in which the graph of the theory contains loops.
One side of a tetrad equation is of the form

cov(x.,x.) * cov(xk,xz)

Consider a single term in the loop form of a covariance between two variables
x. and x. Its value depends upon 4 elements:

1. The product of the labels of coefficients in an open path Pt connecting
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a variable xk to x. and the product of labels of coefficients in an open
path P2 connecting xk to x.

2. RLki and RLkj.

3. The loops that touch P1 and P2 (which affect which terms are removed).

4. The variance of xk.

We will prove that when two TETRAD term coefficients in a tetrad equation are
equal then when they are expanded into completely expanded loop form, they
are still equal. We will do this by showing that when two TETRAD term
coefficients are equal then each of the four elements determining the value of
the loop expansion of those monomials are also equal. This will be done in two
steps. First the TETRAD trek coefficient will be expanded into trek loop form;
then trek loop form will be expanded into completely expanded loop form

The products of the labels of the coefficients of the paths in each monomial
are equal by supposition.

A single TETRAD term coefficient in an expansion of one side of a tetrad
equation is the product of labels of edges in two open treks, one between x.
and x., and one between xk and x2. Each trek is composed of two paths with
the same source. The sinks of one trek are x. and x. and the sinks of the

• j

other trek are xfc and x̂ .

From this, and what was proved above for open treks, it follows that if the
TETRAD term coefficient of a monomial in a tetrad equation on the l.h.s is equal
to the TETRAD term coefficient of a monomial on the r.hs, then the sources of
the treks of the monomial on the LKs are identical to the sources of the treks
of the monomial on the r.h.s. Since the TETRAD term coefficients of the two
monomials are equal it follows that the same edges appear the same number of
times in each TETRAD term coefficient In a given graph, which loops touch a
given path is determined solely by what edges are in the path and what the
source of the path is. Each TETRAD term coefficient consists of the product
of labels of edges in four open paths. Since the sources of the paths of both
monomials are the same, and the edges in the paths of both monomials are the
same, the loops touching the paths of both monomials are the same.

Since the sources and the sinks of the paths of each of the monomials are the
same, the loops relevant to the sources and the sinks are the same. It follows
then that the loop forms of the TETRAD term coefficients of each monomial
are equal.

Since the sources are the same on each side, we already know that the
variances of the sources on each side will be equal.

When the corresponding monomials are written in trek loop form they will
therefore be equal.

We still have not written the product of covariances in completely expanded
loop form, however, since the sources of the treks are not necessarily
independent variables. However, since the sources of the treks of each
monomial are the same, it is clear that when they are written in completely
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expanded form, the two monomials will still be equal. So if there is a 1-1
function mapping each TETRAD term coefficient on the I.Ks. to an equal term
coefficient on the r.Ks., it follows that when written in completely expanded
loop form, the product of the covariances on each side of the equation will still
be identically equal. This in turn implies that the tetrad equation is strongly
implied D

Lemma 28: If a tetrad equation is strongly implied by a SLCT with a tetrad-
compatible graph then when the covariances of the variables are written in
TETRAD trek from there is a 1-1 function f mapping each monomial P on the
I.Ks. of the equation to an identically equal monomial P on the r.Ks.

Proof: We will prove that if there is no 1-1 function f mapping each monomial
P on the I.Ks of the equation to an equal monomial F on the r.Ks of the
equation, it follows that the I.Ks does not equal the r.Ks. when written in
completely expanded loop form; this implies that the tetrad equation is not
strongly implied by the theory.

Suppose that when written in TETRAD trek form, the inequality is of the form

n m

*•* Z •m

where there exists some value of i for which A. * B for all values of j. Let
NEA be the set of all i for which A. # B for all values of j. Similarly let NEB be
the set of all j for which B. # A. for all values of i. After cancellation of the
equal terms on each side of the equation what is left is

Z *,* Z •,
Now no term on the I.Ks is equal to any term on the r.Ks. Let us expand this
inequality into distributed completely expanded loop form. Each term A. expands
into a sum of terms of the form

1 " • > „

where

1. A. is the corresponding term in the Tetrad trek form of the inequality.

2. G is var(x ) * var(x ) for some pair of independent variables x and x .
m o p o p

3. Ck is a product of labels of edges in loops or 1.

4. Ez is a product of edges along paths from independent variables xo and
x to the sources of the trek corresponding to A., or 1 if the source is
an independent variable.

5. J is a series of products of labels of edges in loops or 0.
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Similarly each B. expands into a sum of terms each of the form

1 -

E,G>
- A

We will now
if

AP> EG
t 2 r

show that

# B.CEG
n j q r s

then

Suppose that

AC EG * B.CEG
i k z m j q r s

There are three cases to consider. Either both J and J are 0, one of them is
n t

0, or neither of them is 0.

If both Jn and Jt are both 0, then clearly

1 - J
n

since

ACJE G
i k 2 m

1 - Jn

and

BC EG
t q r s

1 ~ J

, 5) q£rGs

1 ~ ./t

i k z n

« 5C£G
1 q r s

If exactly one of Jn and Jf is 0, then

This is because one side of the equation will have a demominator of 1. The
other side of the equation will have a denominator that can't be cancelled with
any term in the numerator (since there are no subtractions or additions in the
numerator) and is not equal to 1.

If neither of J and J are 0, it follows that
n t
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or

Af.Epm *
since otherwise

From this it follows that

which in turn implies

Hence we can ignore the J terms.

Since no equation coefficient occurs in G or G , and both A C E and B C E
^ m $ i k z j q r

consist solely of products of labels of edges, it is easy to see that
if

ACJE # BCE
i k z j q r

then

AC EG * BCEG
i k z m j q r s

Hence we shall ignore the G terms.

It is clear from Theorem 25 that one of the Ck terms must be 1. For every
variable xt of indegree not equal to 0 there is an attached variable et of
indegree 0 connected to xt by an edge with label 1. Hence it follows that
there exists a E term equal to 1. Since every possible combination of C and E
terms occurs in the expansion, there is a term in the expansion of A. which is
equal to A. (if the J and G terms are ignored).

Suppose, contrary to to the theorem, that the product of the two covariances
on the l.h.s does equal the product of the two covariances on the r.Ks. It
follows that when when written in completely expanded loop form the product
of the two covariances are equal. Hence each A. must be equal to some term
on the other side of the equation. If some A. is equal to some term B.CqEr on
the r.Ks, then C Ef is not equal to 1 (since by supposition A. does not equal B.
for any j).

Substitute for each occurrence of A. on the l.h.s. the corresponding value term
B C E .

J <J r
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Consider now the terms on the r.Ks of the form B.. (The argument for their
existence is the same as the argument for the existence of terms of the form
A. on the I.Ks.) In order for the l.h.s to be identically equal to the r.Ks., for
each term of the form B there must be a corresponding term on the I.Ks.
which is equal to it

The only way for a particular B. term on the r.Ks. to be identically equal to a
term on the I.Ks. is if B. is equal to BfcP, where P is some product of labels of
edges not equal to 1, and j * k. (This is because no B. term appears on the
l.h.s.; only terms in which B. is multiplied by some product of labels of edges
appear on the I.Ks.)

We will now show that it is impossible for every B. to be equal to some BkP,
where P is not equal to 1.

In an equation B. = B.P let B. be the head of the equation, and B. be the tail.
Let a chain from B. to B. be a sequence of equations in which the head of the
first equation is B., the tail of the last equation is B, and in every equation in
between the tail of one equation equals the head of the next equation A
circular chain is a chain from B. to B.. A circular chain cannot occur in a
consistent set of equations because after a series of substitutions it would be
possible to derive that B. = B.P; where P is not equal to 1. The length of a
chain is the number of equations in the chaia Given B ,~,B the longest
possible non-circular- chain has n-1 equations in it

Suppose that there are r different B terms, and that every B. is equal to some
BkP, where P is not equal to 1. Then there must be a non-circular chain that
can be formed in the following way. Choose an arbitrary B.. We know that B.
= B P for some B . Similarly, we know that B = B P for some a etc. But

m m ' m n

we know that given a consistent set of equations the maximum length of the
non-circular chain formed is r - 1 . But that implies that there is some B. which
is not the head of an equation in the chain. But then B. # BRP for any k,
contrary to out assumption. This implies that there is a term on the r.Ks. that is
not equal to a term on the I.Ks. of the product of the covariances when
written in completely expanded loop form. This implies that the two sides are
not equal and hence the tetrad equation is not strongly implied by the theory.

Theorem 29: A tetrad equation is strongly implied by a SLCT with a tetrad-
compatible graph iff when the covariances of the variables are written in
TETRAD trek form, there is a 1-1 function f mapping each monomial P on the
l.h.s of the equation to an equal monomial P on the r.Ks.

Proof: The theorem follows immediately from lemmas 27 and 28. •

The last theorem proved in this section states that adding edges to a model M can only

defeat equations that are implied by M; equations that are not implied by M cannot be

implied by the augmented model.

Definition 30: A SLCT M = «R,E>, (O,P), R, X, L> is a subtheory of M' =
«R,E'>, (O,P), R, X\ L'> iff E is include in E', and L is an extension of L
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Theorem 31: If M is a subtheory of M\ then the set of tetrad equations strongly
implied by M' is a subset of the set of tetrad equations implied by M.

Proof: We will show that if a tetrad equation is not strongly implied by M, then
it is not strongly implied by IN/T.

Note first that it follows from the definition of trek that the set of treks of M
is a subset of the set of treks of M\

Take any tetrad equation A
cov(x.,x.) * covlx^Xj) = covfx^Xj) * cov(x.,xR)

that is not strongly implied by M. Write A in TETRAD trek form, assuming the
existence of the treks of model M. The equation when written in this form will
be called AM. Since AM is not strongly implied by M it follows that either there
exists a term on the I.Ks. which is not identically equal to any term on the r.Ks.,
or there exists a term on the r.Ks. which is not identically equal to any term on
the I.Ks. Assume without loss of generality that the latter is the case. Let T be
a term which has no match on the I.Ks of the equation.

Now consider equation A when written in TETRAD trek form, assuming the
existence of the treks of model M\ The equation when written in this form will
be called A M , Since the set of treks of M is a subset of the treks of M', it
follows that the set of terms appearing in AM is a subset of the set of terms
appearing in A. In particular, the term T appears on the r.Ks. of A .

IVI IW1

Note that every term on the I.Ks. of AM. is either a term that appears in AM or
contains the label of an edge in E - E T is not identically equal to any term on
the I.Ks. of AM by supposition. Also, since T contains only labels of edges in E,
it cannot be identically equal to any term that contains the label of an edge in E
- E Hence, T is not equal to any term on the LKs. of AM,.

10.2.3. Proof of Correctness of the Algorithm for Computing Vanishing Partial

Correlations

The TETRAD program determines all of the vanishing partial correlations implied by a model.

The algorithm used in the computation is just the obvious application of the theorems about

vanishing partial correlations proved in Chapter 4. That is, the program determines all

treks, and then for each triple of distinct variables, uses the theorems of Chapter 4 to

determine whether or not a vanishing partial correlation is implied for the variables in the

triple. The following sequence of lemmas leads to a proof of the graph theoretic

characterization of the vanishing partial correlations implied by a grapK

In what follows, when a trek t is said to be equal to the product of two other treks p

and q, this means that the product of labels of edges in t is identically equal to the result

of multiplying the product of labels of edges in p by the product of labels of edges in q.

Cov(x,y) will be denoted by <r , var(x) will be denoted by a2 , and the standard deviation
xy x

of x will be denoted by a .
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Lemma 32: Given a SLCT «R,E>, (Q,P), R, X, L>, for all distinct vertices x,y,z in
R, if the variances of all the variables are equal to 1, and pxz = 0 for all
values of the edge labels where pxzy is defined, then,

• For all t e in T , y € t

• Either every t * T z has an edge out of y, or every t t Txy has an edge
out of y.

Proof: First we will show that if p =0 then for all t c in T , y c t

Assume p = 0. It follows from the definition of partial correlation that if
p =0 then p * p = p . Hence, p * p = p .
'xz.y ' xy ' zy ' xz ' xy ' zy ' xz

By definition,

Pxz = f—
x y

It has already been shown that a equals

t € T * e € t
xz

Similarly, a equals
xy

Z ((!!.«-)•*•»)
t € T * * e € t

xy

and a equals
yz ^

Z ((IT. *•>"•»)
t € T ' ' e f t

yz

Since p * p = p it follows that
' xy * zy ' xz

Z
t

tn * x e € t ' ' t ( T * y e € \
xy yz

Since the variances of all of the variables are assumed to be 1, it follows that
for all x,y that a = p , and

7 xy 'xy



316

t ( T
xz

X (II *) • X (II
t f T * e € X ' t € T x i H

xy yz

Since every trek t e Tx2 is a product a trek e Tx and a trek * T it follows
that y occurs in every trek t € Txz.

Now we will show by reductio ad adsurdum that if p = 0 then either every
p € T z has an edge out of y, or every q * Tx has an edge out of y. Assume
on the contrary that there exist treks p * Tx and q * T z such that both p and
q have no edge out of y. It follows then that any trek t that is equal to the
product of p and q has no edge out of y and one of the termini of t must be
y. But it was just shown that the product of any trek * Tx with any trek «
T is equal to a trek * T . But it is impossible for the same trek t to

yz ^ xz r

terminate in x and z, and also terminate in y, since y is distinct from x and z.

Lemma 33: Given a SLCT <<R,E>, (Q,P), R, X, L>, for all distinct vertices x,y in
R, if all treks * T contain an edge out of x, then all treks e T are paths

xy 9 xy r

from x to y.
Proof: Suppose that all of the treks between x and y contain an edge out of x.
For each trek, there are three cases to consider: either a trek between x and y
is a path from x to y, a path from y to x, or there is a pair of paths from
another variable z to x and y.

First we will show by reductio ad absurdum that no trek between x and y can
be a path from y to x. Assume then that every trek between x and y contains
an edge out of x, but that one of the treks between x and y is a path from y
to x. Such a path must contain an edge into x. We have assumed that there is
an edge out of x. Since there are edges both into and out of x, and the path
must terminate at x, there must be a cycle in the path. It is obvious that every
cyclic path between y and x must contain an acyclic subpath from y to x.
Hence, there must be an acyclic path from y to x. But this acylic path from y
to x must contain an edge into x, and hence cannot contain an edge out of x.
This is contrary to our hypothesis. It follows that no trek between x and y can
be a path from y to x.

Similarly, it can be shown that if there is a trek between x and y which consists
of a pair of paths from a vertex z to x and y respectively, it follows that there
is an acyclic path from z to x which contains no edge out of x. This would be
contrary to our hypothesis. Therefore no trek between x and y consists of a
pair of paths from a vertex z to x and y respectively.

Since no trek can be a path from y to x or a pair of paths from z to x and y,
each trek must be a path from x to y. •
Lemma 34: Given a SLCT «R,E>, (Q,P), R, X, L>, for all distinct vertices x,y,z in
R, if for all t € T there exists a path p from y to z that is contained in t
then
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• t contains a subtrek q * Txy

• t is equal to the product of p and q

• t and q have the same sourca

Proof: If Txz is empty the theorem is vacuous. Otherwise, there are three .cases
to consider" corresponding to the three different kinds of treks between x and
z.

First suppose that the trek t between x and z is a path from x to z, where y
lies along the path. Then there is a subpath from x to y that is a trek from x
to y, and a subpath from y to z that is a trek from y to i The source of the
trek between x and y is the same as the source of the trek between x and z
(namely x). It is clear that t is equal to the product of p and q. (See figure
10-1 U

JL

p
1

I
If I

Figure 10-12: Path from x to z

In the second case, the trek t between x and z is a path from z to x This
case is not consistent with the assumptions of the theorem, however. Since
every cyclic path from z to x contains an acyclic subpath from z to x, there
must be an acyclic path f from z to x. This path forms a trek between x and
z. and by assumption must contain y. Hence, f contains a path from z to y.
But by assumption f must also contain a path from y to i This contradicts the
fact that X is acyclic. It follows that t cannot be a path from z to x. (See
figure 10-121
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4 *

t f

Figure 10-13: Path from z to x

In the third case, the trek t between x and z consists of a path p from S(t) to
x, and a path q from S(t) to i y lies on either p or q. If y lies on p, then
there is a path from S(t) to y, and a path from S(t) to z, which form a trek
between y and z. But this trek between y and z is not a path between y and z
unless y is Sit), in which case y also lies on q. It follows then that y must lie
on q. In that case there is a trek between x and y that consists of p and the
path from S(t) to y. There is also a trek between y and z that is a path from y
to z. The source of the trek between x and y is the same as the source of
the trek between x and z (namely S(t)). The pair of treks between y and z, and
t is obviously the product of x and y. (See figure 10-13).

S(t )

Figure 10-14: Paths from S(t) to z and x

Lemma 35: Given a SLCT <<R,E>, (OP). R, X, L>, for all distinct vertices x,y,z tn
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R, if p is a path from y to z, then for each trek q e Jxy there exists a trek t

€ T such that
xz

• t is equal to the product of p and q

• t and q have the same source.

Proof: In every case, the trek between y and z consists of a path from y to i
There are three cases to consider for the trek between x and y.

First suppose that q is a path from x to y. Then the concatenation of p and q
is a path from x to z, which is a trek between x and z. The product of p and
q is equal to a trek t * Txz. Furthermore, the source of the trek between x
and z is the same as the source of the trek between x and y (namely x). See
figure 10-14.

t

)

Figure 10-15: Q is a path from x to y

Second suppose that the trek q from x to y is a path from y to x. In that
case, there is a path q from y to x and a path p from y to z, which form a
trek between x and z. The product of p and q is equal to a trek t * 1^. The
source of the trek between x and z is the same as the source of the trek
between x and y (namely y). See figure 10-15.
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x — £m

Figure 10-16: Q is a path from y to x

Third, suppose that the trek q from x to y is a pair of paths from some vertex
r, to x and y respectively. In that case, the concatenation of the path from r to
y, and the path from y to z is a path from r to i Hence, there exists a path
from r to x, and a path from r to z, which forms a trek between x and 2. The
product of p and q is equal to a trek t * Tx . The source of the trek between
x and z is the same as the source of the trek between x and y (namely r). See
figure 10-16.

Figure 10-17: Q is a pair of paths from r to x and y

Lemma 36: Given a SLCT <<R,E>, (Q,P). R, X, L>, for all distinct vertices x,y,z in
R, if

• For all t € Txz, y « t

• Either every t « T has an edge out of y, or every t T has an edge
xy
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out of y

• the variances of all variables are equal to 1

then p = 0 for all values of the labels where it is defined.
' xz.y

Proof: Since the variances of all the variables are 1, for all x and y, <rx = px .

(10)
/»xy

and

equals

/'xy *

Z
t € T

xy

(II
N e € X

pyz equals

z
t € T

xy

(II
* e f t

Lie)

Lie)

(11)

(II.t ( T * e € X

It will be assumed that both formulas 10 and 11 are written in distributed fully-
expanded form.

We will first show that given that y occurs in every trek between x and z that
to each term in 10 there corresponds a unique identically equal term in 11.

From lemma 33 it follows that either every trek between x and y is a path
from y to x, or every trek between y and z is a path from y to i This,
together with lemma 34 implies every trek t * Tx is equal to a product of
treks p € Tx and q e T The product of labels of edges in t is a term in
formula 10. The product of labels in the p and q form a term in formula 11.
It follows that for every term in 10 there is a corresponding identically equal
term in 11. Furthermore, since any two distinct treks between x and z differ in
the number of occurences of at least one edge, two distinct terms in formula
10 cannot be identically equal to the same term in formula 11.

Next we will show that given that y occurs on every trek between x and z, and
that either every t * T has an edge out of y, or every t e Jx has an edge
out of y, it follows that for each term in formula 11 there is a unique
identically equal term in formula 10.

Assume without loss of generality that every trek between y and z has an edge
out of y. By lemma 33 each trek between y and z is a path q from y to i

Consider an arbitary term in formula 11. It is the product of labels of edges in
a trek p between x and y (which has the same edges as a path from y to x),
and a trek q between y and z. From lemma 35 it follows that the product of
these is equal to a trek t * Txz. The product of p and q form a term in 11.
The product of labels of edges in t is a term in 10. Since the edges in p and
q on the one hand, and t on the other hand, are identical, it follows that to the
arbitrary term in 11 there is an identically equal term in 10. Furthermore, since
no two terms in 11 are identically equal, it follows that no two terms in 11 are
identically equal to a single term in 10. Hence, for each term in 11 there is a
unique identically equal term in 10.
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It follows that 11 is identically equal to 10, and hence that pxz = px * P z
 f o r

all values of the labels of the edges, as long as the variances of all of the
variables are equal to 1. This implies that p = 0 if p is defined. D

^ ^ ' x z . y ' x z . y

Lemma 37: Given a SLCT «R,E>, (Q,P), R, X, L>, for all distinct vertices x,y,z in
R ' ^xzy = ^ (where defined) for all values of the edge labels given that the
variances of all the variance are equal to 1 iff pxzy = 0 (where defined) for all
values of the edge labels and all values of the variances.
Proof: The if clause is trivial.

The only if clause can be proved as follows. Assume that for all distinct
vertices x,y,z that pxz = 0 when all of the variances are 1. It follows from
the definition of partial correlation that if the partial corrrelation is defined then
p = 0 iff /> * /> = / > . Hence, p * p = p .
"xz.y ' xy r zy ' xz ' xy ' zy ' xz

By definition,

' xz = ~~

xz

a * a

It has already been shown that <rx equals

Z ((U^)"'m)
Similarly, <rx equals

xy

and <x z equals

Z ((!!«)•''.)
t € T

yz

Since p * p = p it follows that

T ( ( II * • ) • » * . ) -
xz

Z ((II «*) •*•„)• Z ((II « ) • • ' . )
t f T X X « € t ' 7 t « T . X X e € txy yz

Since all of the variances of the variables are assumed to be 1, it follows that
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for all x,y that o - p - and
xy xy

(II*.)

Z (II «) • Z (II «>
xy yz

Clearly, this implies that

Z (II «-)
X Z

Z (II *•) Z (II m)
X € 1 X e € t X t € T x e € t '

xy yz

By lemma 32 either every t * T or every t * T has an edge out of y. By
lemma 33 it follows that either every trek t € Txy or every trek t * Tyz is a
path with source y. Assume without loss of generality, then, that each trek
between z and y has y as its source. It follows that a2

s{x) for each source of

each trek t between z and y is a2. Hence

Z (II *»)
t € T x e € t '

a *a
X Z

Z (II *•) •''„„ Z (II «)
t € T y 2

 X e € t ' * t € T x y
 X • € t 7

a * a a * or
y z y x

From lemma 34 it follows that each trek between x and z is the product of
two subtreks between x and y, and y and z, and that the source of the trek
between x and y is the same as the source between x and z. Hence we can
multiply each side of the equation by the variances of the sources of their
respective treks, regardless of their values, and obtain
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(12)

* <r2

a * <r
x z

X (IT m)^m Z (IT «) 2

Six)

xy yz
*

y 2 x y

Equation 12 is just the equation for />xy * />zy = />xz. But by definition, if pxz

is defined this is true iff p = 0. It follows then that p = 0 (where
' xz.y * xz.y

defined) for all values of the edge labels given that the values of all variances
are equal to 1, iff p = 0 (where defined) for all values of the edge labels
and all values of the variances. D
Lemma 38: Given a SLCT «R,E>, (Q,P), R, X, L>, for all distinct vertices x,y,z in
R, p = 0 (where defined) for all values of the edge labels and all values of
the variances of the variables iff

• For all t € in T , y * t

• Either every t * T has an edge out of y, or every t e T has an edge
yz xy

out of y.

Proof: It follows immediately from lemmas 32, 36, and 37. •
Theorem 39: Given a SLCT «R,E>, (Q,P), R, X, L>, for all vertices x,y,z in R,
Pxz ~ ° ( w h e r e defined) for all values of the edge labels and all values of the
variances iff

• For all t £ in T0^, , y € t

Either every t
edge out of y.

• Either every t e T° has an edge out of y, or every t ( T° has an
yz xy

Proof: It is trivially true that if every t € Jxz contains y, then every t € T°xz

contains y. Similarly, it is trivially true that if every t € Txy has an edge out of
y, every t € T°x has an edge out of y, and if every t € T z has an edge out
of y, every t e T° 2 has an edge out of y.

Every cyclic path from x to y contains an acyclic path from x to y. It follows
that if every t * T° contains y, every t € Tx contains y. Similarly, if every t
€ T° has an edge out of y, then every t € T has an edge out of y, and if
every t * T° has an edge out of y, then every t € Tyz has an edge out of y.

The theorem follows from these facts and lemma 38. •
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Part III

Using TETRAD, EQS and LISREL
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11. USING TETRAD WITH EQS AND LISREL

11.1. INTRODUCTION

TETRAD is a program for helping to discover causal structure. It will not estimate

parameters in a statistical model nor will it perform a statistical test of the model as a

whole. Fortunately there are programs that will. The LISREL and EQS programs are

among the most widely used computer packages for estimating and testing structural

equation models. EQS is always, and LISREL is usually, straightforward to use on models

found with TETRAD.

The appearance of the LISREL programs made available full information maximum likelihood

estimation and testing. Under the assumption of normality, the program made possible the

estimation and testing of a great range of structural equation models. The LISREL

programs impose certain classifications of variables, however, and these classifications and

the restrictions that accompany them can sometimes cause difficulties in representing causal

models. In the first part of this chapter we describe these restrictions and ways to

circumvent them.

The EQS program is considerably easier to use than LISREL, but the PC version can often

take 15 minutes or more for a single run. If one wants to estimate and test 20 models,

say, five hours might be required. In the second section of the chapter we explain how to

run EQS in batch mode so that large numbers of models can be run without the attention

or time of the user.

11.2. LISREL AND ITS RESTRICTIONS

The LISREL programs are described in detail in a series of manuals. We have used the

LISREL IV User's Guide [50 ] and the LISREL VI User's Guide [52] . LISREL requires the

user to classify the variables of a model according to the following scheme:

ksi: exogenous and latent
eta: endogenous and latent
x: measured and dependent on ksi variables
y: measured and dependent on eta variables
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Each of these variable types has an associated covariance matrix:

phi: covariance matrix of error variables for ksi variables
psi: covariance matrix of error variables for eta variables

theta delta: covariance matrix of error variables for x variables
theta epsilon: covariance matrix of error variables for y variables

The program permits the user to specify covariances and variances among the phi variables,

the psi variables, the theta delta variables and the theta epsilon variables. In directed graph

representations of a causal model covariances of these sorts are represented as

undirected (or bidirected) edges connecting error variables.

The LISREL classification of variables carries with it some restrictions on possible causal

and structural representations, including the following.

1. x variables cannot depend on eta variables.

2. x variables cannot depend on other x variables.

3. y variables cannot depend on other y variables.

4. y variables cannot depend on ksi variables.

5. No error variable from one error type can covary with an error variable from
any other type.

In what follows we will use the following abbreviation scheme.

ksi
eta

X
y

psi
phi

theta delta
theta epsilon

= K
= N
= X
- y
= s
= p
= td
= te

To illustrate the effect of these restrictions, we show, in Figure 1 1 - 1 , a simple model that

is easily expressed in LISREL's formalism. Figure 11 -2 shows all of the additions to this

model that can be represented in that formalism. In Figure 11-3 we show a few of the
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many elaborations of the original model that cannot be represented (as is) in the LISREL

formalism.

I
s

/ \

x l x2 y i

T 1
tdl td2

I
tel tel

Figure 11-1: LISREL Model

xl !x2 •

tdl td2

X
y2i

T T
tel te2

/

x2

A A
tdl td2

n

tel te2

(1) (2)

Figure 11-2: Simple Variants Representable in LISREL
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p

•
©

x l x2

4 *
tdl td2

(1)

/ \

xl x2

T
yi

tdl td2 tel te2

(2)

\

Xl x2

TT
tdl td2

r\
y i y2

(3)

-=^-f N

/ \

Xl x2

T
tdl

A
td2

yi

tel te2

(4)

P

K

Xl x2

tdl td2

/

y i y2

tel L
(5)

/ \

Xl X2

tdl td2

y i y2

4
tel te2

(6)

Figure 11-3: Simple Variants Not Representable in LISREL

11.3. OVERCOMING THE RESTRICTIONS

To circumvent LISREL's restrictions, we need only find representations that LISREL will

accept and that are appropriate substitutes for the models LISREL will not accept We



331

understand a substitution to be appropriate if a model and its substitute are

intertranslatable.37 We suggest two ways to dc this.

Specifying ksi variables as eta variables

Usually a ksi variable can be specified as an eta variable. You must also change all the x

variables that were previously indicators of the ksi variables to y variables that are

indicators of the new eta variables, and you must change the error variable types as well.

This kind of move will solve the problem of representing variants 1, 2, 3 and 4 of Figure

11-3. We show the solutions as figures 1a, 2a, 3a and 4a in Figure 11-4.

That is to say, models I and II are equivalent provided that for every variable of model I there is a definition of that
variable in terms of the variables of model I I , and for every variable of model II there is a definition in terms of the
variables of model I, and the two models, respectively conjoined with their definitions of the terms in the other model, nr€
mathematically equivalent. See Glymour 133, 34] and Glymour and Spirtes 1102]
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32

(la)

sL

/ \

y i y2

4 f
tel ce2

s2

\

T T
te3 te4

(2a)

y i y2

t e l ce3 te4

(3a)

/ \

t
eel te2

s2
V

-»-U2

/

te3 te4

(4a)

Figure 11-4: Solutions to Variants 1, 2, 3, and 4

This kind of solution is straightforward enough. We are simply changing the USRB. type

for certain variables in our modeL We are not introducing any new variables, or eliminating

any that our original model contained This technique wrB work just in case an

unacceptable model has an alphabetic variant that LISREL will accept

Introducing Surrogate Eta Variables

In case a model contains a causal relation between measured variables, e.g., variants 5 and

6 above, the strategy just described is not sufficient Y variables still cannot cause other y

variables. Only LISREL variables of the eta type, and no other, can be represented as both

causes and effects. For a LISREL representation of models such as variants 5 and 6,

therefore, y variables must be converted into eta variables. This can be done by replacing
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a y variable and its error term in the original model with a system of new variables as

shown in Figure 11 -5 . Variables subscripted with an o stand for original, and variables

subscripted with an n stand for new.

« 0

Figure 11-5: Converting a Y Variable Into An Eta Variable and a Y Variable

Notice that s occupies the same "function" in the new model that te did in the old model.
n o

Notice also that the error term for y is always fixed at 0. To get the new model from

the old model, simply replace every occurrence of y with nft. This does nothing to change

the substance of the old model, because in the new modet

y = 1*n + 0
' ft n

which amounts to saying the two variables are identical In effect we have created a

surrogate variable for the old y which can now enter into causal relationships with other

variables of its type We show the solutions to variants 5 and 6 as solutions 5a and 6a in

Figure 11 -6 .
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si

•

/ \ / \

yi

tel

y2

JL

©
si

•

xi x2 (N2^ —*-nr

Ltdl td2 s2 S3

y i y2

4 *
0 = tel = te2

(6a)

Figure 11-6: Solutions to Variants 5 and 6

Lest users feel uncomfortable with this technique, it should be noted that LISREL has an

identical technique already built into its set of options. When a model in LISREL is

specified with the option: TIXEOX" in the model line, this essentially identifies x variables

with ksi variables in the same way that we identified y variables with eta variables above.

To say "FIXEDX" in LISREL is to create the following situation for each x variable input

By specifying "FIXEDX" a user can estimate and test a model in which measured variables

are exogenous. One is actually creating a surrogate ksi variable for each measured

variable; since ksi variables are allowed to be exogenous in the LISREL formalism this
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accomplishes precisely the same thing

11.3.1. An Example: Authoritarian-Conservatism Again

We can illustrate the preceding points by showing the construction of a LISREL input file

for a measurement model of the psychological attitude called authoritarian-conservatism

discussed in Chapter 8, section 8.4.

e l e5

Figure 11-7: Measurement Model to Be Represented in LISREL

To make a LISREL model from this causal model we assume that all errors are

uncorrelated We treat q1 - q5 as eta variables, so that we can represent the causal links

from q2 to q5 and q5 to q3. It would not do to correlate error terms for q2-q5 and

for q3-q5. The model in Figure 11 -7 includes a causal chain from q2 to q3 and thus a

source of correlation between q2 and q3 that is not AC A model that correlated the

error terms for q2-q5 and q3-q5 would not include a source of correlation between q2

and q3 that did not stem from AC

We treat AC as an eta variable that has no indicator. The full LISREL model is shown in

Figure 11 -8 . The variables in parentheses are just to help identify which LISREL variables

correspond to which variables in the causal model.
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(q2) (q3) (q4)

tel = te2 * te3 = te4

q

te5 = 0

Figure 11-8: Full LISREL Model

We assume the coefficient of the AC —> q1 path is fixed at unity, and the error terms

for all y variables are fixed at 0. One possible LISREL input file for this model is shown

beginning on the following page.
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ANCHORING: Q2->Q5, Q5->Q3
DA NI=5 NO=3001 MA=KM
LABELS
*
•Ql1 fQ2f 'Q3f fQ4f fQ5f

KM SY
*
2.0987
0.7161 2.0286
0.4505 0.3356 1.7258
0.7746 0.5012 0.3525 2.0759
0.4263 0.3421 0.3149 0.3014 1.0658
MO NK=0 NX=0 NE=6 NY=5 GA=ZE LX=ZE TE=ZE TD=ZE PH=ZE PS=DIfFR
PA BE
*
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 1
0 0 0 0 0 1
0 1 0 0 0 1
0 0 0 0 0 0
MA BE
*
1 0 0 0 0 - 1
0 1 0 0 0 - . 5
0 0 1 0 - . 3 - . 5
0 0 0 1 0 - . 5
0 - . 3 0 0 1 - . 5
0 0 0 0 0 1
MA LY
*
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
MA PS
*
.5 .5 .5 .5 .5 .5
OU PM TO SE
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11.4. EQS

EQS is a recent program authored by Peter Bentler. The input to EQS is much easier than

the LISREL formalism, and it is must easier to detect input errors in the EQS program An

EQS input file for the model just considered is pictured below.

/TITLE
AC1.DAT: FACTOR MODEL + q2->q5, q5->q3;
/SPEC
VAR=5; CAS=3101; ME=ML;
/LABELS
V1=Q1; V2=Q2; V3=Q3; V4=Q4; V5=Q5; F1=AC;
/EQUATIONS
VI = Fl + El;
V2 = .5*F1 + E2;
V3 = .5*F1 + .3*V5 + E3;
V4 = .5*F1 + E4;
V5 = .5*F1 + .3*V2 + E5;
/VARIANCES
El TO E5 = .5*;
/MATRIX
2.0987
0.7161 2.0286
0.4505 0.3356 1.7258
0.7746 0.5012 0.3525 2.0759
0.4263 0.3421 0.3149 0.3014 1.0658
/END

Figure 11-9: EQS Input File

Changing this input file to create variants of the measurement model pictured in Figure

11-7 is trivial. The problem is in waiting for the output Examining a serious number of

alternative models interactively is prohibitive if one has a personal computer without an

8087 co-processor. To overcome this, EQS can be run repeatedly in batch within a

simple ".bar file.38

When EQS is called from DOS , the personal computer operating system, it loads and then

prompts for 3 pieces of information.

1. The input filename.

2. The data filename.

We are indebted to Eric Wu one of the programmers of EQS. for promptly answering our query with the suggestion we
describe here.
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3. The output filename

The data filename is optional. In the input file we show above, we have included the

covahance matrix as a part of the input file. It is possible to leave the data in a separate

file, but we have found it easier to include the data within the input file. If the data is

included in the input file, the response to EQS's prompt for a data file is simply a carriage

retura

To run EQS in batch you need:

1. A command file that ends in ".bat"

2. A series of files that each contain answers to the 3 prompts EQS gives in a
single run

3. A series of input files.

Suppose we have three variants of the measurement model pictured in Figure 11-7, and

suppose the input files for each, with covariance data, are called, respectively:

ACl.dat

AC2.dat

AC3.dat

We would then form three files, called "In1", "In2", and "In3", that contain the answers to

EQS' prompts for 3 runs. We show the contents of file "In 1" below.

ACl.dat

ACl.out

Figure 11-10: File "In1"

"AC1.dat" must occur on the first line of the file "In1". The second line is blank because

in this case there is no data file, and a blank line here is the same as a carriage retura

The third line tells EQS to send the output to file "ACl.out".
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The ".bat" might be called "ruabat", and it would look like this:

Eqs <Inl
Eqs <In2
Eqs <In3

Figure 11-11: The File "Ruabat"

To execute the "Ruabat" file, simply type "Run" at the DOS prompt The first line of the

file tells DOS to run EQS, and to get the answers for its prompts from the contents of

file "In 1". The left angle bracket is a DOS command to change the input stream from the

console to a text file. EQS will use the file "AC1.dat" as an input file, it will know there is

no separate data file, it will put the output in the file "AC Lout", and when it is finished,

DOS will call it again and tell it to now answer its prompts from the contents of file "In2".

Any number of models can be run this way.
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12. Running TETRAD

12.1. INTRODUCTION

TETRAD is an interactive command driven program which is simple to use. This chapter

describes how to use TETRAD. It includes a description of the format of input files, a

description of each command, some transcripts of actual TETRAD sessions, and a

description of the types of errors that can occur.

12.2. INSTALLING TETRAD

Two version of TETRAD have been provided on your distribution disk. One of these

versions (TETRAD) is designed for computers that do not have an 8087 co-processor chip;

the other version (TET87) is designed for computers that do have this chip. The two

programs act in an identical fashion, except that TET87 is considerably faster that TETRAD.

To run TETRAD you will need to install all of the following files on the same directory.

TETRAD.COM
TETRAD.000
TETRAD.001
HELP.TXT
ERROR.TXT

To run TET87 you will need to install all of the following files on the same directory.

TET87.COM
TET87.000
TET87.001
HELP.TXT
ERROR.TXT

The sample data and graph files may be installed in any directory.

12.3. ENTERING AND EXITING TETRAD

In order to successfully run TETRAD (TET87) your current directory must be the directory

in which the TETRAD (TET87) program resides. For example, if TETRAD.COM (TET87.COM)

is in directory "\tetrad", then "\tetrad" must be your current directory.
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In order to invoke the TETRAD (TET87) simply type "TETRAD" fTET87") at your monitor

prompt

In the rest of this chapter, we will refer to the TETRAD program, but everything we say

will also apply to TET87.

Upon entering TETRAD, a number of messages are printed out Finally, a ">" is printed

This symbol is a prompt that indicates that TETRAD is waiting for the user to enter a

command

The program is exited by typing "EXIT* when prompted for input

12.4. GETTING HELP

Online help summarizing the action of each command C is available by entering TETRAD and

typing "help C. The list of commands that TETRAD recognizes can be obtained by simply

typing "help". A list of each of the commands and the action that it invokes is also

provided in this chapter.

12.5. INPUT FILES

The TETRAD program requires both a directed graph and correlation or covariance data for

the measured variables in that graph. The file from which TETRAD reads the correlation of

covariance data will be called the covariance file. The file from which TETRAD reads the

directed graph will be called the graph file. Using your favorite editor these files may be

created before the TETRAD program is run. Alternatively, they may be created within the

TETRAD program using "EDIT, a simple line editor that is part of TETRAD. In this section

we explain how to create covariance files and graph files.

12.5.1. Variable Labels

In both the covariance file and in the directed graph, variables must have names. The

conventions for naming variables are very simple:

1. Any alpha-numeric character39 can be used in a variable name.

The set of alpha-numeric characters include all letters, upper and lower case, and all numbers.
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.24X1 X2 1

.45 xl x3

.86 x2 x3

( There is no space between )
( the correlation and the )
( first variable name. )

xl X2 .24
xl x3 .45
X2 x3 .86

(The correlation must come first.)

Correlations
.24 xl x2
.45 xl x3
.86 x2 x3

(Titles are not allowed.)

.24 xl x2 .45 xl x3 .86 x2 x3

( Only one correlation is )
( allowed per line. )

Figure 12-2: Illegal Covariance Files

To illustrate these points, suppose we have constructed a simple measurement model for

socio-economic status, with four indicators: father's education, father's occupation,

mother's education, and family income. Our abbreviation scheme is as follows.

socio-economic s ta tus = SE
father's education = fe
father's occupation = fo
mother's education = me

fami ly income = in

We show our hypothetical model in Figure 12-3.

fe fo me in

Figure 12-3:
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Suppose that the covariance matrix is the one shown in Figure 12-4.

fe fo in me

f e

f o

i n

me

! 1
i
i

i
i

i

i

. 0 . 3 0

1 .0

. 2 4

.60

1 . 0

.27

. 4 0

.32

1 . 0

Figure 12-4: SES Correlations

Using our favorite text editor (or the "EDIT" command in TETRAD), we convert this matrix

into the covariance file pictured in Fig. 12-5.

1024
.30 fe fo
.24 fe in
.27 fe me
.60 fo in
•40 fo me
•32 in me
1.0 fe fe
1.0 fo fo
1.0 me me
1.0 in in

Figure 12-5: Separate Line SES Covariance file

12.5.2.2. A Matrix Representation of Covariances

A covariance file may instead contain an upper triangular matrix representation of

covariances. To represent the covariance matrix of figure(SESmatrix) simply create the

following file:
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2. Each variable name must be 1 or 2 characters long.

3. Names for measured variables must begin with a lower case letter or a
numeric character.

4. Names for latent, or unmeasured variables must begin with an upper case
letter.

5. One and the same variable must have the same name in the covariance file
and in the directed graph.

6. Upper case letters are distinct symbols from lower case letters.

12.5.2. Covariance Files

A TETRAD covariance file is a normal text file. With the IBM PC operating system, MS

DOS, as many as eight letters can occur in the filename and three more in an extensioa

Other operating systems may have different conventions. The extension is not necessary

although it can be useful. Examples of data filenames are:

Datal
Datal.pas
ladata
Theoryl.dat

The first non-blank line of a covariance file must be an integer which represents the

sample size. It occurs on a line by itself.

After the sample size, the only information in a covariance file is a correlation or

covariance for each pair of measured variables. The user may enter either correlational

data or covariance data in the covariance file; TETRAD converts all covariances into

correlations. In what follows we mean "correlation or covariance" whenever we say just

"covariance". By a "number" we always mean a real number or integer. There are two

distinct ways of representing the covariance data in a file.

12.5.2.1. Covariances on Each Line

In the first way of representing covariances, a separate line in the covariance file must be

created for each covariance. Each line contains, in order

1. One correlation, entered as a number.

2. The two variable names which correspond to the covariance, separated by at
least one space from the covariance number and from each other.
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3. A carriage return.

No latent variables may occur in the covariance file. Every pair of measured variables

appearing in the covariance file must have exactly one number associated with it in the

covariance file. (Each variable must also be paired with itself; that is for each variable x,

there must be an entry for the pair x x.)

An example is:

.576 x l x2

The order of the variable names in a line does not make a difference. The covariance in

the example could just as well be entered as:

.576 x2 x l

Note, however, that it would be illegal to enter both of the above lines in a single

covariance file, since that would assign more than one (albeit equal) covariance to a single

pair of variables.

The covariances do not have to be entered in any particular order. The sequences in

Figure 12-1 (which are all fragments of covariance files) are all the same so far as the

TETRAD program is concerned

.24 x l x2 .45 x l x3 .86 x3 x2

.45 x l x3 .86 x2 x3 .24 x l x2

.86 x2 X3 .24 Xl x2 .45 x3 x l

(1) (2) (3)

Figure 12-1: Equivalent Input Sequences

The fragments of covariance files shown in Figure 12-2 are illegal and will not be read

correctly by the program.
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1024
f e

1 .0

f o

.30

1 .0

i n

. 2 4

.60

1 . 0

me

. 27

.40

.32

1 . 0

Figure 12-6: Matrix Representation of Covariance File

Once again, no latent variables may appear in the covariance file. The variable names must

all be separated by at least one space, and must all occur on the same line. The order of

the numbers that follows obviously matters, but the spacing does not It also does not

matter what line a number occurs on TETRAD will simply keep reading numbers until the

(upper triangle) of matrix has been completely filled If fewer numbers than are needed to

fill out the matrix have been entered into the covariance file, TETRAD will issue an error

message and refuse to process the data; if more numbers than are needed to fill out the

matrix have been entered into the covariance file then TETRAD will issue a warning, but

proceed normally.

12.5.3. Graph Files

TETRAD treats a directed graph as a set of ordered pairs. Each ordered pair represents a

directed edge in the graph, and the directed edge in turn represents a hypothetical causal

connection. The first element of the ordered pair represents the cause, and the second

element represents the effect The set

{<Se,f e>,<SE,f o>,<SE,me>,<SE,in>}

describes the directed graph shown in Fig. 12-3.

The user should form such a set of edges to represent the graph of the theory to be

investigated Each line of a graph file contains one edge represented by the name of the

cause, at least one space, and the effect It does not matter which edge is entered first,

but of course it does matter, in each edge, which vertex or variable name is entered first
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A graph file for the above example would be:

SE fe
SE fo
SE me
SE in

Figure 12-7: Example of a Graph File

12.6. OUTPUT FILES

The user may specify the name of a file where output is to be sent by using the

"OUTPUT command The "OUTPUT' command will prompt the user for the file name. If

the output file has not been specified, then any command producing output will prompt the

user for it After the output file has been specified all subsequent output will be sent to

that file until the user issues another "OUTPUT" command that specifically changes the

output file.

12.7. VIEW AND EDIT
Two small subsystems with their own set of commands have been incorporated into

TETRAD. "VIEW" is for viewing output files, and "EDIT1 is for creating or modifying input

files. Since each of these commands reads files into memory, using them on targe files

will use large amounts of memory. TETRAD will produce an error message if the file is

too large to fit into memory. Each of these subsystems is intended for use on files which

have maximum line lengths of 80 characters.

12.8. THE RUN COMMAND AND MENUS
The easiest way to use TETRAD is through the "RUN" command Each output command

except the "RUN" command, is used to produce output about one specific feature of a

model. The purpose of the "RUN" command is to allow the user to use a single command

to produce output about a variety of features of a model.

The "RUN" command is used in conjunction with the "SETOUTPUT" command The

"SETOUTPUT command provides the user with a menu of possible outputs that can be

produced by the "RUN" command Any combination of desired outputs can be produced by

choosing the desired outputs from the menu of the "SETOUTPUT command, and then

issuing the "RUN" command It should be emphasized that the outputs selected from the
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"SETOUTPUT" command do not themselves produce any output, nor do they have any

effects on any command except the "RUN" command An example of the use of the run

command is shown below. Note that "RUN" prompts for any information that it needs that

has not already been specified; if the information had already been specified, then the

information would not have been prompted for. Further details about "RUN" and

"SETOUTPUT" are in section .

The "SETPARAMETER" command prompts the user for all of the program parameters.

Unlike the "SETOUTPUT" command, this command affects all of the output output

commands.

While many of the other commands make use of TETRAD more convenient, most of the

features of TETRAD can be invoked using just these three commands, together with the

'EXIT" command

The following is a transcript of an actual TETRAD run. Input typed in by the user has been

placed in boldface. User input is always followed by a carriage return which is generally

not shown. However, on lines where the user enters only a carriage return, this has been

symbolized by <CR>. Any italic text between a '{' and a'}' is a comment that has been

added to the transcript to explain the commands. All of the examples in this chapter will

assume that the covariance file used was d1.dat and the graph file used was digraph (both

shown below).

D1.dat has the following contents.

500
1.0 xl xl
1.0 x2 x2
1.0 x3 x3
1.0 x4 x4
1.0 x5 x5
1.0 x6 x6
1.0 x7 x7
1.0 x8 x8
1.0 X9 X9
0.562 xl x2
0.658 xl x3
0.471 x2 x3
0.750 xl x4
0.524 X2 X4
0.866 x3 X4
0.774 xl X5
0.550 X2 x5
0.790 X3 X5
0.969 x4 x5
0.783 xl X6
0.563 x2 x6
0.674 X3 X6
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0.880 x4 x6
0.949 X5 X6
0.779 xl X7
0.565 X2 X7
0.674 X3 X7
0.875 X4 X7
0.942 X5 X7
0.989 X6 X7
0.760 Xl X8
0.555 X2 x8
0.655 x3 X8
0.855 X4 x8
0.920 x5 x8
0.956 X6 x8
0.957 x7 x8
0.787 xl X9
0.566 x2 x9
0.674 X3 x9
0.878 X4 x9
0.946 X5 x9
0.993 X6 x9
0.990 x7 x9
0.958 x8 x9

Digraph has the following contents.

Tl T2
T2 T3
Tl T3
Tl xl
Tl x2
Tl x3
T2 X4
T2 X5
T2 X6
T3 X7
T3 x8
T3 x9

In the following TETRAD session, the user sends output about the suggested sets and the

tetrad equations to a file called firstout The transcript is as follows.

C:\tetrad { The program is invoked. )
COPYRIGHT (C) 1984 by R. Schemes , C. Glymour, K. Kel ly , and P. Spirtes
All Rights Reserved

For he lp , type "help"

{ The user plans to use the "RUN" command. The current values of
all of the output options is printed. Then the user is
prompted for a list of numbers of output options which he wants to
toggle. In this case the user wants to see all of the suggested
sets, and the implied tetrad equations. }

>setout

Tetrad Equations Vanishing Partials
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1: Suggested sets FALSE

Statistical Info On:

2: All tetrad FALSE
3: Implied tetrad FALSE
4: Held tetrad FALSE

Rttr Chart Info for:
9: Measured - Measured Edges:
10: Latent - Latent Edges:
11: Latent - Measured Edges:
12: Measured - Latent Edges:

Statistical Info On:

5: All partial FALSE
6: Implied partial FALSE
7: Held partial FALSE

8: Rtpr Chart: TRUE
FALSE
FALSE
FALSE
FALSE

Enter the numbers of options that you want to toggle: 1 2

{ The output options with the new values are now automatically
printed out. }

Tetrad Equations

1: Suggested sets TRUE

Statistical Info On:

2: All tetrad TRUE
3: Implied tetrad FALSE
4: Held tetrad FALSE

Rttr Chart Info for:
9: Measured - Measured Edges:
10: Latent - Latent Edges:
11: Latent - Measured Edges:
12: Measured - Latent Edges:

Vanishing Partials

Statistical Info On:

5: All partial FALSE
6: Implied partial FALSE
7: Held partial FALSE

8: Rtpr Chart: FALSE
FALSE
FALSE
FALSE
FALSE

{ No output has been created so far. The "RUN" command is now invoked
to produce output about the suggested sets and the tetrad equations.
Since some information needed to run the program has not been entered
yet, the command prompts for the covariance file, the graph file,
the significance level, and the name of the file where output is to
be sent. In this case, the output is sent to a file called
firstout. }

>ru

Covariance f i l e : d1.dat

Graph f i l e : digraph

Edge:
Edge:
Edge:
Edge:
Edge:
Edge:
Edge:
Edge:
Edge:
Edge:

Tl —>
T2 —>
Tl —>
Tl —>
Tl — >
Tl —>
T2 — >
T2 —>
T2 —>
T3 -->

T2
T3
T3
xl
x2
x3
x4
x5
x6
X7
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Edge: T3 —> x8
Edge: T3 —> x9

{ The default value of the significance level is 0.05. }
Significance level: [0.05000]: .4

Output f i l e : firstout

> exit

12.9. USER INTERRUPTS

Some of the calculations that TETRAD performs can be quite time-consuming, especially if

the model is a large one. For that reason, the user has been provided with a way to

interrupt some calculations and return (almost) immediately to the TETRAD command prompt

The user can interrupt a calculation by holding down the control key and simultaneously

pressing the "g" key. This will only interrupt the calculation of the Rttr chart, and the

calculation of tetrad or partial equations for a model.

12.10. ERRORS

Two kinds of errors can be made when using TETRAD. Syntax errors are "grammatical"

errors in the input; they include such things as improper variable names or illegal numbers.

Semantic errors in TETRAD are errors in the "meaning" of the input; they include such

things as putting in the wrong covariance between two variables or specifying an edge

between two variables which should not be connected. Naturally, TETRAD cannot detect all

semantic errors; it has no way of knowing whether the covariance between two variables

should be 0.01 or 1000. However, TETRAD does detect some semantic errors.

12.10.1. The Form of Error Messages

An error message in TETRAD consists of either four or five parts, depending upon

whether the error occurs in input that is entered from a terminal, or in data read in from a

file. These parts are:

• An explanation of the action TETRAD is going to take.

• If the error is from a file, the name of the file and the line number in which
the error occurred
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• The line on which the error occurred

• A pointer showing the place in the line at which the error occurred

• An explanation of the error.

For example, suppose a graph file contained the following line: T 1 x%M. TETRAD would

have the following response.

Warning: Input being ignored.
Tl x%

"Non-alphanumeric character in tail name.

12.10.2. Actions

When TETRAD discovers an error in a line of input there are three different kinds of

actions that the program may take.

• TETRAD may simply ignore a line of input and continue on. In this case, the
line of input is simply treated as if it did not exist Upon taking this action
TETRAD writes "Warning: Input being ignored"

• TETRAD may ignore part of a line of input In this case, the beginning of the
line is read, and the end of the line is simply treated as if it did not exist
Upon taking this action TETRAD writes "Warning " at the beginning of the
message. At the end of the message it points to a character in the input line;
all characters after that are ignored TETRAD then writes "Rest of line
ignored"

• If the error prevents TETRAD from continuing to process its data, TETRAD
will return to the command prompt without creating any output The next
time a command creating output is issued, TETRAD will prompt the user to
re-enter the data For example, if covariances between all of the observable
variables are not contained in the covariance file, TETRAD will prompt the
user for a new covariance file. In this case TETRAD writes "Fatal error: " at
the beginning of the error message.

12.10.3. Agreement between Graph and Covariance Files

TETRAD receives input of two different kinds from two different sources. A covariance

file specifies the correlations or covariances between various observable variables, and a

graph file contains a directed graph. The covariance file should contain covariances for

every pair of observable variables that appear in the graph.
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It is possible that the input file might not specify covariances for every pair of observable

variables in the graph. Alternatively, the covariance file might not specify covariances for

every pair of observable variables occurring in the data file itself. In either case the error

is fatal. TETRAD will not produce any output and will give control to the part of the

program which asks the user if he or she would like to enter a new graph.

Sometimes one may wish to run TETRAD using a directed graph that contains some but not

all of the measured variables in the covariance file. And sometimes one may intend to enter

a directed graph that contains all of the measured variables in the covariance file, but

inadvertently omit some of those variables. TETRAD cannot intuit the user's intentions, but

the program does recognize the ambiguity of the situation. If the covariance file contains

covariances between pairs of observable variables that do not occur in the graph, TETRAD

simpiy issues a warning, and continues normally.

12.10.4. Maximum Number of Variables and Edges

TETRAD sets a limit to the maximum number of variables that can appear in an input file

and graph. The exact value of this variable depends upon the kind of computer being

used Currently, for the IBM PC and compatibles, the maximum number of variables is 23

(9 for the demonstration disk accompanying this book). If the maximum number of

variables is exceeded the following error message will appear. If there are variables in

your covariance file that do not appear in the graph, then removing all occurrences of

these variables from the input file may reduce the total number of variables to below the

maximum number allowed

One distinctive error message that TETRAD can issue concerns the maximum number of

edges that may be entered in a graph. When this total is reached, TETRAD will stop

prompting for more edges and print a warning

12.10.5. Memory

Memory errors occur when the computer's random access memory capacity is exceeded

Such errors may occur because:

1. The model you are trying to run is too big for TETRAD.

2. The model you are trying to run is too big for your computer's memory.
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3. The significance level is too large for the model you are analyzing.40

4. Too many units of suggested sets have been requested

12.10.6. Semantic Errors TETRAD Will Not Recognize

We list below some mistakes that are likely to cause TETRAD to give poor results. They

are especially difficult to locate because syntactically there is nothing to cause an error

message from TETRAD. Everything looks fine, but when TETRAD'S recommendations are

subjected to other methods of evaluating linear models (e.g. LISREL's chi-square calculator),

the results are disastrous.

1. The Data File is faulty.

There might be a typo in the correlations (e.g. a number was entered
incorrectly), or there might be incorrect variable names bound to a correlation.

2. The Graph is faulty.

a The graph for which suggested trek additions were requested is not
skeletal and has a measured variable directly connected to two or more
latent variables.

b. The wrong graph was entered.

3. The General Assumptions were faulty.

a The initial skeleton is a poor model.

b. The assumptions of structural equation models (See Chapter 2, section
6) do not hold

c. The sample is inadequate or unrepresentative.

12.11. TETRAD COMMANDS
TETRAD is not sensitive to the case of the characters that a user types in (except for

variable names). Also, TETRAD recognizes any non-ambiguous substring of a command

For example, if a user enters "ru", TETRAD will recognize the "RUN" command. However, if

40
TETRAD is forced to do more computation on the same model and data set for larger values of significance level. When

significance level is increased fewer equations "hold" in the data, consequently fewer edges are prohibited from being
suggested as additions. The computational demands go up when the number of admissible candidates to a suggested set of
treks go up.
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a user enters "r", then TETRAD will print an error message pointing out that "r" is

ambiguous (because there is a "RUN" command and a "RTTR" command).

12.11.1. Types of Commands

TETRAD commands may be divided into three broad categories.

• Output-producing commands cause information about a model to be written to
a file. An example of an output command is "PARTIAL", which outputs
information about which partial equations are implied by a model and which
partial equations hold in the population. (Note that the "OUTPUT command
does not itself produce output and so is not an output-producing command).

• Parameter commands set various parameters (such as the signficance level)
which affect the output produced by the output commands. For example the
"SIGNIFICANCE" command allows the user to reset the significance level which
determines whether a particular equation is said to hold in the data or not
Such a command affects the output produced by output commands such as
"PARTIAL", but does not itself produce any output To invoke a given
parameter command, simply type the name of the command; the command will
them prompt for the new value of the parameter.

• Finally there are miscellaneous commands that are helpful in running the
program, but do not produce or effect the output of the program For
example, the "VIEW" command allows the user to view output files produced
by TETRAD.

12.11.2. Switches

Each output-producing command has a (possibly empty) set of compatible switches.

Adding a switch to a command limits the output of the command to some subset of the

normal output Switches must be entered on the same line as the command itself. For

example, the "RTTR" command has four compatible switches, "MM'V'ML'V'LM", and "LL". If

the user types "Rttr", then the entire Rttr chart is output If the user types "Rttr mm", then

only that part of the Rttr chart involving an edge between two measured variables is

output

It is possible to enter more than one switch on a command line. Any subset of the

switches that are compatible with a given command may be entered in any combination and

in any order. The effect of entering more than one switch on a command line is

cumulative; that is, the output produced by a combination of switches combines all of the

output that would have been produced by each switch individually.

For example, "rttr mm ml" is equivalent to "rttr ml mm". The effect of both of these
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command is to output that part of the rttr chart involving an edge between two measured

variables, or an edge between a measured variable and a latent variable.

12.11.3. Prompting

Each ouput-producing command has certain required information that it needs to produce

its output For example, it is impossible to calculate which tetrad equations are implied

unless a model has been specified For that reason, if an output command is entered and

some of the necessary information is missing, the command will prompt the user for the

missing information If the prompt is followed by a value between square brackets ('[', ']'),

that value is the default value. Simply hitting a carriage return at that point enters the

default value.

12.12. RUNNING TETRAD IN BATCH MODE

Versions of MS-DOS labelled 2.1 and higher are capable of redirecing input and output

To get input from a file named "A" instead of from the terminal simply type "tetrad < A".

"A" should contain all of the commands to TETRAD that one would normally enter from the

terminal. Below is an example of a file which produces a TETRAD session identical to the

example in section , but in which the input is from a file instead of the terminal,

setout

ru
dl.dat
digraph
.4
firstout
exit

Note that the file includes not only commands such as "SETOUTPUT" and "RUN", but also

answers to prompts that TETRAD issues.

To run TETRAD in batch mode simply create a batch file with a ".bat" extension. If input is

to come from file "A", simply put in the batch file the command "tetrad < A". Then invoke

the batch file by typing its name (without the ".bat1 extension). For example, a file "tetbar

could be created The contents of tetbat would be the line "tetrad < A". To invoke tetbat

simply write "tet".
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12.13. COMMAND SUMMARY

12.13.1. Introduction

This section contains a brief list of all of the TETRAD commands together with a brief

summary of what each does. Following the brief list of commands, each command is

described in more detail. This section does i(not) explain what the output means. It uses a

number of concepts explained in chapters 7 and (m-meth).

12.13.2. List of Commands

Output-producing commands: All send output to current output file. Each will
prompt for any parameter values that are needed but that have
not been set by the user.

Compare Detailed effects of adding edge to graph
Partial Partial equations
Rttr Effect on tetrad equations of adding edges to graph
Rtpr Effect on partial equations of adding edges to graph
Run Various outputs depending on setoutput
Standard Summary information
Suggested Sets of edges which will improve graph
Tetrad Tetrad equations

Parameter Commands: Change parameter values

Changegraph Changes current graph
Input Covariance and graph files
Output Output file
Pi Sets parameters of base model for pi calculation
Setparameters Prompts for information about all parameters
Significance Resets the significance level
Units Number different significance levels for suggested sets

Miscellaneous Commands

Edit Line editor for input files
Exit Exits program
Help Help on each command
Setoutput Menu to set various parameters for run command
Status Current value
View Views output files a screen at a time

Parameters: The following are not TETRAD commands. They are user
settable parameters that affect the output of output-producing
commands, and are set by parameter commands.

Covariances
Current graph
Output file
Significance level
Units
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Number of edges in base model
TTR of base model
Number of latent variables of indegree 0 in base model

12.13.3. Command Summary

In this section a brief description of each command is given. The format of each

description is the same.

• The name of the command

• A brief description of the action taken by the command

• If it is an output-producing command, a description of the switches that can
be used with the command This includes:

• The default switch (i.e. what happens if no switch is specified with the
command).

• The name of a switch.

• The effect of using that switch.

• The type (output-producing, parameter, or miscellaneous command).

• A list of the parameters that affect the output of the command (in the case
of output-producing commands) or a list of the parameters that the command
affects (in the case of parameter commands). This section is left out in the
miscellaneous commands.

• If it is an output-producing command, a list of other commands that interact
with the given command

CHANGEGRAPH
Changegraph prompts for a series of edges to be added to or deleted from
the current graph. First it prints out the current graph. Then it
prompts for edges to delete. If there are edges to delete, the user
should enter one of these edges, and press carriage return. The format
of an edge is exactly the same as that used in graph files, that is, a
variable name followed by at least one space, followed by a second
variable name. The command will continue to prompt for edges to delete
until the user enters a carriage return at the prompt This is taken as
a signal to stop prompting for further edges to delete. Then the
command prompts for edges to add in the same fashion. Finally it prints
out the graph with the changes the user has made. While it is possible to
delete edges it is not possible to delete vertices: a vertex is
present even after all of the edges containing it have been deleted

The following is an example of the use of changegraph to add the edge
x1 x2 to the current graph.

>change
Edges to be deleted
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Edge: <CR>

Edges to be added.

Edge: x1 x2
Edge: x1 —> x2
Edge: <CR>

Type

Parameter

Affects parameter

Current graph

COMPARE

Compare prompts the user for an edge to add to the current graph.
Compare prints out all of the equations which were implied in the
original graph but are not implied by the graph with the added edge.
(Note that it is not possible for an equation to be implied in the
extended graph but not in the original graph). For each equation it
prints out whether or not it is implied by the extended graph.
whether or not it holds in the data, its residual and its p value.
At the end it specifies the Rttr, D(l-H) and D(H-I) values for that
edge. Below is an example of the use of the compare command and the
output it produces. (Remember we are assuming the covariance file is
d1.dat and the graph file is digraph).

>compare
Edge: xl x2

The relevant part of the output produced by this command was:

Edge added

xl
xl
xl
xl
xl
xl
xl
xl
xl

Tetrad

x2,
x2,
x2,
x2,
x2,
X2,
X2,
x2r
X2,

X4
x3
x5
x3
x6
x3
X7
x3
x8

: xl x2
Equation

x3 =
x4 =
x3 =
x5 =
x3 =
x6 =
x3 =
X7 =
x3 =

xl
xl
xl
xl
xl
xl
xl
xl
xl

X4,
x3,
x5,
x3.
x6,
x3,
x7.
x3,
x8,

x2
x2
x2
x2
x2
x2
x2
x2
x2

x3
X4
x3
X5
x3
X6
x3
X7
x3

Residual

0.1334
0.1419
0.0794
0.0821
0.0100
0.0083
0.0119
0.0070
0.0102

Impld• Held P(diff.)

y
y
y
y
y

0.0000
0.0000
0.0018
0.0000
0.6631
0.6574
0.5992
0.7127
0.6519
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xl x2, x3 X8 = XI X3, x2 x8 0.0029 y 0.8816
xl x2, x9 X3 = Xl x9, X2 X3 0.0081 y 0.7237
xl x2, x3 x9 = xl x3, x2 x9 0.0064 y 0.7326

Rttr: 0.502 D(I-H): 4 D(H-I): 8

Each of these equations was implied by the original graph, but is not implied
when the edge x1 x2 is added to the graph.

Switches

Default switch: tetrad

Common: Causes the two variables entered by the user to be interpreted
as specifying a correlated error between those variables.

Tetrad: Print out tetrad equations.

Partial: Print out partial equations.

Type

Output-producing

Parameters that affect

Covariances, Current Graph, Significance

See also

Input Changegraph, Significance

EDIT

Edit is a simple line editor. It prompts for a filename to edit If
the file currently exists, its contents are read in to a buffer. Edit
always has a current line, which is where commands that change the file
act Initially, the current line is set to the first line of the file.
'u' and 'd' move the current line up and down respectively. When in
append mode, the user may enter a series of lines which will be entered
into the file just after the current line. Append mode is ended when
the user types a 7 as the first character of a line. Insert mode is
similar except that the text is entered just prior to the current line.
It recognizes the following commands. The changes made are not written to
the file until the 'w' command is issued.
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a Enter append mode (Ended by typing V as first character of line.)
c Prompts the user for a string. This string replaces the current line.
d Move current line down one line. (No effect if at bottom of file.)
e Exit editor, return to TETRAD.
i Enter insert mode. (Ended by typing '.' as first character of line.)
I Display the file.
r Remove the current line.
s Show the current line.
u Move current line up one line. (No effect if at top of file.)
w Prompts for a filename, and writes the file.
<CR> Move current line down one line.

Following is an example of how to use EDIT to create d1.dat

>edit
i { The user inserts the following text into the initially

empty file. Each line is inserted into the file until
a '.' is encountered as the first character in a line. }

T1 T2
T2 T3
T1 T3
T1 x1
T1 x2
T1 x3
T2 x5
T2 x6
T x7
T3 x8
T3 x9

{ This ends insert mode. Hereafter, text entered will
be interpreted as commands rather than as text to be
inserted into the file. }

I { The user lists the file. }

T1
T2
T1
T1
T1
T1
T2
T2

T2
T3
T3
x1
x2
x3
x5
x6

T x7
T3
T3

u
T3
u

x8
x9

x8

T x7
c
T x7

He notes that there is a mistake two fines from the bottom
of the file. Since his current position is the bottom
of the file, he goes up two lines to fix it. }

{ He issues a change command to fix the line. }
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Change to: T3 x7
w { The user save the file.
File name [di.dat]: di.dat
e { The user exits. }

Type

miscellaneous

EXIT
Causes the program to exit

Type

miscellaneous

HELP

Simply typing help gives a brief summary of each TETRAD command. For
a given command C, typing "help C" give a more extensive description of
the command Unlike the command interpreter, "HELP" does not accept
abbreviations of commands.

Help prints its information a screenful at a time, and then pauses until
the user presses another key. Pressing "e" or "E" exits help and
returns to the command prompt Pressing any other key except <CR> prints
the next screenful of information.

The information on each command includes what affect issuing the command
has, what parameters it is affected by or affects, and how each switch
modifies the action of the command

Type

| Miscellaneous

INPUT
Input first prompts the user to enter the name of a covariance file, and
then prompts the user to enter the name of a graph file. If a file does
not exist the user will be re-prompted for a file name, until the user
enters the name of a file that does exist The default value for each file
is the current file.
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Type

Parameter

Affects parameters

Covariances, Current Graph

OUTPUT
Output changes the file where output is sent to <filename>. If the file
already exists, then the user will be asked if he wishes to append further
output to the file. If the user answers no to this question, then the user
will be asked if he wishes to overwrite this file. If the answer to this
question is also no, then the user will be asked to enter another file
name. It the user wishes to send output to the terminal then he or she
should enter the name "con:" in response to the prompt

Type

Parameter

Affects parameter

Output file

PARTIAL
Partial prints out information about a set of partial equations. The
membership of the set is determined by the switches. For each member of
the set partial prints out whether it is implied, whether it holds at the
given significance level, and the probability of obtaining the observed
partial residual given that the residual in the population is 0.

Switches

Default switch: All

All: Information about every partial equations among each
triple of distinct observable variables. If this switch
is on, the other switches are ignored

Held: Information about every partial equation among each
triple of distinct observable variables that holds at
the given significance level.
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Implied: Information about every implied partial equation among
triples of distinct observable variables.

Type

Output-producing

Parameters that affect

Covariances, Graph File, Significance

See also

Input Changegraph, Significance

Parameters that affect

Covariances, Current graph, Significance, Number of edges in base model
TTR of base model, Number of latent variables of indegree 0 in base model

See also

Input, Changegraph, Significance, Pi

PI
Pi is a command used to set the paramaters of the base model. In order to
calculate the pi value of a model three things must be known about the base
model:

• The number of edges.

• The TTR

• The number of latent variables with 0 indegree.

"PI" first asks if the user wishes to use a model with one
latent variable connected to every other variable by a single edge
as the base model. (Henceforth, such a model will be called a star
model, if the user answers "y" or "Y", then TETRAD will automatically
set the parameter values of the base model to equal those of the star
model. The covariances among variables are those specified in the
covariance file. The variables in the star model are those appearing
in the graph file. If these files have not been specified then
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TETRAD will prompt for them. The advantage of using a star model
as a base model is that it makes the pi value of any model non-negative,
since it implies all possible tetrad equations. If the "PI" command is
never issued, the star model is what TETRAD uses as a base model.

If the user answers no to the first question, then he or she is asked
if the current model should be the base model. If the user answers
"y" or "Y", then TETRAD will automatically set the parameter values of
the base model to equal those of the current model. Once again, the
current model is based upon the current graph and covariance files; if
these have not been specified then TETRAD will prompt for them

If the user answers no to the second question, then TETRAD will prompt the
user to enter the number of edges, TTR, and number of latent variables of
zero indegree for the base model

Once a "PI" command has been issued, the base model will remain unchanged
until the next "PI" command is issued (Upon entering TETRAD,
if no "PI" command is issued, the parameters of the base model are based
upon the star model derived from the first covariance and graph files
entered)

Type

Parameter

Affects parameters

Number of edges in base model, TTR of base model.
Number of latent variables of indegree 0 in base model

RTPR

For each edge in a given set, Rtpr prints out what effect adding that edge
to the current graph will have (as long as the Rtpr is greater than 0).
The set of edges includes all edges that are not currently in graph, and
correlated errors between each pair of variables that do not have an edge in
either direction between them. The information printed includes how much the
TPR of the current graph will be reduced, how much (PI-PH) will be reduced,
and how much (PH-PI) will be increased The names given to these quantities
are:

I(PH-PI): The increase in the number of equations that hold, but aren't
implied

D(PI-PH): The decrease in the number of equations that are implied,
but don't hold

Rtpr The reduction in the total tetrad residual.
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Switches

none

Type

Output-producing

Parameters that affect

Covariances, Current graph, Significance

See also

Input Changegraph, Significance

RTTR

For each edge in a given set Rttr prints out what effect adding that edge
to the current graph will have (as long as the Rttr of the added edge
is greater than 0). The information printed includes how much
the TTR of the current graph will be reduced, how much (I-H) will be
reduced how much (H-l) will be increased and the pi value of the
modified model. The names given to these quantities are:

I(H-I): The increase in the number of equations that hold, but aren't
implied

D(l-H): The decrease in the number of equations that are implied,

but don't hold

Rttr: The reduction in the total tetrad residual.

Pi: The pi value of the model.

Switches

Default Switch: All

All: Each edge that is not already present in the graph, and each
correlated error between pairs of observable variables that
have no edge in either direction between them. If this switch
is on, the other switches are ignored

LI: Each latent-latent edge that is not already in the graph.

Lnrr Each latent-measured edge that is not already in the graph.
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Ml: Each measured-latent edge that is not already in the graph.

Mm Each measure-measured edge that is not already in the graph,
and each correlated error between pairs of measured variables
that have no edge in either direction between them.

Type

Output-producing

RUN

Run combines the output of all of the other output-producing commands
in a single command. The exact output of Run depends upon the options
set via the setoutput command However run always produces the
output that is produced by the standard command

Switches

none

Type

Output-producing

Parameters that affect

Covariances, Current graph, Units, Signficance
Number of edges in base model, TTR of base model,
Number of latent variables of indegree 0 in base model

See also

Input, Changegraph, Setoutput Units, Significance, Pi

SETOUTPUT

Setoutput determines what the output of the run command will be. It prints
the following menu
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Tetrad Equations Vanishing Partials

1: Suggested sets FALSE

Statistical Info On: Statistical Info On:

2: All tetrad FALSE 5: A l l p a r t i - FALSE
3: Implied t e trad FALSE 6: Implied p a r t i a l FALSE
4: Held t e t r a d FALSE 7: Held p a r t i a l FALSE

Rttr Chart Info f o r : 8: Rtpr Chart: FALSE
9: Measured * Measured Edges: FALSE
10: Latent - Latent Edges: FALSE
11: Latent - Measured Edges: FALSE
12: Measured * Latent Edges: FALSE

The boolean values next to each option indicate whether it is currently on
or off. The default value for each option is false. In order to toggle
the value of any set of options, simply type the number of each option at
the prompt After the numbers of the options have been typed in, the menu
is printed again so that the user may see the effect that his input has had
en the selected options.

The output produced by the run command if a given option is on is
equivalent to the output of one of the other output-producing commands. These
equivalences are described below.

1: Suggested sets: suggestedsets

2: All tetrad: tetrad all

3: Implied tetrad: tetrad implied

4: Held tetrad: tetrad held

5: All partial: partial all

6: Implied partial: partial implied

7: Held partial: partial held

8: Rtpr rtpr

9: LL rttr II

10: LIN/fc rttr Im

11: ML rttr ml

12: MM: rttr mm

Setting these values has no effect on any other command However, once they
have been set they remain set until the user changes them with another
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"SETOUTPUT command

Type

Miscellaneous

SETPARAMETERS

This command prompts the user to set all of TETRAD'S parameters.
These are, in order

• Covariance file

• Graph file

• Output file

• TTR of base model

• Edges in base model

• Number of latent variable of 0 indegree in base model

• Units of suggested sets

• Significance level

The following is an example of the use of the command to change the
significance level the units of suggested sets, and the output file.

{ The items in brackets are the default values. Entering a <CR> enters
the default value. }
>setpar

Covariance file: [d1.dat] <CR>

Graph file: [digraph] <CR>

Output file: out2

TTR for the base model: [6.37395] <CR>

How many edges in base model [11.0000]: <CR>

How many latent variables of 0 indegree in base model: [1.00000] <CR>

Units of suggested sets [2.00000]: 3

Significance level (between 0 and 1) [0.05000]: .4
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Type

Parameter

Affects parameters

Covariances, Current graph, Significance,
Number of edges in base model, TTR of base model,
Number of latent variables of indegree 0 in base model

SIGNIFICANCE
The significance command sets the significance level used by TETRAD to
determine whether tetrad and partial equations hold in the population. If
a well-formed number between 0 and 1 is not entered, then it will continue
to prompt until one is entered

Type

Parameter

Affects parameter

Significance

STANDARD
The Standard command prints out the TTR, I-H, H-l, number of tetrad
equations that hold in the population, number of tetrad equations explained
by the model, TPR, PI-PH, PH-PI, number of partial equations that hold in
the population, and number of partial equations explained by the modeL

Type

Output-producing

Parameters that affect

Covariances, Current graph, Significance,
Number of edges in base model, TTR of base model,
Number of latent variables of indegree 0 in base model
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See also

Input Changegraph, Significance, Pi

STATUS

Status prints but the current value of each output parameter.
The output options refer to parameters set by the "SETOUTPUT*
command and used by the "RUN" command Following is an example
of the format

The significance level is: -1.0000
The number of suggested sets units is:
The sample size is: 0
Number of edges in base model: 0
TTR of base model: 0.00
TPR of base model: 0.00

Output options:
Suggested sets:
All tetrads:
Implied partials:
Held partials:
LMRttr:
MLRttr:
Prttr:

Type

Miscellaneous

TRUE
TRUE
FALSE
FALSE
TRUE
TRUE
TRUE

Implied tetrads:
All partials:
Held tetrads:
LLRttr:
MMRttr:
MLRttr:

FALSE
TRUE
FALSE
TRUE
TRUE
TRUE

SUGGESTEDSETS

Suggestedsets outputs a series of significance levels. Associated with
each significance level is a series of sets of treks. Each set of treks
will defeat some tetrad equations that do not hold in the population at the
given significance level but will not defeat any tetrad equation that
holds in the population at the given signficance level. A heuristic
procedure is used to calculate the sets, so it is possible, although
unlikely that there are some inaccuracies in the sets output The number
of different significance levels is determined by the units parameter.

The first significance level is the first level at which any suggested sets
exist Each succeeding significance level is the first level at which
there are different suggested sets than at the preceding level.

Below is an example of output from the "SUGGESTEDSETS'1 command with
covariance file d1.dat and graph file digraph.
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Sets of suggested treks at significance level = 0.0063

{x4-x5 }

Sets of suggested treks at significance level = 0.0207

{x3-x4 x3-x5 x4-x5 >

If units had been set at one, then only the suggested sets at significance
level 0.0063 would have been suggested

Switches

none

Parameters that affect

Covariances, Current Graph, Units

See also

Input Changegraph

TETRAD
Tetrad prints out information about a set of tetrad equations. The
membership of the set is determined by the switches. For each member of
the set tetrad prints out whether it is implied whether it holds at the
given signficance level and the probability of obtaining the observed
tetrad residual given that the residual in the population is 0.

Switches

Default switch: All

All: Information about every quartet of distinct observable
variables. If this switch is on, the other switches
are ignored

Held: Information about every tetrad equation among four distinct
observable variables that holds at the given significance level.

Implied: Information about every implied tetrad equation among four distinct
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observable variables.

Type

Output-producing

Parameters that affect

Covariances. Current graph, Significance,
Number of edges in base model TTR of base model
Number of latent variables of indegree 0 in base model

See also

Input Changegraph, Significance, Pi

UNITS
The units command determines how many significance levels the suggestedsets
command will print out suggested sets for. If a well-formed number is not
entered, it will continue to prompt the user until one is entered If a
real number is entered instead of an integer, it will round the number to
the nearest integer.

Type

Parameter

Affects parameter

Units

VIEW
View prompts for a filename. It then prints out the file a screenful at a
time. It recognizes the following commands. These commands are executed
immediately upon being typed in: the user does not enter a CR.
It is possible to split the screen into up to eight windows. Each window
may contain a separate file. It displays only the first 80 characters of a
line.
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b Move up one line. (No effect if top of file on screen)
d Print next screenful. (No effect if bottom of file on screen)
e Exit view mode, return to TETRAD.
f Move down one line. (No effect if bottom of file on screen)
g Get file. (Prompts for file name).
n Move to next window.
p Move to previous window.
r Remove window.
s Split window.
u Print last screenful. (No effect if top of file on screen)

Type

Miscellaneous



376



377

Appendix I
The Grammar of the Input

The Backus-Naur notation is used to formally specify the syntax of the input to TETRAD.

A complete description of this notation can be found in PASCAL A short summary of the

notation appears below.

form

forma formb

(forma formb)

{form}

form*

form+

•a1

forma | formb

a syntactical object of type form

the concatenation of forma and formb

also the concatenation of forma and formb

0 or 1 occurrences of form

any number (including 0) occurrences of form

at least one occurrence of form

the character a

an occurrence of either forma or formb

The correct syntax of the program's input is given below. The following conventions are

used

• The character produced by pressing the space bar is denoted SPACE

• The character produced by pressing the tab key is denoted TAB.

• The character produced by pressing the return key is denoted CR.

space ::= TAB ! SPACE

digit ::= '0 t I t o t I i ! '6 1 ! '8 1 ! f 9 '

alphabetic :: = •a1

•i1

• q.
.y.
•G1

•O1

•W1

1 •&•

i f r -

! 'z1
! 'H1

1 tpt

i 'x 1

!
j
j
i
i

j
i

j

•cf
1 V 1
Jv

•s1
•A1

•I1
•Q«
I V 1

•d1

•tf

•Bf
•J'
•R1

•Zf

•e1

•m1
•u1
•C1

'K'
v S *

• f f

•n1
I V I

•D1

•Lf
.T.

j
i
i
i

!

!
i
i

•g.
•of

•w
•E'
fMf

•U1

f h f

• p .
•x1
• p»
•N'
1V *

!
1
1
|

1
1

1

alphanumeric ::= digit 1 alphabetic

sign = •+• | •-•
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number ::= {sign} {digit} f.f digit+

variable ::= alphanumeric {alphanumeric}

edge ::= variable space* variable

number-line ::= space* number space* CR

edge-line ::= space* edge space* CR

input-line ::= space* number space+ edge-line

variable-line :: = space* variable (space+ variable)* CR

numbersgroup ::= space* number (space* number)

graph-file ::= edge-line+

line-form ::= input-line+

matrix-form ::= variable-line numbersgroup

covariance-file ::= line-form i matrix-form

The covariance file has form covariance-file.

The graph file has form graph-file.

When TETRAD prompts the user for a number, a number line should be entered

When TETRAD prompts the user for an edge, an edge line should be entered
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