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Abstract

The problem of inferring causal relations from statistical data in the absence of
experiments arises repeatedly in many scientific disciplines, including sociology,
economics, epidemiology, and psychology. In addition, the building of expert systems
could be expedited if background knowledge elicited from experts could be supplemented
with automated techniques using relevant statistics.

Recently, efficient algorithms for determining causal relationships between random
variables (in the form of Bayesian networks) from appropriate statistical data when
there are no unmeasured or "latent" variables have been discovered. (See Spirtes,
Glymour and Schemes 1990, Spirtes and Glymour 1991, Verma and Pearl 1990, and
Pearl and Verma 1991.) Inferring causal relations when unmeasured variables are also
acting is a much more difficult problem. In many cases it is impossible to infer the
structure among the latent variables from statistical relations among the measured
variables. But the presence of latent variables can also make it difficult to infer the
causal relations among the measured variables themselves. When only two variables, A
and B, have been measured, and there is a correlation between the two, this does not
suffice to establish whether A causes B, B causes A, or there is a third unmeasured
variable causing both A and B. Nevertheless, when other variables are measured, more
knowledge about the causal relations between A and B is possible. We will prove in
Theorem 2 that there are some circumstances in which it is possible to establish that A
causes B, rather than that B causes A, or that a third unmeasured variable causes both A
and B; and we will prove in Theorem 3 that there are other circumstances in which the
possibility that A causes B can be eliminated.



Building Causal Graphs From Statistical Data In the
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by Peter Spirtes1

1 Introduction

The problem of inferring causal relations from statistical data in the absence of

experiments arises repeatedly in many scientific disciplines, including sociology,

economics, epidemiology, and psychology. In addition, the building of expert systems

could be expedited if background knowledge elicited from experts could be supplemented

with automated techniques using relevant statistics.

Recently, efficient algorithms for determining causal relationships between random

variables (in the form of Bayesian networks) from appropriate statistical data when

there are no unmeasured or "latent" variables have been discovered. (See Spirtes,

Glymour and Schemes 1990, Spirtes and Glymour 1991, Verma and Pearl 1990, and

Pearl and Verma 1991.) Inferring causal relations when unmeasured variables are also

acting is a much more difficult problem. In many cases it is impossible to infer the

structure among the latent variables from statistical relations among the measured

variables. But the presence of latent variables can also make it difficult to infer the

causal relations among the measured variables themselves. When only two variables, A

and B, have been measured, and there is a correlation between the two, this does not

suffice to establish whether A causes B, B causes A, or there is a third unmeasured

variable causing both A and B. Nevertheless, when other variables are measured, more

knowledge about the causal relations between A and B is possible. We will prove in

Theorem 2 that there are some circumstances in which it is possible to establish that A

causes B, rather than that B causes A, or that a third unmeasured variable causes both A

and B; and we will prove in Theorem 3 that there are other circumstances in which the

possibility that A causes B can be eliminated. The proofs are given in the Appendix.

2 Directed Acyclic Graphs
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Causal processes between a set of random variables V are represented by a directed

acyclic graph over V, where there is an edge from A to B if and only if A is an immediate

cause of B relative to V (i.e. there is a mechanism by which A causes B that is not

blocked by holding fixed any of the other variables in V.) If there is a directed path from

A to B in the causal graph, we will say that A is a (possibly indirect) cause of B. (In

what follows, we will capitalize random variables, and boldface any sets of variables.

We will use the terms "vertices in a graph" and "variables in a graph" interchangabfy.)

A directed acyclic graph G over a set of random variables V can also be used to represent

the set of probability distributions over V that satisfy the following two conditions:

Markov Condition: Let Parents(X) be the set of parents of X in G (i.e. the set of Z

such that Z -> X is in G) and Descendants(X) be the set of descendants of X in a graph G

(i.e. the set of Z such that there is a directed path from X to Z in G.) A directed acyclic

graph G and a probability distribution P on the vertices V of G satisfy the Markov

condition if and only if for every X in V, X and V\({X} u Descendants(X)) are

independent conditional on Parents(X).

Faithfulness Condition: If G is a directed acyclic graph G and P is a distribution over

the set of vertices V in G, then P is faithful to G if and only <G,P> satisfy the Markov

condition and every conditional independence relation true in P is entailed by the Markov

condition for G.

If a distribution is placed over the exogenous variables (variables of zero indegree) in

the causal graph of a causal process, which in turn affect the values of other random

variables, the result is a joint distribution over all of the random variables. In that

case, we will say that the causal process generated the joint distribution. We assume

that the distribution generated by a causal process satisfies the Markov and Faithfulness

conditions for the causal graph of that process; we will call this the Causa l

Faithfulness Assumption. In Pearl's terminology (Pearl 1988) the causal graph is

a Bayes network of any distribution that it generates.

In a directed graph G, we will write X -> Y if there is an edge from X to Y in G, and we

will say that X is parent of Y. X and Y are adjacent in a directed graph G if and

only if either X -> Y or Y -> X in G. If X and Y are adjacent in G, we will also say that X

is a neighbor of Y and Y is a neighbor of X. In a directed acyclic graph G, an

undirected path U from X to Y is a sequence of vertices starting with X and ending

with Y such that for every pair of vertices A and B that are adjacent to each other in the

sequence, A and B are adjacent in G, and no vertex occurs more than once in U. In a



directed acyclic graph G, a directed path P from X to Y is a sequence of vertices

starting with X and ending with Y such that for every pair of variables A and B that are

adjacent to each other in the sequence in that order, the edge A -> B occurs in G, and no

vertex occurs more than once in P. X and Y are adjacent on path P (as distinct from

adjacent in the graph) if and only if X and Y are adjacent in the sequence P. An edge

between X and Y occurs in a path P (directed or undirected) if and only if X and Y

are adjacent in P. If an undirected path U contains an edge between X and Y, and an edge

between Y and Z, the two edges collide at Z if and only if X -> Y and Z -> Y in G. On an

undirected path U, Z is an unshielded collider if and only if there exist edges X -> Y

and Z -> Y in U, and Z and X are not adjacent in G. X is an ancestor of Y and Y is a

descendant of X if and only if there is a directed path from X to Y. (We count the

sequence consisting of a single vertex <X> as a directed path from X to X, so X is its own

ancestor and descendant, although it is not its own parent or child.) X, Y, and Z form

triangle X-Y-Z in G if and only if X is adjacent to Y, Y is adjacent to Z, and Z is

adjacent to X in G. A trek between X and Y is either a directed path from X to Y, a

directed path from Y to X, or a pair of directed paths from some third variable Z to X and

Y respectively that intersect only at Z.

Verma and Pearl (see Pearl 1988) have shown how to calculate the conditional

independence relations that are entailed by distributions satisfying the Markov condition

for a graph G using the d-separability relation. In graph G, a path U d-connects

variables X and Y given a set of vertices S not containing X or Y if and only if (i)

every collider on U has a descendent in S and (ii) no other vertex on U is in S. Vertices

X and Y are d-separated given a set S not containing X and Y if and only if no path

d-connects X and Y given S. Disjoint sets of vertices X and Y are d-separated given S in

G if and only if every member of X is d-separated from every member of Y given S in G.

If distribution P satisfies the Markov and Faithfulness Conditions, then for disjoint sets

of vertices X, Y, and Zf X is independent of Y conditional on S if and only if X is d-

separated from Y given S in G (Pearl 1988).

We say that V is causally sufficient if and only if every cause of any two members of

V is itself in V. If the distribution P is generated by some causal process, then given the

Causal Faithfulness Assumption, P is faithful to some directed acyclic graph; however, if

a set of measured variables V is not causally sufficient, the marginal distribution of P

over V may not be faithful to any directed acyclic graph. Our strategy for making

inferences about causal relationships when latent variables may be present is to find



properties held in common by all directed acyclic graphs that have faithful distributions

for which P could be the marginal.

3. Spurious Causal Dependencies

In a directed acyclic graph G over a set of variables V, if A and B are adjacent in G, then A

and B are not d-separated by any subset of V\{A9B}. Hence under the assumption of

causal sufficiency, either A is a direct cause of B or B is a direct cause of A relative to V

if and only if A and B are independent conditional on no subset of V. (Recently more

efficient and reliable algorithms for determining causal structure from statistical data

when there are no latent variables have been devised. See Spirtes, Glymour and Schemes

1990, Spirtes and Glymour 1991.) At first glance, it appears that this technique can be

generalized to the case where V is not causally sufficient by inferring from the

dependence of A and B conditional on every subset of V\{A,B} that either A is a direct

cause of B relative to V, or B is a direct cause of A relative to V, or there is some latent

variable L that is a common cause of both A and B. Unfortunately, this is not the case, as

the following example shows.

- • B

Figure 1: Graph G

Let V = {A,B,C,L} and O = {A,B,C}. O is not causally sufficient because L is a cause of

both B and C which are in O, but L itself is not in O. A and C are not d-separated by any

subset of 0\{AyB}, so in any marginal of a distribution faithful to G, A and B are not

independent conditional on any subset of 0\{A,B}. Nevertheless, A is not a direct cause of

C relative to O, C is not a direct cause of A relative to O, and there is no latent common

cause of A and C. If the algorithms for the causally sufficient case where applied to O,

they would find, erroneously that A and C are adjacent. Our problem is to find a more

reliable procedure.



4. Inducing Paths

Given a directed acyclic graph G over a set of variables V, and O a subset of V, Verma and

Pearl (1990) have characterized the conditions under which two variables in O are not

d-separated by any subset of 0\{A,B}. In a directed acyclic graph G over a set of

variables V, an undirected path U between A and B is an inducing path over a subset

O of V if and only if every member of O on U is a collider on U, and every collider is an

ancestor of either A or B. (We will sometimes refer to members of O as observed

variables.)

Theorem 1 : In a directed acyclic graph G over V, where 0 is a subset of V, A and B are

not d-separated by any subset of 0\{A,B} if and only if there is an inducing path over the

subset O between A and B.

In Figure 1, the inducing path between A and C is <A,B,LC>.

4. Inducing Path Graphs

The inducing paths relative to O in a graph G over V can be represented in the following

structure described (but not named) in Pearl and Verma (1990). In an inducing path

graph G' for directed acyclic graph G over a subset of variables O there is

an edge between variables A and B with an arrowhead at A if and only if A and B are in O,

and there is an inducing path in G between A and B relative to O that is into A (i.e. there

is an edge in the path with an arrowhead into B.) Note that in an inducing path graph,

there are two kinds of edges: A -> B means that there every inducing path over O

between A and B is out of A and into B, and A <-> B means that there is an inducing path

over O that is into A and into B. This latter kind of edge can only occur when there is a

latent common cause of A and B.

We can extend the concept of d-separability to inducing path graphs without

modification, if we interpret directed paths in inducing path graphs as paths containing

only edges with one arrowhead, and undirected paths as containing edges with either

single or double arrowheads. If G is a directed acyclic graph, G' is the inducing path

graph for G over O, and X, Y, and S are disjoint sets of variables included in O, then X

and Y are d-separated by S in G' if and only they are d-separated by S in G.

However, there is one very important difference between d-separability relations in an

inducing path graph and in a directed acyclic graph due to the existence of double-headed

arrows in the former. In a directed acyclic graph over O, if A and B are d-separated by



any subset of 0\{A,B} then A and B are d-separated either by a Parents(A) or

Parents(B). This is not true in inducing path graphs. However, we have shown the

following. (The numbering of the lemmas and theorems is taken from the Appendix.)

Let NA(A,B) (mnemonic for non-ancestor) be A if A is not an ancestor of B, and

otherwise let it be B. (In an acyclic graph either A is not an ancestor of B or B is not an

ancestor of A, so the vertex that is NA(A,B) is not an ancestor of the other vertex.)

Let V E DA(NA(A,B)) (double-arrow ancestor) for inducing path graph G' if and only if

1. V is an ancestor of A or B and V <-> NA(AfB) in G\ or

2. V is an ancestor of A or B and V <-> W for W e DA(NA(A,B)).

Let D-SEP(A,B) = Parents(NA(A,B)) u DA(NA(A,B)) u Parents(DA(NA(A,B))) .

Lemma 14: In an inducing path graph G\ if A and B are not adjacent then A and B are

d-separated by D-SEP(A,B).

The importance of this fact is that we can determine whether A and B are adjacent in an

inducing path graph without determining whether A and B are dependent conditional on

all subsets of O.

If O is not a causally sufficient set of variables, then although we can infer the existence

of an inducing path between A and B if A and B are dependent conditional on every subset

of 0\{A,B}, we cannot infer that either A is a direct cause of B relative to O, B is a direct

cause of A relative to O, or there is a latent common cause of A and B. Nevertheless, the

existence of an inducing path between A and B relative to O does contain information

about the causal relationships between A and B, as the following lemma shows.

Lemma 4: If G is a directed acyclic graph over V that contains an inducing path relative

to O (included in V) between A and B that is into B, then there is a directed path from A

to B in G.

It follows from lemma 4 that if O is a subset of V and we can determine that there is an

inducing path between A and B relative to O that is into B, then we can infer that A is a

(possibly indirect) cause of B. Hence, if we can infer properties of the inducing path

graph over O from the distribution over O, we can draw inferences about the causal

relationships between variables, regardless of what variables we have failed to measure.

In the next section we describe algorithms for inferring properties of the inducing path

graph over O from the distribution over O.



5. Partially Oriented Inducing Path Graphs

The following algorithm constructs a partially oriented inducing path graph from

conditional independence relations true of a distribution over O, (or under the

assumption of faithfulness, d-separation relations between variables in O.) There is an

edge between A and B in the partially oriented inducing path graph if and only if there is

an edge between A and B in the inducing path graph. However, there are four kinds of

edges in a partially oriented inducing path graph. An edge A -> B means that in the

inducing path graph, there is an edge A -> B; an edge A <-> B means that in the inducing

path graph, there is an edge A <-> B; an edge A o-> B means that in the inducing path

graph there is an edge between A and B that is into B, but whether it is into A is left

unspecified; and an edge A o-o B means that there is an edge between A and B in the

inducing path graph, but whether it is into A or into B is left unspecified.

We use "*" as a metasymbol to represent any of the three kinds of ends (nothing, V , or

"o") that an edge in a partially oriented inducing path graph can have; the N*N symbol

itself does not appear in a partially oriented inducing path graph. In addition, the

notation A *-* B *-* C means that either or both of the edges between A and B and B and

C are out of B, although whether the edge between A and B is out of B, or whether the edge

between B and C is out of B is left unspecified.

The algorithm is divided into two main parts. First, the adjacencies in the partially

oriented inducing path graph are determined. Then the edges are oriented in so far as

possible. In order to state the algorithm, one more definition is needed.

In an inducing path graph G, E is a discriminating vertex for C with respect to

triangle A-B-C using path P and vertex B, if and only either the edge between A

and C is into A and the edge between B and A is out of A, or the edge between A and C is out

of A and the edge between B and A is into A, and E is a closest vertex to A such that

1. E is not adjacent to B, and

2. P is an undirected path from E to A not containing B or C, and

3. for every vertex V on P, if V is adjacent to V on P and between V and A on P, then

V *-> V in G, and

4. every vertex V on P between E and A is adjacent to B in G, and

5. except for the endpoints of P, V is a collider on P if and only if V is a parent of B.

Figure 2 illustrates the concept of a discriminating vertex.



• F

Figure 2: E is a discriminating vertex for C with respect to triangle

A-B-C using vertex B and path <E,F,G,A>

Causal Inference Algorithm2

If G is a directed acyclic graph over V , and V is a subset of V , the input to the algorithm
is the set of d-separation relations involving just members of V that is true in G. Let
AQ(A ,B ) denote the set of vertices adjacent to A or to B in graph Q, except for A and B
themselves. (Since the algorithm is continually updating Q, A Q ( A , B ) is constantly
changing as the algorithm progresses.)

A.) Form the complete undirected graph Q on the vertex set V.

B.) If A and B are d-separated by any subset S of V, remove the edge between A and B,

and record S in D(A,B).

C.) Let F be the graph resulting from step B. Orient each edge as o-o. For each triple of

vertices A, Bf C such that the pair A, B and the pair B, C are each adjacent in F but the

pair A, C are not adjacent in F, orient A *-* B *-* C as A *-> B <-* C if and only if B is

not in D(A fC).

D. repeat

If there is an edge A *-> B, and an edge B *-* C, A and C are not adjacent, and

there is no arrowhead into B, then orient B *-* C as B -> C,

else if there is a directed path from A to B, and an edge A *-* B, orient A *-*

B as A *-> B,

2As we explain in more detail in Section 8, the Causal Inference Algorithm uses some

ideas from the Inductive Causation algorithm described in Pearl and Verma (1990).



else if V is a discriminating vertex for M using R in triangle P-M-R then

if M is in D(V,R) then mark M as a non-collider on subpath P *-* M *-

* R

else orient P *-* M *-• R as P *-> M <- * R.

else if P *-> M *-« R then orient as P *-> M -> R.

until no more edges can be oriented.

Unfortunately, the Causal Inference Algorithm as stated is not practical for large

numbers of variables because of the way the adjacencies are constructed. While it is

theoretically correct to remove an edge between A and B from the complete graph if and

only if A and B are d-separated by some subset of 0\{A,B}, this is impractical for two

reasons. First, there are too many subsets of 0\{A,B} on which to test the conditional

independence of A and B. Second, for discrete distributions, unless the sample sizes are

enormous there are no reliable tests of independence of two variables conditional on a

large set of other variables.

Remember, however, that in an inducing path graph if A and B are d-separated by any

subset of O, then they are d-separated by D-SEP(A,B). Unfortunately, until we have

actually constructed the inducing path graph we do not know which variables are in D-

SEP(A,B). Nevertheless, as the partially oriented inducing path graph is constructed,

we can determine that some variables are definitely not in D-SEP(A.B). This reduces

the number and size of the subsets of O that have to be checked in order to determine

whether A and B are adjacent in the inducing path graph.

We will determine which edges to remove from the complete graph in three stages.

First, we will remove the edge between A and B if they are independent conditional on

subsets of neighbors of A and B. This will eliminate many, but perhaps not all of the

edges that are not in the inducing path graph. Second, we will orient edges by

determining whether they collide or not. Third, using the partially oriented inducing

path graph n that we have constructed thus far, we will form two sets of vertices

Possible-D-SEP(A,B), and Possible-D-SEP(B,A) one of which includes every

vertex that could possibly be in D-SEP(A,B). (We need two such sets because we do

cannot determine from the partially oriented inducing path graph constructed thus far

whether A is a descendant of B or B is a descendant of A.) Finally, we will remove the

edge between A and B if A and B are independent conditional on any subset of either

Possible-D-SEP(A,B,7c) or Possible-D-SEP(B,A,ic). Once we have obtained the

10



correct set of adjacencies, we will unorient all of the edges, and then proceed to re-

orient them. For a given partially constructed partially oriented inducing path graph n,

Possible-D-SEP(A,B,ft) is defined as follows.

1. A u Neighbors(A) is in Possible-D-SEP(A,B,*) .

2. If X and Z are in Possible-D-SEP(A,B,jc) and there is an edge between Y and X and

between X and Z, but not between Y and Z in *, then if the edge between Y and X collides

with the edge between X and Z in n at X, then Y is in Possible-D-SEP(A,B,7c).

3. If X and Z are in Possible-D-SEP(A,B,*) and there are edges between Y and X and Y

and Z in *, then Y is in Possible-D-SEP(A,B,7c).

Fast Causal Inference Algorithm

If G is a directed acyclic graph over V, and V is a subset of V, the input to the algorithm
is the set of d-separation relations involving just members of V that is true of G. Let
A Q ( A , B ) denote the set of vertices adjacent to A or to B in graph Q, except for A and B
themselves. (Since the algorithm is continually updating Q, A Q ( A , B ) is constantly
changing as the algorithm progresses.)

A.) Form the complete undirected graph Q on the vertex set V.

B.) n = 0.

repeat

repeat

select a pair of variables X and Y that are adjacent in Q such that A Q ( X , Y ) has

cardinality greater than or equal to n, and a subset S(X,Y) of A Q ( X , Y ) of

cardinality n, and if X and Y are d-separated by some subset of S(X,Y) delete

the edge between X and Y from Q, and record the subset in D(X,Y)

until all variable pairs X and Y such that AQ(X,Y)has cardinality greater than n

and all subsets S(X,Y) of A Q ( X , Y ) of cardinality n are exhausted,

n = n + 1.

until for each pair of adjacent vertices X, Y, A Q ( X , Y ) is of cardinality less than n.

C. Let P be the graph resulting from step B. Orient each edge as o-o. For each triple of

vertices A, B, C such that the pair A, B and the pair B, C are each adjacent in P but the

pair A, C are not adjacent in P, orient A *-* B *-* C as A *-> B <-* C if and only if B

is not in D(A,C).

1 1



D. For each pair of variables A and B connected by an edge in F, if A and B are d-

separated by any subset of Possible-D-SEP(A,B,F) or any subset of Possible-D-

SEP(B A F ) remove the edge between A and B.

The algorithm then orients an edge between any pair of variables X and Y as X o-o Y, and

proceeds to re-orient the edges in the same way as steps C and D of the Causal Inference

algorithm. The correctness of the algorithm is proved in the Appendix.

6. Preservation Theorems
Using the partially oriented inducing path graph output by the Fast Causal Inference

Algorithm, and the inferences about graphs that can be drawn from inducing path graphs,

we have the following two results.

Theorem 2: If n is the partially oriented inducing path graph of directed acyclic graph

G over Ov and there is a directed path U from A to B in n, then there is a directed path

from A to B in G.

A semi-directed path from A to B in partially oriented inducing path graph n is an

undirected path from A to B in which no edge contains an arrowhead pointing towards A

(i.e. if X and Y are adjacent on the path, and X is between A and Y on the path, then there

is no arrowhead at the X end of the edge between X and Y.)

Theorem 3: If n is the partially oriented inducing path graph of directed acyclic graph

G over O, and there is no semi-directed path from A to B in K, then there is no directed

path from A to B in G.

As an example of the application of the Fast Causal Inference Algorithm, suppose that the

causal structure depicted in Figure 3 is the true causal structure among a set of

variables related to breathing dysfunction, and that all of the variables except those in

boxes, (Environmental Pollution and Genotype) are measured. (We are not proposing

this graph as a model of breathing dysfunction; we constructed it merely to illustrate the

application of Theorems 2 and 3.) The partially oriented inducing graph over the

measured variables constructed by the Fast Causal Inference Algorithm is depicted in

Figure 4.

12
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Figure 3: Causal Graph of Breathing Dysfunction
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of cigarettes

Figure 4: Partially Oriented Inducing Graph of Breathing Dysfunction

Over Measured Variables
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By applying Theorem 2, we infer that smoking does cause breathing dysfunction. By

applying Theorem 3, we infer that smoking does not cause heart disease.

Note that in order to infer that smoking causes breathing dysfunction, it is necessary to

measure two causes of smoking (whose collision at smoking orients the edge from

smoking to cilia damage.) In general, this suggests that in the design of studies intended

to determine if there is a causal path from variable A to variable B, it is useful to

measure not only variables that might mediate the connection between A and B, but also

to measure possible causes of A.

7. Open Questions
The following interesting open questions about partially oriented inducing path graphs

remain.

Question 1: Let us say that the vertex B is a collider on an undirected path U in

partially oriented inducing path graph n if and only if there are edges C *-> B <-

* A on U; otherwise B is a non-collider on U. X and Y are p-separated by Z in

partially oriented inducing path graph n if and only if there is an undirected path U

between X and Y such that every non-collider on U is not in Z and every collider on U has

a descendant in Z. If G is a directed acyclic graph with partially oriented inducing path

graph *, are X and Y d-separated by Z in G if and only if X and Y are p-separated by Z in

n?

Question 2: If K is the partially oriented inducing path graph of some directed acyclic

graph G, is there more information about the orientation of inducing paths in every

directed acyclic graph with partially oriented inducing path graph n than is represented

in K?

Question 3: If some distribution with the same conditional independencies as P(O) is the

marginal of a distribution faithful to a directed acyclic graph, is P(O) the marginal of a

distribution faithful to a directed acyclic graph?

8. Historical Note

In a series of papers (Pearl and Verma 1990, Pearl and Verma 1991, Verma and Pearl

1990, and Verma and Pearl 1991) Verma and Pearl describe an "Inductive Causation"

algorithm that outputs a structure that they call a pattern (or sometimes a completed

hybrid graph) of a directed acyclic graph G over a set of variables O. Their algorithm

14



differs from the Causal Inference Algorithm in two main respects. First, early versions

of the algorithm did not distinguish between A -> B and A o-> B; this distinction was

introduced (in a different notation) in Spirtes and Glymour (1990a). Second it does not

use discriminating vertices to orient any edges. (And unlike the Fast Causal Inference

Algorithm it cannot be applied to large numbers of variables because it required testing

the independence of some pairs of variables conditional on every subset of 0\{A,B}.) The

most complete description of their theory appears in Pearl and Verma (1990). The key

ideas of an inducing path, an inducing path graph, and the proof of (what we call)

Theorem 1 all appear in this paper. Unfortunately, the two main claims that they make

about patterns in this paper are both false.

In order to state their claims we need the following definitions. A pattern over O

contains three kinds of edges: directed edges (e.g. A -> B), undirected edges (e.g. A - B),

and bi-directed edges (e.g. A <-> B.) Directed paths and descendants are defined in a

pattern the same way they are defined in acyclic directed graphs; however, an undirected

path in a pattern can contain bidirected edges and undirected edges as well as directed

edges. Edges between A and B, and B and C, collide at B on an undirected path in a pattern

if both edges have arrowheads at B. A and B are h-separated by S in a pattern n if and

only if there is no undirected path between A and B in which every collider has a

descendant in S, and no non-collider is in S.

Verma and Pearl claimed first (lemma A.2 in their paper) that if n is the pattern of a

directed acyclic graph G over O, and A and B are in 0, for all S included in O, A and B are

h-separated by S in n if and only if A and B are d-separated by S in G. Their second

claim (Theorem 2 in their paper) was that any two directed acyclic graphs with the

same pattern over O were "equivalent", i.e. they entailed the same d-separation

relations involving just variables in O. The following example shows that both of these

claims are false.

A A A
A • B »C A • B ^C A • B M)

Graph G Graph G' Pattern of G and G'
Over O - {A,B,C,D}

Figure 5
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According to the Verma-Pearl algorithm both G and G' in Figure 5 have the pattern K

over O = {A,B,C,D} depicted in Figure 5. (The edge between C and D in the pattern is

oriented from C to D in order to avoid a cycle involving B, C, and D.) However in G A and

C are d-separated by {B,D} but not by {B}, whereas in G' A and C are d-separated by {B}

but not by {B,D}. Hence G and Gv have different d-separation relations among variables § ~

in O even though they have the same pattern. Moreover, A and C are h-separated by S:

{B,D} in the pattern of G\ even though they are not d-separated by {B,D} in G1.

Even though the patterns over O generated by the Verma-Pearl algorithm for G and G9

are identical, the partially oriented inducing path graphs over O generated by the Causal

Inference Algorithm for G and Gv are different. This is because in both cases A is a 1

discriminating vertex, and hence the edge between C and D is oriented differently in the %

partially oriented inducing path graph of G and the partially oriented inducing path | |

graph of G'. The output of the Causal Inference Algorithm for G and G' over O is depicted ;

in Figure 6. *

+»c
Partially Oriented Inducing Partially Oriented Inducing

Path Graph of G over Path Graph of G' over
O = {A,B,C,D} O = {A,B,C,D}

Figure 6

While the proofs of Verma and Pearl's two main claims about patterns contained

fallacies, we have used several of their proof techniques in our proofs.
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Appendix

A.1 Inducing Paths

In a directed acyclic graph G over a set of variables V, an undirected path U between A

and B is an inducing path over a subset O of V if and only if every member of O on U

is a collider on U, and every collider is an ancestor of either A or B. We will sometimes

refer to members of O as observed variables. (The lemmas and theorem in section A.1

are minor variations on lemmas and theorems from Verma and Peart 19?.)

We will use lemmas 1 through 3 to demonstrate that A and B are not d-separated by any

subset of 0\{A,B} if and only if there is an inducing path over the subset O between A and

B. If U is an undirected path from A to Bv and X and Y occur on U, then we will denote the

subpath of U from X to Y as U(X,Y).

Lemma 1: In a directed acyclic graph G, if there is an inducing path relative to O

between A and B that is not into A then for any subset Z of 0\{A,B} there is a d-

connecting path between A and B given Z that is not into A.

Proof. Let U be an inducing path between A and B that is not into A. Every observed

vertex on U is a collider, and every collider is an ancestor of either A or B. If there are

no observed variables on U then there are no colliders on U and U d-connects A and B

given Z. Suppose then that there are colliders on U, and that W is the first collider on U

after A. W is an ancestor of B, because if it is an ancestor of A there is a cycle in G.

U(A,W) is a directed path from A to W. Let D be a directed path from W to B. Because G

is acyclic, D does not intersect U(A,W) except at W. If D does not contain any variable in

Z, then the concatenation of U(A,W) with D is an path that d-connects A and B given Z

that is not into A.

Suppose then that D does contain some member of Z. Because U is out of A, W is a

descendant of A. W has a descendant in Z because W is the source of D, and D contains a

member of Z by hypothesis. It follows that every collider on U that is an ancestor of A

has a descendant in Z. If every collider on U after A has a member of Z as a descendant

then U d-connects A and B given Z, and is out of A. Otherwise, let R be the first collider

after A that is an ancestor of B that does not have a descendant in Z. Let T be the point of

intersection of U(A,R) and a directed path D from R to B closest to A on U. The

concatenation of U(A,T) and D(T,B) is an undirected path out of A. T is not a collider on

the concatenation of U(A,T) and D(T,B) because D(T,B) contains an edge out of T. T is

not in Z because R does not have a descendant in Z. Hence the concatenation of U(A,T) and

D(T,B) d-connects A and B given Z.
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QED.

Lemma 2: In a directed acyclic graph G, if there is an inducing path U relative to 0

between A and B that is into A then for every subset Z of 0\{A,B} there is a d-connecting

path between A and B given Z that is into A.

Proof. If every collider on U has a descendant in Z, then U is a d-connecting path

between A and B given Z that is into A. Suppose then that there is a collider that does not

have a descendant in Z. If the first collider W on U after A that does not have a descendant

in Z is an ancestor of B, let D be a directed path from W to B. Let T be the vertex on

U(A,W) that is the point of intersection of U(A,W) and D closest to A. The concatenation

of U(A,T) and D(T,B) is into A. T is not a collider on the concatenation of U(A,T) and

D(T,B) because D(T,B) contains an edge out of T. T is not in Z because W does not have a

descendant in Z. Hence the concatenation of U(A,T) and D(T,B) d-connects A and B given

Z.

If all colliders that do not have a descendant in Z are ancestors of A, let R be the collider

closest to B on U that does not have a descendant in Z. There is a directed path D from R

to A. Let T be the vertex on U(B,R) closest to B that intersects D. The concatenation of

U(B,T) and D(T,A) is an undirected path from B to A. T is not a collider on the

concatenation of U(B,T) and D(T,A) because D(T,A) contains an edge out of T. T is not in

Z because R does not have a descendant in Z. Hence, the concatenation of U(B,T) and

D(T,A) d-connects A and B given Z.

Otherwise let R be the first collider after A on U that is an ancestor of B that does not

have a descendant in Z and let S be the first collider before R on U that is an an ancestor

of A that does not have a descendant in Z. There is a directed path D1 from R to B and a

directed path D2 from S to A. Let T1 be the vertex on U(S,R) closest to R on U that

intersects D2. The concatenation of U(R,T1) and D2(T1,A) is an undirected path U1

from R to A. T1 is not a collider on LP because D2(T1,A) contains an edge out of T1. T1

is not in Z because S does not have a descendant in Z. Every vertex on U' is either a

collider with a descendant in Z, or a non-collider not in Z. Let T2 be the point of

intersection of D1 and U1 closest to R on U\ The concatenation of D1(T2,B) and Uf(A,T2)

is a path into A. T2 is not a collider on the concatenation of D1(T2,B) and U'(A,T2)

because D2(T2,B) contains an edge out of T2. T2 is not in Z because R does not have a

descendant in Z. Hence every vertex on the concatenation of D1(T2,B) and U'(A,T2) is

either a collider with a descendant in Z or a non-collider not in Z. So the concatenation

of D1(T2,B) and Uf(A,T2) d-connects A and B given Z. Q.E.D.
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Lemma 3: In a directed acyclic graph G, if A and B are not d-separated by any subset Z

of 0\{A,B} then there is an inducing path over the subset O between A and B.

Proof. Suppose that A and B are not d-separated by any subset Z of 0\{A,B}. If there is

an edge between A and B in G, then that edge is an inducing path. Suppose then that there

is no edge between A and B. Let A(A,B) be the union of the ancestors of A or B. If there

is a path U that d-connects A and B given A(A,B) n O then every collider on U is an

ancestor of a member of A(A,B) n O, and hence an ancestor of A or B. Every vertex on U

is an ancestor of either A or B or a collider on U, and hence every vertex on U is an

ancestor of A or B. If U d-connects A and B given A(A,B) n O, then every member of

A(A,B) n O that is on U is a collider. Since every vertex on U is in A(A,B), every

member of of O that is on U is a collider. Q.E.D.

Theorem 1: In a directed acyclic graph G over Vf A and B are not d-separated by any

subset Z of 0\{A,B} if and only if there is an inducing path over the subset O between A

andB.

Proof. This follows from lemmas 1, 2, and 3. Q.E.D.

The following pair of lemmas state some basic properties of inducing paths.

Lemma 4: If G is a directed acyclic graph over V that contains an inducing path relative

to 0 (included in V) between A and B that is not into A, then there is a directed path from

A to B in G.

Proof. Let U be an inducing path between A and B relative to O that is not into A. If U

does not contain a collider, then U is a directed path from A to B. If U does contain a

collider, let C be the first collider after A. By definition of inducing path, there is a

directed path from C to B or C to A. There is no path from C to A because there is no cycle

in G; hence there is a directed path from C to B. Because U is out of A, and C is the first

collider after A, there is a directed path from A to C. Hence there is a directed path from

AtoB. Q.E.D.

Lemma 5: If G is a directed acyclic graph over V that contains an inducing path relative

to 0 (included in V) between A and B that is not into A, then every inducing path relative

to O between A and B is into B.

Proof. By lemma 4, if there an inducing path not into A, and an inducing path not into B,

there is a cycle in G. Q.E.D.

20



A.2 Inducing Path Graphs

In an inducing path graph G' for directed acyclic graph G over a subset of

variables O there is an edge between variables A and B with an arrowhead at A if and

only if A and B are in O, and there is an inducing path in G between A and B relative to O

that is into A.

Unlike a directed acyclic graph, an inducing path graph can contain double-headed

arrows. By lemma 5, however, it does not contain any edges with no arrowheads. If

there is an inducing path between A and B in G that is into A, then the edge between A and

B in G' is into A. However, if there is an inducing path between A and B in G that is out of

A, it does not follow that the edge in G* between A and B is out of A. Only if no inducing

path between A and B in G is into A is the edge between A and B in G' out of A. The

definitions of directed path, d-separability, inducing path, collider, ancestor, and

descendant are the same as those for directed graphs, i.e. a directed path in an inducing

path graph, as in an acyclic directed graph, contains only directed edges (e.g. A -> B).

However, an undirected path in an inducing path graph can contain either directed edges,

or bi-directed edges (e.g. C <-> D.) Also, if A <-> B in an inducing path graph, A is not a

parent of B. In an inducing path graph G we will say that an edge A is into B if A <->B or

A <- B, and that it is out of A if and only if A->B. Note that if G is a directed acyclic

graph, and G' the inducing path graph for G over 0, then there are no directed cycles in

G\

The next series of lemmas show that two variables A and B in O are d-separated in G by a

subset of O if and only if they are d-separated in the inducing path graph Gv by a subset

ofO.

Lemma 6: If G1 is the inducing path graph for G over O and there is a directed path

from A to B in G\ then there is a directed path from A to B in G.

Proof. Suppose there is a directed path D from A to B in G. Let X and Y be any two

vertices along the directed path. There is a directed edge from X to Y in G\ By the

definition of inducing path graph, there is an inducing path between X and Y in G that is

not into X. Hence by lemma 4, there is a directed path from X to Y in G.

In G, the concatenation of the directed paths between vertices that are adjacent on D

contains a directed path from A to B. Q.E.D.

Lemma 7: In a directed acyclic graph G, if there is a sequence S of vertices from X to Y

such that,
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1. for each pair of adjacent vertices V and W in the sequence there is a path that

d-connects V and W given Z\{V,W}, and

2. if a vertex Q in the sequence is in Z, then the d-connecting paths collide at Q,

and

3. if for three vertices V, W, Q in the sequence the d-connecting paths between V

and W, and W and Q collide at W then W has a descendant in Z,

then there is a path U in G that d-connects X and Y given Z. In addition, if all of the

edges in all of the d-connecting paths that contain X are into Xv then U is into X.

Proof. Let U' be the concatenation of all of the d-connecting paths in the order of the

sequence S. U' may not be an undirected path, because it could contain some vertices

more than once. Let U be the result of removing all of the cycles from IT. If each edge on

IT that contains X is into X, then U is into X, because each edge in U is an edge in IT. We

will prove that U d-connects X and Y given Z.

We will call an edge in U containing a given vertex V an endpoint edge if V is in the

sequence S, and the edge containing V occurs on the d-connecting path between V and its

predecessor or successor in S; otherwise the edge is an internal edge.

Every member R of Z that is on U is a collider on U. Suppose first that an edge on U is an

endpoint edge. If there is an endpoint edge containing R then it is into R because by

assumption the d-connecting paths collide at R. If an edge on U is an internal edge then it

is into R because it is an edge on a path that d-connects two variables A and B not equal to

R given Z\{A,B}, and R is in Z. All of the edges on the original d-connecting paths are

into Ft, and hence the subset of those edges that occur on U are into R.

We will now show every collider R on U has a descendant in Z. R is not equal to X or Y,

because the endpoints of a path are not colliders along the path. If R is a collider on any

of the original d-connecting paths then R has a descendant in Z because it is an edge on a

path that d-connects two variables A and B not equal to R given Z\{A,B}. If R is a

collider on two endpoint edges then it has a descendant in Z by hypothesis. Suppose then

that R is not a collider on a d-connecting path from A to B, and not a collider on a d-

connecting path from C to D, but after cycles have been removed from the concatenation

of the d-connecting paths, R is a collider on U. In that case Uf contains an undirected

cycle containing R. Because G is acyclic, the undirected cycle contains a collider. Hence

R has a descendant that is a collider on IT. Each collider on U* has a descendant in Z.

Hence R has a descendant in Z. Q.E.D.
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Lemma 8: If G' is the inducing path graph for G over Ov and there is a path d-

connecting A and B given Z in G\ then there is a path d-connecting A and B given Z in G.

Proof. Suppose that U d-connects A and B in G\ For every edge in U between R and S,

there is an inducing path in G between R and S. By lemmas 1 and 2, there is a path that

d-connects R and S given Z\{R,S} in G.

If there are vertices R, S, and T on U such that R and S are adjacent on U, and S and T are

adjacent on U, and S is in Z, then S is a collider on U. By the definition of inducing path

graph, in G there are inducing paths between R and S, and S and T, that are both into S.

By lemmas 1 and 2, in G there are d-connecting paths given Z between R and S, and S and

T, that are both into S.

If there are vertices R, S, and T on U such that R and S are adjacent on U, and S and T are

adjacent on U, and S is a collider on U, then S has a descendant in Z. By the definition of

inducing path graph, in G there are inducing paths between R and S, and S and T, that are

both into S. By lemmas 1 and 2, in G there are d-connecting paths given Z between R and

S, and S and T, that are both into S. If S has a descendant in Z in G' then by lemma 6 it

has a descendant in Z in G.

By lemma 7, there is a path in G that d-connects X and Y given Z. Q.E.D.

Lemma 9: If G is a directed acyclic graph, and in G there is a sequence of vertices M

starting with A and ending with C such that for every pair of vertices I and J adjacent in

M there is an inducing path W relative to O between I and J, and if J * C then W is into J,

and if I * A then W is into I, and I and J are ancestors of either A or C, then there is an

inducing path between A and C. Furthermore, if the inducing path between A and its

successor in M is into A, then the inducing path between A and C is into A.

Proof. Suppose that in G there is a sequence M of vertices starting with A and ending

with C such that for every pair of vertices I and J adjacent in M there is an inducing path

W relative to O between I and J, and if J * C then W is into J, and if I * A then W is into

A, and I and J are ancestors of either A or C. Let T be the concatenation of these inducing

paths in G. T may not be an undirected path because it might contain undirected cycles.

Let T be an undirected subpath of T between A and C. We will now show that except for

the endpoints, every vertex in O on T is a collider, and every collider on T is an ancestor

of A or C.

Suppose V is a vertex in O that is on T but that is not equal to A or C. Let W be one of the

inducing paths between adjacent vertices in M that is a subpath of T . We will show

23



every edge on W that contains V is into V. If V is not an endpoint of W, then every edge on

W is into V because V is a collider on W. If V is an endpoint of W, then the edge

containing V on W is into V by hypothesis. It follows that V is a collider on T, because the

edges on T are a subset of the edges on inducing paths between variables adjacent in M.

Let R and S be the endpoints of W. We will now show that every vertex on W is either an

ancestor of A or an ancestor of C. By hypothesis, R is an ancestor of either A or C, and S

is an ancestor of either A or C. Because W is an inducing path, every collider on W is an

ancestor of either R or S, and hence an ancestor of either A or C. Every non-collider on

W is either an ancestor of R or S, or an ancestor of a collider on W. Hence every vertex

on W is an ancestor of either A or C. It follows that every collider on T is an ancestor of

A or C, because the vertices on T are a subset of the vertices on the sequence of inducing

paths.

By definition, T is an inducing path between A and C relative to O. Suppose the inducing

path between A and its successor in the sequence is into A. If the edge on T with endpoint

A comes from the inducing path on which A is an endpoint, then T is into A because by

hypothesis that inducing path is into A. If the edge on T with endpoint A comes from an

inducing path in which A is not an endpoint of the path, then T is into A because A is in O,

and hence a collider on every inducing path for which it is not an endpoint. Q.E.D.

Lemma 10: If G1 is the inducing path graph for G over O, Z is included in O, and there

is a path U d-connecting X and Y given Z in G, then there is a path V d-connecting X and Y

given Z in G\ Furthermore, if U is into X in G, then V is into X in G\

Proof. Suppose that in G with inducing path graph G' that U is a path d-connecting X and

Y given Z. We will use the following algorithm to construct two sequences of vertices,

Ancestor, and D-Path. The vertices in D-Path are always observed (i.e. vertices in O),

but might not be on U; vertices in Ancestor are always on the path U, but might not be

observed. For any sequence of vertices, Sequence(n) refers to the nth vertex in

Sequence.

Algorithm D-Path

Ancestor(O) = <X>.

D-connect(O) = <X>.

n = 0.

repeat
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if Ancestor(n) * D-path(n) then

if on U there is no collider C after Ancestor(n) that has D-path(n)

as the first observed variable on a directed path from C to a

member of Z, then Ancestor(n+1) = D-path(n+1) • first

observed variable on U after Ancestor (n);

else

let C2 be the collider closest to Y that has D-path(n) as the

first observed variable on a directed path from C2 to a

member of Z;

if there is no collider between C2 and the first observed

variable after C2 then Ancestor(n+1) = D-path(n+1) =

first observed variable after C2;

else let C1 be the first collider after C2, let

Ancestor(n+1) = C1 and D-path(n+1) = the first

observed variable on a directed path from C1 to a member

ofZ;

else if Ancestor(n) = D-path(n) then

if there is no collider between Ancestor(n) and the next observed

variable V on U, Ancestor(n+1) = D-path(n+1) = V;

else Ancestor(n+1) = first collider after Ancestor(n) and D-

path(n+1) = first observed variable on a path from Ancestor(n+1)

to a member of Z;

n = n + 1.

until Y is the last member of D-path(n).
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Figure 7

For example, when the algorithm is applied to the graph in Figure 7 (where the lower

case vertices are not observed), U = <X,r,S,t,Q,Y>, and the result is Ancestor =

<X,r,Q,Y> and D-path = <X,M,QfY>.

We will now show that either D-path d-connects X and Y given Z in G\ or some other

path in G' d-connects X and Y given Z.

All of the vertices in D-path are observed variables, and hence in G\ By the way that D-

path is constructed, each adjacent pair of vertices A and B in D-path is connected in G by

a trek T(A,B) that contains no observed variables, except for the endpoints. T(A,B) is

constructed out of subpaths of U, and subpaths of directed paths from colliders on U to

vertices in Z. T(A,B) is an inducing path in G, and hence each adjacent pair of vertices

in D-path is adjacent in Gv. The method of construction of D-path makes D-path acyclic.

It follows that D-path is an undirected path from X to Y in G\

If W is not a collider on D-path, then W is on U in G, and is not a collider on U. It follows

that W is not in Z.

We will now show that we can transform D-path into a path D-path' in Gf in which every

collider B on D-path1 is induced by two treks that collide at B in G. We will say that a

vertex B that is a collider on D-path, but is not induced by two treks in G that collide at

B is a collider on D-path but not in G. Let B be the first vertex on D-Path after X that is

a collider on D-path but not in G. At least one of the two inducing treks T(A,B) or

T(B,C) is out of B. Suppose without loss of generality that T(B,C) is out of B. It follows

that B is an ancestor of C. In addition since there is an arrowhead at B in G\ there is an

inducing path between B and C that is into B and C. For any vertex W, we will call the
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vertex adjacent to W on D-path and between W and Y (if it exists) the successor of W on

D-path.

Let E be the vertex on D-path cbsest to C and between X and C such that either

a. the predecessor of E is not into E on D-path, or

b. there is no edge from E to C in G\ or

c. the edge from E to C is not into C in G\ or

d. E is a collider along D-path

if such an edge exists, otherwise let E = X. For every vertex M between E and B, the

predecessor of M is into M on D-path and there is an edge from M to C that is into C and

M is not a collider along D-path. See Figure 8.

• E • C

Figure 8

If any of the M-C edges is not into M in G\ then since M is not a collider along D-path,

when the M-C edge is substituted for the subpath of D-path from M to C, every vertex on

the new path up to C is a collider on D-path if and only if it is a collider in G.

Suppose then that for each M between E and B, M is a not collider on D-path but the M-C

edge is into M. See Figure 9.
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• •

Figure 9

By hypothesis, the edge from E to its successor is into E's successor on D-path. It

follows that E is an ancestor of B. By hypothesis, B is an ancestor of C, so E is an

ancestor of C. If E = A, then by hypothesis there is a pair of inducing paths in G from E

to its successor (B), and from its successor to C that are into E. Let F be the successor

of E on D-path. If E * A, then by the definition of E there is an edge from E to F that is

into F, and hence an inducing path in G between E and F that is into F. By assumption

there is an edge between F and C that is into F, and hence an inducing path in G between F

and C that is into F. Hence by lemma 9 there is an edge from E to C that is into C. Since

there is an edge from E to C that is into C, by hypothesis either E is a collider on D-path,

or the edge from the predecessor of E to E is not into E, or E = X. If the edge between E

and the predecessor of E on D-path is not into E, then when the edge between E and C is

substituted for the subpath from E to C, every vertex on the new path up to C is a

collider on D-path if and only if it is a collider in G. If E is a collider on D-path then the

edge between E and C is into E, and when the edge between E and C is substituted for the

subpath from E to C, every vertex on the new path up to C is a collider on D-path if and

only if it is a collider in G. If E = X, when the edge between E and C edge is substituted

for the subpath from E to C, every vertex on the new path up to C is a collider on D-path

if and only if it is a collider in G. Furthermore, since the edge from E to C is into C, and

the subpath of D-path from E to C is into C, C is a collider along D-path if and only if E is

a collider along the path that results from substituting the edge between E and C for the

subpath from E to C.

By repeating this process we can transform D-path into D-path', so that every collider

along D-path1 is a collider in G. Every collider on D-path is a descendant of a collider on

U, and hence the ancestor of a member of Z in G. Suppose however that some collider B

on D-path is an ancestor of some vertex in Z in G but not in G\ We will show how to

transform D-path1 into a path in which every collider has a descendant in Z in G\ Let P
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be a directed path in G from B to a member Z of Z. In G\ let P be the path from B to Z

that consists of the observed variables on P in the order in which they occur. P exists

in G' because in G the directed path between any two observed variables on P is an

inducing path. The only way that P is not a directed path in G' from B to Z is if some edge

between on P is a double-headed arrow. Let S be the vertex on P* closest to B for which

S is not a descendant of B in G'. Let R be the vertex on P adjacent to S between S and B if

there is one, and otherwise let R = B. R and S are the endpoints of a double-headed arrow

on P. In that case there are two inducing paths between R and S in G; one is a directed

path from R to S, and the other is an inducing path that is into R and into S. Consider the

undirected path V that is contained in the concatenation of D-path' from X to B and the

subpath of P from B to S. By the same argument that showed the existence of D-path\

there is a vertex E on V such that there is an edge from E to S that is into S, and is into E

if and only if the edge between E and the successor of E on V is into E. E is not on P

because there is an edge from E to S, and hence a directed path from B to S. It follows

that E is on D-path1. Similarly, there is a vertex F between B and Y such that there is an

edge from F to S that is into S, and is into F if and only if the edge between F and the

predecessor F is into F. By substituting the edges from E to S and F to S for the subpath

of D-path' between E and F we have constructed a path in G* from X to Y in which every

collider up to S has a descendant in Z. If S does not have Z as a descendant in G' repeat

this process until a vertex T along P is reached which does have Z as a descendant in G.

We have thus removed a collider that did not have a descendant in Z from D-path. By

repeating the process we can construct a path in G1 in which every collider has a

descendant in Z. Q.E.D.

The following lemmas state some key properties of d-separability in inducing path

graphs.

Lemma 11: If G* is the inducing path graph for directed acyclic graph G over O, A and

B are d-connected by every subset of 0\{A,B} in G' if and only if there is an inducing

path over O between A and B in G\

Proof. The proofs of each of the lemmas used to prove Theorem 1 are also proofs of the

corresponding lemmas for inducing paths in inducing path graphs. Q.E.D.

Lemma 12: If G' is the inducing path graph for directed acyclic graph G over O and

there is an inducing path U over O between A and C in G\ then there is an edge between A

and C in Gf. Furthermore if U is into A in G\ then the edge between A and C is into A in G\
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Proof. If there is an inducing path between A and C in G\ then by lemma 11 in G' A and C

are d-connected by every subset of 0\{A,C}. Hence by lemma 8, A and C are d-separated

by every subset of 0\{A,C} in G. By Theorem 1, there is an inducing path between A and

C in G. It follows by definition that there is an edge between A and C in G'. Furthermore,

if any inducing path between A and C over O in G is into A, then the edge between A and C

is into A in Gv by definition. Q.E.D.

Let a total order Totalfa) of variables in an inducing path graph n be acceptable if and

only if whenever there is a directed path from A to B in n, A precedes B in Total(ic).

Let W E Double-arrow(V,Total(7c)) in n if and only if either

1. there is an edge V <-> W in K9 and W precedes V in Total(ic) or

2. there is a variable U in Double-arrow(V,Total(ic))f U <-> W in *, and U

precedes V in Total(rc).

For example in Figure 10, if Total(ic) = <XfS,tfr,MfZfQfY>, then Double-

arrow(Y,Total(K)) = {Q.t.S}, and if Total(w) = <XfSft,rfMfZfYfQ>f then Double-

arrow(YJotal(*)) = 0.

- • Y

Figure 10

For inducing path graph n and acceptable total ordering Total(71), let

Predecessors(Total(ft),V) equal the set of all variables that precede V (not including

V) according to Total(Tc).
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For inducing path graph n and acceptable total ordering Total(TC), let SP(Total(*),7E,V)

(separating predecessors of V in TC for ordering Total(x)) = Parents(V) u Double-

Arrow^) u Parents(Double-Arrow(V)).

Lemma 13: For induced path graph G and acceptable total ordering Totalfa),

SP(Total(*)fjc,X) d-separates X from Predecessors(Total(jc)fX)\SP(Total(ic)fjcfX).

Proof. Suppose on the contrary that there is a path U that d-connects some V in

Predecessors(Total(jc),X)\SP(Total(jc),7c,X) to X given SP(Total(*),7i,X). There are

three cases.

First suppose U has an edge into X that is not a double-headed arrow. Then some parent R

of X is on U, and is not a collider on U. R is in SP(Total(ic)vnvX) and hence is not equal to

V. Because R is not a collider on U, U does not d-connect V to X given SP(Total(*)f*fX)f

contrary to our assumption.

Next suppose U has an edge out of X. Since V is in

Predecessors(Total(ft)>X)\SP(Total(ft),7c,X) it precedes X in Total (TC); hence there is

no directed path from X to V. It follows that U contains a collider. Let the first collider

after X be R. R is a descendant of X, and the descendants of R are descendants of X. It

follows that no descendant of R (including R itself) is in SP(Total(TC),TI,X), and hence U

does not d-connect V and X, contrary to our assumption. See Figure 11.

- • R «* S • V

Figure 11

Finally, suppose that U contains a double-arrow into X. Because U d-connects X and V,

each collider along U has a descendant in SP(Total(rc),*,X). There is a subpath of

double-headed arrows with endpoint X on U. If some variable R in the subpath does not

precede X in Total(ic), neither does any of its descendants. In that case, neither R nor its

descendants is in SP(Total(ft),ic,X), and R is a collider along U. Hence U does not d-

connect V and X contrary to our assumption. If on the other hand each variable on the

subpath of double-headed arrows with endpoint X on U precedes X in Total(rc) let W be

the last variable in the subpath. W * V because W is in SP(Total(jc)f7c,X). There is
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either an edge into or out of W. If there is an edge into Wv let Y be the tail of the edge into

W. Y is a parent of W, and hence also in SP(Total(*),7t,X) and not equal to V. But then Y

is not a collider on U and is in SP(Total(rc),7c,X), so U does not d-connect X and V given

SP(Total(ic).ft.X), contrary to our assumption. If there is an edge out of W, W is in

SP(Total(7i),7t,X) and is not a collider along U, so U does not d-connect X and V given

SP(Total(rc),7c,X), contrary to our assumption. Q.E.D.

Let NA(A,B) (mnemonic for non-ancestor) be A if A is not an ancestor of B, and

otherwise let it be B. (In an acyclic graph either A is not an ancestor of B or B is not an

ancestor of A, so the vertex that is NA(A,B) is not an ancestor of the other vertex.)

Let V E DA(NA(A,B)) (double-arrow ancestor) for inducing path graph G if and only if

1. V is an ancestor of A or B and V <-> NA(A,B) in G, or

2. V is an ancestor of A or B and V <-> W for W e DA(NA(A,B)).

Let D-SEP(A,B) = Parents(NA(A,B)) u DA(NA(A,B)) u Parents(DA(NA(A,B))).

Lemma 14: In an inducing path graph G, if A and B are not adjacent then A and B are d-

separated by D-SEP(A,B).

Proof. Suppose that A and B are not adjacent, and suppose without loss of generality that

NA(A,B) = A. Let the total order Total(G) on the variables in G be such that all ancestors

of A and B are prior to A, B is prior to A, and all vertices that are not ancestors of A and

not ancestors of B are after A. Then SP(Total(G),G,A) = D-SEP(A.B). Hence by lemma

25, if B is not in D-SEP(A,B) then D-SEP(A,B) d-separates A from B in G. If A and B

are not adjacent then B is in D-SEP(A,B) if and only if there is a path P of double-

headed arrows from A to B such that each vertex on the path is an ancestor of A or B, or

it is a parent of the endpoint of such a path P. In either case there is a path from A to B

in which each vertex except the endpoints is a collider on the path, and each collider is

an ancestor of A or B. But then there is an inducing path between A and B, and because G

is an inducing path graph, by lemma 12 A and B are adjacent, contrary to our

assumption. Q.E.D.

In an inducing path graph G, E is a discriminating vertex for C with respect to

triangle A-B-C using path P and vertex B, if and only either the edge between A

and C is into A and the edge between B and A is out of A, or the edge between A and C is out

of A and the edge between B and A is into A, and E is a closest vertex to A such that

1. E is not adjacent to B, and

2. P is an undirected path from E to A not containing B or C, and
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3. for every vertex V on P, if V is adjacent to V on P and between V and A on P,

then V *-> V in G, and

4. every vertex V on P between E and A is adjacent to B in G, and

5. except for the endpoints of P, V is a collider on P if and only if V is a parent of

B.

Lemma 15: In an inducing path graph G\ if E is a discriminating vertex for C with

respect to triangle A-B-C using path P and vertex B then for any set S such that E and B

are d-separated given S, C is a collider in A-B-C if and only if C is not in S.

Proof. Suppose E is a discriminating vertex for C with respect to triangle A-B-C using

path P and vertex B. By definition E is not adjacent to B. It follows that there is some

set S such that E and B are d-separated by S. First we will prove by induction that for

any set S such that E and B are d-separated by S, P d-connects E and A given S\A by

showing that S\A contains every collider along P and no non-collider along P.

Base Case: Let F be the first vertex after E on P. If F = A then the condition is trivially

satisfied because there are no colliders or non-collider on P. Suppose then that F * A. If

F is a collider on P then F is a parent of B. It follows that the path concatenating the

edges between E and F and between F and B, d-connects E and B given any set that does not

contain F. Hence F is in S\A if F is a collider on P. If F is not a collider on P then there

is an edge from B to F that is into F. The path concatenating the edges between E and F and

between F and B d-connects E and B given any set containing F. Hence F is not in S\A if F

is not a collider on P.

Induction Case: Suppose that for the first n vertices on P after E, each vertex is in S\A

if and only if it is a collider on P. If P has only n vertices we are done. Otherwise let V

be the n+1 s t vertex on P. If V = A then it immediately follows that E and A are d-

connected by S\A. If V * A then suppose first that V is a collider on P. The subpath of P

from E to V d-connects E and V given S\V because each vertex preceding V on P is in S\V

if and only it is a collider. Because V is a collider on P it is a parent of B. If V is not in S

then the concatenation of the subpath of P from E to V and the edge between V and B forms

a path that d-connects E and B given S. Hence V is in S\A if V is a collider on P. Suppose

that V is not a collider on P. Then V is adjacent to B, and the edge between V and B is into

V. If V is in S then the concatenation of the subpath of P from E to V and the edge between

V and B forms a path that d-connects E and B given S. Hence V is not in S\A if V is not a

collider on P.
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It follows that P d-connects E and A given S\A. Because P d-connects E and A given S\A

and E and B are d-separated given Sf A is in S if and only if the edge between A and B does

not collide with P at A.

Let P* be the concatenation of P and the A-C edge. P' is an undirected path because P does

not contain B or C. If A is in S, then the edge between A and B does not collide with P at A.

By hypothesis, the predecessor of A on P is into A. It follows that the edge between A and

B is out of A, and hence the edge between A and C is into A. In that case, the edge between

A and C collides with P at A, and P' d-connects E and C given SVC.

If A is not in S, then the the edge between A and B is into A, and hence the edge between A

and C is out of A. In that case, the edge between A and C does not collide with P at A, and P

d-connects E and C given S\C.

In all cases, E and C are d-connected by P given S\C. Let P" be the concatenation of P

with the edge between B and C. P" is an undirected path because P does not contain B.

Because P d-connects E and C given S\C, C is a collider along P" if and only if C is not in

S. Q.ED.

A.3 Partially Oriented Inducing Path Graphs

The partially oriented inducing path graph for a directed acyclic graph G is given by the

output of the Causal inference Algorithm.

There is an edge between A and B in the partially oriented inducing path graph if and only

if there is an edge between A and B in the inducing path graph. However, there are four

kinds of edges in a partially oriented inducing path graph. An edge A -> B means that in

the inducing path graph, there is an edge A -> B; an edge A <-> B means that in the

inducing path graph, there is an edge A <-> B; an edge A o-> B means that in the inducing

path graph there is an edge between A and B that is into B, but we do not know whether it

is into A; and an edge Ao-oB means that there is an edge between A and B in the inducing

path graph, but we do not know whether it is into A or into B.

We use "*" as a metasymbol to represent any of the three kinds of ends (nothing, ">", or
MoN) that an edge in a partially oriented inducing path graph can have; the "*" symbol

itself does not appear in a partially oriented inducing path graph. In addition, A *-Q_E

&-* C means that either or both of the edges between A and B and B and C are out of B,

although we do not know whether the edge between A and B is out of B, or whether the

edge between B and C is out of B.
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The definitions of directed path, d-separability, inducing path, collider, ancestor, and

descendant are the same as those for directed graphs, i.e. a directed path in a partially

oriented inducing path graph, as in an acyclic directed graph, contains only directed

edges (e.g. A-> B). However, an undirected path in a partially oriented inducing path

graph can contain either directed edges (e.g. A -> B), bi-directed edges (e.g. A <-> B),

undirected edges (e.g. A o-o B), or partially directed edges (e.g. A o-> B). Also, A is a

parent of B only if there is a directed edge from A to B. In a partially oriented inducing

path graph G we will say that an edge A is into B if A *-> B, and that it is out of A if and

only if A -> B.

Causal Inference Algorithm

If G is a directed acyclic graph over V\ and V is a subset of V\ the input to the algorithm
is the set of d-separation relations involving just members of V that is true in G. Let
AQ(A,B) denote the set of vertices adjacent to A or to B in graph Q, except for A and B
themselves. (Since the algorithm is continually updating Q, A Q ( A , B ) is constantly
changing as the algorithm progresses.)

A.) Form the complete undirected graph Q on the vertex set V.

B.) If A and B are d-separated by any subset S of V, remove the edge between A and B,

and record S in D(A,B).

C.) Let F be the graph resulting from step B. Orient each edge as o-o. For each triple of

vertices A, B, C such that the pair A, B and the pair B, C are each adjacent in F but the

pair A, C are not adjacent in F, orient A *-* B *-* C as A *-> B <-* C if and only if B is

not in D(A,C).

D. repeat

If there is an edge A *-> B, and an edge B *-* C, A and C are not adjacent, and

there is no arrowhead into B, then orient B *-* C as B -> C,

else if there is a directed path from A to B, and an edge A *-* B, orient A *-*

B as A *-> B,

else if V is a discriminating vertex for M using R in triangle P-M-R then

if M is in D(V,R) then mark M as a non-collider on subpath P M

* R

else orient P *-* M •-• R as P *-> M <- * R.

else if P *-> M *-* R then orient as P *-> M -> R.
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until no more edges can be oriented.

Because the d-separation relations in a directed acyclic graph G are the same as the d-

separation relations in the inducing path graph G' of G, we will also speak of the

partially oriented inducing path graph of an inducing path graph G'. Note that there is an

edge between A and B in the partially oriented inducing path graph of graph G if and only

if there is an inducing path between A and B in G. Hence two vertices are adjacent in the

partially oriented inducing path graph of G if and only if they are adjacent in the

inducing path graph of G.

Lemma 16: If n is the partially oriented inducing path graph of inducing path graph

G\ then if B *-> C in n then B *-> C in G, and if B -> C in TC, then B -> C in G\

Proof. The proof is by induction on the number of applications of orientation rules in

the repeat loop of the Causal Inference Algorithm.

Base Case: Suppose that the only orientation rule that has been applied is that if A *-* B

*-* C in F, but A and C are not adjacent in F, A *-* B *-* C is oriented as A *-> B <-*

C if and only if B is not a member of D(A,C). If A *-> B <-* C in TC, then A and C are not

d-separated by any subset containing B. If B is a parent of either A or C in G, then there

is an undirected path between A and C that does not collide at B, and except for the

endpoints contains only B. If that path does not d-connect A and C given any subset S,

then S contains B. Since A and C are d-separated given D(A,C), and D(A,C) does not

contain B, B is not a parent of either A or C, and the edges between A and C, and B and C

collide at B.

Induction Case: Suppose that after the nth iteration of the repeat loop that if B *-> C in n

then B *-> C in G\ and if B -> C in n, then B -> C in G\ and if A *-* B •-* C that the

edges between A and B, and B and C do not collide at B in G\ We will now show that after

the n+1s t iteration of the repeat loop that if B *-> C in n then B *-> C in G\ and if B ->

C in 7c, then B -> C in G\

Case 1: If there is an edge A *-> B, and an edge B *-* C, and A and C are not adjacent,

and there is no arrowhead into B, then B *-* C is oriented as B -> C. If A *-> B in K,

then by the induction hypothesis, A *-> B in Gf . If A *-> B <-* C in Gf then A and C are

d-connected given every subset containing B. Hence, every unshielded collider in G' has

been oriented as an unshielded collider in n before the repeat loop is entered. Because A

*-> B *-* C is not a collider at B in G\ and A *-> B in G\ it follows that B -> C in G\
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Case 2: If there is a directed path from A to B, and an edge A *-* B, orient A *-* B as A

*-> B. By the induction hypothesis if there is an edge R -> S in n, then there is an edge

R -> S in G'. It follows that if there is a directed path from A to B in n, then there is a

directed path from A to B in G'. Because G' is acyclic, A *-> B in G\

Case 3: If V is a discriminating vertex for Q in triangle P-Q-R then

if Q is in D(VfR) then mark Q as a non-collider on subpath P *-* Q *-* R

else orient P *-* Q *-* R as P *-> Q <- * R.

By the induction hypothesis, if V is a discriminating vertex for Q in triangle P-Q-R in

a, then it is a discriminating vertex for Q in triangle P-Q-R in G*. By lemma 15, in G\

if V is a discriminating vertex for Q in triangle P-Q-R, then Q is a collider on P *-1JQ

1-* R if and only if Q is not in D(V,R).

Case 4: If P *-> Q »-» R then orient as P *-> Q -> R. By the induction hypothesis, if P

*-> Q *•* R in 7c, then in Gf the edge from P to Q is into Q, but Q is not a collider on P *-

> Q *-* R. It follows that P *-> Q -> R in G\ Q.E.D.

Lemma 17: If TC is the partially oriented inducing path graph of directed acyclic graph

G, and A -> B in *, then in G there is no inducing path between A and B that is into A.

Proof. Let G* be the inducing path graph of G. By lemma 16, if A -> B in a, then A -> B

in G\ By the method of construction of G* there is no inducing path between A and B in G

that is into both A and B, and some inducing path between A and B in G is into B. By

lemma 4 there is a directed path from A to B in G. If there is an inducing path in G

between A and B that is into A but not into B then by lemma 4 there is a directed path

from B to A. Because G is acyclic, there is no inducing path in G between A and B that is

into A but not into B. Hence in G no inducing path between A and B is into A. Q.E.D.

Lemma 18: If TC is the partially oriented inducing path graph of directed acyclic graph

G, and A -> B in n, then there is a directed path from A to B in G.

Proof. Let G' be the inducing path graph of G. If A -> B in n, then A -> B in G\ If A -> B

in G\ then in G there is an inducing path from A to B that is not into A. Hence by lemma

4 there is a directed path from A to B in G. Q.E.D.

Theorem 2: If K is the partially oriented inducing path graph of directed acyclic graph

G, and there is a directed path U from A to B in n, then there is a directed path from A to

BinG.
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Proof. By lemma 18, for each edge between R and S in U there is a directed path from R

to S in G. The concatenation of the directed paths in G contains a subpath that is a

directed path from A to B in G. Q.E.D.

Lemma 19: If TC is the partially oriented inducing path graph of graph G over O, E is a

discriminating vertex for B in triangle A-B-C using C and path P, V is on P, V is on P

and between V and C, and V is not a collider on P, then V is not a collider on P.

Proof. Let G' be the inducing path graph of G over 0. Suppose that in n is the partially

oriented inducing path graph of graph G, E is a discriminating vertex for B in triangle

A-B-C using C and path P in n, V is on P, V is on P and between V and C, and V is not a

collider on P, but V is a collider on P. By lemma 16, in G\ E is a discriminating vertex

for B in triangle A-B-C using C and path P in TC, V is on P, V is on P and between V and C,

and V is not a collider on P, but V is a collider on P. In G\ E and B are not d-connected

given every subset of O, because by definition of discriminating vertex E and B are not

adjacent in G\ Suppose S is a subset of O that d-separates E and B in G\ We have

already shown in the proof of lemma 15 that every collider on P is in S and no non-

collider on P is in S. Let V be the collider closest to C on P such that there is a non-

collider on P between V and A, and let V be the collider adjacent to V on P and between V

and C. Hence V has a descendant (V) that is a collider on P. There is an edge between V

and B that is into V, because V is not a collider on P. The concatenation of P(E,V) with

the edge from V to B is a path that d-connects E and B given S because every collider

along P(EVV) is in S, no non-collider along P(EVV) is in S, and V is a collider on the

concatenated path that has a descendant V that is in S. This contradicts the assumption

that S d-separates E and B. Q.E.D.

Lemma 20: If n is the partially oriented inducing path graph of graph G, and A *-> B

in ic, then every inducing path in G between A and B is into B.

Proof. We will prove that each orientation rule in the Causal Inference Algorithm is

such that if the rule orients the edge between A and B as A *-> B, then every inducing

path between A and B in G is into B. Let G' be the inducing path graph of G.

Case 1: By lemma 18 any of the rules that orients the edge between A and B as A -> B in

7c entails that there is a path from A to B in G. By lemma 5 every inducing path between

A and B that is into A or B. If there is an inducing path between A and B in G that is into A

and not into B then by lemma 4 there is a directed path from B to A in G. But G is not

cyclic, so there is no inducing path between A and B in G that is into A and not into B.
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Case 2: Suppose the edge between A and B is oriented as A *-> B in order to avoid a cycle

in n because there is a directed path from A to B in n. By lemma 20 there is a directed

path from A to B in G. By lemma 5 every inducing path between A and B that is into A or

B. If there is an inducing path between A and B in G that is into A and not into B then by

lemma 4 there is a directed path from B to A in G. But G is not cyclic, so there is no

inducing path between A and B in G that is into A and not into B.

Case 3: The edge between A and B is oriented as A *-> B because there is a vertex C such

that A and B are adjacent in n, B and C are adjacent in *, A and C are not adjacent in n,

and B is not in D(A,C). It follows by lemma 16 that A *-> B <-* C in G\ By the

construction of G' it follows that in G there is an inducing path between A and B into Bf

and an inducing path between B and C into B. Suppose contrary to the theorem that there

is another inducing path between A and B in G that is not into B. By lemma 4 A is a

descendant of B in G. By lemma 9 there is an inducing path between A and C. But if there

is an inducing path between A and C in G, then A and C are adjacent in TC, contrary to our

assumption.

Case 4: Suppose the edge between A and B in K is oriented as A *-> B because V is a

discriminating vertex for B using C in triangle A-B-C and B is not in D(V,C). Suppose

contrary to the theorem that in G there is also an inducing path between B and A that is

not into B. It follows from lemma 4 there is a directed path from B to A in G. There are

two cases: either V is a discriminating vertex for B using A and some path U, or V is a

discriminating vertex for B using C and some path U. In either case we will refer to the

vertex that is the endpoint of U on triangle A-B-C as NS (near side) and the vertex that

is in ABC and not equal to B or on U as FS (far side.) See Figure 12.
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V is discriminating vertex for B using A. NS - C, FS - A.

V is discriminating vertex for B using A. NS = A, FS = C.

Figure 12

We will first prove that in n there is an undirected path W from V to FS in which all

vertices between V and FS are colliders, and each collider is an ancestor of FS. There are

three cases.

First, if every vertex on U is a collider and the edge from NS to B does collide with the

last edge in U, let W be the concatenation of U and the edges from NS to B and B to FS. It

follows trivially that every vertex on W between V and FS is a collider.

Second, if every vertex on U is a collider but the edge from NS to B does not collide with

the last edge in U, let W be the concatenation of U and the edge from NS to FS. Because V

is a discriminating vertex for B in the NS-B-FS triangle using U, the last edge on U is

into NS. If the edge from NS to B does not collide with the last edge on U, the edge from

NS to B is out of NS. It follows that the edge from FS to NS is into NS, and hence does

collide with the last edge on U. It follows that every vertex on W between V and FS is a

collider.

Third, if there is a non-collider on U, let Q be the first non-collider after V. Because Q

is not a collider on U, and V is a discriminating vertex using U, there is an edge between

Q and FS that is into Q. Let W be the concatenation of the subpath of U from V to Q, with

the edge from Q to FS. Suppose that there is a non-collider on U, and Q is the first non-

collider after V. Because Q is not a collider on U, and V is a discriminating vertex using

U, there is an edge between Q and FS that is into Q, and the last edge on the subpath of U

from V to Q is into Q. Hence every vertex on W between V and FS is a collider.
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We will now show that every collider on W is an ancestor of FS.

First, every collider on W that is also on U is a parent of FS because V is a

discriminating vertex for B using FS and U.

Second, both B and NS are ancestors of FS. First consider the case where NS - C and FS -

A. Suppose that C -> B <-* A in it. It follows that in G, C is an ancestor of B and by

hypothesis B is an ancestor of A. Hence both B and NS are ancestors of FS. Suppose that

C <-> B in p. Because V is a discriminating vertex for ABC, it follows that C -> A in p,

and hence C is an ancestor of A in G. It follows that both B and NS are ancestors of FS.

Next consider the case where NS = A and FS = C. If A -> B in ft, then A is an ancestor of B

in G, and hence there is a cycle. Suppose then that A <-> B in p. Because V is a

discriminating vertex for B in ABC, it follows that the edge from A to C is out of A and A

is an ancestor of C. In that case, both B and NS are ancestors of FS.

Finally, suppose Q which is a non-collider on U is on W. If Q is a non-collider on U, then

by lemma 19 every vertex after Q on U is a non-collider on U, but is into its successor

on U. Hence Q is an ancestor of NS, which is an ancestor of FS.

In ic, there is an undirected path W from V to FS in which every vertex between V and FS

is a collider, and in G every collider is an ancestor of V or FS. It follows by lemma 16

that there is an undirected path W from V to FS in G' in which every vertex between V

and FS is a collider. From the construction of G\ it follows that there is a sequence of

vertices in O, such that in G there is a sequence of vertices starting with V and ending

with FS such that for every pair of vertices I and J adjacent in the sequence there is an

inducing path W relative to 0 between I and J, and if J * V then W is into V, and if I * FS

then W is into I, and I and J are ancestors of either V or FS. By lemma 9 there is an

inducing path between V and FS in G. Hence V and FS are adjacent in n. But this

contradicts the assumption that V is a discriminating vertex for B using FS. Q.E.D.

A semi-directed path from A to B in partially oriented inducing path graph n is an

undirected path from A to B in which no edge contains an arrowhead pointing towards A

(i.e. if X and Y are adjacent on the path, and X is between A and Y on the path, then there

is no arrowhead at the X end of the edge between X and Y.)

Theorem 3: If ft is the partially oriented inducing path graph of directed acyclic graph

G over O, and there is no semi-directed path from A to B in ft, then there is no directed

path from A to B in G.
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Proof. Suppose there is a directed path P from A to B in G. Let P in n be the sequence of

vertices in O along P in the order in which they occur. P' is an undirected path in n

because for each pair of vertices X and Y adjacent in Pv for which X is between A and Y

there is an inducing path in G that is out of X. P' is a semi-directed path from X to Y in n

because by lemma 20, there is no arrowhead into X on P\ Q.E.D.

Unfortunately, the Causal Inference Algorithm as stated is not practical for large

numbers of variables because of the way the adjacencies are constructed. While it is

theoretically correct to remove an edge between A and B from the complete graph if and

only if A and B are d-separated by some subset of 0\{A,B}, this is impractical for two

reasons. First, there are too many subsets of 0\{A,B} to test the conditional

independence of A and B on. Second, for discrete distributions, unless the sample sizes

are enormous there are no reliable tests of independence of two variables conditional on

a large set of other variables.

Remember, however, that in an inducing path graph if A and B are d-separated by any

subset of 0 , then they are d-separated by D-SEP(A,B). Unfortunately, until we have

actually constructed the inducing path graph we do not know which variables are in D-

SEP(A,B). Nevertheless, as the partially oriented inducing path graph is constructed,

we can determine that some variables are definitely not in D-SEP(A,B). This reduces

the number and size of the subsets of 0 that have to be checked in order to determine

whether A and B are adjacent in the inducing path graph.

We will determine which edges to remove from the complete graph in three stages.

First, we will remove the edge between A and B if they are independent conditional on

subsets of neighbors of A and B. This will eliminate many, but perhaps not all of the

edges that are not in the inducing path graph. Second, we will orient edges by

determining whether they collide or not. Third, using the partially oriented inducing

path graph n that we have constructed thus far, we will form two sets of vertices

Possible-D-SEP(A.B), and Possible-D-SEP(B,A) one of which includes every

vertex that could possibly be in D-SEP(A,B). (We need two such sets because we

cannot determine from the partially oriented inducing path graph constructed thus far

whether A is a descendant of B or B is a descendant of A.) Finally, we will remove the

edge between A and B if A and B are independent conditional on any subset of either

Possible-D-SEP(A,B,?c) or Possible-D-SEP(B,A,ic). Once we have obtained the

correct set of adjacencies, we will unorient all of the edges, and then proceed to re-

orient them. For a given partially constructed partially oriented inducing path graph n,

Possible-D-SEP(A,B,ft) is defined as follows.
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1. A u Neighbors(A) is in Possible-D-SEP(A,B,ft)-

2. If X and Z are in Possible-D-SEP(A,B,*) and there is an edge between Y and X and

between X and Z, but not between Y and Z in K, then if the edge between Y and X collides

with the edge between X and Z in n at X, then Y is in Possible-D-SEP(A,B,ft)-

3. If X and Z are in Possible-D-SEP(A,B,*) and there are edges between Y and X and Y

and Z in n, then Y is in Possible-D-SEP(A,B,*)-

Fast Causal Inference Algorithm

If G is a directed acyclic graph over V\ and V is a subset of V \ the input to the algorithm
is the set of d-separation relations involving just members of V that is true of G. Let
A Q ( A , B ) denote the set of vertices adjacent to A or to B in graph Q, except for A and B
themselves. (Since the algorithm is continually updating Q, A Q ( A , B ) is constantly
changing as the algorithm progresses.)

A.) Form the complete undirected graph Q on the vertex set V.

B.) n = 0.

repeat

repeat

select a pair of variables X and Y that are adjacent in Q such that A Q ( X , Y ) has

cardinality greater than or equal to n, and a subset S(X,Y) of A Q ( X , Y ) of

cardinality n, and if X and Y are d-separated by some subset of S(X,Y) delete

the edge between X and Y from Q, and record the subset in D(X,Y)

until all variable pairs X and Y such that AQ(X,Y)has cardinality greater than n

and all subsets S(X,Y) of A Q ( X , Y ) of cardinality n are exhausted,

n = n + 1.

until for each pair of adjacent vertices Xv Y, A Q ( X , Y ) is of cardinality less than n.

C. Let P be the graph resulting from step B. Orient each edge as o-o. For each triple of

vertices A, B, C such that the pair A, B and the pair B, C are each adjacent in F but the

pair A, C are not adjacent in F, orient A *-* B *-* C as A *-> B <-* C if and only if B

is not in D(A,C).

D. For each pair of variables A and B connected by an edge in F, if A and B are d-

separated by any subset of Possible-D-SEP(A,B,F) or any subset of Possible-D-

SEP(B AF*) remove the edge between A and B.

E.) Let F be the graph resulting from step D. Orient each edge as o-o. For each triple of

vertices A, B, C such that the pair A, B and the pair B, C are each adjacent in F but the
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pair A, C are not adjacent in F, orient A *-* B *-* C as A *-> B <-* C if and only if A

and C are not d-separated by any subset of A F ( A , C ) containing B.

F. repeat

If there is an edge A *-> B, and an edge B *-* C, A and C are not adjacent, and

there is no arrowhead into B, then orient B *-* C as B -> C,

else if there is a directed path from A to B, and an edge A *-* B, orient A *-*

B as A *-> B,

else if V is a discriminating vertex for Q in triangle P-Q-R then

if Q is an in D(V,R) then mark Q as a non-collider on subpath P *-» Q *-

* R

else orient P •-• Q *-* R as P *-> Q <- * R.

else if P *-> Q »-* R then orient as P *-> Q -> R.

until no more edges can be oriented.

Lemma 21: If G* is the inducing path graph of directed acyclic graph G, and P is the

partially oriented inducing path graph constructed in step C of Fast Causal Inference

Algorithm from the d-separability relations true of G and involving only the variables

in O f then either every vertex in D-SEP(AVB) in Gv is in Possible-D-SEP(A fB,F')

or every vertex in D-SEP(A,B) in G' is in Possible-D-SEP(B,A,F').

Proof. Suppose without loss of generality that A is not a descendant of B. If V is in D-

SEP(A,B) in G\ then there is a path from A to V in which every vertex except the

endpoints is a collider; we will caii such a path a collider path from A to V. We will

show that every vertex in D-SEP(A.B) is in Pos$ible-D-SEP(A,B.F) by induction

over the lengths of the shortest collider paths from A in G'.

Base Case: Suppose that V is a neighbor of A in P. The neighbors of A in P are a superset

of the neighbors of A in G1. Every neighbor of A in P is in Possible-D-SEP(A,B,F),

so every neighbor of A in G* is in Possible-D-SEP(A,B,Ff).

Induction Case: Suppose that in G' every vertex V in D-SEP(A,B) for which the

shortest collider path from A to V is length n or less is in Possible-D-SEP(A,B,F).

Let Z be a vertex in D-SEP(A,B) in G' for which the shortest collider path P from A to

Z is length n+1. In G' there are vertices X and Y that are also on the collider path P such

that there are edges from Z to Y and from X to Y that collide at Y. By the induction

hypothesis, X and Y are in Possible-D-SEP(A,B,P). If there is no edge between X and
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Z in G' the edge between X and Y and the edge between Y and Z also collide in P. By the

second clause of the definition of Possible-D-SEP(A,B,F), Z is in Possible-D-

SEP(A,B,F). Suppose then that that there is an edge between X and Z in G\ In that case,

Z is in Possible-D-SEP(A,B,F) by the third clause of the definition. Q.E.D.

Theorem 4: If G is a directed acyclic graph, the partially oriented inducing graph

constructed by the Fast Causal Inference Algorithm from the d-separability relations

true of G and involving only the variables in O is the same as the partially oriented

inducing graph constructed by the Causal Inference Algorithm from the d-separability

relations true of G and involving only the variables in O.

Proof. This follows immediately from lemmas 13 and 21. Q.E.D.
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