
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



Delineating Classes of
Computational Complexity

via Second Order Theories with
Weak Set Existence Principles (I)

by

Aleksandar Ignjatovic

November 1991

Report CMU-PHIL-22

Philosophy
Methodology
Logic

Pittsburgh, Pennsylvania 15213-3890



Delineating Classes of Computational Complexity
via Second Order Theories with Weak Set Existence

Principles (I)*

Aleksandar Ignjatovic

November 5, 1991

Abstract
In this paper we characterize the well-known computational com-

plexity classes of the Polynomial Time Hierarchy as classes of provable
functions of some second order theories with weak comprehension. Our
formalism is somewhat different from Leivant's, who was the first to
introduce such a theory for delineating polynomial time computable
functions. Besides being, in our view, foundationally advantageous,
our formalism also has significant technical advantages: it enables us
to characterize all the classes of the Polynomial Time Hierarchy within
our theories and also to relate these theories very naturally to Buss'
theories of bounded arithmetic 5^. The latter feature enables us to by-
pass both a complicated cut-elimination procedure or a difficult model-
theoretic argument usually used to characterize provable functions of a
theory, and a tedious proof of representability of functions from various
complexity classes in the theories we consider, reducing both problems
to such theorems about bounded arithmetic.

1 Introductory remarks-

Our work is motivated by Daniel Leivant's [4] pioneering work in introduc-

ing polynomial time computable functions in a theory with comprehension

*This paper is dedicated to Alan G. Mallinger, M.D., Associate Professor of Pharma-
cology at the University of Pittsburgh Medical School, who enabled me to work and enjoy
life again. I am also grateful to my colleagues at the Philosophy Department at CMU for
their continuous support.



for open (quantifier-free) positive formulas; nevertheless, we choose to use

a somewhat different foundational framework. Instead of using new func-

tional symbols and Herbrand - Godel equations to represent algorithms, we

treat algorithms as definable partial functions, which is the more common

way of investigating provably recursive functions of a theory. Not only does

the formalism which corresponds to this foundational framework facilitate

applications of results from bounded arithmetic, but we also believe that

such a framework also has foundational advantages. Within the framework

of set-theory, we define natural numbers in a highly impredicative way, as

the intersection of all sets which contain the empty set and are closed for the

successor function S(x) = x U {x}. On the other hand, complex algorithms

on natural numbers are usually introduced in a very predicative way, us-

ing only previously defined and justified algorithms and already calculated

values of the new algorithm; we never use the whole "graph" of the algo-

rithm being introduced and being proved to be correct. We use notation

and definitions from Buss' [1], Ferreira's [2] and Leivant's [4].

2 Base Theory L%(2b
Q)

In this paper we deal with the second order theories of binary strings. Unlike

Leivant's theory L2(QF+) which has a comprehension scheme restricted to

positive open formulas on a language containing new functional symbols for

the algorithms being considered, our base theory has the comprehension

scheme for all sharply bounded formulas of a fixed language L\, independent

of the algorithm which we consider. Symbols of L\ include: a constant



symbol e for the empty string, the relation symbol < with the intended

meaning "of smaller or equal length than", the relational symbol C with the

intended meaning "an initial segment of, the symbol for the membership

relation €, and a functional symbol for each polynomial-time computable

function. In particular, L\ contains symbols S° and Sl for the two successor

functions which "concatenate 0 and 1" respectively at the end of a string.

We have two kinds of variables; the first order ranging over strings and the

second order ranging over sets of strings. We will use "real sets" rather

than just elements of the domain for the second order variables in models

of our theories; we will denote them by boldface letters. Thus, such objects

do not have to be coextensive with any "internal" set in a model of one

of our theories. Sharply bounded formulas (denoted as E o formulas) are

defined similarly as in [2], i.e. they are the closure of atomic formulas under

Boolean operations and sharply bounded quantifiers (Vx C t(y))<p(x, y) and

(3x C t(y))<p(x, y), where t is an arbitrary term of L\. The only difference is

that the set of atomic formulas also includes second order atomic formulas of

the form t(x) € X. Notice that if a S o formula does not contain second order

variables, then it defines a predicate which is polynomial-time decidable. We

now define our base theory.

Definition 1 i^C^o) l* a theory of the language L\ which contains:

1. A few basic properties of common functions and predicates, like the

successor functions, x © y (concatenation of the string y to the string

x) and x®y (concatenation of the string x to itself length of y many

times).



2. Definitions of polynomial time computable functions by limited recur-

sion and composition, exactly as given in Ferreira 's [2].

3. Comprehension Axiom Schema:

VFVy3XVx(x € X «-> <p{x,y,Y))

where <p is a £0 formula not containing variable X.

Definition 2 Let M be a model of L$(l?0), and letC be the collection of all

elements of the second order part of the domain of M, denoted by Set(Ai),

(i.e. sets in the sense of A4), which contain the empty string and are closed

under all functions fM, for f £ L\. Thus, C is the collection of all elements

V e Set(M) such that e 6 V and that for all x € V and any f 6 L\ also

fM(x) e V. We then define W = {x\ for all X in C,x 6M X}.

Obviously W need not be the extension of any set in the sense of M;

more over, since the collection C is a collection of objects closed under in-

finitely many functions, it is not clear that W is definable in M at all.

Thus, to make our statements simpler, we add to the language L\ a first

order unary predicate symbol W(x) and interpret it always as W defined

above. The structure obtained in this way we denote by Mw. We will show

that in fact W is definable in any theory containing ijC^o)-

We now prove two important properties of structures Mw, where M is

a model of i^C^o)? a n d W(x) is interpreted as above.

Lemma 1 Let Mw be as above. Then

(i)

Mw \= Vx(Vy C x)(W(x)



(ii) W equals to the intersection of all sets which contain the empty string

e and which are closed under the successor functions S°(x) and Sx(x).

Proof: We use a trick that can be called "speed-up induction method"; it

is the basis for quite a few of our proofs. Let x Q y denote the polynomial

time function which cuts off the initial segment y of a segment x; if y is

not an initial segment of x then x Q y equals the empty string. Also, let

x © y denotes the string obtained by concatenating string y to the string x.

Assume xo 6 W i.e. W{XQ) and let T be any set which contains the empty

string e and is closed under both successor functions. Consider formula,

denoted by 0(z,xo), given by

(Vx C xo)(Vy C xo)(y C xA(x9y 1 *)A(V* C y){t G f ) - ^ (V* C x)(t € ?)).

Let TO = 50(5°(...5°(£)...)), with m iterations of 5°(x).

Claim 1 The following are true in Mw:

(i)

(ii) for arbitrary natural number m,

, x0) — Q(z <g) m, x 0 ) ) .

Part (i) of the Claim follows immediately from the definition of 0. To

prove (ii), assume 0(z,xo) and fix arbitrary substrings x and y of xo such

that x Q y < z ®m. Consider the sequence to,^i, ...,^m, such that t0 = y,

U+i = U © z, i < TO; we now apply TO times 0(z,xo) to get (ii).



Coming back to the proof of Lemma 1 consider now formula

given by

-< z2 A (z2 <Zi®w)A 0(*i ,x o ) -> 0(*2,x0)).

Recall that x ®y denotes the result of concatenating x to itself length of y

many times, and is consequently an equivalent of the "smash" function of

the "standard " bounded arithmetic.1 Let also wk = w ® w... ®w,k times,

Kit.

Claim 2 The following are true in Mw

(i)

(ii) for all natural numbers &, m and n,

*(£, x0) A Vw(¥(w, x0) -+ V((wk ® m) 0 n, x0)),

To prove Claim 2, part (i) follows from the definition of $ and the cor-

responding property of 0; to prove (ii) notice that $(£,xo) holds trivially.

Assume $(w;,xo), and let z\,z2 and w be arbitrary elements such that the

antecedent of the instance of the matrix of ty((wk ® m) © ri, xo) holds. If

length of w is 0 or 1, then the Claim we are proving follows from (ii) of Claim

1. If length of w is at least two, take p such that (wk (g) TO) © n < tt;p, and

consider the sequence Vo = z\, v,+i = vx\® iy, for 0 < i < p. Using $(W,XQ)

we get 0(t>t,xo) ~^ 0( v t+i ,x o ) for all i < p, which implies #(wp,xo). Now

we just use part (i) to get (ii) of our Claim.

1 Of course 0, 0, ©, are defined by limited recursion and a few basic properties of them
needed in our proof are included in part (1) of Definition 1.



Coming back to the proof of Lemma 1, we note that 0(z,xo) and

*(u;,xo) are both E o formulas; thus, there is an element Xp in the sec-

ond order part of the universe of Mw such that Vw(w € Xy <-+ V(w,x0)).

Claim 2 implies that Xy belongs to C, because e G Xy and for all / € L\

and any W £Xy, f{w)< ((max{w})k ®m)(&n, for some natural numbers

k,m and n. Consequently, by (i), / (w) G X*. Thus, the following holds in

Mw:

Vx(w(x)-+x e x*).

This implies xo 6 Xp, i.e. the following is true in M:

C Z2A {Z2 < Zi ® X0) A 0(Zi,XO) - - 0(^2, X0)).

Take Z2 = ^o and zi = 5°(e); then from the last formula

Mw \= Q(S°(e),xQ) ^ O(xo,x0).

But Q(S°(e),xo) holds iff for all initial segments x and y of xo

) A (V* C y)(t € T) -+ (Vt C x)(t e / " ) ,

which is true because of the fact that T is closed for the successor functions.

Thus 0(xo,xo) holds, i.e. for all initial segments x and y of xo

yCxA(xe!/^0)A(VtC y)(t G f ) ^ (V* C x)(t € ̂ ).

Taking the instance of 0(x o , x o ) with x = xo, y = e, and using that s € T,

we get (yt C xo)(t € ^"). Since xo is an arbitrary element of W and T is

an arbitrary set containing e and closed for S° and Sl, this clearly implies

both (i) and (ii) of our Lemma.



Corollary 1 Set W is definable in any theory containing Z^C ô) by the

usual definition (see e.g. Leivant's [4])

W(x) = VQ(£ 6 Q A Vy(y € Q -

Thus, instead of having to speak model-theoretically about W, we can speak

about theeory £2(^0) proving facts about W(x), where W(x) is the above

formula. One of the most important such facts is the following immedi-

ate corollary of Lemma 1; it can be proved by induction on complexity of

sharply bounded formulas where Lemma 1 is used to handle sharply bounded

quantifiers.

Corollary 2 All sharply bounded formulas are absolute between the universe

and W, i.e. for any sharply bounded formula <p,

Lp
2CZb

0) I- Vf( A W(Xi) - (<p(x) - <pw(x)))-
xiEx

Let init(x,y) be the initial substring of x of length equal to the length of

the string y, or just string x if x •< y.

Theorem 1 (Induction in W) Let <p be a sharply bounded formula with free

variables xJyo,...,yn,Yoy...,Yk; then

x(W(x) A <p(e) A (V« < x)(<p(init(x, s)) -* <p(init(x, S°(s))) — <p(x)).

Notice that parameters y need not be in W.

Proof: The same as proof of Lemma 1, with <p(t) in place of t G T. Notice

that the only fact about the formula t £ T used in the proof was that it is

8



a sharply bounded formula, that e G T and that (V* < x)(init(x,t) G T

Corollary 3 L%(!?0) interprets PTC A of Ferreira's [2].

Proof: Recall that PTC A is basically like the first order part of Z£ (EJ ) ,

plus the Polynomial Induction Schema for sharply bounded formulas in the

form (p(s) A \/x((p(x) -• (<p(S°(x)) A (p(S1(x)))) -• Vxy>(x), where <p can

have free variables besides x. We wiU show that l£ (s j ) h PTCAVK. All

universal axioms of PTC A are clearly true in W. To check the induction

fix a xo in W. Notice that since W is closed for initial segments and since

sharply bounded formulas are absolute (Corollary 2), induction relativized

on W follows from

<p(e) A (V* < xo)(<p(init(xo,t)) - <p(init(x0,S°(t))) -> <p(x0).

But this is clearly a consequence of Theorem 1.

Corollary 4 X5(2j) h Vx(Vy ^

Proof: Let again xo be an arbitrary element such that W{XQ) holds. Con-

sider an arbitrary y such that y < so, and let ^* be an arbitrary set which

contains the empty string e and is closed for successor functions; it is enough

to show that y G T. But obviously

init(y,e) G T A (V* -< xo)(init(y,t) eT^ init(y,S°(t)) 6 T).

Thus, since the formula init(y,t) £ T is sharply bounded, Theorem 1

implies init(y, x) G .F. Now we use y < x to conclude y £ T.



Corollary 4 implies that theory L^i^o) h*8 a rice property that W is

an initial segment of the universe not only in the sense that it is closed for

taking the substrings of any string in W, but also for taking all strings of

length smaller or equal to the length of a string in W. Thus, W is just a

piece of the complete binary tree "up to" a certain height. Recall that W is

closed under all functions of L\. These two facts are extremely useful and

have the following direct consequence.

Corollary 5 In ^ ( S Q ) anV bounded formula (i.e. any formula obtained

by closing first and second order atomic formulas for Boolean operations,

sharply bounded quantifiers and bounded quantifiers) is absolute between W

and the universe, i.e. for any such formula ^(xo, ...£&),

L*2{%) h Vx( f\ W(xi) - (tff) - <p(g)w)).
xi€x

We are now ready to characterize the levels of polynomial hierarchy as classes

of provable functions of theories extending theory Z^^o) by stronger com-

prehension and with an inductive definition of sequences which are "num-

bers".

3 Delineating The Polynomial Time Hierarchy

In order to delineate all the levels of the Polynomial Time Hierarchy we

need stronger Comprehension Schema. Intuitively, stronger comprehension

allows us to construct and prove correctness of algorithms which have more

complex properties (recall that sets can be seen as extensions of properties

in Frege's sense). This, on the other hand, can cause further restriction on

10



what sequences are "numbers", because there might be more sets in C to

intersect and get W. Intuitively, this is not surprising. Recall that by our

Corollary 4, in any theory extending £2(^0) *^€ collection of "numbers" W

is the collection of sequences of "sufficiently small" length. Some sequences,

which could be treated as "numbers" for simpler algorithms, might be too

long to allow more complex procedures definable in stronger theories to be

correctly performed on them. Thus, to describe more complex algorithms,

we need more properties (sets) rather than the whole first order universe

satisfying more induction as is the case in theories of bounded arithmetic

like 5j . We feel that when it comes to defining more complex computations,

having more properties (sets) appears to be a more natural requirement than

the requirement that whole universe satisfies more induction. Of course one

can take cuts in models of 5] which satisfy stronger theories of bounded

arithmetic, but this is purely technical device with dubious foundational

interpretation.

Definition 3 The class of formulas S0(Ej) is obtained as a closure for

Boolean operations and sharply bounded quantifiers of the first and second

order atomic formulas and arithmetic (i.e. without second order variables)

Ef formulas.2

Definition 4 I $ ( E S ( £ ^ ) ) is the theory obtained from L%(l?0) by adding the

Comprehension Schema for E0(Sj) formulas.

2Arithmetic £? formulas are first order formulas which have all quantifiers either
bounded or sharply bounded, but only alternations of bounded quantifiers are counted.
See, for example, Ferreira's [2].

11



Definition 5 A function f mapping n-tuples of binary strings into binary

strings is provable in L^i^oi^)) if there is a £* formula <fif(x, y) such that

!>)) h Vf( A W(xi) - 3\y(W(y) A w ( x , y))),

and on the standard structure of binary strings Vx<p/(x, f(x)) is true.

Note that by our absoluteness result (Corollary 5) the first condition is

equivalent to

Definition 6 S£ is the "binary-string version" of fragments of bounded

arithmetic as introduced by Buss [1], but on the language Lp which con-

tains a functional symbol for each polynomial time computable function and

relations C and -<.3 It can be obtained from FerreiraJs PTC A by adding

E* - PIND. Here E^ - PIND is the usual Polynomial Induction Schema,

formulated for strings: <p(eyy)AVx(<p(x,y) - • ((p(S°(x),y)A<p(Sl(x),y))) —

Thus, Ferreira's PTCA+ is in our notation S]- Recall also that Df+1 is the

collection of all functions computable in polynomial time with a E^ oracle.

3Despite the fact that in theories stronger than L^{^0) we do not need all symbols for
the polynomial time computable functions but only those that correspond to the language
of Buss' S£ , we keep them for uniformity reasons. Their presence in the case of Z5(£ o)
is crucial in order to have sufficiently strong induction in the domain W of "number-like"
sequences of Z£(S0). It is easy to see that our techniques of building models of theories
with comprehension from models of bounded arithmetic and the main Theorem from
Section 2 of Chapter 2 in Ferreira's [2] imply that restricting the language without adding
more comprehension produces an unsuitably weak theory, in which not all polynomial time
functions are provable. On the other hand, theory obtained from the theory Z£(£o(£?))
by restricting its language so that it corresponds to the language of S\, with x 0 y playing
the role of the "smash" function x#y , produces a theory of which / ^ ( ^ ( E j ) ) is an
extension by definitions.

12



Theorem 2 Provable functions of L^^oi^)) are exactly U1- functions. In

particular, provable functions of ZJJC ô) ore exactly polynomial time com-

putable functions.

To prove this Theorem we need several lemmas.

Lemma 2 Theory Sj is interpretable in the theory Z£(E0(S*)) witfl w

as the domain of interpretation; functions and relations of 5£ are inter-

preted as restrictions to W of the corresponding functions and relations of

Proof: Obviously all universal axioms of 5^ hold relativized on W. Thus it

suffices to show Z5(E£(l£)) h (Z't-PIND)™. The proof that this induction

schema holds is again similar to the proof of Corollary 1, using the "speed-

up induction method". First of all, our absoluteness result from Lemma 5

and the fact that W is closed for initial segments (Lemma 1) imply that it

is enough to prove in i^^oC^i)) that for any x0 € W,

<p(e,y) A (V* < xo)(<p(init(xo,t),y) - <p(init(xo,S°(t)),y)) -> v>(*0,y).

Consider again Q^(z,x0) given as

(Vx C xo)(Vy C xo)(y C x A ( x 0 y ^ ) A ( W C y)<p(t, y) - (V« C x)ip(t, y)),

and ^ ( w , xo) given as

C XO){VZ2 C

The inductive hypothesis for (p implies that (V* < xQ)(<p(init(x0,t),y) -±

<p(init(xo,S°(t)),y). On the other hand 0^ and 4^ are both sJ(Ej) for-

mulas, and so we can apply an instance of the Comprehension Schema on

13



$^(it;,xo). An inspection of the proof of Lemma 1 shows that these are the

only conditions needed to carry out the same kind of proof here.

Corollary 6 For any formula a of the language of S%
2, if S\ •" & then

The other direction is obtained in the following Lemma.

Lemma 3 For any first order formula a, if L5(E0(S*)) •" <?W, then S2 I- a.

Proof: Let A be any model of 5£. Consider the class of all subsets of A

which are parametrically definable in A by £o(S*) formulas, i.e. formulas

which are the closure of £* formulas for Boolean operations and sharply

bounded quantifiers.4 This class of sets can be taken as the second order

part Set(A) of the universe for a structure A2 of the language L\ whose

first order part of the universe is the universe of A. It is easy to see that

A2 satisfies axioms of Z?J(E0(E*)) because £o(£*) formulas are closed for

Boolean operations and sharply bounded quantifiers. As it is well known, Sl
2

proves induction for £o(S*) formulas (see [3]). Thus, the only set containing

the empty sequence and closed for successor functions in our collection of

EQ(S{) parametrically definable sets is the whole universe. This implies that

W{x) is true of any point x in the universe, and so for any first order formula

cr, A2 (= aw if and only if A f= a. Thus, if S2 V a-> then for some A which

4Notice that the only difference between £$(£•*) and E Q ( E ? ) formulas is that the former
are purely first order formulas, while the latter ones include second order atomic formulas
in the set of formulas which we close for Boolean combinations and sharply bounded
quantification.
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is a model of Sj, A \= -KT, and consequently also A2 ^ -><r. But this implies

In particular, we get the following Corollary.

Corollary 7 Let <p be a £* formula, then

L^^))!- (Vx3ly<p(x,y))w

1/ and only if

Sl
2\-Vx3\y<p(x,y).

The last Corollary and the fundamental result of Buss [1] clearly implies the

claim of Theorem 2.

It is interesting to note that adding the E2 Comprehension Schema (i.e.

the Comprehension Schema for all formulas obtained from the first and sec-

ond order atomic formulas closing for Boolean operations, sharply bounded

quantifiers and existential bounded quantifiers) to £2(^0) produces a theory

(which we denote by X^C^i)) *n which every instance of the Comprehension

Schema for bounded formulas is provable. This is because in this theory

we can replace the inner-most bounded quantifier, say (3x •< t{y))il)(x, y)

of any bounded formula (p with Eg matrix rp (in the prenex normal form of

<p) by < yo,...,yk >€ X^, where X^ is obtained by applying an instance of

the S2 Comprehension Schema. By our results above, this implies that if

we add to our base theory S l 9 then W satisfies S2 (= Ut€u/ ^2) an(* so ^

functions from all levels of the Polynomial Time Hierarchy are provable in

this theory. On the other hand, since any model of £2 can be expanded to

15



a model of L^i^i) by adding all sets parametrically definable by bounded

formulas (and again, due to induction schema, W is equal the whole uni-

verse), we get as before that provable functions of £2(^1) a r e exactly all

functions from all levels of the Polynomial Time Hierarchy.

On the other hand, let S j be all formulas obtained as the closure for

Boolean operations, sharply bounded quantification and bounded existential

quantification of atomic first and second order formulas, but in which all

second order atomic formulas appear positively. Consider a theory which

besides the basic first order axioms has the Comprehension Schema for all

S x formulas of L\\ denote it by Z^C î )• Then provable functions of

this theory are again only polynomial time computable functions. To see

this, consider any model of 5 j , and notice that the collection of all sets

parametrically definable by Ej formulas (with the usual definition of such

first order formulas) satisfy S x Comprehension (positiveness requirement

is here crucial). Again, the only closed definable set which contains the

empty string is the whole universe, and thus we get that for any model A

of S\ there is a model of Z![(l2i+) with A as W. But this clearly implies

that all provable functions of Z^C^*) are provably total functions in 5 ] ,

and thus polynomial time computable.
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